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Abstract

We provide the syntax and semantics of the cat language, a domain specific language
to describe consistency properties of parallel/distributed programs. The language is imple-
mented in the herd7 tool Alglave and Maranget (2015).

1 Introduction

The cat language Alglave et al. (2015b) is a domain specific language to describe consistency
properties succinctly by constraining an abstraction of parallel program executions into a can-
didate execution and possibly extending this candidate execution with additional constraints
on the execution environment. The analytic semantics of a program is defined by its anarchic

semantics that is a set of executions describing computations and a cat specification cat de-
scribing a weak memory model. An example of anarchic semantics semantics for lisa is given
in Alglave and Cousot (2016). An anarchic semantics is a truly parallel semantics, with no
global time, describing all possible computations with all possible communications. The cat

language operates on abstractions of the anarchic executions called candidate executions. The
cat specification cat checks a candidate execution for the consistency specification (including,
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maybe, by defining constraints on the program execution environments, such as the the final
writes or the coherence order).

The abstraction of an anarchic execution into a candidate execution is overview in Section
2 while the cat language is introduced is Section 3. Its formal semantics is defined in Section 4.
Examples can be found in Alglave [2015].

2 Abstraction to candidate executions

The anarchic semantics is a set of executions. Each execution is abstracted to a candidate
execution 〈evts , po, rf, IW, sr〉 providing
• events evts , giving a semantics to instructions; for example in lisa Alglave and Cousot (2016),

a write instruction w[] x v yields a write event of variable x with value v. Events can be
(for brevity this is not an exhaustive list):
– writes, gathered in the set W, including the the set IW of initial writes coming from the

prelude of the program;
– reads, gathered in the set R;
– branch events, gathered in the set B;
– fences, gathered in the set F.

• the program order po, relating accesses written in program order in the original lisa program;

• the read-from rf describing a communication between a write and a read event;

• the scope relation sr relating events that come from threads which reside within the same
scope;

A cat specification cat may add other components to the candidate execution (e.g. to specify
constraints on the execution environment) and then checks that this extended candidate execu-
tion satisfies the consistency specification, that is, essentially, that the communication relation
rf satisfies the consistency specification (under hypotheses on the execution environment).

3 The cat language

A weak consistency specification written in the cat language defines constraints to be satisfied
by the communication relation rf of any candidate execution. A typical cat specification defines
new objects depending on the sets and relations of the candidate execution (e.g. the program
order po or the initial writes IW) and then imposes constraints on these objects that ultimately
restrict the allowed communications rf .

3.1 Objects and expressions

3.1.1 Types.

The objects defined in a cat specification may be of the following types (see Appendix 4.9 and
Figure 5 for the formal details): evt (event), tag (tag), rel (relation between events), set (set),
tuple (tuple), enum (enumeration of tags), fun (unary function type), proc (unary procedure
type).
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3.1.2 Definitions in binding statements

(see Appendix 4.12.5 and Figure 17 for their formal semantics) can bind an expression to a
name, which can be used in place of that expression. For example

let rfe = rf & ext

defines the relation rfe as the restriction of the communications rf to events coming from
different processes. Formally, rfe is built as the intersection (denoted by & in cat) of the
read-from relation rf and the predefined relation ext which links events coming from different
processes (Figure 11).

A set, relation, function or procedure can be given a name by binding (see Figure 7). Bindings
(see Appendix 4.12.5 and Figure 17) can be (mutually) recursive (using let rec ... and ...).

3.1.3 Functions

(see Appendix 4.12.3 and Figure 15 for their formal semantics) define an object as a function
of a unique formal parameter (which may be an empty tuple () in absence of parameter or a
non-empty tuple for multiple parameters). For example

let extof r = r & ext

let rfe = extof rf

defines a function extof of a parameter r which intersects the relation r with the relation ext

between events belonging to different processes. We then define the relation rfe as the function
extof applied to the read-from relation rf.

We note that our definition of extof above is an abbreviation for the binding of an anonym-
ous function

let extof = fun r -> r & ext

Functions can be recursive (using let rec) and get their actual parameters in a call by tuple-
matching their actual argument.

3.1.4 Events.

All events come out of the candidate execution and there is no way in cat to generate any other
event.

3.1.5 Sets

(see Appendix 4.12.4 and Figure 16 for their formal semantics) are either empty {} or a homo-
geneous set {o1, ..., on, ...}. We do not allow sets of functions or procedures. Predefined
sets of events are denoted by the following identifiers (see Appendix 4.11.1 and Figure 10 for
their formal semantics):

• the set of all write events W, including the initial writes IW;

• the set of all read events R;

• the set of all branch events B;
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• the set of all fence events F;

• the universe containing all events of the candidate execution, which is denoted “_”.

New sets can be defined from existing ones using the following operations (see Appendix 4.12.6,
Figures 18, 19 and 20 for the formal semantics of these operations):

• the ~S is the complement of a set S;

• the union of two sets S1 and S2 is S1 | S2;

• the intersection of two sets S1 and S2 is S1 & S2;

• the difference of two sets S1 and S2 is S1 \ S2 ;

• the addition of an element e to a set S is e++S;

Matching over sets (see Appendix 4.12.4 and Figure 16 for the formal semantics) can be
used for (recursive) set definitions. Match is against the empty set {} or, for a non-empty
set, a partition e ++ es into a singleton {e} and the rest of the set es. For example, given a
function f , a set S = {e1, e2, . . . , en} and an element y, the call fold f(S, y) returns the
value f(ei1 , f(ei2 , . . . f(ein , y))), where i1, i2, . . . , in is some permutation of 1, 2, . . . , n:

let fold f =

let rec fold_rec (es,y) = match es with

|| {} -> y

|| e ++ es -> fold_rec (es, f(e,y))

end

in fold_rec

3.1.6 Relations between events

(see Appendix 4.11.1 for their formal semantics) can be the empty relation 0, the identity
relation id, or the relations defined from the candidate execution:

• the program order po;

• the read-from rf,

or predefined relations on events (see Figure 11):

• the relation loc between events accessing the same memory location;

• the relation ext between events coming from different threads.

New relations (see Appendix 4.12.6) can be defined from sets of events (see Figure 20):

• the cartesian product of two sets of events S1 and S2 is S1* S2

or using unary operators on relations (see Figure 19):

• the identity closure of a relation r is r?

• its reflexive-transitive closure is r*
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• its transitive closure is r+

• its complement is ~r

• its inverse is rˆ-1

or using binary operators on relations (see Figure 20):

• the union of two relations r1 and r2 is r1 | r2

• the intersection of two relations r1 and r2 is r1 & r2

• the difference of two relations r1 and r2 is r1 \ r2

• the sequence of two relations r1 and r2 is r1;r2 (i.e. the set of pairs (x, y) such that there
exists an intervening z, such that (x, z) ∈ r1 and (z, y) ∈ r2).

Moreover the following primitives can be used to manipulate sets and relations over events
(see Figure 12 for their formal semantics):

• classes takes a relation r; if r is an equivalence relation, then we return the equivalence
classes of r, otherwise an error is raised;

• linearisations takes a set S and a relation r and returns a set of relations; viz ., if the
relation r is acyclic, we return all the possible linearisations (topological sorts in the finite
case) of r over S, otherwise we return the empty set.

3.1.7 Tuples

(see Appendix 4.12.4 and Figure 16 for their formal semantics) include the empty tuple (), and
constructed tuples (o1, ..., on). Tuples can be heterogeneous. Tuples are essentially used to
pass parameters to functions and procedures. Tuples can be destructured by pattern matching;
for example in the example of fold above, we match the argument of fold_rec into the pair
(es,y).

3.1.8 Tags.

Events can be tagged (using the annotations on the program instruction generating this event)
and these tags can be used to build relations. The tags must be declared (see Appendix 4.12.1
and Figure 14) using the enum construct. For example

enum memory-order = ’rlx || ’acq || ’rel

defines an enumeration type memory-order, which contains three tags: ’rlx (relaxed), ’acq
(acquire), ’rel (release).

lisa instructions can be annotated with such tags. In cat, tags have a quote ’ to not be
confused with identiers. This confusion is impossible in lisa so quotes ’ are omitted. The
tags that can be worn by instructions must be declared (see Figure 14 in Appendix 4.12.1), as
follows:

instructions W[{’rlx,’rel}]

instructions R[{’rlx,’acq}]

5



Events generated by an annotated lisa instruction will bear the same tags as the instruction.
The set of events bearing a given tag t is provided by tag2events (t) (see Figure 13 in the
Appendix 4.12.1). For example

let Release = tag2events(’rel)

let Acquire = tag2events(’acq)

define the set Release (resp. Acquire) of events bearing the tag ’rel (resp. ’acq).
Tags can be matched against their names as defined in an enum, and with the wildcard _

(see Figure 13); examples are provided in the next section.

3.1.9 Scopes.

The organisation of a parallel system is not always flat. Often, threads (and physical processors
or cores alike) are organised in a hierarchical fashion, threads being members of a hierarchy of
nested levels, or scopes. Examples include: the eponymous scope notion in GPU models (e.g.
Cooperative Thread Array, or cta, in Nvidia PTX), or the notion of shareability domain in
ARM (e.g. ish in ARMv8).

Scopes (see Appendix 4.12.2 for their formal semantics) are special tags which must be
declared with the reserved identifier scopes:

enum scopes = ’cta || ’gpu || ’system

The hierarchy of scopes is described in a cat file by the functions narrower and wider (which
are reserved identifiers but user-defined, as scopes is). In the most simple and frequent case,
levels are totally ordered. Then, the wider function takes a scope tag as argument and returns
the immediately wider scope tag, while the narrower function returns the immediately narrower
scope tag:1

let wider(s) = match s with ’gpu -> ’system || ’cta -> ’gpu end

let narrower(s) = match s with ’system -> ’gpu || ’gpu -> ’cta end

The above definitions specify that scopes are ordered from narrowest to widest as: ’cta <

’gpu < ’system. In other words, a system contains one or more GPUs, and each GPU contains
one or more CTAs.

All lisa litmus tests specify how many threads P0, P1, etc. are involved. Additionally a
scoped litmus test specifies how threads are distributed along the scope hierarchy, by means of
a scope tree such as

scopes: (system (gpu (cta P0 P1) (cta P2 P3)) (gpu (cta P4 P5) (cta P6 P7)))

which describes the scope hierarchy

1One may also consider heterogeneous systems such as coupled CPUs and GPUs. In that case, the hierarchical

is no longer total and the function narrower returns a set of tags.
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The herd7 tool checks that the wider function does define a hierarchy, in the sense that each
scope has an unique immediately wider scope except one, the root of the hierarchy, which has
none. It also checks the compatibility of the narrower function and of scope trees with the
defined hierarchy.

The events in a given scope s are gathered as an equivalence relation tag2scope (s) (see
Figure 13 in the Appendix 4.12.2). More precisely two events are related by tag2scope (s)

when they are generated by threads that are contained in the same scope instance of level s.
Consider for instance the hierarchy depicted above, and two events e0, and e2, generated

by P0 and P2 respectively. Then e0 and e2 are related by tag2scope (’gpu) and unrelated by
tag2scope (’cta) since P0 and P2 belong to the same GPU but to different CTAs.

3.2 Constraint statements

After defining sets and relations depending on the candidate execution, we can impose con-
straints on them (see Figure 22 for the formal semantics).

3.2.1 Checks

(see Appendix 4.13.1 and Figure 22 for their formal semantics) can have the following syntax:
[~][ acyclic | irreflexive | empty]x.

The checks [~][ acyclic | irreflexive |] r check if the relation r on events is be acyclic or
irreflexive. The check or [~][ empty]S checks if the set S is empty. The check acyclicr is a
shorthand for irreflexiver+. The symbol ~ denotes the negation. Failed checks reject the
candidate execution which is therefore forbidden. For example

acyclic po | rf

checks whether the union of po and rf is acyclic in all the candidate executions of a given
program.

Users have the option to not enforce the checks, but rather to use them to report properties
of the candidate execution. To do so, users must prefix the check they are interested in with the
keyword flag, and name the flagged test with an identifier name (by using the postfix qualifier
as name ). A failed flagged check has no consequence over the acceptance or rejection of the
candidate execution. It is simply reported (viz ., flagged with the name name) for the user’s
information. For example

flag ~(acyclic po | rf) as cycle-found

will flag, using the name cycle-found, all the candidate executions in which there is a cycle in
the union of po and rf.

We often use flag in models that involve data races, e.g. C++ or HSA. In such models,
executions that have data races are typically deemed undefined. We handle this in cat by
flagging candidate executions that exhibit data races with the name undefined.

3.2.2 Procedures. (see Appendix 4.13.2 and Figure 23 for their formal semantics)

Definitions of sets and relations and their checks in constraint statements can be gathered and
parameterised using procedures and checked by procedure calls. Procedures are not recursive
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and return no result. They have one formal parameter (but that can be a tuple, including the
empty one). Their body is a non-empty list of statements.

For example the following procedure sc implements Sequential Consistency Lamport (1979),
given the relation com as parameter:

procedure sc(com) =

let sc-order = (po | com)+

acyclic sc-order

end

The procedure may have local definitions (like sc-order). The scope of the formal parameter
and local definitions is limited to the procedure body. Global definitions (like the relation po)
can be used in the procedure body.

A call (e.g. call sc(rf)) passes the actual parameter (a tuple, here rf, matching the
formal parameter com) and the procedure body is evaluated with the actual parameter.

3.2.3 Iteration.

A universally quantified check (i.e. a finite conjunction of checks) can be done for all values
e chosen in a set S by a forall iterator (see Appendix 4.13.3 and Figure 24 for the formal
semantics), as follows:

forall e in S do

call check_contraint(e)

end

3.2.4 Candidate execution extension (with ... from ...)

The construct with o from S requirements introduces an additional constituant o of the se-
mantics, not already part of the candidate execution. This constituant o of the semantics is
introduced in the cat file rather than in the anarchic semantics because it only depends on the
program execution events (e.g. the coherence order).

The with construct enumerates all possible objects o in S and checks the requirements .
Typically S is a set of relations on events and o a relation between events which must satisfy
the requirementsappearing in the remainder of the cat file.

For example total orders over certain accesses can be built using with:

• the coherence order between writes to a given memory location ;

• SC accesses in C++ or HSA (we use this in our modelisation of HSA, see HSA Foundation
(2015)).

3.3 Evaluation of a cat file on a candidate execution

When evaluated on a candidate execution, a cat file returns an error if the cat file is syntactically
incorrect. Otherwise the binding definitions, constraint statements, and with requirements are
evaluated in sequence (see Figures 3 and 25). If some (unflagged i.e. mandatory) constraint
fails, we return forbidden to stipulate that the candidate execution does not satisfy the weak
consistency model specified by the cat file. Otherwise the candidate execution is accepted, i.e.
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we return allowed. In both cases we return a possibly empty set of flags for conditions that
are not enforceable (see Appendix 4.7), as well as the objects introduced by with constructs.
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4 Syntax and formal semantics of the cat language

4.1 Analytic semantics

The analytic semantics SJPK of a parallel program P with a given cat consistency specification
(or weak consistency model) cat is a set of execution behaviors π conforming to this consistency
specification. Each such execution behavior π = 〈Ξ, rf, Γ 〉 is described in two parts, the
computations 〈Ξ, rf〉 and the communications 〈rf, Γ 〉 where the read-from relation rf is their
common interface.

• The possible computations 〈Ξ, rf〉 are described by the anarchic semantics SaJPK of the
program P. The read-from relation rf records the correspondance between the reads, the
matching writes, and the communicated values on the computation Ξ.

The anarchic semantics SaJPK places only the following restrictions on the commu-
nications of P so all possible computations with all possible read-from relations rf are
considered.

– Satisfaction: a read event has at least one corresponding communication in rf;
– Singleness : a read event must have at most one corresponding communication in rf;
– Match: if a read reads from a write, then the variables read and written and commu-

nicated value must be the same;
– Inception: no communication is possible without the occurrence of both the read and

(maybe initial) write it involves (this does not prevent a read to read from a future
write).

Otherwise stated the consistency specification/weak consistency model is not taken into
account at all by the anarchic semantics SaJPK.

• The possible communications are described by communications 〈rf, Γ 〉 between commu-
nication i.e. read and/or write events.

The cat file cat generates all possible communication relations c ∈ Γ (using the with

construct). The communication relations c ∈ Γ include the coherence order co, etc. More
generally, they specify requirements on the execution environment of the program P.

The cat file semantics sorts out the executions π = 〈Ξ, rf, Γ 〉 that are feasible for weak
consistency model, one by one.

4.2 Consistent semantics specification by cat files

A cat file cat ∈ Cat defines a check that an execution π = 〈Ξ, rf, Γ 〉 satisfies a consistency
specification.

• First the computation 〈Ξ, rf〉 of the anarchic semantics is abstracted to a candidate
execution X = αΞ(〈Ξ, rf〉) = 〈evts , po, rf, IW, sr〉 (collecting read, write, branch, fence
and rmw events in evts , the program order po, the read-from relation rf, initial IW writes,
and the program scope tree sr) but where e.g. events on local registers or communicated
values are abstracted away.
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• The cat file cat is then evaluated on X. Thanks to with ci from Ci constructs, the cat

file generates all necessary communication relations Γ = c1, . . . , cn between communica-
tion events (including co ∈ allCo, etc.) which are necessary to express the consistency
specification.

• In absence of error in cat , the final result

– can be 〈allowed, f, Γ 〉 meaning that the computation 〈Ξ, rf〉 (with abstraction
X = αΞ(〈Ξ, rf〉)) together with the communication specification Γ satisfies the
consistency specification, or

– can also be 〈forbidden, f, Γ 〉 meaning that the π = 〈Ξ, rf, Γ 〉 does not satisfy the
consistency specification.

In both cases f ∈ F is the set of flagged constraints in cat satisfied by the execution
π = 〈Ξ, rf, Γ 〉 (without any influence on the allowed/forbidden result).

4.3 Analytic semantics specified by an anarchic semantics and a cat

specification

We define below, in Figure 2, the semantics Jcat KX of a candidate execution X which returns
a set of answers of the form 〈j, f, Γ 〉 where j = {allowed, forbidden}, f is the set of flags that
have been set up on X and Γ , and Γ defines the communication relation for the execution to
be allowed/forbidden.

The analytic semantics of a program P with consistency specification cat is therefore

SJP, cat K , {〈Ξ, rf, Γ 〉 | 〈Ξ, rf〉 ∈ SaJPK ∧

∃f ∈ F . 〈allowed, f, Γ 〉 ∈ Jcat K (αΞ(〈Ξ, rf〉))}

This analytic semantics SJPK of a program P for a cat specification cat is the composition SJPK
= α Jcat K ◦ αΞ(SaJPK) of two abstractions of the anarchic semantics viz .

αΞ(S) , {〈〈Ξ, rf〉, αΞ(〈Ξ, rf〉)〉 | 〈Ξ, rf〉 ∈ S}

α Jcat K(C) , {〈Ξ, rf, Γ 〉 | 〈〈Ξ, rf〉, X〉 ∈ C ∧

∃f ∈ F . 〈allowed, f, Γ 〉 ∈ Jcat K X}

4.4 Candidate executions

Candidate executions are tuples:

X = 〈evts , po, rf, IW, sr〉 ∈ Candidate

, Evts × Program-order × Read-from × Writes × Scope-rel

which gather the events, the program order po on each thread, the read-from relation rf,
modeling who reads from where, the initial writes IW, and a scope relation sr.
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4.4.1 Events

e ∈ Evt are abstractions of the events generated by a program execution. Events e ∈ evts

carry the unique program instruction (and its unique program label) which execution generated
this event e . However, this information is not directly available to cat. Auxiliaries to extract
components of an event e are as follows:

loc-of(e) , location of e kind-of(e) , kind of e

pid-of(e) , process identifier of e annot-of(e) , annotations of e

from-to-of (e) , events separated by fence event e

The set evts of events belong to Evts , ℘(Evt).

• The process identifier pid-of(e) refers to the identifier of the unique process at the origin
of the event e;

• The location loc-of(e) can be a memory location or a register;

• kind-of(e) is the kind of event e: write (W), read (R), branch (B), fence (F), begin or end of
a rmw. We define the following sets of events by kind:

W(X) , {e ∈ evts-of(X) | kind-of(e ) = W} R(X) , {e ∈ evts-of(X) | kind-of(e ) = R}

F(X) , {e ∈ evts-of(X) | kind-of(e ) = F} B(X) , {e ∈ evts-of(X) | kind-of(e ) = B}

• the annotations annot-of(e) of e is a possibly empty set of tags and scopes carried by the
action at the origin of e;

• let eF ∈ F(X) be a fence event generated by a localised fence instruction f[ts ] {L1,...,Ln}

{L′1,...,L
′
m} where this instruction and all L1, ..., Ln, L′1, ..., L′m belong to the

same process of pid-of(eF ).

Then from-to-of (eF ) is the set of pairs 〈ef , et〉 such that ef is an event generated by the
execution of a program instruction labelled Li, i ∈ [1, n] and et is an event generated by
the execution of a program instruction labelled L′j , j ∈ [1,m]. Additionally, we require
〈ef , eF 〉 ∈ po-of(X) and 〈eF , et〉 ∈ po-of(X), viz . the fence does separate the two events

ef and et. If the fence carries an empty set of labels this is from-to-of (eF ) , ∅. If the

fence carries no sets of labels, we set from-to-of (eF ) , {〈ef , et〉 | 〈ef , eF 〉 ∈ po-of(X)∧〈eF ,
et〉 ∈ po-of(X)}.

4.4.2 Program order,

abbreviated po ∈ Program-order, abstracts the order of the events of a process in the execution
hence lifts the order in which instructions have been executed to the level of events. For each
candidate execution, it is a total order over events within the same thread, hence irreflexive and
transitive, and cannot relate events from different threads.

4.4.3 Read-from,

abbreviated rf ∈ Read-from , ℘(Write×Read), relates a read event of a certain shared variable
x to a unique write event of the same variable. The read-from relation essentially indicates
which events read from where.
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4.4.4 Initial writes

are gathered in the set IW ∈ Writes , ℘(Write). The initial writes IW simply are the writes in
the prelude of the program.

4.4.5 Scope relation,

abbreviated sr ∈ Scope-rel, relates events that come from threads which reside within the
same scope; this is a notion that is mostly used for scoped models such as GPUs (see e.g.,
Alglave et al. (2015a) and Sections 3.1.9 ).

Auxiliaries to extract components of a candidate execution X , 〈evts , po, rf, IW, sr〉 are
as follows:

evts-of(X) , evts po-of(X) , po rf-of(X) , rf

sr-of(X) , sr init-of(X) , IW

4.5 Program scope relation defined by a scope tree and cat scope

hierarchy

A program scope tree specifies a scope relation. The syntax of program scope trees and their
semantics, that is the scope relation that they define are defined in Figure 1. Program scope
trees must match the scope hierarchy defined by the cat file through a scope tag declaration
(see Figure 14) and the user specified functions with reserved names narrower and wider, as
checked in Figure 13.

4.6 Values

The cat language is much inspired by OCaml Leroy et al. (2014), featuring for example types,
immutable bindings, first-class functions and pattern matching. However, cat is a domain
specific language, with important differences from OCaml:

• base values are specialised; they are: sets of events, relations over events, first class func-
tions; there are also tags, including scope tags, akin to C enumerations or OCaml constant
constructors. There are two structured values: sets of values and tuples of values, see Fig-
ure 5.

• there is a distinction between expressions in Figure 7 that evaluate to some value, state-
ments in Figure 3, which introduce new definitions or constraints, and requirements in
Figure 25 which introduce new communication relations on the execution environment
and constraints on them.

We use the following notations: square brackets [. . . ] denote optional components, paren-
theses (. . .) denote grouping, (. . .)∗ (resp. (. . .)+) denotes zero, one or several (resp. one or
several) repetitions of the enclosed components.
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Scope trees

st ::= (s-tag P0 . . . Pn) program scope trees

| (s-tag st0 . . . stn)

where {P0, . . . , Pn} ⊆ {pid-of(e) | e ∈ evts-of(X)}.

Given a scope tree st, a set E of events and a scope-tag st, define srel(st)E s-tag to be
the relation between different events that come from threads which reside in the scope
s-tag, as follows

srel((s-tag P0 . . . Pn)) E s-tag ′ , ∅ (when s-tag 6= s-tag ′)

srel((s-tag P0 . . . Pn)) E s-tag , {〈e, e′〉 | e, e′ ∈ E ∧ ∃i, j ∈ [0, n] .

pid-of(e) = Pi ∧ pid-of(e′) = Pj}

srel((s-tag st0 . . . stn)) E s-tag ′ ,

n⋃

i=0

srel(sti)E s-tag ′ (when s-tag 6= s-tag ′)

srel((s-tag st0 . . . stn)) E s-tag , {〈e, e′〉 | e, e′ ∈ E ∧

∃Pi, Pj ∈
⋃n

i=0 processes(st0 . . . stn) .

pid-of(e) = Pi ∧ pid-of(e′) = Pj}

processes((s-tag P0 . . . Pn)) , {P0, . . . , Pn}

processes((s-tag st0 . . . stn)) ,
n⋃

i=0

processes(sti)

tags-of((s-tag P0 . . . Pn)) , {s-tag}

tags-of((s-tag st0 . . . stn)) , {s-tag} ∪
n⋃

i=0

tags-of(sti)

If the program has a scope-tree st then the candidate execution X must have its scope
relation component sr = sr-of(X) be such that for all s-tag ∈ tags-of(st), sr(s-tag) =
srel (st) (evts-of(X)) s-tag.

Figure 1: Semantics of program scope trees
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4.7 Consistency specifications

Consistency specifications (or cat files/specifications) cat filter candidate executions and extend
them with communication relations. In other words, the semantics Jcat K X of a cat specific-
ation cat is defined with respect to a candidate execution X and its result extend it to specify
requirements on the execution environment.

4.7.1 Evaluating a cat specification

means allowing or forbidding that candidate execution. More precisely, evaluating a cat file
makes a result object 〈j, f, ρ, ω〉 evolve, where:

• Judgements j ∈ J , {allowed, forbidden} can be of two kinds: allowed when a candid-
ate execution passes all the checks imposed by the cat specification, or forbidden when
a candidate execution fails on one of the checks of the cat specification cat .

• Flagged checks f ∈ F , ℘(Identifier) collect identifiers of checks that have been flagged
and are recorded to signal certain executions (e.g., the ones with data races).

• Environments ρ ∈ E associate identifiers (which belong to the set Identifier) to typed
values; more precisely environments are partial functions from identifiers to values:

E , Identifier 9 V .

During the evaluation of the cat file cat , the environment ρ ∈ E gets augmented with new
definitions as evaluation progresses. It evolves also locally when evaluating functions and
procedures, according to the static scoping or block-structured visibility rule.

• Sets of communication relation identifiers ω record the identifiers of communication rela-
tions introduced by a with requirement.

ω ∈ W , ℘(Communication-relation-identifier)

During the evaluation of the cat file cat , the set ω ∈ W of communication relation identifi-
ers gets augmented with new identifiers introduced by with id from . . . requirements, see
Figure 25. The relation ρ(id ) which is the value of such communication relation identifiers
id is found in the environment ρ. The final verdict in Figure 2 collects this information
in the final result of the cat evaluation.

• Results collect judgements, flagged checks, environments, and communication relation
identifiers or raise error if needed.

r = 〈j, f, ρ, ω〉 ∈ R , (J × F × E ×W) ∪ {error}

A result may be undefined e.g. when an implementation might not terminate, for example,
when evaluating a non-terminating function. The result can also be error when the cat file
is incorrect. The difference is that an implementation of cat is assumed to signal error but
is not required to report undefined results. The final result is collected in the final verdict
〈j, f,

∏
id ∈ω

ρ(id )〉, see Figure 2.

Initially, the judgement is allowed, the set of flags is empty, predefined identifiers are im-
plicitly bound to event sets and relations over events as described in Section 4.11.1 and Figures
10 and 11, and the set of communication relation identifiers is empty, see Figure 2.
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4.7.2 Specifications

(or cat files) are lists of requirements preceded by an identifier, used for documentation purposes.
We give the syntax and semantics of specifications in Figure 2.

The requirements constitutive of the specification are evaluated in sequence, until one re-
quirement raises error or forbidden, or until the end of the requirement list. In that latter case,
the specification accepts the candidate execution, hence raises allowed.

4.7.3 The final verdict

in Figure 2 is given at the top-level, gets rid of the environment, and returns the communication
relations in S obtained by finding the value of the communication relation identifiers id in the
environment. If S is empty, we return forbidden (with unmodified flags). If S contains error,
the error is returned.

cat ∈ Cat

cat ::= identifier

| identifier requirements

JidentifierK X , {〈allowed, ∅, ∅〉}

Jidentifier requirements K X , verdict( Jrequirements K X 〈allowed, ∅, ∅, ∅〉)

Jcat K , {〈X, Γ 〉 | X ∈ Candidate ∧ Γ ∈ Communication-relation ∧

∃f ∈ F . 〈allowed, f, Γ 〉 ∈ Jcat K X}

verdict ∅ , {〈forbidden, ∅, ∅〉}

verdict S , error when error ∈ S

verdict {〈ji, fi, ρi, ωi〉 | i ∈ ∆} , {〈ji, fi,
∏

id ∈ωi

ρi(id )〉 | i ∈ ∆} otherwise

Figure 2: Semantics of specifications

4.8 Statements

Requirements can be statements introducing new binding definitions and checking constraints,
or the with id from S requirement introducing a new communication relation identified by id .

Statements are evaluated for their effect: adding new definitions or checking constraints.
We give their syntax and semantics in Figure 3. Note that once an error has been raised, we
stay in that state. Moreover statements have no with requirement so cannot introduce new
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communication identifiers. Therefore the set of communication relation identifiers is unchanged
by the evaluation of a statement, ω′ = ω in Figure 3.

statements ∈ Statements

statements ::= {statement}+

statement ∈ Statement

statement ::= definition

| constraint

JstatementsK ∈ Candidate → R → R

Jstatement statements K X 〈j, f, ρ, ω〉 ,

let 〈j′, f ′, ρ′, ω′〉 = Jstatement K X 〈j, f, ρ, ω〉 in

if j′ = allowed then

JstatementsK X 〈j′, f ′, ρ′, ω′〉

else 〈j′, f ′, ρ′, ω〉

Jstatement K X error , error

Figure 3: Semantics of statements

4.9 Typed values and semantic domains

Typed values, (gathered in the set V) are given in Figure 5. Events (of type evt) belong to
the set Evt. There are no operation on events so the type evt can only be used to type elements
of relations or sets. Typed values include (see Figure 5):

• the error symbol;

• tags (of type tag), which belong to Tag;

• relations over events (of type rel), which belong to ℘(Evt × Evt);

• sets (of type set) of values, which belong to ℘(V); sets have to be homogeneous, and cannot
be sets of functions or procedures, as reflected by the predicate well-formed;

• tuples (of type tuple) of values, which belong to
⋃

n∈N

∏n

i=1 V ;

• enumerations of tags (of type enum), which belong to ℘(Tag);

• functions (of type fun);

• non-recursive procedures (of type proc).
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The value of functions and procedures are closures memorising their parameter (which be-
longs to Pat ), their body (which in the case of functions belongs to Expr , and in the case of
procedures can be a list of elements of Statement ), and declaration environment (which belongs
to E). On a call, the actual parameters are evaluated in the calling environment and the body
in the declaration environment enriched by the value of the formal parameters and the local
bindings. After the call, evaluation goes on in the calling environment. This is therefore static
scoping.

type ∈ Type

type ::=

evt events

| tag tag

| rel relation between events

| set set

| tuple tuple

| enum enumeration

| fun unary function type

| proc unary procedure type

Figure 4: Typed values

4.10 Auxiliaries

To define the semantics of operators over sets and relations in particular we need to define a
certain number of auxiliaries (summarised in Figure 6).

4.11 Expressions

Expressions let the user build new sets or relations over tags and events. Figure 7 summarises
the syntax of expressions.

Several constructs are non-deterministic: the set matching of Section 4.12.4, the iteration
over sets of Section 4.13.3. In the semantics, only one result is nondeterministically picked out
of all possible ones. This is different from the with requirement of Section 4.14.2 where all
possibilities for choosing the communication relation are enumerated.

The semantics of an expression is error whenever the semantics of any one of its subexpressions
is error. To leave this check implicit, we assume that the mathematical construct let typei: vi =

J expr iKXρ, i ∈ [1, ℓ] in . . . equals error whenever there exists i in [1, ℓ] such that J expr iK =
error.
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well-formed(S) , ∀ type: v ∈ S . type 6∈ {fun , proc } ∧ ∀ type′: v′ ∈ S . type = type′

check sets
Semantic domains

V , typed values

{error}

∪ tag:Tag

∪ rel:℘(Evt × Evt)

∪ set: {S ∈ ℘(V) | well-formed(S)}

∪ tuple: ({()} ∪
⋃

n∈N,n>1

n∏

i=2

V)

∪ enum:℘(Tag)

∪ fun: ((Pat → Expr)× E)

∪ proc: ((Pat → {Statement}+)× E)

ρ ∈ E , Identifier 9 V environments

j ∈ J , {allowed, forbidden} judgements

f ∈ F , ℘(Identifier) flagged checks

ω ∈ W , ℘(Communication-relation-identifier) set of com. identifiers

r ∈ R , (J × F × E×W) ∪ {error} results

Figure 5: Semantic domains

iX , {〈e, e〉 | e ∈ X} identity relation on set X

r ; r′ , {〈e , e ′〉 | ∃e ′′ . 〈e , e ′′〉 ∈ r ∧ 〈e ′′, e ′〉 ∈ r′} sequence of relations

dom(r) , {x | ∃y . 〈x, y〉 ∈ r} domain of relation r

range(r) , {y | ∃x . 〈x, y〉 ∈ r} range of relation r

fld(r) , dom(r) ∪ range(r) field of relation r

lfp⊆ F =
⋂

{X ∈ ℘(S) | F (X) ⊆ X} the least fixpoint of the ⊆-increasing operator
F on the powerset ℘(S) Tarski (1955)

Figure 6: Auxiliaries for defining operators’ semantics

4.11.1 Identifiers

are either predefined or defined by the user through definition statements. We list the reserved
identifiers in Figure 8. User-defined identifiers cannot be reserved identifiers and are bound in
the environment ρ (see Figure 9).
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simple ∈ Simples

simple ::=

| id identifiers

| tag tags

| function anonymous functions

| procedure procedures

| set sets

| tuple tuples

clause ∈ Clauses

clause ::=

[||] tag -> expr {|| tag -> expr }∗ [___ -> expr ]

| [||] {} -> expr || id ++ id -> expr

expr ∈ Expr

expr ::=

| simple simples

| expr expr function application

| (expr) | begin expr end grouping

| let [rec] binding {and binding }∗ in expr binding expressions

| match expr with clause end matching

| op operators on sets and relations

definition ∈ Definition

definition ::= decl

| let [rec] binding {and binding }∗

Figure 7: Simple expressions, expressions and definitions

Predefined identifiers denoting sets of events appear in Figure 10. We have: the univer-
sal sets, the set of all write, read, memory, branch and fences events, as well as the set of initial
writes. The semantics of these identifiers, given in Figure 10 is straightforward; they denote the
eponymous sets of events.

Predefined identifiers denoting relations on events appear in Figure 11. We have: the
empty and identity relations, the relation over events accessing the same memory location, the
relation over events with different pids, the program order, and the read-from relation.
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Keywords ,

{acyclic, and, as, begin, call, do, empty, end, enum, flag, forall, from, fun, in,
instructions, irreflexive, let, match, procedure, rec, scopes, with }

Primitives ,

{classes, fromto, linearisations, tag2events, tag2scopes}

Names ,

{___, 0, B, ext, F, id, IW, loc, M, narrower, po, R, rf, rmw, W, wider }

Reserved , Keywords ∪ Primitives ∪ Names

Figure 8: List of reserved identifiers

id ∈ Identifier

id ∈ Communication-relation-identifier , Identifier \ Reserved

Jid K X ρ , if id ∈ dom(ρ) then

let type: v = ρ(id ) in

if type = enum then set: v else type: v

else error

(when id 6∈ Names)

(for id ∈ Names, see Figures 10 or 11)

Figure 9: Semantics of identifiers
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aevt ::= annotable events

| W write events

| R read events

| B branch events

| F fence events

predefined-events ::=

| ___ all events

| IW initial writes

| M memory events, M = W ∪ R

| aevt annotable events

J__K X ρ , set: {evt: e | e ∈ evts-of(X)} events

JWK X ρ , set: {evt: e | e ∈ evts-of(X) ∩ W(X)} write events

JRK X ρ , set: {evt: e | e ∈ evts-of(X) ∩ R(X)} read events

JBK X ρ , set: {evt: e | e ∈ evts-of(X) ∩ B(X)} branch events

JFK X ρ , set: {evt: e | e ∈ evts-of(X) ∩ F(X)} fence events

JMK X ρ , set: {evt: e | e ∈ evts-of(X) ∩ (R(X) ∪ W(X))} memory events

JIWK X ρ , set: {evt: e | e ∈ init-of(X)} initial write events

where JIWK X ρ ⊆ JWK X ρ

Figure 10: Predefined sets and their semantics
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The semantics of these predefined identifiers, given in Figure 11 is relatively straightforward
again: 0 is the empty relation, id is the identity relation, loc the relation between events
accessing the same variable, and ext the relation between events from different threads. It is
the eponymous relation for po and rf.

Predefined relations over events

predefined-relations ::= 0 empty relation

| id identity

| loc same location

| ext external (different pids)

| po program order

| rf read-from

| rmw read-modify-write

Semantics of predefined relations

J0K X ρ , rel: ∅

JidK X ρ , rel: ievts-of(X) , rel: {〈e , e 〉 | e ∈ evts-of(X)}

JlocK X ρ , rel: {〈e , e ′〉 ∈ evts-of(X)× evts-of(X) | loc-of(e ) = loc-of(e ′)}

JextK X ρ , rel: {〈e , e ′〉 ∈ evts-of(X)× evts-of(X) | ∧pid-of(e ) 6= pid-of(e ′)}

JpoK X ρ , rel: po-of(X)

JrfK X ρ , rel: rf-of(X)

JrmwK X ρ , let RMW = {〈r, w〉 | ∃e b, e e ∈ evts-of(X) .

kind-of(e b) = beginrmw∧ kind-of(e e) = endrmw∧

〈e b, r〉 ∈ po-of(X) ∧ (∄e ∈ evts-of(X) . 〈e b, e 〉 ∈ po-of(X) ∧

〈e , r〉 ∈ po-of(X)) ∧ 〈r, w〉 ∈ po-of(X) ∧ 〈w, e e〉 ∈ po-of(X) ∧

(∄e ∈ evts-of(X) . 〈w, e 〉 ∈ po-of(X) ∧ 〈e , e e〉 ∈ po-of(X)) ∧

(∄e ∈ evts-of(X) . (〈e b, e 〉 ∈ po-of(X) ∧ 〈e , e e〉 ∈ po-of(X)) ∧

kind-of(e ) ∈ {beginrmw, endrmw})}

in

rel:RMW

Figure 11: Predefined relations over events and their semantics
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4.12 Primitives to manipulate sets and relations over events

appear in Figure 12. We have five primitives (Primitives , {classes, fromto, linearisations,
tag2events, tag2scope}). We will detail the primitives tag2events and tag2scope in Sec-
tion 4.12.1. For the other three primitives:

• classes takes as argument an expression expr , which should evaluate as a relation r; if r
is an equivalence relation, then we return the equivalence classes of r, otherwise we raise
an error;

• linearisations takes as argument a pair of two expressions expr 1, which should evaluate
to a set S, and expr 2, which should evaluate to a relation r; if this relation is acyclic,
then we return all the possible linearisations (topological sorts) of r over S, otherwise we
return the empty set.

• fromto takes as argument a expression expr , which should evaluate to a set S of tags,
the events tagged with these tags should be fence events, and the result is the union of all
their sets of pairs of events separated by these fence events.

Semantics of primitive functions

Jclasses expr K X ρ , let type: r = Jexpr K X ρ in

if (type = rel ) ∧ (ifld(r) ⊆ r ∧ (r)−1 ⊆ r ∧ r;r ⊆ r) then

set: {set: {evt: e ∈ fld(r) | 〈e , e ′〉 ∈ r} | e ′ ∈ fld(r)}

else error

Jlinearisations expr K X ρ , let type: v = Jexpr K X ρ in

if (type: v = tuple: 〈set: s, rel: r〉) ∧ (∀ typev : v ∈ s . typev = evt ) then

if r+ ∩ is = ∅ then

set: {rel: r′ ∈ ℘(s× s) | r ∩ (s× s) ⊆ r′ ∧ r′;r′ ⊆ r′ ∧
(∀e 6= e ′ ∈ s : 〈e , e ′〉 ∈ r′ ∨ 〈e ′, e 〉 ∈ r′)}

else set: ∅

else error

Jfromto expr K X ρ , let type:S = Jexpr K X ρ in

if (type = set ) ∧ (∀ typee: e ∈ S . typee = evt ∧ e ∈ F(X)) then

rel:
⋃

e∈S

from-to-of (e)

else error

Figure 12: Semantics of primitives

4.12.1 Tags
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Tags essentially are identifiers preceded by a quote ’ (to distinguish them form identifiers in
bindings); and we gather them in sets, as shown in Figure 13. We first define an auxiliary over
a tag tag:

• is-tag-declared checks that tag has been defined in an environment ρ, i.e. belongs to an
enumeration tag-set in ρ.

Now, the value of a tag ’id is the corresponding typed value if the tag has been declared in
the environment ρ, or an error if not.

Finally, the primitive tag2events gathers all events bearing the tag tag, provided that the
tag tag is declared in the environment ρ.

Declarations. One can declare enumerations of tags named by an identifier with the con-
struct enum. One can use these tags to annotate Lisa instructions, using the eponymous
instructions construct.

Declarations (see Figure 14) augment the environment. The effect of an enum declaration is
to extend the environment with the corresponding set of tags. In other terms, the semantics of
enum id = [||] tag1 . . . ||tagn is to augment the environment ρ with the set of typed tags
tag1, . . . tagn, under the name id .

The semantics of an instruction declaration is as follows: if there is a tag not in the
environment, we raise an error; and if there is an event whose ith tag is not in the ith tag set,
we raise an error.

4.12.2 Scopes.

Semantically, we distinguish scope tags s-tag from other tags, as shown in Figure 13. Thus
for enum declarations, the identifier scopes is reserved to declare scopes. If an enum scopes

declaration is provided then two functions narrower and wider must be declared on scope tags,
to define the set of all possible scope hierarchies. Finally, the primitive tag2scope builds the
relation between events coming from instructions that belong to the same scope (viz ., the scope
instances of that scope) — relatively to a scope tree appearing in the original program. We give
its semantics in Figure 13.

Matching over tags is as follows:

match expr with

|| tag 1 -> expr 1

|| ...

|| tagn -> expr n

|| ___ -> expr d

end

The value of the match expression is computed as follow: first evaluate expr to some value
v , which must be a tag t. Then v is compared with the tags tag 1, . . . , tagn, in that order. If
some tag pattern tag i equals t, then the value of the match is the value of the corresponding
expression expri . Otherwise, the value of the match is the value of the default expression expr d.
As the default clause ___-> expr d is optional, the match construct may fail in error. We give
the semantics of matching over tags in Figure 13.

25



Tags

tag ∈ Tag

tag ::= ’id

s-tag ::= tag scope tags

Auxiliaries over tags ’id

is-tag-declaredJ’id K ρ , ∃ tag-set ∈ dom(ρ) . ρ(tag-set ) = enum:T ∧ tag: ’id ∈ T

tag-set-ofJ’id K ρ , {’id ′ | ∃ tag-set ∈ dom(ρ) . ρ(tag-set ) = enum:T ∧

tag: ’id ∈ T ∧ tag: ’id ′ ∈ T }

Value of a tag ’id

J’id K X ρ ,

if is-tag-declaredJ’id K ρ then tag: ’id else error

Gathering all events bearing the same tag ’id

Jtag2events(’id )K X ρ ,

if is-tag-declaredJ’id K ρ then {e ∈ evts-of(X) | ’id ∈ annot-of(e)}

else error

Building the scope instance of level s-tag

Jtag2scope(s-tag)K X ρ ,

let typew: t = J wider s-tag K X ρ

and typen:n = J narrower s-tag K X ρ in

if typew = tag: ∧ typen ∈ {tag , set } ∧ is-tag-declaredJs-tagK ρ ∧ ∀’id ∈ tag-set-ofJs-tagK ρ .

t = ’id ⇒ sr-of(X) s-tag ⊆ sr-of(X) ’id ∧

typen = tag ∧ n = tag: ’id ⇒ sr-of(X) ’id ⊆ sr-of(X) s-tag ∧

typen = set ∧ tag: ’id ∈ n ⇒ sr-of(X) ’id ⊆ sr-of(X) s-tag

then

sr-of(X) s-tag

else

error

Tag matching

Jmatch expr 0 with [||] tag1 -> expr 1 . . . || tagn -> expr n otherwise endK X ρ ,

let type: t = Jexpr 0 K X ρ in

if type 6= tag then error else let i = min{k | t = tagk} in

if i 6= +∞ then Jexpr i K X ρ

else if otherwise = ||___ -> expr n+1 then Jexpr n+1 K X ρ

else error

Figure 13: Tags and their semantics
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Declarations

annotation ∈ Annotation

annotation ::= set (annotations are sets of tags)

decl ∈ Decl

decl ::= enum id = [[||]tag {||tag}∗] (whenid 6= scopes)

| enum scopes = [[||]s-tag {||s-tag}∗]

| instructions ainstr [{annotation}+ ]

Semantics of enum

Jenum id = [||] tag1 . . . ||tagℓK X 〈j, f, ρ, ω〉 , (including id = scopes)

〈j, f, ρ[id := enum: {tag: tag1, . . . , tag: tagℓ}], ω〉

Semantics of instructions

Jinstructions aevt [annotation 1, . . .,annotationn]K X 〈j, f, ρ, ω〉 ,

let typei:Ti = Jannotation iK X 〈j, f, ρ, ω〉, i ∈ [1, n] in

if ∀i ∈ [1, n] . typei = set ∧ ∀ type′: t ∈ Ti . type′ = tag ∧

∀e ∈ evts-of(X) . (kind-of(e ) = aevt ) ⇒ (∀i ∈ [1, n] . annot-of(e )i ∈ Ti)

then 〈j, f, ρ, ω〉 else error

Figure 14: Declarations
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4.12.3 Functions

Functions are first class values, as reflected by the anonymous function construct fun pat ->

expr . We call the expression expr the body of the function. A function takes one argument pat

only. When this argument is a tuple, it may be destructured by a tuple pattern (id 1, . . . , id n).
The value of a function, given in Figure 15, is its closure; we write 〈λ id . body , ρ′〉 for a

closure with parameter id , body body and declaration environment ρ′ (this closure can also be
understood as a triple 〈id , body , ρ′〉).

Function calls are written expr 1 expr 2. That is, functions are of arity one and the application
operator is left implicit. Notice that function application binds tighter than all binary operators
(see Section 4.12.6) and looser that postfix operators (see Section 4.12.6). Furthermore the
implicit application operator is left-associative.

The cat language has call-by-value semantics. That is, the effective parameter expr 2 is
evaluated before being bound to the function formal parameter, see Figure 15.

4.12.4 Sets and tuples.

Sets are written as follows: { expr 1, expr 2, . . . , expr n} with n greater than 0. As events are
not values, one cannot build a set of events using explicit set expressions. Sets are homogeneous,
i.e. contain elements of the same type. We give their semantics in Figure 16. The value of {}
is the empty set, and the value of {expr 1, . . . , expr n} is the set of values {v1 . . . vn} where the
vi are the values of expr i.

Matching over sets is as follows:

match expr with

|| {} -> expr 1

|| id 1 ++ id 2 -> expr 2

end

We compute the value of the match as follow: first evaluate expr to some value v , which
must be a set. If v is the empty set {}, then the value of the match is the value of expr 1.
Otherwise, if v is a non-empty set S, then let e be some element in S and S′ be the set S minus
the element e. The value of the match is the value of expr 2 in a context where id 1 is bound
to e and id 2 is bound to S′. We give the semantics of matching over sets in Figure 16, where
the non-deterministic choice e ∈ s is arbitrary (and unknown). So the semantics in Figure 16
returns one possible match (as opposed to all possibilities).

Tuples include the empty tuple (), and constructed tuples (expr 1, expr 2, . . . , expr n), with
n greater than 2. In other words there is no tuple of size one (which avoids ambiguity with
grouping between parentheses).

We give their semantics in Figure 16. The value of () is the empty tuple 〈〉, and the value
of 〈expr 1, . . . , expr n〉 is the tuple of values 〈v1, . . . , vn〉 where the vi are the values of expr i;
we do not impose that these values 〈v1, . . . , vn〉 have the same type.
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Patterns

pat ∈ Pat

pat ::= id | () | (id {, id }∗)

Anonymous functions

function ∈ Function

function ::= fun pat -> expr

Values of functions

Jfun id -> expr K X ρ′ , fun: 〈λ id . expr , ρ′〉

Jfun () -> expr K X ρ′ , fun: 〈λ () . expr , ρ′〉

Jfun (id 1, . . ., id ℓ) -> expr K X ρ′ , ℓ > 1

fun: 〈λ 〈id 1, . . . , id ℓ〉 . expr , ρ′〉

Semantics of function calls

J expr 1 expr 2 K X ρ , (when expr 1 6∈ Primitives)

let typei: vi = J expr iK X ρ, i ∈ [1, 2] in

match type1: v1 with

| fun: 〈λ id . expr , ρ′〉 _ J expr K X ρ′[id := type2: v2]

| fun: 〈λ () . expr , ρ′〉 _ if type2: v2 = tuple: 〈〉 then

J expr K X ρ′

else error

| fun: 〈λ 〈id 1, . . . , id n〉 . expr , ρ′〉 _ if type2: v2 = tuple: 〈e1, . . . , eℓ〉 ∧ ℓ = n then

J expr K X ρ′[id 1 := e1] . . . [id n := en]

else error

| ___ _ error

Figure 15: Semantics of functions

Grouping is straightforward, as shown in Figure 16: the semantics of a parenthesised expres-
sion (expr) is the semantics of expr , idem for begin expr end.

4.12.5 Bindings

are of the form pat = expr or id pat = expr , where id pat = expr is syntactic sugar for id = fun

pat -> expr . As shown in Figure 17, bindings simply update the environment ρ. The bindings
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Sets and tuples

set ∈ Set

set ::= {} | {expr {, expr }∗} sets

tuple ∈ Tuple

tuple ::= () | (expr, expr {, expr }∗) tuples

Semantics of sets

J{}K X ρ , set: ∅

J{expr 1, . . . , expr n}K X ρ , n > 1

let typei: vi = Jexpr iK X ρ, i ∈ [0, n] in

let S = set: {type1: v1, . . . , typen: vn} in

if well-formed(S) then S else error

Set matching

Jmatch expr 0 with [||] {} -> expr 1|| id 1 ++ id 2 -> expr 2 endK X ρ ,

let type: s = Jexpr 0 K X ρ in

if type 6= set then error

else if s = ∅ then Jexpr 1 K X ρ

else let e ∈ s in

Jexpr 2 K X ρ[id 2 := set: (s \ {e})][id 1 := e]

Semantics of tuples

J()K X ρ , tuple: 〈〉

J(expr 1, . . . , expr n)K X ρ , n > 2

tuple: 〈 Jexpr 1K X ρ, . . . , Jexpr nK X ρ〉

Semantics of grouping

J(expr )K X ρ , Jexpr K X ρ

Jbegin expr endK X ρ , Jexpr K X ρ

Figure 16: Semantics of sets, tuples and grouping
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for pat = expr are as follows: if pat is (), then expr must evaluate to the empty tuple; if pat

is id or (id ), then id is bound to the value of expr ; if pat is a proper tuple pattern (id 1, . . . ,
id n) with n greater than 2, then expr must evaluate to a tuple value of size n ( v 1, . . . , v n)

and the names id 1, . . . , id n are bound to the values v 1, . . . , v n.
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Bindings

binding ∈ Binding

binding ::= pat = expr | id pat = expr

where id pat = expr , id = fun pat -> expr

Value of a binding

J pat = expr K X ρ , match pat with

| () _ tuple: 〈〉

| id | (id ) _ ρ[id := Jexpr K X ρ]

| (id 1, . . .,idm) _

match ( Jexpr K X ρ) with

| tuple: 〈e1, . . . , em〉 _ ρ[id 1 := e1] . . . [idm := em]

| ___ _ error

J id pat = expr K X ρ , J id = fun pat -> expr K X ρ

Binding definitions

Jlet binding 1 and . . . and binding nK X ρ , n > 1

( Jbinding nK X(. . . ( Jbinding 1K X ρ) . . .))

Recursive function binding:

Jlet rec id 1 pat 1 = expr 1 and . . . and id n pat n = expr n K X ρ ,

let cl∞ =

n∏

j=1

Jfun pat i -> expr iK X ρ[id 1 := cl∞1 ] . . . [id n := cl∞n ] in

ρ[id 1 := cl∞1 ] . . . [id n := cl∞n ]

Recursive set/relation binding:

Jlet rec id 1 = expr 1 and . . . and id n = expr n K X ρ ,

let Fi(

n∏

j=1

xj) , let typei: si = Jexpr iK X ρ[

n∏

j=1

id j :=

n∏

j=1

xj ] in

if (typei ∈ {set , rel }) then typei: si else error, i ∈ [1, n]

in let

n∏

i=1

ei = lfp ⊆̇
λ .

n∏

i=1

xi

n∏

i=1

Fi(

n∏

i=1

xi) in

if (∃i ∈ [1, n] . ei = error) then error else ρ[id 1 := e1] . . . [id n := en]

Binding expressions

Jlet binding 1 and . . . and binding n in expr K X ρ , n > 1

Jexpr K X ( Jlet binding 1 and . . . and binding nK X ρ)

Jlet rec id 1 = expr 1 and . . . and id n = expr n in expr K X ρ ,

Jexpr K X ( Jlet rec id 1 = expr 1 and . . . and id n = expr nK X ρ)

Figure 17: Bindings and their semantics
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Binding definitions happen through the let and let rec constructs, which bind value
names for the rest of a specification evaluation. We give the semantics of binding definitions in
Figure 17.

First, the construct let binding 1 and . . . and binding n, that is, let pat 1 = expr 1 and . . .

and pat n = expr n, evaluates expr 1, . . . , expr n, and binds the names in the patterns pat 1, . . . ,
pat n to the resulting values.

Second, for recursive function bindings let rec id 1 pat 1 = expr 1 and . . . and id e pat n =

expr n, we follow Milner and Tofte (1991) where the proof of existence and unicity of the infinite
closure cl∞ is based on Aczel (1988).

Third, for recursive set or relation bindings let rec id 1 = expr 1 and . . . and id n = expr n,
we compute the least solution of the equations id 1 = expr 1, . . . , id n = expr n on sets or re-
lations using inclusion for ordering. These fixpoint equations must satisfy the ⊆-monotony
(increasingness) hypotheses of Tarski (1955) fixpoint theorem or else the result is undefined.

The recursive bindings may be mutually recursive. We suppose these recursive definitions
well-formed, i.e. terminating. The result of ill-formed definitions is undefined (i.e. an imple-
mentation might return an error or never terminate).

Binding expressions happen through the construct let [rec] bindings in expr , which
locally binds the names defined by bindings to evaluate expr . Both non-recursive and recursive
bindings are allowed.

4.12.6 Operators on sets and relations

Operators can be unary or binary. We list them in Figure 18, and detail their semantics below.

Operators on sets and relations

op ∈ Operators

op ::= expr ++ expr set addition

| expr * expr cartesian product

| expr | expr union

| expr & expr intersection

| expr ; expr relation composition

| expr + transitive closure

| expr ? reflexive closure

| expr * reflexive and transitive closure

| expr ˆ-1 inverse

| expr \ expr subtraction

| ~ expr complement

Figure 18: List of both unary and binary operators
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Unary operators. Given an expression denoting a relation, we can build its identity closure
with the operator ?, its reflexive-transitive closure with the operator *, its transitive closure
with +, its complement with ~ and its inverse with ˆ-1. These operators are postfix, and are
defined on relations only, except for the complement, which can apply to sets of events or tags
as well. Figure 19 gathers them all. We recall that the value of identifier 0 is the empty relation.

postfixed op cat-operation-ofJopK X r relation operation

* lfp⊆
λ .xievts-of(X) ∪ x;r reflexive closure

+ lfp⊆
λ .xr ∪ x;r irreflexive closure

? ievts-of(X) ∪ r identity closure

ˆ-1 {〈e ′, e 〉 | 〈e , e ′〉 ∈ r} inverse

Unary operators on relations

Jexpr opK X ρ ,

let type: r = Jexpr K X ρ in

if type = rel then

rel: cat-operation-ofJopK X r

else error

Complement of a set or relation

J~ expr K X ρ ,

let type: s = Jexpr K X ρ in

if type = set ∧ ∀ type: e ∈ s . type = evt then

set: ({evt: e | e ∈ evts-of(X)} \ s)

else if type = set ∧ ∃ id ∈ dom(ρ) . ρ(id ) = enum:T ∧ s ⊆ T then

set: (T \ s)

else if type = rel then

rel: ((evts-of(X)× evts-of(X)) \ s)

else error

Figure 19: Semantics of unary operators

Binary operators. We can build the sequence (or composition in the sense of Figure 6)
of two expressions with the operator ;, defined on relations only. We can add an element to a
set: the addition operator expr 1 ++ expr 2 operates on sets. The value of expr 2 must be a set of
values S and the operator returns the set S augmented with the value of expr 1. We can build
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a new relation out of the cartesian product of two sets of events, with the infix operator *.
We can build the union, intersection, and difference of sets and relations as summarised

in Figure 20. The semantics of expr 1 op expr 2 is the operator op applied to the sets (resp.
relations) s1 and s2, viz ., the values of expr 1 and expr 2.
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Sequence of relations

Jexpr 1 ; expr 2K X ρ ,

let typei: ri = Jexpr iK X ρ, i ∈ [1, 2] in

if type1 = type2 = rel then

rel: r1;r2

else error

Adding an element to a set

Jexpr 1 ++ expr 2K X ρ ,

let typei: vi = Jexpr iK X ρ, i ∈ [1, 2] in

let S = set: ({type1: v1} ∪ v2) in

if well-formed(S) then S else error

Cartesian product of two sets of events

Jexpr 1 * expr 2K X ρ ,

let typei: si = Jexpr iK X ρ, i ∈ [1, 2] in

if type1 = type2 = set ∧ ∀ type: v ∈ s1 ∪ s2 . type = evt then

rel: s1 × s2

else error

op cat-operation-ofJopK

| ∪ union

& ∩ intersection

\ \ difference

Binary operators relative to both sets and relations

Jexpr 1 op expr 2K X ρ ,

let typei: si = Jexpr iK X ρ, i ∈ [1, 2] in

if type1 = type2 = set ∧ well-formed(s1 ∪ s2) then

set: s1 (cat-operation-ofJopK) s2

else if type1 = type2 = rel then

rel: s1 (cat-operation-ofJopK) s2

else error

Figure 20: Semantics of binary operators
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4.13 Constraints

Constraints (see Figure 21) can be checks, procedure calls, or iteration over sets.

Constraints

constraint ∈ Constraint

constraint ::=

| flagoption check expr as id

| call id expr

| forall id in expr do statements end

flagoption ::= [flag]

Figure 21: Constraints

4.13.1 Checks

happen through the construct check expr , which evaluates expr and applies the check check .
There are six checks: acyclicity (keyword acyclic), irreflexivity (keyword irreflexive) and
emptyness (keyword empty); and their negations. If the check succeeds, the candidate execution
is allowed so far. Otherwise, the candidate execution is forbidden.

A check can optionally be named id , using the keyword as. A check can also be flagged,
by prefixing it with the flag keyword. Flagged checks must be named with the as construct.
Failed flagged checks do not stop evaluation; instead failed flagged checks are recorded under
their name in the component f of the semantics of the cat specification, for example to handle
flagged candidate executions later within our herd7 tool. We give the semantics of checks in
Figure 22.

Flagged checks are useful for specifications with statements that impact the semantics of
an entire program, e.g., in the case of specifications phrased in terms of data races, such as
C++ Batty et al. (2016) or HSA HSA Foundation (2015).

4.13.2 Procedures

Procedures have no result and cannot be recursive: the body of a procedure is a list of
statements and the procedure will be invoked to apply the constraints within its body. Intended
usage of procedures is to define constraints that are checked later. Figure 23 gives the semantics
of procedures: just like functions, procedure declarations simply augment the environment ρ

with their closure.

Procedure calls are written call id expr , where id is the name of a previously defined
procedure. The bindings performed during the call of a procedure are discarded when the
procedure returns, all other effects (e.g. checks or flags, see Section 4.13.1) performed are
retained. Procedures cannot be recursive.
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Checks

check ::= checkname | ~ checkname

checkname ::= acyclic | irreflexive | empty

check-condition-on-relationJcheckK R ,

match check with

| acyclic _ check-condition-on-relationJirreflexiveK R+

| irreflexive _ (∀e ∈ fld(R) . 〈e , e 〉 6∈ R)
| empty _ R = ∅
| ~ check ′ _ ¬(check-condition-on-relationJcheck ′K R)

cat-check-relationJflagoption check R as id K 〈j, f, ρ, ω〉 ,

if (check-condition-on-relationJcheckK R) then

〈j, f, ρ, ω〉

else if flagoption = flag then

〈j, f ∪ {id }, ρ, ω〉

else 〈forbidden, f, ρ, ω〉

Value of checks

Jflagoption check expr as id K X 〈j, f, , ρ〉 ,

let type:R = Jexpr K X ρ in

if (type = rel ) ∨ (type = set ∧ check ∈ {empty, ~ empty}) then

cat-check-relationJflagoption check R as id K 〈j, f, ρ, ω〉

else error

Figure 22: Checks and their semantics
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Procedures

procedure ∈ Procedure

procedure ::= procedure id pat = {statement}+ end

Declarations of procedures

Jprocedure id 1 id 2 = {statement}+ endK X 〈j, f, ρ, ω〉 ,

〈j, f, ρ[id 1 := proc: 〈λ id 2 . {statement}+, ρ〉], ω〉

Jprocedure id () = {statement}+ endK X 〈j, f, ρ, ω〉 ,

〈j, f, ρ[id := proc: 〈λ () . {statement}+, ρ〉], ω〉

Jprocedure id (id 1, . . . , id ℓ) = {statement}+ endK X 〈j, f, ρ, ω〉 ,

〈j, f, ρ[id := proc: 〈λ 〈id 1, . . . , id ℓ〉 . {statement}+, ρ〉], ω〉

Procedure calls

Jcall id expr K X 〈j, f, ρ, ω〉 ,

if id 6∈ dom(ρ) then error else

match ρ(id ) with

| 〈λ id 1 . {statement}+, ρ′〉 _

J{statement}+K X ρ′[id 1 := ( Jexpr K X ρ)]

| 〈λ () . {statement}+, ρ′〉 _

let type: v = Jexpr K X 〈j, f, ρ, ω〉 in

if type: v = tuple: 〈〉 then

J{statement}+K X 〈j, f, ρ′, ω〉

else error

| 〈λ 〈id 1, . . . , id n〉 . {statement}+, ρ′〉 _

let type: v = Jexpr K X 〈j, f, ρ, ω〉 in

if type: v = tuple: 〈e1, . . . , eℓ〉 ∧ (n = ℓ) then

J{statement}+K X 〈j, f, ρ′[id 1 := e1] . . . [id n := en], ω〉

else error

| ___ _ error

Figure 23: Semantics of procedures
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4.13.3 Iteration over sets

We can iterate checks over sets with the forall construct:

forall id in expr do

statements

end

The expression expr must evaluate to a set S. Then, the list of statements statements is
evaluated for all bindings of the name id to some element e of S. In practice, as failed checks
forbid the candidate execution, this amounts to checking the conjunction of the checks within
statements for all the elements of S. Similarly to procedure calls, the bindings performed during
an iteration are discarded when iteration ends, all other cumulated effects (e.g. checks) being
retained. We give the semantics of iteration in Figure 24; the iteration is non-deterministic
since the choice e in S is arbitrary and unknown.

cat-iterate id S {statement}+ X 〈j, f, ρ, ω〉 ,

if S = ∅ then 〈j, f, ρ, ω〉

else let e ∈ S in

let r = J{statement}+K X 〈j, f, ρ[id := e], ω〉 in

if r = error then error else

let 〈j′, f ′, ρ′, ω〉 = r in

if j′ = allowed then

cat-iterate id (S \ {e}) {statement}+ X 〈j′, f ′, ρ′, ω〉

else 〈j′, f ′, ρ′, ω〉

Iteration over sets

Jforall id in expr do {statement}+ endK X 〈j, f, ρ, ω〉 ,

let type:S = Jexpr K X 〈j, f, ρ, ω〉 in

if type 6= set then error

else cat-iterate id S {statement}+ X 〈j, f, ρ, ω〉

Figure 24: Semantics of iteration

4.14 Requirements

Requirements are the constitutive blocks of a cat specification. Their evaluation goes as given
in Figure 25. Requirements can be statements, or with bindings.

40



4.14.1 Statements

and their semantics have been presented in the sections above. At the level of requirements,
we evaluate lists of statements, gather their evaluation 〈j, f, ρ, ω〉, and the final verdict forgets
the environment ρ to built the result (see Figure 2).

4.14.2 Candidate extension via with binding

happens through the construct with id from expr . This construct extends the current environ-
ment by one binding (see Figure 25). The grammar only allows with bindings to occur at the
top-level. The expression expr is evaluated to a set S. Then the remainder of the specification
is evaluated for each choice of element e in S in an environment extended by a binding of the
name id to e.

The final verdict at top level in Figure 2 gets rid of the environment and returns the com-
munication relations obtained by finding the value of the communication relation identifiers id

in the environment.
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Requirements

requirements ∈ requirements

requirements ::= statement

| statement requirements

| with id from expr requirements

Jrequirements K ∈ Candidate → R → ℘(R)

Jrequirements K X error , error

Jrequirements K X 〈j, f, ρ, ω〉 , if j = forbidden then 〈j, f, ρ, ω〉

else match requirements with

| statement _ { Jstatement K X 〈allowed, f, ρ, ω〉}

| statement requirements ′ _

let r = Jstatement K X 〈allowed, f, ρ, ω〉 in

if (r = error) then error

else let 〈j, f ′, ρ′, ω′〉 = r in

if (j = allowed) then

Jrequirements ′K X 〈allowed, f ∪ f ′, ρ′, ω′〉

else {r}

| with id from expr requirements ′ _

let type:S = Jexpr K X ρ in

if (type 6= set ) then error

else
⋃

e∈S

Jrequirements ′K X 〈allowed, f, ρ[id := e], ω ∪ {id }〉

Figure 25: Semantics of requirements
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5 cat library functions

For reference, we give the code of three library functions that operate over relations and sets
(fold, map and cross).

5.1 Definition of fold

Given a function f , a set S = {e1, e2, . . . , en} and an element y, the call fold f (S, y)

returns the value f(ei1 , f(ei2 , . . . f(ein , y))), where i1, i2, . . . , in is a permutation of 1, 2, . . . , n:

let fold f =

let rec fold_rec (es,y) = match es with

|| {} -> y

|| e ++ es -> fold_rec (es, f(e,y))

end in

fold_rec

5.2 Definition of map

Given a function f and a set S = {e1, . . . , en}, the call map f S returns the set {f(e1), . . . , f(en)}.
This function can be implemented directly or more concisely by calling the fold function:

let map f = fun es -> fold (fun (e,y) -> f e ++ y) (es,{})

5.3 Definition of cross

The function cross takes a set of sets S = {S1, S2, . . . , Sn} as argument and returns all possible
unions built by picking elements from each of the Si:

{ e1 ∪ e2 ∪ · · · ∪ en | e1 ∈ S1, e2 ∈ S2, . . . , en ∈ Sn }

Note that if S is empty, then cross should return one relation exactly: the empty relation ∅,
i.e., the neutral element of the union operator. This choice for cross (∅) = ∅ is natural when
we define cross inductively:

cross(S1 ++S) =
⋃

e1∈S1,t∈cross(S)

{e1 ∪ t}

In this specification, we simply build cross (S1 ++S) by building the set of all unions of
one relation e1 picked in S1 and of one relation t picked in cross(S). From this inductive
specification for cross, one writes the following concise code:

let rec cross S = match S with

|| {} -> { 0 }

|| S1 ++ S ->

let yss = cross S in

fold

(fun (e1,r) -> map (fun t -> e1 | t) yss | r)

(S1,{})

end
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