
ar
X

iv
:1

60
8.

06
58

3v
1

 [
cs

.P
L

]
 2

3
A

ug
 2

01
6

Syntax and analytic semantics of LISA

Jade Alglave

Microsoft Research Cambridge
University College London

mg sca o .t cof@l a rl m oivja , uel av ca.lcg @a kl .j. u

Patrick Cousot

New York University
emer. École Normale Supérieure, PSL Research University

u.i u do eco n .us yt s@c mp , .eu ft rns so @oc

24th August 2016

Abstract

We provide the syntax and semantics of the lisa (for “Litmus Instruction Set Archi-
tecture”) language. The parallel assembly language lisa is implemented in the herd7 tool
(Alglave and Maranget, 2015) for simulating weak consistency models.

1 Introduction

lisa (which stands for “Litmus Instruction Set Architecture”) has the vocation of being a fairly
minimal assembly language, with read and write memory accesses, branches and fences to design
consistency models for weakly consistent systems without having to concern oneself with the
syntax of the programming language (such as ARM, IBM, Intel x86, Nvidia multiprocessor
chips, or languages like C++ or OpenCL), which has proved quite useful at times where said
syntax was still in flux.

The weakly consistent semantics of a lisa is analytic in that it is the intersection of an
anarchic semantics (without any restriction on communications) and a communication semantics
(specified by a cat specification (Alglave, Cousot, and Maranget, 2015c) restricting the allowed
communications).

The herd7 tool is a weakly consistent system simulator, which takes as input a cat spe-
cification (Alglave, Cousot, and Maranget, 2015c) and a litmus test preferably in lisa, and
determines whether the candidate executions of this test are allowed or not under the cat spe-
cification and under which conditions on communication events. The semantics of cat and lisa

has been implemented in the herd7 tool. The documentation of the tool is available online, at
diy.inria.fr/tst7/doc/herd.html. The sources of the tool are available at diy.inria.fr.
A web interface of herd7 is available at virginia.cs.ucl.ac.uk/herd.

1

http://arxiv.org/abs/1608.06583v1
http://virginia.cs.ucl.ac.uk/herd/
http://virginia.cs.ucl.ac.uk/herd/
http://virginia.cs.ucl.ac.uk/herd/
diy.inria.fr/tst7/doc/herd.html
http://diy.inria.fr/tst7/doc/herd.html
diy.inria.fr
http://diy.inria.fr
http://virginia.cs.ucl.ac.uk/herd/
virginia.cs.ucl.ac.uk/herd
http://virginia.cs.ucl.ac.uk/herd/

We define the anarchic true parallel semantics with separated communications of lisa where
anarchic means that no restriction is made on possible communications. We also formally define
the abstraction into candidates executions which are the inputs for the semantics of the cat

language placing restriction on the communication events, which defines a weak consistency
model.

2 An overview of analytic semantics

We introduce anarchic semantics with true parallelism and unrestricted separate communica-
tions in Section 2. Then in Section 2.4 we show how to abstract anarchic execution to candidate
executions that a cat specification will allow or forbid based on hypotheses on relations between
communication events.

2.1 Executions

The anarchic semantics of a parallel program is a set of executions; an execution has the form
π = ς × rf ∈ Π , where ς is the computation part and rf is the communication part.

Communications are sets rf, which gather read-from relations. A read-from relation rf[w, r]
links a (possibly initial) write event w and a read event r relative to the same shared variable
x with the same value. Communications are anarchic: we place no restriction on which write a
read can read from; restrictions can be made in a cat specification however.

Computations have the form ς = τstart ×
∏

p∈Pi τp, where τstart is an execution trace of the
prelude process, and τp are execution traces of the processes p ∈ Pi. A finite (resp. infinite)
non-empty trace τp, p ∈ Pi ∪ {start} is a finite (resp. infinite) sequence

τp = 〈
τpk−−−−−→ τp

k
| k ∈ [0, 1 +m[〉 ∈ Tr

of computation steps
τpk−−−−−→ τp

k
(with τpk an event and τp

k
the next state—see below for the

definitions of event and state) such that τp0 = ǫstart is the start event, |τp| , m ∈ N∗ for finite

traces and |τp| , m = ω = 1 + ω for infinite traces where ω is the first infinite limit ordinal so
that [0, 1 + ω[= [0, ω[= N. This is a true parallelism formalisation since there is a notion of
local time in each trace τp, p ∈ Pi ∪ {start} of an execution π = τstart ×

∏

p∈Pi τp × rf but no
global time, since it is impossible to state that an event of a process happens before or after an
event of another process or when communications do happen.

Events indicate several things:
• their nature, e.g. read (r), write (w), branch (b), fence (f), etc.;
• the identifier p of the process that they come from;
• the control label ℓ of the instruction that they come from;
• the instruction that they come from—which gives the shared variables and local registers

affected by the event, if any, e.g. x and R in the case of a read r[ts] R x;

2

• their stamp θ ∈ P(p); they ensure that events in a trace are unique. In our examples,
stamps gather the control label and iteration counters of all surrounding loops, but this is not
mandatory: all we need is for events to be uniquely stamped. Different processes have non-
comparable stamps. Stamps are totally ordered per process by ⊳p (which is irreflexive and
transitive, while events on different processes are different and incomparable). The successor
function succp is s.t . θ⊳psuccp(θ) (but not necessarily the immediate successor); infp is a
minimal stamp for process p. We consider executions up to the isomorphic order-preserving
renaming ∼= of stamps;

• their value v ∈ D, whether ground or symbolic. To name the values that are communicated in
invariants, we use pythia variables P(p) , {xθ | x ∈ X ∧ θ ∈ P(p)} (note that the uniqueness
of stamps on traces ensures the uniqueness of pythia variables). More precisely, traditional
methods such as Lamport’s and Owicki-Gries’ name x the value of the shared variable x, but
we cannot use the same idea in the context of weak consistency models. Instead we name xθ
the value of shared variable x read at local time θ.
The events τp on a trace τp of process p are as follows:

• register events: a(〈p, ℓ, mov R1 operation , θ〉, v);
• read events: r(〈p, ℓ, r[ts] R1 x, θ〉, xθ));
• write events: w(〈p, ℓ, w[ts] x r-value , θ〉, v);
• branch events are of two kinds:

– t(〈p, ℓ, b[ts] operation l t, θ〉) for the true branch;
– t(〈p, ℓ, b[ts] operation l t, θ〉) for the false branch;

• fence events: m(〈p, ℓ, f[ts]
[

{l 01 . . . l
m
1 } {l 02 . . . l

q
2}
]

, θ〉);
• RMW events are of two kinds:

– begin event: m(〈p, ℓ, beginrmw[ts] x, θ〉);
– end event: m(〈p, ℓ, endrmw[ts] x, θ〉)

States σ = s〈ℓ, θ, ρ, ν〉 of a process p mention:
• ℓ, the current control label of process p (we have doneJPK(p)ℓ which is true if and only if ℓ is

the last label of process p which is reached if and only if process p does terminate);
• θ is the stamp of the state in process p;
• ρ is an environment mapping the local registers R of process p to their ground or symbolic

value ρ(R);
• ν is a valuation mapping the pythia variables xθ ∈ P(p) of a process p to their ground or

symbolic value ν(xθ). This is a partial map since the pythia variables (i.e. the domain dom(ν)
of the valuation ν) augment as communications unravel. Values can be ground, or symbolic
expressions over pythia variables.

The prelude process has no state (represented by •).

2.2 Well-formedness conditions

We specify our anarchic semantics by the means of well-formedness conditions over the compu-
tation traces ς = τstart ×

∏

p∈Pi τp, and the communications rf of an execution π = ς × rf.

Conditions over computations τstart ×
∏

p∈Pi τp are as follows:

• Start : traces τ must all start with a unique fake start event ǫstart:

τ0 = ǫstart ∧ ∀i ∈]0, 1 + |τ |[. τ i 6= ǫstart . Wf2(π)

3

• Uniqueness : the stamps of events must be unique:

∀p, q ∈ Pi ∪ {start} . ∀i ∈ [0, 1 + |τp|[. ∀j ∈ [0, 1 + |τq|[.

(p = q =⇒ i 6= j) =⇒ stamp(τpi) 6= stamp(τqj) . Wf3(π)

It immediately follows that events of a trace are unique, and the pythia variable xθ in any
read r(〈p, ℓ, r := x, θ〉, xθ) is unique.

• Initialisation: all shared variables x are initialised once and only once to a value vx in the
prelude (or to vx = 0 by default).

∃τ0, τ1 . τstart = τ0 (w(〈start, ℓstart, x := e, θ〉, vx)) τ1 ∧

∀τ0, τ1, τ2 . (τstart = τ0
ǫ

−−−→στ1 w(〈start, ℓ, x := e, θ〉, vx) τ2)

=⇒ (ǫ ∈ W(start, y) ∧ y 6= x) . Wf4(π)

• Maximality: a finite trace τp of a process p must be maximal i.e. must describe a process
whose execution is finished. Note that infinite traces are maximal by definition, hence need
not be included in the following maximality condition:

∃ ℓ θ ρ ν . τp
|τ |

= s〈ℓ, θ, ρ, ν〉 ∧ doneJPK(p)ℓ Wf5(π)

i.e. the control state of the last state of the trace is at the end of the process, as indicated
by doneJPK(p)ℓ.

Conditions over the communications rf are as follows:

• Satisfaction: a read event has at least one corresponding communication in rf:

∀i ∈]0, 1 + |τp|[. ∀r . (τpi = r) =⇒ (∃w . rf[w, r] ∈ rf) .
Wf6(π)

• Singleness : a read event in the trace τp must have at most one corresponding communication
in rf:

∀r w w′ . (rf[w, r] ∈ rf ∧ rf[w′, r] ∈ rf) =⇒ (w = w′) .

Wf7(π)

Note however that a read instruction can be repeated in a program loop and may give rise to
several executions of this instruction, each recorded by a unique read event.

• Match: if a read reads from a write, then the variables read and written must be the same:

(rf[w(〈p, ℓ, x := r, θ〉, v), r(〈p′, ℓ′, r′ := x′, θ′〉, x′θ)] ∈ rf)

=⇒ (x = x′) . Wf8(π)

• Inception: no communication is possible without the occurrence of both the read and (maybe
initial) write it involves:

∀r w.(rf[w, r] ∈ rf) =⇒ (∃p ∈ Pi, q ∈ Pi ∪ {start}. Wf9(π)

∃j ∈ [0, 1 + |τp|[, k ∈ [0, 1 + |τq|[. τpj = r ∧ τqk = w) .

Note that this does not prevent a read to read from a future write.

Language-dependent conditions for lisa are as follows:

• Start : the initial state of a trace τp should be of the form:

τp
0
= s〈l 0p, infp, λ R . 0, ∅〉 Wf10(π)

where l 0p is the entry label of process p and infp is a minimal stamp of p.

4

• Next state: if at point k of a trace τp of process p of an execution π = τstart ×
∏

p∈Pi τp × rf

the computation is in state τp
k−1

= s〈ℓ, θ, ρ, ν〉 then:

– the next event must be generated by the instruction instr , instrJPKpℓ at label ℓ of process
p

– the next event has the form τpk = e〈〈p, ℓ, instr , θ〉, xθ, v〉
– the next state τp

k
= s〈κ′, θ′, ρ′, ν′〉 has κ′ = ℓ′ which is the label after the instruction instr

– the stamp θ′ = succp(θ) is larger, and
– the value v as well as the new environment ρ′ and valuation ν′ are computed as a function

of the previous environment ρ, the valuation ν, and the execution π.

Formally: ∀k ∈]0, 1 + |τp|[. ∀κ′ ρ ρ′ ν ν′ θ θ′ .

(τp
k−1

= s〈ℓ, θ, ρ, ν〉 ∧ τpk = e〈〈p, ℓ, instr , θ〉, xθ, v〉 ∧

τp
k
= s〈κ′, θ′, ρ′, ν′〉) =⇒ (κ′ = ℓ′ ∧ θ′ = succp(θ) ∧ v = v(ρ) ∧ ρ′ = ρ(v, ρ) ∧ ν(v, ρ, ν, π, ν′)) .

We give the form of the next event τpk for each lisa instruction:

• Fence (instr = ℓ : f[ts]
[

{l 01 . . . l
m
1 } {l 02 . . . l

q
2}
]

; ℓ′ : . . .):

τpk = m(〈p, ℓ, f[ts]
[

{l 01 . . . l
m
1 } {l 02 . . . l

q
2}
]

, θ〉)

(ρ′ = ρ ∧ ν′ = ν) . Wf11(π)

• Register instruction (instr = ℓ : mov R1 operation ; ℓ′ : . . .):

τpk = a(〈p, ℓ, mov R1 operation , θ〉, v) Wf12(π)

(v = EJoperation K(ρ, ν) ∧ ρ′ = ρ[R1 := v] ∧ ν′ = ν) .

where EJeK(ρ, ν) is the evaluation of the expression e in the environment ρ and valuation ν.
• Write (instr = ℓ : w[ts] x r-value ; ℓ′ : . . .):

τpk = w(〈p, ℓ, w[ts] x r-value , θ〉, v) Wf13(π)

(v = EJr-value K(ρ, ν) ∧ ρ = ρ′ ∧ ν′ = ν) .

• Read (instr = ℓ : r[ts] R1 x; ℓ′ : . . .):

τpk = r(〈p, ℓ, r[ts] R1 x, θ〉, xθ) Wf14(π)

(ρ′ = ρ[R1 := xθ] ∧ ∃q ∈ Pi ∪ {start} . ∃!j ∈ [1, 1 + |τq|[.

∃ℓ′′, θ′′, v . (τqj = w(〈q, ℓ′′, w[ts] x r-value , θ′′〉, v) ∧

rf[τqj , τpk] ∈ rf ∧ ν′ = ν[xθ := v])) .

• RMW (instr = rmw[ts] r (reg-instrs) x): for the begin (instr = beginrmw[ts] x) and end
event (instr = endrmw[ts] x):

τpk = m(〈p, ℓ, instr , θ〉) Wf14(π)

(ρ′ = ρ ∧ ν′ = ν) .

• Test (instr = ℓ : b[ts] operation l t; ℓ
′ : . . .):

– on the true branch:

τpk = t(〈p, ℓ, b[ts] operation l t, θ〉) Wf16t(π)

(sat(EJoperation K(ρ, ν) 6= 0) ∧ κ′ = l t ∧ ρ′ = ρ ∧ ν′ = ν)

– on the false branch:

5

τpk = t(〈p, ℓ, b[ts] operation l t, θ〉) Wf16f(π)

(sat(EJoperation K(ρ, ν) = 0) ∧ κ′ = ℓ′ ∧ ρ′ = ρ ∧ ν′ = ν)

2.3 Anarchic semantics

The anarchic semantics of a program P is
S

aJPK , {π ∈ Π | Wf2(π) ∧ . . . ∧ Wf16(π)} .

2.4 cat specification of a weakly consistent semantics

The candidate execution abstraction αΞ(π) abstracts the execution π = ς × rf into a candidate
execution αΞ(π) = 〈e, po, rf , iw , fw〉 where e is the set of events (partitionned into fence,
read, write, . . . events), po is the program order (transitively relating successive events on a
trace of each process), rf = rf is the set of communications, and iw is the set of initial write
events. Then we define αΞ(S) , {〈π, αΞ(π)〉 | π ∈ S} and α JHcmK(C) , {π, Γ | 〈π, Ξ〉 ∈
C ∧ 〈allowed, Γ 〉 ∈ JHcmK(Ξ)} where the consistence JHcmK(Ξ) of a candidate execution
Ξ for a cat consistency model Hcm is defined in (Alglave, Cousot, and Maranget, 2015c) and
returns communication relations Γ psecifying communication constraints on communication
events. The analytic semantics of a program P for a cat specification Hcm is then S JPK ,
α JHcmK ◦ αΞ(S

aJPK).

3 An overview of lisa

3.1 Example

To illustrate lisa we use Peterson’s algorithm, given in Figure 1.
The algorithm uses three shared variables F1, F2 and T:

• two shared flags, F1 for the first process P0 (resp. F2 for the second process P1), indicating
that the process P0 (resp. P1) wants to enter its critical section, and

• a turn T to grant priority to the other process: when T is set to 1 (resp. 2), the priority is
given to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its critical section (see the do

instruction at line 3:) until (see the while clause at line 6:) the process P1 does not want to
enter its critical section (viz ., when F2=false, which in turn means ¬R1=true thanks to the
read at line 4:) or if P1 has given priority to P0 by setting turn T to 1, which in turn means
that R2=1 thanks to the read at line 5:.

LISA code Let’s read it together; our algorithm is composed of:

• a prelude at line 0:, between curly brackets, which initialises the variables F1 and F2 to false

and the variable T to 0. By default initialisation is to 0 (false);

• two processes, each depicted as a column; let’s detail the first process, on the left-hand side:
at line L1: we write 1 (true) to the shared variable F1—the lisa syntax for writes is “w[]
x e” where x is a variable and e an expression over registers, whose value is written to x. At

6

0:{ F1 = false; F2 = false; T = 0; }

P0: P1:

1:F1 = true 10:F2 = true;

2:T = 2 11:T = 1;

3:do 12:do

4: R1 = F2 13: R3 = F1;

5: R2 = T 14: R4 = T;

6:while R1 ∧ R2 6= 1 15:while R3 ∧ R4 6= 2;

7:skip (* CS1 *) 16:skip (* CS2 *)

8:F1 = false 17:F2 = false;

9: 18:

LISA Peterson

{ }

P0 | P1 ;

L1: w[] F1 1 | L10: w[] F2 1 ;

L2: w[] T 2 | L11: w[] T 1 ;

L4: r[] r1 F2 | L13: r[] r3 F1 ;

L5: r[] r2 T | L14: r[] r4 T ;

L20: mov r7 (neq r2 1) | L31: mov r6 (neq r4 2) ;

L21: mov r9 (and r1 r7) | L32: mov r8 (and r3 r6);

L6: b[] r9 L4 | L15: b[] r8 L13 ;

L8: w[] F1 0 | L17: w[] F2 0 ;

L9: | L18: ;

Figure 1: Peterson algorithm—in lisa

line L2 of we write 2 to T. At line 3: of Peterson algorithm, we see a do instruction which
ensures that we iterate the instructions at lines 4 and 5 until the condition expressed at line
6 (viz ., R1 ∧ R2 6= 1) is false. In the lisa translation, at line L4: we read the variable F2

and write its value into register R1, and at line L5: we read the variable T and write its value
into register R2. At lines L20: and L21: we locally compute the value r1 ∧ r2 6= 1) in local
register r9. At line L6: the branch instruction b[] r9 L4 branches to L4: if r9 is 1 (true)
i.e. the loop body is iterated once more and continue in sequence when r9 is 0 (false) i.e.
the loop body is exited and the critical section is entered. At line L8: we write 0 (false) to
F1.

3.2 Syntax

lisa programs P = {Pstart}JP0‖. . . ‖Pn−1K on shared variables x ∈ locJPK contain:
• a prelude Pstart assigning initial values to shared variables. In the case of Peterson algorithm

in Figure 1, the prelude at line 0: assigns the value false to both variables F1 and F2, and
the value 0 to T. This initialization to 0 (false) is implicit in the lisa translation;

• processes P0 . . . Pn−1 in parallel; each process:
– has an identifier p ∈ PiJPK , [0, n[; in the case of Peterson we have used P0 for the first

process (on the left) and P1 for the second process (on the right);
– has local registers (e.g. R0, R1); registers are assumed to be different from one process to

the next; if not we make them different by affixing the process identifier like so: (p:R));
– is a sequence of instructions.

Instructions can be:
• register instructions mov R1 operation , where the operation has the shape op R2 r-value :

– the operator op is arithmetic (e.g. add, sub, mult) or boolean (e.g. eq, neq, gt, ge);
– R1 and R2 are local registers;
– r-value is either a local register or a constant;

• read instructions r[ts] R x initiate the reading of the value of the shared variable x and write
it into the local register R;

• write instructions w[ts] x e initiate the writing of the value of the register expression e into
the shared variable x;

7

• branch instructions b[ts] operation l t branch to label l t if the operation has value true and
go on in sequence otherwise;

• fence instructions f[ts]
[

{l 01 . . . l
m
1 } {l 02 . . . l

q
2}

]

. The optional sets of labels {l 01 . . . l
m
1 } and

{l 02 . . . l
q
2} indicate that the fence f[] only applies between instructions in the first set and

instructions in the second set. The semantics of the fence f[] as applied to the instructions
at l 01, . . . , or l m1 and l 02, . . . , l

q
2, is to be defined in a cat specification;

• read-modify-write instructions (RMW) rmw[ts]Rreg-instrsx

are translated into a sequence of instructions delimited by
markers beginrmw[ts] x and endrmw[ts] x as shown oppos-
ite. reg-instrs is a sequence of register instructions, which
computes in R the new value assigned to the shared variable
x.

beginrmw[ts] x;

r[ts] R x;

reg-instrs;

w[ts] x R;

endrmw[ts] x

Any semantics requirement on RMWs, such as the fact that there can be no intervening write
to x between the read and the write of the RMW, has to be ensured by a cat specification.
Instructions can be labelled (i.e. be preceded by a control label ℓ) to be referred to

in branches or fences for example. Labels are unique; if not we make them different by
affixing the process identifier like so: p:l . instrJPKpℓ is the instruction at label ℓ ∈ L(p)
of process p of program P. Moreover, instructions can bear tags ts (to model for example
C++ release and acquire annotations). Scopes are special tags (e.g. to model e.g. Nvidia
PTX (Alglave, Batty, Donaldson, Gopalakrishnan, Ketema, Poetzl, Sorensen, and Wickerson, 2015a)
and HSA (HSA Foundation, 2015)), whose semantics must be defined in a cat specification.
Scopes can be organized in the scope tree. The events created by a process will be automatically
tagged by the scope of that process. For example the lisa program MP-scoped in Figure 2 is
augmented by a scope tree. The scope tree scopes: (system (wi P0) (wi P1)) in Figure 2

Figure 2: The example MP-scoped

specifies that the threads P0 and P1 reside in two different scope instances of level wi. By
contrast, still as specified by the scope tree, there is one scope instance of level system and both
threads reside in this common instance.

4 The anarchic true parallel formal semantics with separ-

ated communications of lisa

We now instantiate the general definition of an anarchic semantics of a parallel program of
Section 2 to the case of the lisa language.

We introduce the anarchic true parallel semantics S
a with separated unconstrained com-

munications in Section 4.1 and provide ground value and symbolic instances of the anarchic
semantics for the little language lisa, in Section 4.2. The abstraction of the executions to can-
didate executions is specified in Section 5.1. This is used in Section 5.2 to specify the semantics
of a program with a cat weak consistency model M constraining communications. The analytic
semantics is the anarchic semantics with separated communications S

a constrained by a cat the
weak consistency model. It is analytic in that it separates the definition of the computational
semantics S

a from the communication semantics specified by a cat specification.

8

The definition of the anarchic semantics is in two parts. The first part in Section 4.1 is
language independent. The second part in Section 4.2 is language dependent for lisa.

4.1 The anarchic true parallel symbolic and ground valued semantics

The anarchic true parallel semantics avoids interleaving thanks to a concurrent representation
of execution traces of processes with separate communications. The anarchic semantics can be
ground when taking values in a ground set Dv (Z for lisa). The anarchic semantics can also be
symbolic when values are symbolic expressions in the symbolic variables denoting communicated
values (called pythia variables). This generalises symbolic execution (King, 1976) to finite and
infinite executions of parallel programs with weak consistency models. Since in a true parallel
semantics there is no notion of global time, there is also no notion of instantaneous value of
shared variables. The only knowledge on the value of shared variables is local, when a process has
read a shared variable. We use a pythia variable to denote the value which is read (at some local
time symbolically denoted by a stamp). The usage of pythia variable is not strictly necessary in
the ground semantics. It is useful in the symbolic semantics to denote values symbolically. It is
indispensable in invariance proof methods to give names to values as required in formal logics.

4.1.1 Semantics

The semantics S JPK of a concurrent program P = JP0‖. . . ‖Pn−1K ∈ Pg with n > 1 processes
P0, . . ., Pp, . . ., Pn−1 identified by their pids p ∈ PiJPK , [0, n[is a set of executions S JPK ∈
℘(ΠJPK). We omit JPK when it is understood from the context.

4.1.2 Computations and executions

A computation ς ∈ Σ , Tr(start)×
∏

p∈Pi Tr(p)×Tr(finish) has the form ς = τstart ×
∏

p∈Pi τp ×
τfinish where start 6∈ Pi ∪ {finish} is the initialization/prelude process, finish 6∈ Pi ∪ {start} is the
finalization/postlude process, τstart ∈ Tr(start) is an execution trace of the initialization process,
τp ∈ Tr(p) are execution traces of the processes p ∈ Pi, and τfinish ∈ Tr(finish) is an execution
trace of the finalization process.

An execution π ∈ Π , Σ × ℘(K) has the form ς × rf = τstart ×
∏

p∈Pi τp × τfinish × rf where
rf ∈ ℘(K) is the communication relation (read-from). K will be defined in Sect. 4.1.12 as the set
of read-write event pairs on the same shared variable with the same value.

4.1.3 Traces

A finite non-empty trace τp ∈ Tr+, p ∈ Pi ∪ {start, finish} is a finite sequence of computation

steps 〈ǫ, σ〉, represented as
ǫ

−−−→ σ (with event ǫ ∈ E(p) and next state σ ∈ S(p)), of the form

τp =
ǫ1−−−−→ σ1

ǫ2−−−−→ σ2

ǫ3−−−−→ σ3 . . . σn−1

ǫm−−−−−→ σm

= 〈
ǫk−−−−→ σk | k ∈ [1, 1 +m[〉

such that ǫ1 = ǫstart is the start event. A computation step
ǫ

−−−→ σ represents the atomic
execution of an action that (1) creates event ǫ and (2) changes the state to σ. The trace τp

9

has length |τp| = m. For brevity, we use the more traditional form τp = σ1

ǫ2−−−−→ σ2

ǫ3−−−−→ σ3

. . . σm−1

ǫm−−−−−→ σm since the first event ǫ1 is always the start event ǫ1 = ǫstart. We say that event

ǫk, state σk, and step
ǫk−−−−→ σk are “at point k ∈ [1, 1 + |τp|[of τp”.

An infinite trace τp ∈ Tr∞, p ∈ Pi has the form

τp =
ǫ1−−−−→ σ1

ǫ2−−−−→ σ2

ǫ3−−−−→ σ3 . . . σn−1

ǫn−−−−→ σn . . .

= 〈
ǫk−−−−→ σk | k ∈ N∗〉

and has length |τ | = ∞ such that 1 + ∞ = ∞1. It is traditionally written τ = σ1

ǫ2−−−−→ σ2

ǫ3−−−−→ σ3 . . . σn−1

ǫn−−−−→ σn . . . where ǫ1 = ǫstart.
We let Tr , Tr+ ∪ Tr∞ be the set of (finite or infinite) traces.
We define the sequence of states of a trace τ as

τ , σ1σ2σ3 . . . σn−1σn[. . .]

and its sequence of events of a trace τ as

τ , ǫ1ǫ2ǫ3 . . . ǫn−1ǫn[. . .].

(We write [. . .] when the elements . . . are optional e.g. to have a single notation for both finite

and infinite traces.) So a trace has the form τ = 〈
τk−−−−→ τk | k ∈ [1, 1 + |τ |[〉.

4.1.4 Stamps

Stamps are used to ensure that events in a trace of a process are unique.

• θ ∈ P(p) the stamps (or postmarks) of process p ∈ Pi ∪ {start, finish} uniquely identify
events when executing process Pp. Different processes have different stamps so for all
p, q ∈ Pi ∪ {start, finish} if p 6= q then P(p) ∩P(q) = ∅;

• θ ∈ P ,
⋃

p∈Pi∪{start,finish}

P(p).

We assume that stamps are totally ordered per process.

• Ep ∈ ℘(P(p)×P(p)) totally orders P(p) (⊳p is the strict version);

• succp ∈ P(p) → P(p) is the successor function (s.t . θ⊳psuccp(θ), not necessarily the
immediate successor);

• infp ∈ P(p) is the smallest stamp for process p (s.t . ∀θ ∈ P(p) . infp⊳pθ).

1 With this convention, the domain of a finite or infinite trace is [1, 1 + |τ |[(where ∞ is the first infinite
ordinal). If |τ | is finite then [1, 1 + |τ |[= [1, |τ |]. Else |τ | is infinite so 1 + |τ | = 1 + ∞ = ∞ in which case
[1, 1 + |τ |[= [1,∞[.

10

These hypotheses allow us to generate a sequence of unique stamps when building traces. Start-
ing from any stamp (e.g. infp), a trace where events are successors by succp is guaranteed to
have unique stamps (since moreover different processes have different stamps). Stamps are oth-
erwise unspecified and can be defined freely. For example we can use process labels and/or loop
counters.

4.1.5 Equivalence of executions and semantics up to stamp renaming

We consider executions Π|∼= up to the isomorphic renaming ∼= of stamps. The renaming is an
equivalence relation.

τstart ×
∏

p∈Pi

τp × τfinish × rf ∼= τ ′start ×
∏

p∈Pi

τ ′p × τ ′finish × rf′ ,

∃̺ ∈ P և։ P . ∀p ∈ Pi ∪ {start, finish} . τ ′p = ̺(τp) ∧ rf′ = ̺(rf) .

where և։ denotes an isomorphism and ̺ is homomorphically extended from stamps to events,
states, traces, and communications containing these stamps.

We also consider semantics S |∼= up to the isomorphic renaming ∼= of stamps by defining
semantics to be equivalence when identical up to isomorphic stamp renaming of their traces.

S ∼= S
′ ,

{

π|∼=
∣

∣ π ∈ S
}

=
{

π′|∼=
∣

∣ π′ ∈ S
′
}

.

4.1.6 Shared variables, registers, denotations, and data

• x ∈ locJPK ⊆ X: shared variables of program P;

• r ∈ R(p): local registers of process p ∈ Pi ∪ {finish};

• d ∈ D: set of all data/value denotations;

• 0 ∈ D: we assume that registers and, in absence of prelude, shared variables are implicitly
initialized by a distinguished initialisation value denoted 0;

• We let D be the set of all ground or symbolic values manipulated by programs and I ∈
D → D is the interpretation of data/value denotations into data/value.

4.1.7 Pythia variables

• Pythia variables xθ are used to “store/record” the value of a shared variable x when
accessing this variable2. Pythia variables xθ can be thought of as addresses, locations,
L-values in buffers, or channels, communication lines to indirectly designate the R-value
of a shared variable observed by a specific read event stamped θ. The R-value designated
by an L-value xθ may be unknown. For example, the actual value may be assigned in the
future e.g. in the thin-air case3.

2similarly to single assignment languages but not SSA which is a static abstraction.
3Again this situation may have to be rejected by a cat specification.

11

XP(p) , {xθ | x ∈ X ∧ θ ∈ P(p)} pythia variables of process p ∈ Pi ∪ {finish}
at stamp θ

XP ,
⋃

p∈Pi

XP(p) pythia variables.

Note that we designate pythia variables xθ via a stamp θ to guarantee their uniqueness in
the trace. Observe that we use three different kinds of variables. Program variables like
local registers r and shared variables x which appear in the syntax and semantics, meta
or mathematical variables like p or θ which are used in the definitions, theorems, and
proofs but are not part of the syntax and semantics (only the objects denoted by these
mathematical variables do appear in the syntax and semantics), and pythia variables like
e.g. x0, y2, etc. which appear in the semantics. So xθ is one of these pythia variables
where the mathematical variable θ denotes any of the stamps in P(p) e.g. 0, 1, etc.

4.1.8 Expressions

In the symbolic semantics, symbolic values will be expressions on pythia variables XP (and
possibly other symbolic variables), in which case D = EJXPK and the interpretation I is the
identity. In the ground semantics, values belong to a ground set Dv (Z for lisa).

• e, e1, e2, . . . ∈ EJV K: set of all mathematical expressions over variables v ∈ V , e ::= d | v |
e1 ȅ e2 (where ȅ is a mathematical (e.g. arithmetical) operator);

• b, b1, b2, . . . ∈ BJV K: set of all boolean expressions over variables v ∈ V , b ::= e1 < e2 |
b1 � b2 | ¬© b (where < is a comparison, � is a boolean operator, and ¬© is negation).

• The evaluation EJeK(ρ, ν) of a mathematical expression e ∈ EJV K over variables v ∈ V in
an environment ρ ∈ V → D∪XP mapping variables v ∈ V to their value ρ(v) ∈ D or to a
pythia variable and a valuation ν ∈ XP → D mapping pythia variables xθ ∈ XP to their
value ν(xθ) ∈ D is defined by structural induction on e as

EJdK(ρ, ν) , I JdK (Def. 16)

EJvK(ρ, ν) , ρ(v) symbolic semantics or ground value

semantics when ρ(v) ∈ D is ground

, EJρ(v)K(ρ, ν) ground value semantics when ρ(v) ∈ XP

is not ground

EJxθK(ρ, ν) , ν(xθ)

EJe1 ȅ e2K(ρ, ν) , EJe1K(ρ, ν) I JȅK EJe2K(ρ, ν)

where I JdK in the interpretation of the constant d and IJȅK is the interpretation of the
mathematical operator ȅ.

• The evaluation BJbK(ρ, ν) ∈ B , {true, false} of a boolean expression b ∈ BJV K in envir-
onment ρ ∈ V → D is defined as

12

BJe1 < e2K(ρ, ν) , EJe1K(ρ, ν) IJ<K EJe2K(ρ, ν) (Def. 17)

BJb1 � b2K(ρ, ν) , BJb1K(ρ, ν) IJ�K BJb2K(ρ, ν)

BJ ¬© bK(ρ, ν) , I J ¬©KBJbK(ρ, ν) .

where IJ<K is the interpretation of the comparison operator <, IJ�K is the interpretation
of the boolean operator �, and IJ ¬©K is the interpretation of the negation ¬©.

4.1.9 Events

Start event.

• ǫstart is the start event at the beginning of traces.

B , {ǫstart}.

The ǫstart event is not indispensable. It is used to represent uniformly traces as sequences
of computation steps i.e. pairs of an event and a state. Otherwise a trace would be a
sequence of states separated by events. This conventional representation is dissymmetric
which is why we choose to have a ǫstart event.

Computation events.

• c(p) ∈ C(p) is the set of computation events of process p ∈ Pi. In the case of lisa, the
computation events EJproc K of a process proc are defined in Fig. 5. They can be marker
events (defined for fences in Fig. 9 and for read-modify-write instructions in Fig 14),
register assignment events (defined in Fig. 10), and test events (defined in Fig. 15).

Read events.

• r(p, x, v) ∈ R(p, x, v) is the set of read events of process p ∈ Pi reading value v ∈ D from
shared variable x ∈ locJPK;

• r(finish, x, v) ∈ R(finish, x, v) is the set of final read events reading value v ∈ D from shared
variable x ∈ locJPK;

• r(p) ∈ R(p) ,
⋃

x∈locJPK

⋃

v∈D

R(p, x, v) is the set of read events of process p ∈ Pi∪{finish};

Read events for lisa are defined in Fig. 12. Each read event stamped θ uses a pythia variable
xθ to store the value read/to be read by the read event. The pythia variable xθ is always unique
in a trace τ since the stamp θ of the event is assumed (by the forthcoming condition Wf3(τ))
to be unique on that trace τ .

13

Write events.

• w(p, x, v) ∈ W(p, x, v) is the set of write events of process p ∈ Pi ∪ {start} writing value
v ∈ D into shared variable x ∈ locJPK;

• w(start, x, v) ∈ W(start, x, v) is the set of initial write events of value v ∈ D into shared
variable x ∈ locJPK;

• w(p) ∈ W(p) ,
⋃

x∈X

⋃

v∈D

W(p, x, v) is the set of write events of process Pp, p ∈ Pi ∪

{start};

For the lisa language, write events are defined in Fig. 11.

Events.

• ǫ, ǫ(p) ∈ E(p) , C(p) ∪R(p) ∪W(p) is the of computation events of process p ∈ Pi ∪
{start, finish};

• EJpK ,
⋃

p∈Pi∪{start,finish}

E(p) is the set of events of program P = JP1‖. . . ‖PnK ∈ Pg;

For the lisa programs, it is defined in Fig. 3.

4.1.10 States

States are the control state and the memory state mapping variables to their value. We use an
environment to record the value of local registers, as is classical. However, the instantaneous
values of shared variables are unknown to processes. We use instead pythia variables to record
the values read by processes. The valuation maps these pythia variables to the value of the
corresponding shared variable at the time when it was read (i.e. which in general is not the
instantaneous value, otherwise unknown).

We would like all events to be distinct, ordered per process, but not interprocesses. Therefore
we had stamps to states (knowing by the hypotheses of Section 4.1.4 that there are ordered per
process according to the program order of that process).

• The states of the start and finish processes are meaning less and so are • where S(start) =
S(finish) = {•}.

• The states σ ∈ S(p) of process p ∈ Pi have the form σ = s〈κ, θ, ρ, ν〉 where

– κ ∈ L(p) is the current control label/program point of process p (we have doneJPK(p)κ
which is true if and only if κ is the last label of process p which is reached if and only
if process p does terminate);

– θ ∈ P(p) is the stamp of the state in process p;

– ρ ∈ Ev(p) , R(p) → D ∪ XP/EJXP(p)K is an environment mapping local registers
r ∈ R(p) of process p to their ground/symbolic value. This is a map since the process
registers are known statically;

14

– ν ∈ Va(p) , D/XP(p) 6→ EJXP(p)K is a valuation mapping pythia variables of process
p to their ground/symbolic value. This is a partial map since the pythia variables
are known dynamically. We write dom(ν) for the domain of definition of ν (initially
∅ at execution start).

4.1.11 Well-formed traces

The execution π = τstart ×
∏

p∈Pi τp × τfinish × rf ∈ Π is well-formed under the following
well-formedness conditions. The finalisation τfinish it is necessary to specify the outcome on the
program computations (in conjunction with a cat specification of how the final communications
should be performed).

• Start : traces τ ∈ {τp | p ∈ Pi} ∪ {τstart, τfinish} ∈ ℘(Tr) must all start with a unique start
event on the trace.

τ1 = ǫstart ∧ ∀i ∈]1, 1 + |τ |[. τ i 6= ǫstart . Wf2(π)

• Uniqueness : the stamps of events in a trace τ ∈ {τp | p ∈ Pi}∪{τstart, τfinish} ∈ ℘(Tr) must
be unique on the trace (the initial write events as well as the final read and communication
events are unique per shared variable and so do not need stamps to be distinguished).

∀i, j ∈ [1, 1 + |τ |[. (i 6= j ∧ τi, τj 6∈ (R(finish) ∪W(start))) Wf3(π)

=⇒ stamp(τi) 6= stamp(τj) .

(It immediately follows that all events occurring on a trace are unique. Moreover, the
symbolic variable xθ in any read event τk = r(〈p, ℓ, r := x, θ〉, xθ) of a trace τ is unique
on that trace.)

• Initialisation: all shared variables x ∈ X are assumed to be initialized once and only once
to a value vx ∈ D in the sequential prelude (or to vx = IJ0K by default).

∀x ∈ X .(∃τ1, τ2 . τstart = τ1 (w(〈start, ℓstart, x := e, θ〉, vx)) τ2) ∧ Wf4(π)

(∀τ1, τ2, τ3 . (τstart = τ1 ǫ τ2 w(〈start, ℓ, x := e, θ〉, vx) τ3)

=⇒ (ǫ ∈ W(start, y) ∧ y 6= x)) .

• Finalisation: all shared variables x ∈ X are finally read once and only once in the postlude
and their final value is stored in a fresh register rx.

(∀x ∈ X . (∃τ1, τ2 . τfinish = τ1 r(〈finish, ℓfinish, rx := x, θ〉, xθ) τ2) ∧ Wf4f(π)

(∀τ1, τ2, τ3 . (τ = τ1 r(〈finish, ℓ, rx := x, θ〉, xθ) τ2 ǫ
′ τ3)) =⇒

((ǫ′ ∈ R(finish, y) ∧ y 6= x))) .

• Maximality: finite trace τp of a process p ∈ Pi must be maximal i.e. must describe a
process which execution is finished. Note that infinite traces are maximal by definition,
hence we do not need to include them in the present maximality condition.

15

∀p ∈ Pi . (τp ∈ Tr+) =⇒ (∃ℓ ∈ L(p) . ∃θ ∈ P(p) . ∃ρ ∈ Ev(p) . ∃ν ∈ Va(p) . Wf5(π)

τp
|τ |

= s〈ℓ, θ, ρ, ν〉 ∧ doneJPK(p)ℓ) .

(i.e. the control state of the last state of the trace is at the end of the process, as indicated
by doneJPK(p)ℓ, which is language dependent, and defined for lisa in Sect. 4.2.)

4.1.12 Well-formed communications

Communications.

• c(p, w) ∈ K(p, w) is the set of communications of process p ∈ Pi∪{finish} reading from the
write w.

c(p, w(q, x, v)) ::= rf[w(q, x, v), r(p, x, v′)] communication

read event r(p, x, v′) of process p ∈ Pi or final read (p = finish) reads the value v′ of x from
write event w(q, x, v) of the same or another process q ∈ Pi or from initial write (q = start)
where sat(v = v′).

• c(p) ∈ K(p) ,
⋃

w∈WK(p, w) is the set of communications for process p ∈ Pi∪{finish};

• c(w) ∈ K(w) ,
⋃

p∈Pi∪{finish} K(p, w) is the set of communications satisfied by write
event w;

• c ∈ KJPK ,
⋃

p∈Pi∪{finish} K(p) is the set of communications of program P = JP1‖. . . ‖PnK ∈
Pg;

• K ,
⋃

P∈Pg KJPK is the set of all communications.

Notice that communications are not stamped (precisely because we do not want to impose
any notion of time between communications). If a stamp is needed to uniquely identify a
communication, we can use the one of the read event involved in the communication since it is
unique by Wf 6(π) and Wf7(π).

Well-formed communications. To be well-formed, an execution π = τstart ×
∏

p∈Pi τp ×
τfinish × rf ∈ Π must have communications rf satisfying the following conditions.

• Satisfaction: a read event in the trace τp ∈ Tr of a process p ∈ Pi ∪ {finish} must have at
least one corresponding communication in rf (since writes are fair i.e. become ultimately
readable and there is always an initial readable write to initialize variables). We impose
this condition on reads to avoid the case where a read never reads anything, which would
block the execution.

∀i ∈]1, 1 + |τp|[. ∀r ∈ R(p) . (τpi = r) =⇒ (∃w ∈ W . rf[w, r] ∈ rf) . Wf6(π)

• Singleness : a read event in the trace τp ∈ Tr of a process p ∈ Pi ∪ {finish} must have at
most one corresponding communication in rf.

16

∀r ∈ R(p) . ∀w,w′ ∈ W . (rf[w, r] ∈ rf ∧ rf[w′, r] ∈ rf) =⇒ (w = w′) . Wf7(π)

(Note however that a single read action (i.e. atomic instruction in lisa), can be repeated
in a program loop and may give rise to several executions of this action, each recorded
by unique read events (each one reading from one, possibly different, past or future write
event.)

• Match: if a read event in the trace τ ∈ Tr reads from a write event, then the variables
read and written must be the same.

(rf[w(〈p, ℓ, x := r, θ〉, v), r(〈p′, ℓ′, r′ := x′, θ′〉, x′θ)] ∈ rf) =⇒ (x = x′) . Wf8(π)

• Inception: no communication is possible without the occurrence of both the read and
write events it involves (the write may be an initial one).

∀r ∈ R(p) . ∀w ∈ W . Wf9(π)

(rf[w, r] ∈ rf) =⇒ (∃p ∈ Pi ∪ {finish}, q ∈ Pi ∪ {start} .

∃j ∈ [1, 1 + |τp|[, k ∈ [1, 1 + |τq|[. τpj = r ∧ τqk = w) .

(Note that this does not prevent a read to read from a future write.)

4.1.13 Well-formed execution

An execution π = τstart ×
∏

p∈Pi τp × τfinish × rf ∈ Π is well-formed if and only if it satisfies all
conditions Wf 2(π) to Wf9(π). This leads to the definition of the semantic domain.

D , {S ∈ ℘(Tr|∼=) | ∀π ∈ S . Wf2(π) ∧ . . . ∧ Wf9(π)} (10)

Moreover, for a particular programming language, computation events on process traces must
be generated in program order. This well-formedness condition has to be specified for each
programming language e.g. Wf10(π) to Wf16(π) below for lisa.

4.1.14 Anarchic semantics

Observe that if ∀i ∈ ∆.S i ∈ D then
⋃

i∈∆ S i ∈ D and
⋂

i∈∆ S i ∈ D proving that 〈D, ⊆, ∅, Sa,
∪, ∩〉 is a complete sublattice of 〈℘(Tr|∼=), ⊆, ∅, Tr|∼=, ∪, ∩〉. So D has an infimum ∅ and a

supremum Sa ,
(

⋃

S∈D S

)

∈ D called the anarchic semantics.

4.2 Litmus Instruction Set Architecture (lisa)

In this section we present a little language that we call lisa, for Litmus Instruction Set Archi-

tecture. We provide the syntax, symbolic and ground semantics of lisa.

17

4.2.1 Programs

The semantics of programs is defined by an attribute grammar (Knuth, 1990) (see (Paakki,
1995) for an introduction) given in Figure 3.

The program may have a sequential prelude, viz ., a set of initial assignments of values vx
to shared variables x, a case covered by Wf4(π) and by p = start in Fig. 11. We omit the
specification of the syntax and semantics of the prelude. In absence of prelude, for an empty
prelude {}, or in absence of a specific initialization of some shared variables, the shared variables
are assumed to be implicitly initialized to IJ0K.

Local registers of processes are assumed to be implicitly initialized to I J0K, as shown in
Fig. 5.

The lisa version used by the herd7 tool also offers the possibility to initialize registers r in
the prelude. The register is designated by (p:r) where p ∈ Pi is their process identifier. This is
equivalent to moving these initializations at the beginning of the corresponding process p since
they will be executed after the default initialization of registers to 0.

The lisa version used by the herd7 tool also offers the possibility to define a postlude to check
whether there exists a finite execution τ or for all finite executions τ a condition on the trace
τ does hold. This boolean condition may involve the final value of registers (p:r) evaluated
by EJrK(τ, |τ |) where p is a process identifier. This boolean condition may also involve the final
value of shared variables x as stored in register rx in Fig. 12 where p = finish.

One can optionally specify a scope tree to be used in the cat communication specification.
The attributes of a program prog are its number pid(prog) of processes, the events EJprog K

that can be generated by the instructions of the program, and its semantics S J prog K.
For clarity, some attributes are left implicit such as the local labels L(p), the local registers

R(p) of process p ∈ [0, pid(prog)[. These attribute definitions including restrictions such as
uniqueness can be easily added to the attribute grammar.

The anarchic semantics S
aJbody K is the set of all executions satisfying conditions wf J body K

expressing that the execution π must correspond to an execution of the body . Moreover all
executions π in this anarchic semantics S J prog K must satisfy well-formedness conditions Wf2(π),
. . . , Wf9(π) as expected by the cat semantics.

18

http://virginia.cs.ucl.ac.uk/herd/
http://virginia.cs.ucl.ac.uk/herd/

Programs

prog ∈ Proc

prog ::= body | {} body

| prelude body

| prelude body postlude

| prelude body scopes: scope-tree

| prelude body scopes: scope-tree postlude

In all cases, let n = pid(body) in (last process identifier in body)

• pid(prog) , n+ 1; (number of processes)

• PiJbody K , [0, n]; (program process identifiers)

• doneJ prog K , doneJbody K; (last control label check)

• instrJprog K , instrJprelude K ∪ instrJbody K (instructions)

• EJprog K , EJbody K; (program events)

• S J prog K , {τstart ×
n
∏

p=1

τp × τfinish × rf | wfJ body K(τstart ×
n
∏

p=1

τp × τfinish × rf) ∧

∀rf ∈ rf . ¬wf J body K(τstart ×
n
∏

p=1

τp × τfinish × rf \ {rf})}

(i.e. rf is minimal).

• S J prog K ∈ D.

Figure 3: lisa programs

4.2.2 Tags and scope trees

Instructions can bear tag sequences ts, that are given a semantics within cat specifications
(Alglave, Cousot, and Maranget, 2015c). Scope trees can be used to describe program architecture-
dependent features for the cat specification (Alglave, Cousot, and Maranget, 2015c). These tag
sequences and scope tree are not involved at all in the program anarchic semantics of lisa. They
are added in the form [ts] to events forwarded to cat. If there is no scope tree declaration,
the trivial scope tree (trivial P0 P1 ...Pn−1) is used where n = pid(body) is the number of
processes in the program. A process can appear at most once in a scope tree. Again scope trees
are information for a cat specification, see (Alglave, Cousot, and Maranget, 2015c).

4.2.3 Parallel processes

Parallel processes are given in Figure 4. These process identifiers pid are defined to be 0 to n−1
from left to right where n = pid(body) is the number of processes in the parallel program. The

19

program events EJbody K and well-formedness conditions wf J body K are collected.

Parallel processes

body ∈ Body

body ::= proc

pid(body) , pid(proc) , 0

PiJprocK , PiJbody K

instrJbody K , instrJprocK

doneJ body K(0) , λ ℓ . (ℓ = after(proc))

EJbody K , EJprocK

wf J body K , λ π .wf J procKπ

| body 1 ‖ proc

let n = pid(body 1) in

pid(body) , pid(proc) , n+ 1

PiJbody 1K , PiJbody K, PiJprocK , PiJbody K

doneJ body K(p) , λ ℓ . (p 6 n ? doneJ body 1K(p)ℓ : (ℓ = after(proc)))

instrJbody K , instrJbody 1K ∪ instrJprocK

EJbody K , EJbody 1K ∪ EJprocK

wf J body K , λ π .wf J body 1Kπ ∧ wf J procKπ

Figure 4: lisa processes

4.2.4 Processes

Processes are given in Figure 5. Each process proc of the program body body has a unique
process identifier attribute p = pid(proc). Each instruction instr of a process has a label
at(instr) before and a label after after(instr) that instruction. The label l is after the last
instruction of the list of instructions of the process. Each process with pid p has a unique entry
label at(instrs) which is the one of its first instruction and is where the process p execution
must start from, so at(instrs) is the label of the first control state.

20

Processes

proc ∈ Proc

::= instrs l :

let p = pid(proc) and

pid(instrs) , p

PiJinstrs K , PiJproc K

instrJprocK , instrJinstrs K

EJprocK , EJinstrs K

after(proc) , after(instrs) , l

wf J procK , λ π . let π = τstart ×
∏

p∈Pi

τp × τfinish × rf in Wf10(π)

wf J instrs K(π) ∧ τp1 = s〈at(instrs), infp, λ r ∈ R(p) . 0, ∅〉

Figure 5: lisa processes

4.2.5 Lexems

For any process p ∈ [1, n− 1], where n = pid(prog) is the number of processes in the program
prog , registers r ∈ R(p) cannot be shared variable identifiers x ∈ X, labels l, ℓ ∈ L(p) cannot
be register or shared variable identifiers, and tags in tag sequences cannot be label, register, or
shared variable identifiers. This informal context condition is easy to include in the attribute
grammar by collecting these sets and checking that their pairwise intersections are empty.

4.2.6 Expressions

As shown in Fig. 6, an operation can be either an r-value , i.e. a register or immediate value,
or the result of an arithmetic (e.g. add, sub, mult) or boolean (e.g. eq, neq) operator
applied to a register r2 and an r-value r-value 3. The value EJrK of a register in process p is
defined in next Sect. 4.2.7.

21

Register values

r-value ∈ R-value

r-value ::= r

let p = pid(r-value) in

r ∈ R(p)

EJr-value K , EJrK

| d

d ∈ D

EJr-value K , EJdK

Register operations

op ∈ Op arithmetic and Boolean operators

op ::= add opJ op K , + integer addition

| sub opJ op K , − integer substraction

| mult opJ op K , × integer multiplication

| . . .

| eq opJ op K , = logical equality

| neq opJ op K , 6= logical disequality

| gt opJ op K , > logical strictly greater than

| ge opJ op K , > logical greater than or equal

| . . .

operation ∈ Operation

operation ::= op r2 r-value 3

let p = pid(operation) in

r2 ∈ R(p)

pid(r-value 3) , p

EJoperation K(ρ, ν) , EJr2K(ρ, ν) opJ op K EJr-value 3K(ρ, ν)

| r-value

let p = pid(operation) in

pid(r-value) , p

EJoperation K , EJr-value K

Figure 6: Syntax of lisa expressions

22

4.2.7 Local sequentiality

The interleaved trace semantics of a process proc of lisa is locally sequential. This means
that (1) the use of registers in a process are sequentially consistent in that the value of a local
register r is its last assigned value and (2) that each process is executed in the process pro-
gram order. Local sequentiality is much weaker than sequential consistency (SC) (Keller, 1976;
Hennessy and Plotkin, 1979; Lamport, 1979) or sequential consistency per variable (SCPV)
(Alglave, Maranget, and Tautschnig, 2014) which are relative to globally shared variables (and
assume local sequentiality for local registers).

4.2.8 Events

All computation events collected in EJprog K have the form e(〈p, ℓ, u-instr , θ〉) or e(〈p, ℓ, u-instr , θ〉, v)
where e is the name of the event (r for read, w for write, etc.), p is the process, and u-instr is
the instruction at label ℓ ∈ L(p) of the process that gave raise to that event. The assignment a,
read r, and write w events may also carry a computed or communicated value v ∈ Z. Stamps
θ are left unspecified but in case of an instruction u-instr executed several times in a loop the
can be used to ensure that all the generated events are different (as required by the uniqueness
condition Wf3(S)). The conditions wf J body K make sure that the trace events record a program
execution. The traces may also include read-from events rf which are constraint by Wf6(S) to
Wf9(S). It is checked in Fig. 3 that the events on a trace must be generated by a program
execution and satisfy the constraints on communication event.

4.2.9 Instructions

Instructions are given in Figure 7 and sequences of instructions in Figure 8. Except for the
branch instructions, for which the label must be provided in the program, program instructions
may be unlabelled. In that case, an automatic labelling program transformation will add all
missing labels. Therefore in the definition of a process proc in Fig. 4, all instructions are assumed
to have been labelled.

A special case reg-instrs of sequences instrs of instructions is considered in Fig. 14 for the
case where all instructions are register instructions in the read-modify-write instruction.

23

Unlabelled instructions

u-instr ∈ U-instr

u-instr ::= reg-u-instr | w-u-instr | r-u-instr | rmw-u-instr | b-u-instr

| f-u-instr

For all these case u-instr ::= . . . | x-u-instr | . . ., we have

pid(x-u-instr) , pid(u-instr)

PiJx-u-instr K , PiJu-instr K

instrJx-u-instr K , instrJu-instr K

EJu-instrsK , EJx-u-instr K

at(u-instr) , at(x-u-instr)

after(x-u-instr) , after(u-instr)

wf J u-instr K , wf J x-u-instr K

Labelled instructions

instr ∈ Instr

instr ::= l :u-instr pid(u-instr) , pid(instr)

PiJu-instr K , PiJinstr K

instrJu-instr K , instrJinstr K

EJinstrs K , EJu-instr K

at(instr) , at(u-instr) , l

after(u-instr) , after(instr)

wf J instr K , wfJ u-instr K

Figure 7: lisa instructions

24

Sequences of labelled instructions

instrs ∈ Instrs

instrs ::= instr

pid(instr) , pid(instrs)

PiJinstr K , PiJinstrs K

instrJinstrs K , instrJinstr K

EJinstrs K , EJinstr K

at(instrs) , at(instr)

after(instr) , after(instrs)

wfJ instrs K , wf J instr K

| instr ; instrs 1

pid(instr) , pid(instrs 1) , pid(instrs)

PiJinstr K , PiJinstrs K, PiJinstrs 1K , PiJinstrs K

instrJinstrs K , instrJinstr K ∪ instrJinstrs 1K

EJinstrs K , EJinstr K ∪ EJinstrs 1K

at(instrs) , at(instr)

after(instr) , at(instrs 1)

after(instrs 1) , after(instr)

wfJ instrs K , λπ .wfJ instr Kπ ∧ wf J instrs 1Kπ

Figure 8: lisa sequences of instructions

25

4.2.10 Markers
[

Labelled
]

fences are given in Figure 9. Fences can only appear in processes (not in the
program prelude or postlude). Fences can have different names and can be labelled, in which
case the labels must all occur in the same process as the fence. In this last case, the fence is
between any pair of actions with labels in the first and second set. Fences are just markers in
the program and their semantics is defined by the cat semantics.

[

Labelled
]

fences

f-u-instr ∈ F-u-instr

f-u-instr ::= f[ts]
[

{l 01 . . . l
m
1 } {l 02 . . . l

q
2}

]

, m, q > 0

let p = pid(f-u-instr) and Pi = PiJ f-u-instr K and ℓ = at(f-u-instr) in

instrJf-u-instr K , {〈〈p, ℓ〉, f[ts]
[

{l 01 . . . l
m
1 } {l 02 . . . l

q
2}

]

〉}

EJf-u-instr K , {m(〈p, ℓ, f[ts]
[

{l 01 . . . l
m
1 } {l 02 . . . l

q
2}
]

, θ〉) | θ ∈ P(p)}

wf J f-u-instr K , λπ . let π = τstart ×
∏

p∈Pi

τp × τfinish × rf in Wf11(π)

∀k ∈]1, 1 + |τp|[. ∀κ
′ ∈ L(p) . ∀ρ, ρ′ ∈ Ev(p) .

∀ν, ν′ ∈ Va(p) . ∀θ, θ′ ∈ P(p) .

(τp
k−1

= s〈ℓ, θ, ρ, ν〉 ∧

τpk = m(〈p, ℓ, f[ts]
[

{l 01 . . . l
m
1 } {l 02 . . . l

q
2}
]

, θ〉) ∧

τp
k
= s〈κ′, θ′, ρ′, ν′〉) =⇒

(κ′ = after(f-u-instr) ∧ θ′ = succp(θ) ∧ ρ′ = ρ ∧ ν′ = ν) .

(
[

. . .
]

indicates that . . . is optional)

Figure 9: lisa fences

rmw delimiters beginrmw[ts] x and endrmw[ts] x in Fig. 14 are markers used to delimit
read, modify, and write instructions rmw which atomically update shared variable variable x as
defined in Sect. 4.2.11. The fact that read, modify, and write instructions should be atomic will
follow from the definition of their semantics in a cat specification.

4.2.11 Actions

Register instructions are given in Fig. 10 where f [x := v](x) = v and f [x := v](y) = f(y)
when y 6= x. lisa register accesses are of the form mov r1 operation . Namely, they move the
result of an operation into a register, e.g. r1.

Read. In a read instruction of Fig 12, the r-value denotes the value assigned to register r.

26

Register instructions

reg-u-instr ∈ Reg-u-instr

reg-u-instr ::= mov r1 operation

let p = pid(reg-u-instr) and Pi = PiJ reg-u-instr K and ℓ = at(reg-u-instr) in

r1 ∈ R(p)

pid(operation) , p

instrJreg-u-instr K , {〈〈p, ℓ〉, mov r1 operation 〉}

EJreg-u-instr K , {a(〈p, ℓ, mov r1 operation , θ〉, v) | θ ∈ P(p) ∧ v ∈ Z}

wfJ reg-u-instr K , Wf12(π)

λπ . let π = τstart ×
∏

p∈Pi

τp × τfinish × rf in

∀k ∈]1, 1 + |τp|[. ∀κ
′ ∈ L(p) . ∀ρ, ρ′ ∈ Ev(p) .

∀ν, ν′ ∈ Va(p) . ∀θ, θ′ ∈ P(p) . ∀v ∈ Z .

(τp
k−1

= s〈ℓ, θ, ρ, ν〉 ∧

τpk = a(〈p, ℓ, mov r1 operation , θ〉, v) ∧

τp
k
= s〈κ′, θ′, ρ′, ν′〉) =⇒

(v = EJoperation K(ρ, ν) ∧ κ′ = after(reg-u-instr) ∧

θ′ = succp(θ) ∧ ρ′ = ρ[r1 := v] ∧ ν′ = ν) .

Figure 10: Syntax of lisa register accesses

Write. Write accesses are given in Figure 11. The value written is that of r-value .

Read, modify, and write. Read-modify-write accesses are given in Figure 14. Read-
modify-write instructions rmw[ts]rreg-instrsx can only appear in processes (not in the program
prelude or postlude). The sequence of register accesses reg-instrs is defined in Fig. 10 as a
sequence of (labelled or appropriately labelled by fresh labels) register accesses.

In a read-modify-write instruction rmw[ts]rreg-instrsxr-value , the last of the register in-
structions in reg-instrs should assign a value to register r.

The rmw instructions

rmw[ts]rreg-instrsx

are compiled into a sequence of concrete instructions delimited by beginrmw[ts] x and endrmw[ts] x

markers as follows:

27

beginrmw[ts] x;

r[ts] r x;

reg-instrs;

w[ts] x r;

endrmw[ts] x

before being parsed by the attribute grammar (which therefore contains no rmw[ts]rreg-instrsx

instrcution). The last register instruction in reg-instrs must be an assignment to register r. A
cat specification must be used to specify atomicity. When abstracting the traces to candidate
executions for cat in Sect. 5.1, the abstraction αΞ(τ) will replace the two consecutive events
m(〈p, ℓ1, beginrmw[ts] x, θ1〉)r(〈p, ℓ2, r[ts] r x, θ2〉, v) on τ by r(〈p, ℓ2, r∗[ts] r x, θ2〉, v)
and w(〈p, ℓ1, w[ts] x r, θ1〉, v)m(〈p, ℓ2, endrmw[ts] x, θ2〉) by w(〈p, ℓ1, w∗[ts] x r, θ1〉, v) to
conform to cat conventions (Alglave, Cousot, and Maranget, 2015c).

Write accesses

w-u-instr ∈ W-u-instr

w-u-instr ::= w[ts] x r-value

let p = pid(w-u-instr) and Pi = PiJw-u-instr K

and ℓ = at(w-u-instr) in

pid(r-value) , p

instrJw-u-instr K , {〈〈p, ℓ〉, w[ts] x r-value 〉}

EJw-u-instr K , {w(〈p, ℓ, w[ts] x r-value , θ〉, v) | θ ∈ P(p) ∧ v ∈ Z}

wf Jw-u-instr K , Wf13(π)

λπ . let π = τstart ×
∏

p∈Pi

τp × τfinish × rf in

∀k ∈]1, 1 + |τp|[. ∀κ
′ ∈ L(p) . ∀ρ, ρ′ ∈ Ev(p) .

∀ν, ν′ ∈ Va(p) . ∀θ, θ′ ∈ P(p) . ∀v ∈ Z .

(τp
k−1

= s〈ℓ, θ, ρ, ν〉 ∧

τpk = w(〈p, ℓ, w[ts] x r-value , θ〉, v) ∧

τp
k
= s〈κ′, θ′, ρ′, ν′〉) =⇒

(v = EJr-value K(ρ, ν) ∧ κ′ = after(w-u-instr) ∧

θ′ = succp(θ) ∧ ρ = ρ′ ∧ ν′ = ν) .

(this includes the initialization writes for p = start.)

Figure 11: lisa memory write accesses

28

Read accesses

r-u-instr ∈ R-u-instr

r-u-instr ::= r[ts] r1 x

let p = pid(r-u-instr) and Pi = PiJ r-u-instr K

and ℓ = at(r-u-instr) in

r1 ∈ R(p)

instrJr-u-instr K , {〈〈p, ℓ〉, r[ts] r1 x〉}

EJr-u-instr K , {r(〈p, ℓ, r[ts] r1 x, θ〉, xθ) | θ ∈ P(p)}

wf J r-u-instr K , Wf14(π)

λπ . let π = τstart ×
∏

p∈Pi

τp × τfinish × rf in

∀k ∈]1, 1 + |τp|[. ∀κ
′ ∈ L(p) . ∀ρ, ρ′ ∈ Ev(p) .

∀ν, ν′ ∈ Va(p) . ∀θ, θ′ ∈ P(p) . ∀v ∈ Z .

(τp
k−1

= s〈ℓ, θ, ρ, ν〉 ∧

τpk = r(〈p, ℓ, r[ts] r1 x, θ〉, xθ) ∧

τp
k
= s〈κ′, θ′, ρ′, ν′〉) =⇒

(κ′ = after(r-u-instr) ∧ θ′ = succp(θ) ∧ ρ′ = ρ[r1 := xθ] ∧

∃q ∈ Pi ∪ {start} . ∃!j ∈ [1, 1 + |τq|[. ∃ℓ
′, θ′′, v .

(τqj = w(〈q, ℓ′, w[ts] x r-value , θ′′〉, v) ∧

rf[τqj , τpk] ∈ rf ∧ ν′ = ν[xθ := v])) .

(this includes the finalization reads for p = finish, in which case r1 = rx).

Figure 12: lisa memory read accesses

Branch.

Branches are given in Figure 15. The branch instruction b[ts] operation l t branches to
l t if operation is true, else continues in sequence to the next instruction. The unconditional
branching b[ts] true l t will always branch to the next label l t. b[ts] false l t is equivalent to
skip. Branching can only be to an existing label within the same process.

4.2.12 Anarchic semantics of lisa

The anarchic semantics of a lisa program P is

S
aJPK , {π ∈ Π | Wf2(π) ∧ . . . ∧ Wf16(π)} . (17)

Example 4.1. Consider the lisa LB (load buffer) program

29

Sequences of labelled register instructions

reg-instrs ∈ Reg-instrs

reg-instrs ::= l :reg-u-instr

pid(reg-u-instr) , pid(reg-instrs)

PiJreg-u-instr K , PiJreg-instrs K

instrJreg-instrs K , instrJreg-u-instr K

EJreg-u-instrsK , EJreg-u-instr K

at(reg-instrs) , at(reg-instr) , l

after(reg-u-instr) , after(reg-instrs)

wf J reg-instrs K , wf J reg-u-instr K

| reg-instr ; reg-instrs1

pid(reg-instr) , pid(reg-instrs1) , pid(reg-instrs)

PiJreg-instr K , PiJreg-instrs 1K , PiJreg-instrs K

instrJreg-instrs K , instrJreg-u-instr K ∪ instrJreg-instrs 1K

EJreg-u-instrsK , EJreg-u-instr K ∪ EJreg-u-instrs1K

at(reg-instrs) , at(reg-instr)

after(reg-instr) , at(reg-instrs 1)

after(reg-instrs 1) , after(reg-instrs)

wf J reg-instrs K , λπ .wf J reg-instr K(π) ∧ wf J reg-instrs 1K(π)

Figure 13: lisa sequences of labelled register instructions

{ x = 0; y = 0; }

P0 | P1 ;

1: r[] r1 x | 4: r[] r2 y ;

2: w[] y 1 | 5: w[] x 1 ;

3: | 6:

exists(0:r1=1 /\ 1:r2=1)

30

Read-modify-write accesses

rmw-u-instr ∈ Rmw-u-instr (originating form rmw[ts]rreg-instrsxr-value)

rmw-u-instr ::= beginrmw[ts] x

let p = pid(rmw-u-instr) and Pi = PiJ rmw-u-instr K

and ℓ = at(rmw-u-instr) in

instrJrmw-u-instr K , {〈〈p, ℓ〉, beginrmw[ts] x〉}

EJrmw-u-instr K , {m(〈p, ℓ, beginrmw[ts] x, θ〉) | θ ∈ P(p)}

wf J rmw-u-instr K , Wf15b(π)

λ π . let π = τstart ×
∏

p∈Pi

τp × τfinish × rf in

∀k ∈ [1, 1 + |τp|[. ∀θ ∈ P(p) . ∀κ′ ∈ L(p) . ∀ρ, ρ′ ∈ Ev(p) .

∀ν, ν′ ∈ Va(p) . ∀θ, θ′ ∈ P(p) .

(τp
k−1

= s〈ℓ, θ, ρ, ν〉 ∧

τpk = m(〈p, ℓ, beginrmw[ts] x, θ〉) ∧

τp
k
= s〈κ′, θ′, ρ′, ν′〉) =⇒

(κ′ = after(rmw-u-instr) ∧ θ′ = succp(θ) ∧ ρ′ = ρ ∧ ν′ = ν) .

| endrmw[ts] x

let p = pid(rmw-u-instr) and Pi = PiJ rmw-u-instr K

and ℓ = at(rmw-u-instr) in

instrJrmw-u-instr K , {〈〈p, ℓ〉, endrmw[ts] x〉}

EJrmw-u-instr K , {m(〈p, ℓ, endrmw[ts] x, θ〉) | θ ∈ P(p)}

wf J rmw-u-instr K , Wf15e(π)

λ π . τstart ×
∏

p∈Pi

τp × τfinish × rf

∀k ∈ [1, 1 + |τ |[. ∀θ ∈ P(p) . ∀κ′ ∈ L(p) . ∀ρ, ρ′ ∈ Ev(p) .

∀ν, ν′ ∈ Va(p) . ∀θ, θ′ ∈ P(p) .

(τp
k−1

= s〈ℓ, θ, ρ, ν〉 ∧

τpk = m(〈p, ℓ, endrmw[ts] x, θ〉) ∧

τp
k
= s〈κ′, θ′, ρ′, ν′〉) =⇒

(κ′ = after(rmw-u-instr) ∧ θ′ = succp(θ) ∧ ρ′ = ρ ∧ ν′ = ν) .

Figure 14: lisa memory read-modify-write accesses

31

Branches

b-u-instr ∈ B-u-instr

b-u-instr ::= b[ts] operation l t

let p = pid(b-u-instr) and Pi = PiJ b-u-instr K and ℓ = at(b-u-instr) in

pid(operation) , p

instrJb-u-instr K , {〈〈p, ℓ〉, b[ts] operation l t〉}

EJb-u-instr K , {t(〈p, ℓ, b[ts] operation l t, θ〉)),
t(〈p, ℓ, b[ts] operation l t, θ〉)) | θ ∈ P(p)}

wf J b-u-instr K ,

λπ . let π = τstart ×
∏

p∈Pi

τp × τfinish × rf in

∀k ∈ [1, 1 + |τp|[. ∀κ
′ ∈ L(p) . ∀θ, θ′ ∈ P(p) . ∀ρ, ρ′ ∈ Ev(p) .

∀ν, ν′ ∈ Va(p) .

(τp
k−1

= s〈ℓ, θ, ρ, ν〉 ∧ Wf16t(π)

τpk = t(〈p, ℓ, b[ts] operation l t, θ〉) ∧

τp
k
= s〈κ′, θ′, ρ′, ν′〉) =⇒

(sat(EJoperation K(ρ, ν) 6= 0) ∧ κ′ = {l t} ∧

θ′ = succp(θ) ∧ ρ′ = ρ ∧ ν′ = ν) Wf16f(π)

∧ (τp
k−1

= s〈ℓ, θ, ρ, ν〉 ∧

τpk = t(〈p, ℓ, b[ts] operation l t, θ〉) ∧

τp
k
= s〈κ′, θ′, ρ′, ν′〉) =⇒

(sat(EJoperation K(ρ, ν) = 0) ∧ κ′ = after(b-u-instr) ∧

θ′ = succp(θ) ∧ ρ′ = ρ ∧ ν′ = ν)

Figure 15: lisa branches

32

The computational semantics S JLBK of LB contains the following execution π (stamps are
useless since all events are different).

π = •
w(start, x, 0)

−−−−−−−−−−−−−−→ •
w(start, y, 0)

−−−−−−−−−−−−−−→ • ×

s〈1:, ∅, ∅〉
r(P0, x, θ1)−−−−−−−−−−−−→ s〈2:, ∅, {θ1 = 1}〉

w(P0, y, 1)
−−−−−−−−−−−−→ s〈3:, ∅, {θ1 = 1}〉 ×

s〈4:, ∅, ∅〉
r(P1, y, θ4)−−−−−−−−−−−−→ s〈5:, ∅, {θ4 = 1}〉

w(P1, x, 1)
−−−−−−−−−−−−→ s〈6:, ∅, {θ4 = 1}〉 ×

•
r(finish, y, 1)

−−−−−−−−−−−−−−→ •
r(finish, x, 1)

−−−−−−−−−−−−−−→ • ×

{rf[w(P1, x, 1), r(P0, x, θ1)]), rf[w(P0, y, 1), r(P1, y, θ4)],

rf[w(P1, x, 1), r(finish, x, 1)], rf[w(P0, y, 1), r(finish, y, 1)]}

Lemma 4.2 (Orderliness) . The stamps of events in a trace τ ∈ {τp | p ∈ Pi} of a lisa

program are in strictly increasing order per process p.

∀p ∈ Pi . ∀i, j ∈ [1, 1 + |τ |[. (stamp(τ i) ∈ EJpK ∧ stamp(τ j) ∈ EJpK ∧ i < j) Wf18(τ)

=⇒ (stamp(τ i+1) = succp(stamp(τ i)) ∧ stamp(τ i)⊳pstamp(τ j)) .

This condition Wf18(τ) enforces Wf3(τ).

Example 4.3. The choice P(p) , {p} × N, infp = 〈p, 1〉, succp(〈p, θ〉) = 〈p, θ + 1〉,

stamp(τk) = 〈p, k〉, k ∈ [1, 1 + |τ |[, 〈p′, θ〉⊳p〈p′′, θ′〉 , p = p′ = p′′ ∧ θ < θ′ satisfies Wf3(τ) and
Wf18(τ).

Proof of Lemma 4.2. The events τ i have the stamp stamp(τ i) of the state τ i that generate
them. By case analysis for lisa instructions two successive states τ i and τ i+1 generated by an
instruction of a process p have stamps stamp(τ i+1) = θ′ = succp(θ) = stamp(τ i) in Wf11(π),
Wf12(π), Wf13(π), Wf14(π), Wf15b(π), Wf15e(π), Wf16t(π), and Wf16f(π). It follows, by def. of
succp in Sect. 4.1.4 that θ⊳pθ

′. This extends along traces since stamps of process p are not
Ep-comparable with stamps of other processes. This implies Wf3(τ) since stamps for different
processes are different and for the same process are comparable since ⊳p is a total order and
moreover in strictly increasing order.

Intuition 4.4. The following Theorem 1 shows that in an execution consisting of a com-

putation part and a communication part, the communication part provides enough information

to rebuilt the computation part. Otherwise stated, the abstraction αΓ (S JPK) , {rf | ς×rf ∈ S JPK}
is an isomorphism. Note that lisa is deterministic but a similar result would hold with random

choices. The set of executions resulting from the random choices with a given communication

relation rf can be reconstructed from the communication relation rf. The importance of this

result is to show that to put constraints on the computations it is enough to but constraints on

communications.

Theorem 1. In an anarchic execution ς × rf ∈ S
aJPK, the communication rf uniquely

determines the computation ς.

33

Proof of Theorem 1. Let π = ς×rf = τstart×
∏

p∈Pi τp×τfinish×rf ∈ S
aJPK. τstart depends

on P (more precisely locJPK) but not on rf. Let p ∈ Pi and τp = 〈
τpk−−−−−→ τp

k
| k ∈ [1, 1 + |τ |[〉.

The proof is by induction of k. For k = 1, τpk = ǫstart by Wf2(π) and τp
k

is defined by Wf10(π)

so does not depend upon rf. For the induction step, we have state τp
k−1

= s〈ℓ, θ, ρ, ν〉 and

must consider all possible instructions at ℓ leading to the next event τpk and state τp
k
.

• The semantics of the fence (Wf11(π)), register (Wf12(π)), write (Wf13(π)), RMW (Wf15b(π)
and Wf15e(π)), and test (Wf16t(π) and Wf16f(π)) instruction, hence τpk and state τp

k
, does

not depend at all on the communication relation rf.

• The semantics Wf14(π) of the read instruction is the only one depending on the commu-
nication relation rf. The semantics Wf14(π) is completetly determined by the choice of
rf[τqj , τpk] ∈ rf. By Wf6(π), Wf7(π), and Wf8(π), this choice is unique.

It remains to consider τfinish. By Wf4f(π), τfinish contains only read instructions, and so, by the
above argument is uniquely determined by rf.

34

5 The weakly consistent semantics of lisa defined by a cat

communication specification

To be language independent, the cat communication specification (Alglave, Cousot, and Maranget,
2015b) does rely on an abstraction of executions called candidate executions. The abstraction
essentially forget about values manipulated by programs and program instructions not related
to communications. So a candidate execution records how communications are performed, not
which values are communicated. See (Alglave, 2015b) for an introduction to the cat commu-
nication specification language and (Alglave, 2015a) for models of architectures.

5.1 Abstraction to a Candidate Execution

The candidate execution abstraction αΞ ∈ Π 7→ Ξ extracts a candidate execution αΞ(π) ∈ Ξ

from an execution π ∈ Π . This candidate execution αΞ(π) is used by the cat specification
language semantics to decide whether that execution π is feasible in the weak consistency model
defined by a cat communication specification.

5.1.1 Events of an execution.

The candidate execution abstraction extracts the computation events of an execution.

αe(τ) , {ǫ ∈ E | ∃τ1, τ2 . τ = τ1
ǫ

−−−→ σ τ2}

αe(τstart ×
∏

p∈Pi

τp × τfinish × rf) ,
⋃

p∈Pi∪{start,finish}

αe(τp)
4

The events αe(π) of an execution π can be partitioned into write, read, branch, fence events,
beginrmw, endrmw, etc.

5.1.2 Program order of an event trace.

The candidate execution abstraction extracts the program order of an execution, more pre-
cisely the program execution order, i.e. the pair of events generated by execution of successive
actions of a process5. By convention, the initial write events w(start, x) are before any process
event or final read in the program order.

4In addition, the cat language does not allow to refer to final reads in R(finish).
5By program order, one must understand order of execution of actions in the program, not necessarily the

order in which they appear in the program text, although they are often the same. For a counter-example of the
difference between the order of actions in the program and during execution, one can imagine a silly command
execute_next;a;b;c; which semantics would to be to execute action b, then a, and then c. So the program
syntactic order is a, then b, and then c while the program execution order is b, then a, and then c.

35

αpo(τ) , {〈ǫ, ǫ′〉 | ∃τ1, τ2, τ3 . τ = τ1
ǫ

−−−→ σ τ2
ǫ′

−−−−→ σ′ τ3}

αpo(τstart ×
∏

p∈Pi

τp × τfinish × rf) ,
⋃

p∈Pi

{〈ǫ, ǫ′〉 | ǫ ∈ αe(τstart) ∧ ǫ′ ∈ (αe(τp) ∪ αe(τfinish))}
6,7

∪
⋃

p∈Pi

αpo(τp)

∪
⋃

p∈Pi

{〈ǫ, ǫ′〉 | ǫ ∈ αe(τp) ∧ ǫ′ ∈ αe(τfinish)}

5.1.3 Read-from relation.

The candidate execution abstraction extracts the read-from relation of an event trace mod-
eling who reads from where.

αrf(τstart ×
∏

p∈Pi

τp × τfinish × rf) , rf .

5.1.4 Initial writes.

By the initialisation condition Wf4(S), all shared variables are assumed to be initialised. The
candidate execution abstraction extracts the initial writes of an execution.

αiw(τstart ×
∏

p∈Pi

τp × τfinish × rf) , αe(τstart) .

5.1.5 Final writes.

By the finalisation condition Wf4f(π) all the final values variables are assumed to be read upon
program termination. The candidate execution abstraction extracts the final writes satisfying
these final reads of an event trace.

αfw(τstart ×
∏

p∈Pi

τp × τfinish × rf) , {w | ∃r ∈ αe(τfinish) . rf[w, r] ∈ rf} .

5.1.6 cat candidate executions.

The cat candidate executions are

6The herd7 tool considers the program order to be αpo(π) \ (E×R(finish)) instead.
7The initial writes are not ordered between themselves by the program order and similarly for the final reads.

This is because if an execution of the semantics has the initial writes and final reads in some order, reshuffling
them in any other order is also a valid execution of the semantics.

36

Ξ , ℘(E)× ℘(E× E)× ℘(W×R)× ℘(W)× ℘(W)

αΞ ∈ Π → Ξ

αΞ(π) , 〈αe(π), αpo(π), αrf(π), αiw(π), αfw(π)〉 ∈ Ξ

αΞ ∈ D → ℘(Π ×Ξ) (Def. 19)

αΞ(S) , {〈π, αΞ(π)〉 | π ∈ S} .

Example 5.1. Continuing Ex. 4.1, we have

αe(t) = {w(start, x, 0), w(start, y, 0), r(P0, x, θ1), w(P0, y, 1), r(P1, y, θ4), w(P1, x, 1),

r(finish, x), r(finish, y, 1)}

αpo(t) = {〈w(start, x, 0), r(P0, x, θ1)〉, 〈w(start, x, 0), w(P0, y, 1)〉, 〈w(start, x, 0), r(P1, y, θ4)〉,

〈w(start, x, 0), w(P1, x, 1)〉, 〈w(start, x, 0), r(finish, x)〉, 〈w(start, x, 0), r(finish, y, 1)〉,

〈w(start, y, 0), r(P0, x, θ1)〉, 〈w(start, y, 0), w(P0, y, 1)〉, 〈w(start, y, 0), r(P1, y, θ4)〉,

〈w(start, y, 0), w(P1, x, 1)〉, 〈w(start, y, 0), r(finish, x)〉, 〈w(start, y, 0), r(finish, y, 1)〉,

〈r(P0, x, θ1), w(P0, y, 1)〉, 〈r(P0, x, θ1), r(P1, y, θ4)〉, 〈r(P0, x, θ1), w(P1, x, 1)〉,

〈r(P0, x, θ1), r(finish, x)〉, 〈r(P0, x, θ1), r(finish, y, 1)〉, 〈w(P0, y, 1), r(P1, y, θ4)〉,

〈w(P0, y, 1), w(P1, x, 1)〉, 〈w(P0, y, 1), r(finish, x)〉, 〈w(P0, y, 1), r(finish, y, 1)〉,

〈r(P1, y, θ4), w(P1, x, 1)〉, 〈r(P1, y, θ4), r(finish, x)〉, 〈r(P1, y, θ4), r(finish, y, 1)〉,

〈w(P1, x, 1), r(finish, x)〉, 〈w(P1, x, 1), r(finish, y, 1)〉}

αrf(t) = {〈w(P1, x, 1), r(P0, x, θ1)〉), 〈w(P0, y, 1), r(P1, y, θ4)〉, 〈w(P1, x, 1), r(finish, x, 1)〉,

〈w(P0, y, 1), r(finish, y, 1)〉}

αiw(t) = {w(start, x, 0), w(start, y, 0)}

αfw(t) = {w(P1, x, 1), w(P0, y, 1)} .

This is a non-SC candidate execution because of its cycle in union of program order and com-
munications (Alglave, 2015b):

which would be invalid with the following cat specification

acyclic (po | rf)+

5.2 Abstraction to a semantics with weak consistency model

5.2.1 The semantics of a cat weak consistency model specification.

37

The semantics JHcmKΞ of a candidate execution Ξ = 〈ς, rf〉 ∈ Ξ defined in (Alglave, Cousot, and Maranget,
2015c) returns a set of answers of the form 〈j, f, Γ 〉 where j = {allowed, forbidden}, f ∈ F
is the set of flags that have been set up on Ξ and Γ , and Γ defines the communication relation
for the execution to be allowed/forbidden. This is extended to a set C ∈ ℘(Ξ) of candidate
executions as

αΞ(C) , {〈Ξ, αΞ(Ξ)〉 | Ξ ∈ C}

5.2.2 Computational semantics with weak consistency model.

The computational semantics S restricted by a weak consistency model specified by cat

specification Hcm is then S , α JHcmK ◦ αΞ(S
aJPK) where

α JHcmK(C) , {〈ς, rf, Γ 〉 | 〈〈ς, rf〉, Ξ〉 ∈ C ∧

∃f ∈ F . 〈allowed, f, Γ 〉 ∈ JHcmK Ξ}

(Def. 20)

References

Jade Alglave. Modeling of architectures. In Marco Bernardo and Einar Broch Johnsen, ed-
itors, Formal Methods for Multicore Programming - 15th International School on Formal

Methods for the Design of Computer, Communication, and Software Systems, SFM 2015,

Bertinoro, Italy, June 15-19, 2015, Advanced Lectures, volume 9104 of Lecture Notes in

Computer Science, pages 97–145. Springer, 2015a. ISBN 978-3-319-18940-6. doi: 10.1007/
978-3-319-18941-3_3. URL http://dx.doi.org/10.1007/978-3-319-18941-3_3.

Jade Alglave. I can’t dance: adventures in herding cats. Lecture notes for Bertorino summer
school, March 2015b.

Jade Alglave and Luc Maranget. herd7. virginia.cs.ucl.ac.uk/herd, 31 August 2015.

Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2):7:1–
7:74, 2014. doi: 10.1145/2627752. URL http://doi.acm.org/10.1145/2627752.

Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema,
Daniel Poetzl, Tyler Sorensen, and John Wickerson. GPU concurrency: Weak behaviours
and programming assumptions. In ASPLOS, 2015a.

Jade Alglave, Patrick Cousot, and Luc Maranget. La langue au chat: cat, a language to describe
consistency properties. Unpublished manuscript, 31 January 2015b.

Jade Alglave, Patrick Cousot, and Luc Maranget. Syntax and semantics of the
cat language. HSA Foundation, Version 1.1:38 p., 16 Oct 2015c. URL
http://www.hsafoundation.com/?ddownload=5382.

Matthew Hennessy and Gordon D. Plotkin. Full abstraction for a simple parallel pro-
gramming language. In Jirí Becvár, editor, Mathematical Foundations of Computer Sci-

ence 1979, Proceedings, 8th Symposium, Olomouc, Czechoslovakia, September 3-7, 1979,

38

http://dx.doi.org/10.1007/978-3-319-18941-3_3
virginia.cs.ucl.ac.uk/herd
http://virginia.cs.ucl.ac.uk/herd
http://doi.acm.org/10.1145/2627752
http://www.hsafoundation.com/?ddownload=5382

volume 74 of Lecture Notes in Computer Science, pages 108–120. Springer, 1979. doi:
10.1007/3-540-09526-8_8. URL http://dx.doi.org/10.1007/3-540-09526-8_8.

HSA Foundation. Hsa platform system architecture specification 1.0. HSA-SysArch-1.01.pdf,
cat_ModelExpressions-1.1.pdf, 15 January 2015.

Robert M. Keller. Formal verification of parallel programs. Commun. ACM, 19(7):371–384,
1976. doi: 10.1145/360248.360251. URL http://doi.acm.org/10.1145/360248.360251.

James C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394, 1976.
doi: 10.1145/360248.360252. URL http://doi.acm.org/10.1145/360248.360252.

Donald E. Knuth. The genesis of attribute grammars. In Pierre Deransart and Martin Jourdan,
editors, Attribute Grammars and their Applications, International Conference WAGA, Paris,

France, September 19-21, 1990, Proceedings, volume 461 of Lecture Notes in Computer Sci-

ence, pages 1–12. Springer, 1990. ISBN 3-540-53101-7. doi: 10.1007/3-540-53101-7_1. URL
http://dx.doi.org/10.1007/3-540-53101-7_1.

Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Computers, 28(9):690–691, 1979. doi: 10.1109/TC.1979.1675439.
URL http://dx.doi.org/10.1109/TC.1979.1675439.

Jukka Paakki. Attribute grammar paradigms - A high-level methodology in language imple-
mentation. ACM Comput. Surv., 27(2):196–255, 1995. doi: 10.1145/210376.197409. URL
http://doi.acm.org/10.1145/210376.197409.

39

http://dx.doi.org/10.1007/3-540-09526-8_8
http://www.hsafoundation.com/?ddownload=4944
http://www.hsafoundation.com/?ddownload=5381
http://doi.acm.org/10.1145/360248.360251
http://doi.acm.org/10.1145/360248.360252
http://dx.doi.org/10.1007/3-540-53101-7_1
http://dx.doi.org/10.1109/TC.1979.1675439
http://doi.acm.org/10.1145/210376.197409

	Introduction
	An overview of analytic semantics
	Executions
	Well-formedness conditions
	Anarchic semantics
	cat specification of a weakly consistent semantics

	An overview of lisa
	Example
	Syntax

	The anarchic true parallel formal semantics with separated communications of lisa
	The anarchic true parallel symbolic and ground valued semantics
	Semantics
	Computations and executions
	Traces
	Stamps
	Equivalence of executions and semantics up to stamp renaming
	Shared variables, registers, denotations, and data
	Pythia variables
	Expressions
	Events
	States
	Well-formed traces
	Well-formed communications
	Well-formed execution
	Anarchic semantics

	Litmus Instruction Set Architecture (lisa)
	Programs
	Tags and scope trees
	Parallel processes
	Processes
	Lexems
	Expressions
	Local sequentiality
	Events
	Instructions
	Markers
	Actions
	Anarchic semantics of lisa

	The weakly consistent semantics of lisa defined by a cat communication specification
	Abstraction to a Candidate Execution
	Events of an execution.
	Program order of an event trace.
	Read-from relation.
	Initial writes.
	Final writes.
	cat candidate executions.

	Abstraction to a semantics with weak consistency model
	The semantics of a cat weak consistency model specification.
	Computational semantics with weak consistency model.

