
Design and Implementation of
a Special-Purpose Static Program Analyzer

for Safety-Critical Real-Time Embedded Software

Bruno Blanchet1, Patrick Cousot1, Radhia Cousot2, Jérôme Feret1,
Laurent Mauborgne1, Antoine Miné1, David Monniaux1, Xavier Rival1

1 CNRS & École normale supérieure, 75005 Paris, France
2 CNRS & École polytechnique, 91128 Palaiseau cedex, France

Abstract. We report on a successful preliminary experience in the de-
sign and implementation of a special-purpose Abstract Interpretation
based static program analyzer for the verification of safety critical embed-
ded real-time software. The analyzer is both precise (zero false alarm in
the considered experiment) and efficient (less than one minute of analysis
for 10,000 lines of code). Even if it is based on a simple interval analysis,
many features have been added to obtain the desired precision: expan-
sion of small arrays, widening with several thresholds, loop unrolling,
trace partitioning, relations between loop counters and other variables.
The efficiency of the tool mainly comes from a clever representation of
abstract environments based on balanced binary search trees.

Dedicated to Neil Jones, for his 60th birthday.

1 Introduction

1.1 General-Purpose Static Program Analyzers

The objective of static program analysis is to automatically determine run-time
properties, statically, that is, at compile-time. This problem is in general un-
decidable, so static program analysis relies on approximations as formalized by
Abstract Interpretation [8,9]. For example, typable programs do not go wrong
but untypable programs do not all go wrong.

In many contexts, such as program transformation, the uncertainty induced
by the approximation is acceptable. For example, interval analysis can be used
to eliminate useless array bound checks at run-time [7]. The selection rate (i.e.
the proportion of potential alarms that are definitively solved either positively
or negatively) is often between 80 and 95%, so the optimization is worthwhile.
Moreover, it is correct since the remaining 5 to 20% cases for which tests cannot
be eliminated at compile-time will be checked at run-time. Sometimes, static
program analysis can discover definite errors at compile-time (e.g. uninitialized
variables), which is useful for debugging. The objectives of such general-purpose
static program analyzers are:



1. to fully handle a general purpose programming language (such as Ada or C,
including the standard libraries);

2. to require no user-provided specification/annotation (except maybe light
ones such as, e.g., ranges of input variables or stubs for library functions
the source of which is not available);

3. to be precise enough to provide interesting information for most programs
(e.g. information pertinent to static program manipulation or debugging);

4. to be efficient enough to handle very large programs (from a cost of a few
megabytes and minutes to gigabytes and hours when dealing with hundreds
of thousands of source code lines).

Such general-purpose static program analyzers are very difficult to design be-
cause of the complexity of modern programming languages and systems. Some
are commercially available and have had successes in repairing failures or pre-
venting them in the early development of programs. Since the coverage is 100%,
the false alarms can be handled, e.g., by classical testing methods, thus reduc-
ing the need for actual test of absence of run-time error by an economically
significant factor of 80 to 95%.

1.2 Program Verification

In the context of safety critical real-time software as found, e.g., in the trans-
portation industry, run-time checking of errors may not be acceptable at all.
Hence, the debugging cost is very high and significantly higher than the software
development cost itself. In this particular industrial context where correctness
is required by safety and criticality, rigorous formal methods should be directly
applicable and economically affordable.

Deductive Methods. In practice, deductive methods (see, for example, [1,17])
are hard to apply when lacking a formal specification and when the program
size is very large. Indeed, the cost for developing the specification and the proof,
even with a proof assistant or a theorem prover, is in general much higher than
the cost for developing and testing of the program itself (figures of 600 person-
years for 80, 000 lines of C code have been reported). Only critical parts of the
software can be checked formally and errors appear elsewhere (e.g. at interfaces).
Moreover, for embedded software with a lifetime of ten to twenty years, both
the program and its proof have to be maintained over that long period of time.

Software Model Checking. Software model checking (see, for example, [12])
is also hard to apply when lacking a formal specification and when the program
size is very large. This is because the cost of developing both the specification and
the model of the program can also be very large. Problems such as the difficulty
to provide sensible temporal specifications or the state explosion are well-known.
On one hand, if the model is not proved correct, then the program correctness
check is not rigorous and mostly amounts to debugging. On the other hand, the



model can be proved correct, either manually or using deductive methods, but
it is then logically equivalent to the correctness proof of the original program
[6] and consequently requires an immense effort. Moreover, the program model
and its correctness proof have to be maintained with the program itself, which
may be a significant additional cost. Finally, abstraction is often required; in this
case, software model checking essentially boils down to static program analysis.

Static Program Analysis. Static program analyzers prove program properties
by effectively computing an abstract semantics of programs expressed in fixpoint
or constraint form. The collected abstract information can then be used as a basis
for programmanipulation, checking, or partial or total verification. Depending on
the considered classes of programs and abstract properties, several types of static
program analyzers can be designed, all founded on the Abstract Interpretation
theory [5].

1.3 On the Use of General-Purpose Static Program Analyzers

General-purpose static program analyzers require no human intervention and,
hence, are very cheap to use, in particular during the initial testing phase and,
later, during the program maintenance and modification. However, even for sim-
ple specifications, they are hardly useful for formal verification because of their
execution time (which is required to get precision but may prevent a routine
compiler-like utilization during the initial program development process) and the
residual false alarms (excluding full verification). A selection rate of 95%—which
is very high when considering a general-purpose static program analyzer—means
that a significant part of the code still needs to be inspected manually, which
remains a prohibitive cost or, if bypassed, is incompatible with severe safety re-
quirements. Moreover, if the analysis time is of several hours, if not days, the
refinement of the analysis, e.g., by inserting correctness assertions, is a very slow
process and will not, in general, eliminate all false alarms because of the inherent
approximations wired in the analyzer.

1.4 Special-Purpose Static Program Analyzers

Because of undecidability, automaticity, and efficiency requirements, the absence
of false alarm can only be achieved by restricting both the considered classes
of specifications and programs. This leads to the idea of special-purpose static
program analyzers. Their objectives are:

1. to handle a restricted family of programs (usually not using the full com-
plexity of modern programming languages);

2. to handle a restricted class of general-purpose specifications (without user
intervention except, maybe, light ones such as, e.g., ranges of input or volatile
variables);



3. to be precise enough to eliminate all false alarms (maybe through a redesign
or, better, a convenient parameterization of the analyzer by a trained end-
user that does not need to be a static analysis or Abstract Interpretation
specialist);

4. to be efficient enough to handle very large programs (a cost of a few mega-
bytes and minutes for hundreds of thousands of source code lines).

By handling a family of programs and not only a single program or model of
the program, we cope with the evolution over years and the economic cost-
effectiveness problems. By restricting the considered class of specifications and,
more precisely, considering general-purpose requirements (such as absence of run-
time error or unexpected interrupt), we avoid the costly development of specific
specifications and can apply the analyzer on legacy software (e.g. decades-old
applications the initial specification of which, if any, has not been maintained
over time). Moreover, the trade-off between analysis precision and cost can be
carefully balanced by the choice of appropriate and reusable abstractions.

1.5 Report on a First Experience on the Design of a Special-Purpose
Static Program Analyzer

In this paper, we report on a first experience on the design of a special-purpose
static program analyzer. The considered class of software is critical real-time
synchronous embedded software written in a subset of C. The considered class of
specifications is that of absence of run-time error. This experience report explains
the crucial design decisions and dead-ends that lead from a too imprecise and
too slow initial implementation of a general-purpose static program analyzer to
a completely rewritten, very fast, and extremely precise special-purpose static
program analyzer. By providing details on the design and implementation of this
static analyzer as well as on its precision (absence of false alarm), execution time,
and memory usage, we prove that the approach is technically and economically
viable.

2 The Special Purpose of our Analyzer

Because of its critical aspect, the class of software analyzed in this first experience
was developed through a rigorous process. In this process, the software is first
described using schemata. These schemata are automatically translated into a
C code using handwritten macros which compute basic functionalities. This C
code, organized in many source files, is the input of the analyzer.

Because of the real-time aspect of the application, the global structure of the
software consists in an initialization phase followed by a big global synchronized
loop. Because of this structure, nearly all variables in the program depend on
each other.

Because of the way the C code is generated, the program contains a lot
of global and static variables, roughly linear in the length of the code (about



1, 300 for 10, 000 LOCs3). It follows that memory space cannot be saved by a
preliminary analysis of the locality of the program data.

2.1 Restrictions to C Followed by the Software Class

Fortunately, the strong requirements enforced by the development of critical
software imply that some difficult aspects of the C language are not used in
this class of software. First, there are neither gotos nor recursive function calls.
The data structures are quite simple: the software does not manipulate recursive
data structures, and the only pointers are statically allocated arrays (no dynamic
memory allocation). There is no pointer arithmetic except the basic array op-
erations. Because the code does not contain strings either, alias information is
trivial.

2.2 Specification to be Verified

The analyzer has to prove the following:

– absence of out-of-bound array indexes;
– logical correctness of integer and floating-point arithmetic operations (essen-

tially, absence of overflow, of division by 0).

So, the analysis consists in over-approximating the set of reachable states.

3 Program Concrete Semantics

The program concrete semantics is a mathematical formalization of the actual
execution of the program. A precise definition is necessary to define and prove
the soundness of the verifier, checker, or analyzer. For example, in static analysis,
the analyzer effectively computes an abstract semantics which is a safe approx-
imation of this concrete semantics. So, the rigorous definition of the program
concrete semantics is mandatory for all formal methods.

In practice, the concrete semantics is defined by:

– the ISO/IEC 9899 standard for the C programming language [14] as well as
the ANSI/IEEE 754 standard for floating-point arithmetic [2];

– the compiler and machine implementation of these standards;
– the end-user expectations.

Each semantics is a refinement of the previous one where some non-determinism
is resolved.

3 The number of lines of code (LOCs) is counted with the UnixTM command wc -l
after stripping comments out and macro preprocessing. Then, the abstractions we
consider essentially conserve all variables and LOCs, see Sec. 8.



3.1 The C Standard Semantics

The C standard semantics is often nondeterministic in order to account for dif-
ferent implementations. Here are three examples:

unspecified behaviors are behaviors where the standard provides two or more
possibilities and imposes no further requirement on which should be chosen.
An example of unspecified behavior is the order in which the arguments to
a function are evaluated;

undefined behaviors correspond to unportable or erroneous program constructs
on which no requirement is imposed. An example of undefined behavior is
the behavior on integer overflow;

implementation-defined behaviors are unspecified behaviors where each imple-
mentation documents how the choice is made. An example of implemen-
tation-defined behavior is the number of bits in an int or the propagation
of the high-order bit when a signed integer is right-shifted.

A static analyzer based on the standard C semantics would be sound/correct
for all possible conformant compilers. The approach seems unrealistic since the
worst-case assumptions to be made by the concrete semantics are not always
easy to imagine in case no requirement is imposed and will anyway lead to huge
losses of precision, hence, to unacceptably many false alarms. For instance, the
C standard does not impose the sizes and precisions of the various arithmetic
types, only some minimal sizes, thus the analysis would be very imprecise in case
of suspected overflows.

3.2 The Implementation Semantics

A correct compiler for a given machine will implement a refinement of the stan-
dard semantics by choosing among the allowed behaviors during the execution.
To achieve precision, the design of a static analyzer will have to take into ac-
count behaviors which are unspecified (or even undefined) in the norm but are
perfectly predictable for a given compiler and a given machine (provided the
machine is predictable). For example:

unspecified behaviors: the arguments to a function are evaluated left to right;
undefined behaviors: integer overflow is impossible because of modulo arithmetic

(division and modulo by zero are the only possible integer run-time errors);
implementation-defined behaviors: there are 32 bits in an int and the high-order

bit is copied when right-shifting a signed integer.

3.3 The End-User Semantics

The end-user may have in mind a semantics which is a refinement of the imple-
mentation semantics. Examples are:

initialization to zero which is to be performed by the system before launching
the program (whereas the C standard requires this for static variables only);



volatile variables for using interface hardware can be assigned a range, so that
reads from these variables always return a value in the specified range;

integer arithmetic computations which are subject to overflow (since they repre-
sent integer bounded quantities for which modulo arithmetic is meaningless)
or not (such as shift operations to extract fields of words on interface hard-
ware for which overflow is meaningless).

For meaningful analysis results, one has to distinguish between cases where
the execution of the program proceeds or not after hitting undefined or imple-
mentation-defined behaviors. In the former case, we take into account the imple-
mentation-defined execution; in the latter, we consider the trace to be inter-
rupted. Let us take two examples:

– In a context where x ∈ [0, maxint] is an unsigned integer variable, the anal-
ysis of the assignment y := 1/x will signal a logical error in case x = 0. In
the considered implementation, integer divisions by zero always generate a
system exception that aborts the normal execution of the program. Hence
we consider that the execution can only go on when there is no run-time
error with y ∈ [1/maxint, 1]. In that case, the implementation and intended
concrete semantics do coincide;

– In a context where x ∈ [0, maxint] is an integer variable, the analysis of the
assignment y := x + 1 will signal a logical error in case x = maxint. Since
the implementation does not signal any error, the end-user can consider the
logical error as a simple warning and choose to go on according to several
possible concrete semantics:
Implementation concrete semantics: from an implementation point of view,

the execution goes on in all cases x ∈ [0, maxint], that is with y ∈
{−maxint− 1} ∪ [1, maxint] (since with modulo arithmetic, the imple-
mentation does not signal the potential logical error).

This choice may cause the later analysis to be polluted by the logically
infeasible cases (y = −maxint− 1 in our example). Such a behavior is
in fact intentional in certain parts of the program (such as to extract
fields of unsigned integers to select volatile quantities provided by the
hardware which is logically correct with wrapping);

Logical concrete semantics: from a purely logical point of view, the exe-
cution goes on with error-free cases x ∈ [0, maxint − 1], that is with
y ∈ [1, maxint] (as if the implementation had signaled the logical error).

One can think that this point of view would be implementation cor-
rect for error-free programs (assuming programs will not be run until
all logical warnings are shown to be impossible). This is not the case if
the programmer makes some explicit use of the hardware characteris-
tics (such as modulo arithmetic). For example, the correctness of some
program constructs (such as field extraction) relies on the absence of
overflow in modulo arithmetic and, so, ignoring this fact would lead to
the erroneous conclusion that the subsequent program points are un-
reachable!



Because some constructs (such as signed integer arithmetic) require to take a
logical concrete semantics and others (such as field extraction from unsigned
integers) require to explicitly rely on the implementation concrete semantics,
the analyzer has to be parameterized so as to leave the final choice to the end-
user (who can indicate to the analyzer which semantics is intended through
a configuration file, for example on a per-type and per-operator basis).

4 Preliminary Manipulations of the Program

To reduce the later cost of the static analysis, we perform a few preliminary ma-
nipulations of the program. Since the program uses C macros and the semantics
of macros in C is not always clear, macros are expanded before the analysis,
so the analyzed program is the pre-processed program. Then, all input files are
gathered into a single source file. Because the program is automatically gener-
ated, it has numerous symbolic constants, so, a classical constant propagation is
performed. Note that floating-point constants must be evaluated with the same
rounding mode as at run-time, in general to the nearest, whereas during the
analysis, interval operations will always be over-approximated: we consider the
worst-case assumptions for the rounding mode, to make sure that the computed
interval is larger than the actual one. The constant propagation is extended to
the partial evaluation [13] of constant expressions including, in particular, ac-
cesses to constant arrays with a constant index. This was particularly useful for
arrays containing indirections to hardware addresses for interfaces.

Other manipulations can be specified in a configuration file. We can specify
volatile variables. Volatile variables should in fact be mentioned as such in the
source file; however, they are sometimes omitted from the source because the
compiler does not optimize memory accesses, so volatile declarations have no
effect on the compilation. We can also specify for volatile variables a range
that represents, for instance, the value of sensors. The analyzer then makes the
assumption that all accesses to these variables return a value in the indicated
range. The first manipulation pass inserts the range as a special kind of initializer
for the considered variables. The resulting syntax is then an extension of the C
syntax that is taken as input by the other phases of the analyzer.

The user can also declare functions to be ignored. These functions are then
given an empty code. (If they were not already defined, then they are defined
with an empty code. If they were already defined, then their code is removed.)
This declaration has two purposes. The first one is to give a code to built-in
system calls that do not influence the rest of the behavior of the program. The
second one is to help finding the origin of errors detected by the analyzer: ignoring
declarations can be used to simplify the program, and see if the analyzer still
finds the error in the simplified program. This usage was not intended at the
beginning, but it proved useful in practice.



5 Structure of the Analyzer

To over-approximate the reachable states of a well-structured program, the an-
alyzer proceeds by induction on the program syntax. Since the number of global
variables is large (about 1, 300 and 1, 800 after array expansion, see Sec. 6.3)
and the program is large (about 10, 000 LOCs), an abstract environment can-
not be maintained at each program point as usual in toy/pedagogical analyzers
[4]. Instead, the analysis proceeds by induction on the syntax with one current
abstract environment only. Loops are handled by local fixpoint computations
with widenings and narrowings. During this iteration, an abstract environment
is maintained at the head of the loop only. So, the number of environments
which has to be maintained is of the order of the level of nesting of loops. After
the fixpoint is reached, an additional iteration is performed so that all runtime
errors can be detected even if environments are not recorded at each program
point. Nevertheless, special precaution must be taken for implementing these
environments efficiently, as discussed below in Sec. 6.2. Moreover, there are only
few user-defined procedures and they are not recursive, so they can be handled
in a polyvariant way (equivalent to a call by copy).

6 Special-Purpose Abstract Domains

6.1 Iterative Construction of the Analyzer

We started with classical analyzes (e.g. interval analysis for integer and floating-
point arithmetics, handling of arrays by abstraction into a single element, etc.),
which, as expected from a preliminary use of a commercial general-purpose an-
alyzer by the end-user, lead to unacceptable analysis times and too many false
alarms.

The development of the analyzer then followed cycles of iterative refinements.
A version of the analyzer is run, outputting an abstract execution trace as well
as a list of the alarms. Each alarm (or, rather, group of related alarms) is then
manually inspected with the help of the abstract trace. The goal is to differentiate
between legitimate alarms, coming for instance from insufficient specification of
the inputs of the program, and false alarms arising from lack of analysis precision.
When a lack of precision is detected, its causes must be probed. Once the cause of
the loss of precision is understood, refinements for the analysis may be proposed.

Various refinements of the analyzer were related to memory and time effi-
ciency which were improved either by redesign of data structures and algorithms
or by selecting coarser abstract domains.

These refinements are reported below. Some are specific to the considered
class of programs, but others are of general interest to many analyzers—such as
the use of functional maps as discussed in the following section Sec. 6.2.



6.2 Efficient Implementation of Abstract Environments through
Maps

One of the simplest abstract domains is the domain of intervals [7]: an abstract
environment maps each integer or real variable x ∈ V to an interval X ∈ I . The
abstract semantics of arithmetic operations are then ordinary interval arith-
metic. The least upper bound and widening operations operate point-wise (i.e.
for each variable). More generally, we shall consider the case where the abstract
environment is a mapping from V to any abstract domain I .

A naive implementation of this abstract domain represents abstract environ-
ments as arrays of elements of I . If destructive updates are allowed in abstract
transfer functions (i.e. the environment representing the state before the opera-
tion can be discarded), the abstract functions corresponding to assignments are
easy to implement; if not, a new array has to be allocated.

For all its simplicity, this approach suffers from two drawbacks:

– it requires many array allocations; this can strain the memory allocation
system, although most of the allocated data is short-lived;

– more annoyingly, its complexity on the class of programs we are considering
is prohibitive: the cost of a least upper bound operation, which is performed
for each test construct in the program, is linear in the number of variables;
on the programs we consider, the number of static variables is linear in the
length of the program, thus leading to a quadratic cost.

A closer look at the program shows that most least upper bound operations
are performed between very similar environments; that is, environments that
differ in a small number of variables, corresponding to the updates done in
the two branches of a test construct. This suggests a system that somehow
represents the similarities between environments and optimizes the least upper
bound operation between similar environments.

We decided to implement the mappings from V to I as balanced binary
search trees that contain, at each node, the name of a variable and its abstract
value. This implementation is provided by the functional map module Map of
Objective Caml [15]. The access time to the environment for reading or updat-
ing an element is logarithmic with respect to the number of variables (whereas
arrays, for instance, would yield a constant time access).

A salient point is that all the operations are then performed fully function-
ally (no side effect) with a large sharing between the data structures describing
different related environments. The functional nature allows for straightforward
programming in the analyzer—no need to keep track of data structures that may
or may not be overwritten—and the sharing keeps the memory usage low.

Functional maps also provide a very efficient computation of binary opera-
tions between similar environments, when the operation o : I × I → I satisfies
∀x ∈ I, o(x, x) = x. This is true in particular for the least upper bound and
the widening. More precisely, we added the function map2 defined as follows:
if f1 and f2 : V → I and o : I × I → I satisfies ∀x ∈ I, o(x, x) = x, then
map2(o, f1, f2) = x 7→ o(f1(x), f2(x)). This function is implemented by walking



recursively both trees representing f1 and f2; when f1 and f2 share a common
subtree, the result is the same subtree, which can be returned immediately. The
function map2 has to traverse only the nodes that differ between f1 and f2—
which correspond to paths from the root to the modified variables. This strategy
leads to a time complexity O(m log n) where m the number of modified variables
between f1 and f2, and n is the total number of variables in the environment
(logn is the maximum length of a path from the root to a variable). When
only a few variables in the functional map have different values (for example,
when merging two environments after the end of a test), a very large part of the
computation can be optimized away thanks to this technique.

In conclusion, functional maps implemented using balanced binary search
trees decrease tremendously the practical complexity of the analyzer.

6.3 Expansion of Small Arrays

When considering an array variable, one can simply expand it in the environment,
that is to say, consider one abstract element in I for each index in the array.
One can also choose to smash the array elements into one abstract element that
represent all the possible values for all indices.

When dealing with large arrays, smashing them results in a smaller memory
consumption. Transfer functions on smashed arrays are also much more effi-
cient. For example, the assignment tab[i] := exp with i ∈ [0, 99] leads to 100
abstract assignments if tab is expanded, and only one if tab is smashed.

Expanded arrays, however, are much more precise than smashed ones. Not
only they can represent heterogeneous arrays—such as arrays of non-zero float
elements followed by a zero element that marks the end of the array—but they
result in less weak updates4. For example, if the two-elements array tab is initial-
ized to zero, and then assigned by tab[0] := 1; tab[1] := 1, smashing the
array will result in weak updates that will conclude that tab[i] ∈ [0, 1]. The
precision gain of expanded arrays is particularly interesting when combined with
semantics loop unrolling (see Sec. 6.5).

To address the precision/cost trade-off of smashed vs. expanded arrays, the
analyzer is parameterized so that the end-user can specify in a configuration
file which arrays should be expanded either by providing an array size bound
(arrays of size smaller than the bound are expanded) and/or by enumerating
them nominatively.

6.4 Staged Widenings with Thresholds

The analyzer is parameterized by a configuration file allowing the user to specify
refinements of the abstract domains which are used by the analyzer. An example
is the staged widenings with thresholds.

4 A weak update denotes an assignement where some variables may or may not be
updated, either because the assigned variable is not uniquely determined by the
analyzer, or because the assigned variable is smashed with some others.



The classical widening on intervals is [a, b]5 [c, d] = [(c < a?−∞ : a), (d >
b? + ∞ : b)]5 [8]. It is known since a long time that interval analysis with
this widening is less precise than sign analysis since, e.g., [2,+∞] 5 [1,+∞] =
[−∞,+∞] whereas sign analysis would lead to [0,+∞] (or [1,+∞] depending on
the chosen abstract domain [9]). So, most widenings on intervals use additional
thresholds, such as -1, 0 and +1. The analyzer is parameterized by a configuration
file allowing the user to specify thresholds of his choice.

The thresholds can be chosen by understanding the origin of the loss of
precision. A classical example is (n is a given integer constant):
int x;
x := 0;
while x <> n do
x := x + 1;

end while

(whereas writing x < n would allow the narrowing to capture the bound n
[7,8]). A more subtle example is:
volatile boolean b;
int x;
x := 0;
while true do
if b then
x := x + 1;
if x > n then
x := 0;

end if
end if

end while

In both cases, a widening at the loop head will extrapolate to +∞ and the later
narrowing will not recover the constant n bound within the loop body. This was
surprising, since this worked well for the following piece of code:
int x;
x := 0;
while true do
x := x + 1;
if x > n then
x := 0;

end if
end while

In the first case however, the test:
if x > n then
x := 0;

end if

5 (true?a : b) = a whereas (false?a : b) = b.



may not be run at each iteration so once the analyzer over-estimates the range
of x, it cannot regain precision even with this test. A solution would be to ask
for a user hint in the form of an assertion x ≤ n. An equivalent hinting strategy
is to add the constant n as a widening threshold. In both cases, the widening
will not lead to any loss of precision. Another threshold idea, depending on the
program, is to add arithmetic, geometric or exponential progressions known to
appear in the course of the program computations.

6.5 Semantic Loop Unrolling

Although the software we analyze always starts with some initialization code
before the main loop, there is still some initialization which is performed during
the first iteration of that main loop. The mechanism used in the software is a
global boolean variable which is true when the code is in the first iteration of
the main loop.

If we try to compute an invariant at the head of the loop and the domain is
not relational, then this boolean can contain both the values true and false and
we cannot distinguish between the first iteration and the other ones. To solve
this problem, we applied semantic loop unrolling.

Semantic loop unrolling consists, given an unrolling factor n, in computing
the invariants I0 which is the set of possible values before the loop, then Ik,
1 ≤ k < n the set of possible values after exactly k iterations, and finally Jn the
set of possible values after n or more iterations. Then, we merge I0, . . . , In−1, Jn
in order to get the invariant at the end of the loop. Another point of view is
to analyze the loop while B do C as if B then (C; if B then (. . . if B
then (C; (while B do C)). . . )). Such a technique is more precise than the
classical analysis of while loops when the abstract transfer functions are not
fully distributive or when we use widenings.

In our case, the first iteration of the main loop is an initialization phase that
behaves very differently than subsequent iterations. Thus, by setting n = 1, the
invariant Jn is computed taking into account initialized values only so we can
get a more precise result and even suppress some false alarms.

6.6 Trace Partitioning

The reason why semantic loop unrolling is more precise is that, for each loop
unrolling, a new set of values is approximated. So, instead of having one set of
values, we have a collection of sets of values which is more precise than their
union because we cannot represent this union exactly in the abstract domain.
We could be even more precise if we did not merge the collection of sets of values
at the end of the loop but later.

Consider, for example, the following algorithm which computes a linear in-
terpolation:
t = {-10, -10, 0, 10, 10};
c = {0, 2, 2, 0};



d = {-20, -20, 0, 20};
i := 0;
while i < 3 and x ≥ t[i+1] do
i := i+1;

end while
r := (x - t[i]) × c[i] + d[i];

The resulting variable r ranges in [−20, 20], but if we perform a standard
interval analysis the result will be [min(−20, 2x−−40),max(20, 2x++40)] (where
x is in [x−, x+]). This information is not precise enough because interval analysis
is not distributive. It is the case even with semantic loop unrolling because, when
we arrive at the statement where r is computed, all unrollings are merged and
we have lost the relationship between i and x.

Trace partitioning consists in delaying the usual mergings which might occur
in the transfer functions. Such mergings happen at the end of the two branches
of an if, or at the end of a while loop when there is semantic loop unrolling.
Control-based trace partitioning was first introduced by [11]. Trace partitioning
is more precise for non-distributive abstract domains but can be very expensive
as it multiplies the number of environments by 2 for each if that is partitioned
and by k for each loop unrolled k times. And this is even worse in the case of
trace partitioning inside a partitioned loop.

So, we improved [11] techniques to allow the partition to be temporary: the
merging is not delayed forever but up to a parameterizable point. It worked
well to merge partitions created inside a function just before return points, and
partitions created inside a loop at the end of the loop. This notion of merging
allowed the use of trace partitioning even inside the non-unrolled part of loops.
In practice, this technique seems to be a good alternative to the more complex
classical reduced cardinal power of [9].

6.7 Relation between Variables and Loop Counters

As explained in the beginning of the section, non-relational domains, such as
the interval domain, can be efficiently implemented. However, non-relational
invariants are sometime not sufficient, even for the purpose of bounding variable
values. Consider the following loop:
volatile boolean b;
i := 0;
x := 0;
while i < 100 do
x := x + 1;
if b then
x := 0;

end if
i := i + 1;

end while



In order to discover that x < 100, one must be able to discover the invariant
relation x ≤ i. Staged widenings are ineffective here because x is never com-
pared explicitly to 100. Switching to fully relational abstract domains (such as
polyhedra, or even linear equality) is clearly impossible due to the tremendous
amount of global live variables in our application (in fact, even non-relational
domains would be too costly without the representation technique of Sec. 6.2).

Our solution is to consider only relations between a variable and a loop
counter δ (either explicit in a for loop or implicit in a while loop). We denote
by ∆ the interval of the counter δ (∆ is either determined by the analysis or
specified by the end-user in the configuration file, e.g., because the application
is designed to run for a certain maximum amount of time). Instead of mapping
each variable x to an interval X, our enhanced invariants map each variable x to
three intervals: X, X+ and X− which are, respectively, the possible values for x,
for x+δ, and for x−δ. When too much information on the interval X is lost (after
a widening, for example), X+, X−, and ∆ are used to recover some information
using a so-called reduction operator (see Sec. 6.8 below), which replaces the
interval X by the interval X∩ (X+−∆)∩ (X−+∆). This is a simple abstract way
of capturing the evolution of the value of the variables over time (abstracted by
the loop counter).

From a practical point of view, this domain is implemented as a non-relational
domain using the data-structures of Sec. 6.2. It greatly increases the precision
of the analysis for a small speed and memory overhead factor.

6.8 Reduction and its Interaction with Widening

In order to take into account the relations between program variables and the
loop counters, we use a reduction operator ρ which is a conservative endomor-
phism (i.e. such that γ(d) ⊆ γ(ρ(d))). The way this reduction is used has a great
impact, not only on accuracy, but also on complexity: on the first hand it is
crucial to make the reduction before computing some abstract transfer functions
(testing a guard for instance) to gain some precision; on the other hand, the cost
of the reduction must not exceed the cost of the abstract transfer function itself.

Our choice was to perform reductions on the fly inside each abstract primitive.
This allows us to focus the reduction on the program variables which need to be
reduced. It is very simple for unary operators. As for the binary operators, we
detect which part of the result must be reduced thanks to the functional map
implementation, which leads to a sub-linear implementation of the reduction—
which coincides with the amortized cost of abstract transfer functions.

The main problem with this approach is that the reduction may destroy the
extrapolation constructed by widening6. Usually, the reduction operator cannot
be applied directly to the results of a widening. Some solutions already existed,
but they were not compatible with our requirement of having a sub-linear im-
plementation of the reduction.

6 The reader may have a look at the Fig. 3 of [16] to have an illustration of this
problem in the context of a relational domain.



To solve this problem, we require non-standard conditions on the reduction:
we especially require that there are no cyclic propagation of information between
abstract variables. For instance, we prevent information propagation from the
intervals ∆ of the loop counter and X of a program variable x to the intervals X+

and X− corresponding to the sum and the difference of x and δ. We only make
propagation from the intervals ∆, X+, and X− to the interval X. This allows
extrapolation to be first performed on the intervals ∆, X+, and X−. Once the
iterate of the intervals ∆, X+, and X− have become stable, the extrapolation of
the interval X is not disturbed anymore.

6.9 On the Analysis of Floating-Point Arithmetic

A major difficulty of the analysis of floating-point arithmetic is the rounding
errors, both in the analyzed semantics and in the analyzer itself. One has to
consider that:

– transfer functions should model floating-point arithmetic, that is to say (ac-
cording to the IEEE standard [2]), infinite-precision real arithmetic followed
by a rounding phase;

– abstract operators should be themselves implemented using floating-point
arithmetic (for efficiency, arbitrary precision floating-point, rational, and al-
gebraic arithmetics should be prohibited).

In particular, special care has to be taken since most classical mathematical
equalities (associativity, distributivity, etc.) no longer hold when the operations
are translated into floating-point; it is necessary to know at every point if the
quantities dealt with are lower or upper bounds.

Interval arithmetic is relatively easy. Operations on lower bounds have to
be rounded towards −∞, operations on upper bounds towards +∞. A compli-
cation is added by the use of float—IEEE single precision—variables in the
analyzed programs: abstract operations on these should be rounded in IEEE
single precision arithmetic.

7 Dead-Ends

The analyzer went through three successive versions because of dead-ends and
to allow for experimentation on the adequate abstractions. In this section, we
discuss a number of bad initial design decisions which were corrected in the later
versions.

Syntax. An initial bad idea was to use a program syntax tailored to the consid-
ered class of automatically generated programs. The idea was to syntactically
check for potential errors, e.g., in macros. Besides the additional complexity, it
was impossible to test the analyzer with simple examples. Finally, expanding
the macros and using a standard C grammar with semantic actions to check for
local restrictions turned out to be more productive.



Functional Array Representation of the Environment. The first versions of the
analyzer used Caml arrays to represent abstract environments. As discussed in
Sec. 6.2, the idea that O(1) access time to abstract values of variables makes
non-relational analyzes efficient turned to be erroneous.

Liveness Analysis. Because of the large number of global variables, liveness anal-
ysis was thought to be useful to eliminate useless updates in abstract environ-
ments represented as arrays. The gain was in fact negligible. Similar ideas using
classical data-flow analysis intermediate representations such as use-definition
chains, single static assignment, etc. would probably have also been ineffective.
The key idea was to use balanced trees as explained in Sec. 6.2.

Open Floating-Point Intervals. The first version of the analyzer used closed
and open floating-point intervals. For soundness, the intervals had to be over-
estimated to take rounding errors into account, as explained in Sec. 6.9, which
makes the analysis very complex with no improvement in precision, so, the idea
of using open intervals was abandoned.

Relational Floating-Point Domains. Most literature consider only relational do-
mains over fields, such as rationals or reals, and do not address the problem of
floating-point. With some care, one could design a sound approximation of real
arithmetic using floating-point arithmetic: each computation is rounded such
that the result is always enlarged, in order to preserve soundness. Then, each
abstract floating-point operator can be implemented as an abstract operator
on reals, followed by an abstract rounding that simply adds to the result an
interval representing the absolute error—or, more precisely, the ulp [10]. How-
ever, this crude approach of rounding can cause the abstract element to drift
at each iteration, which prevents its stabilization using widenings. No satisfying
solution has been found yet to address this problem, as well as the time and
memory complexity inherent to relational domains, so, they are not used in our
prototype.

Case Analysis. Case analysis is a classical refinement in static analysis. For
example [9, Sec. 10.2] illustrates the reduced cardinal power of abstract domains
by a case analysis on a boolean variable, the analysis being split on the true and
false cases. Implementations for several variables can be based on BDDs. The
same way abstract values can be split according to several concrete values of the
variables (such as intervals into sub-intervals). This turned out to be ineffective
since the costs can explode exponentially as more splittings are introduced to
gain in precision. So, case analysis was ultimately replaced by trace partitioning,
as discussed in Sec. 6.6.

On Prototyping. The first versions of the analyzer can be understood as initial
prototypes to help decide on the abstractions to be used. The complete rewriting
of the successive versions by different persons avoided the accumulation of levels,
corrections, translations which over time can make large programs tangled and
inefficient.



0 10 k 20 k 30 k
Size (LOCs)

0

10

20

30

40

50

60
Sp

ac
e

(m
eg
ab

yt
es
)

Fig. 1. Memory usage as a function of the subject program size.

8 Performances

The whole problem of static analysis is to find the right cost-performance bal-
ance. In program verification, the precision is fixed to zero (false-)alarm. When
the zero alarm precision problem is solved, it remains to estimate the perfor-
mance of the analysis. To estimate memory and timing performances, we made
various analysis experiments with slices of the program as well as the synchronous
product of the program several times with itself.

The memory used to store an abstract environement grows linearly with the
number of variables, which is itself proportional, for the considered applications,
to the size of the program itself `. Due to nested loops, loop unrolling, and
trace partitioning, the analyzer may need to store several abstract environements
during the analysis. However, thanks to the use of functional maps, a huge part
of these environement is shared, thus reducing the memory consumption. We
have found experimentally (Fig. 17) that the peak memory consumption of the
analyzer is indead O(`). For our application, it is of the order of a few megabytes,
which is not a problem for modern computers.

7 The best curve fitting [3] with formula y = a + bx and a tolerance of 10−6 yields
a = 0.623994 and b = 0.00176291 with association gauged by Chi-square: 6.82461,
Correlation coefficient: 0.951324, Regression Mean Square (RMS) per cent error:
0.0721343 and Theil Uncertainty (U) coefficient: 0.0309627.



Thanks to the use of functional maps (Sec. 6.2), the amortized cost of the
elementary abstract operations can be estimated to be at most of the order of
the time to access abstract values of variables, which is O(ln v), where v is the
number of program variables. In the programs considered in our experiment, the
number of program variables is itself proportional to the number ` of LOCs. It
follows that the cost of the elementary abstract operations is O(ln `). A fixpoint
iteration sweeps over the whole program. Because the abstract analysis of pro-
cedures is semantically equivalent to an expansion (Sec. 5), each iteration step
of the fixpoint takes O(`′ × ln ` × p × i′) where `′ is the number of LOCs after
procedure expansion, p is a bound to the number of abstract environments that
need to be handled at each given program point8, and i′ is a bound to the num-
ber of inner fixpoint iterations. The fixpoint computation is then of the order
O(i× p× i′ × `′ × ln `) where i is a bound to the number of iterations.

We now estimate the bounds p, i, and i′. The number p only depends on
end-user parameters. The numbers i and i′ are at worst O(l× t) where t denotes
the number of thresholds, but are constant in practice. So, the execution time
is expected to be of the order of O(`′ × ln `). Our hypotheses are confirmed
experimentally by best curve fitting [3] the analyzer execution time on various
experiments. The fitting formula9 y = ax yields a = 0.000136364, as shown in
Fig. 2.

The procedure expansion factor giving `′ as a function of the program size `
has also been determined experimentally, see Fig. 3. The best curve fitting with
formula10 y = a×x× (lnx)b yields a = 0.927555, b = 0.638504. This shows that,
for the considered family of programs, the polyvariant analysis of procedures
(equivalent to a call by copy semantics), which is known to be more precise than
the monovariant analysis (where all calls are merged together), has a reasonable
cost.

By composition, we get that the execution time of the analyzer is O(`(ln `)a)
where ` is the program size. This is confirmed experimentally by curve fitting the
analyzer execution time for various experiments. The non-linear fitting formula11

y = a + bx + cx(ln x)d yields a = 2.2134 × 10−11, b = 5.16024 × 10−08, c =
0.00015309 and d = 1.55729, see Fig. 4.

The memory and time performances of the analyzer, as extrapolated in Fig. 5,
show that extreme precision (no alarm in the experiment) is not incompatible
with efficiency. Therefore we can expect such specific static analyzers to be rou-
tinely usable for absence of run-time errors verification during the program de-

8 This number only depends on loop unrolling and trace partitioning.
9 with association gauged by Chi-square: 239.67, Correlation coefficient: 0.941353,
RMS per cent error: 0.515156 and Theil U coefficient: 0.0628226 for a tolerance of
10−6.

10 with association gauged by Chi-square: 7.00541 × 1007, Correlation coefficient:
0.942645, RMS per cent error: 0.113283 and Theil U coefficient: 0.0464639 at toler-
ance 10−6.

11 with association gauged by Chi-square: 40.1064, Correlation coefficient: 0.956011,
RMS per cent error: 0.0595795 and Theil U coefficient: 0.0248341 for a tolerance of
10−6.



0 0.5 M 1 M 1.5 M
Size (ln(Expanded LOCs) * LOCs)

0

50

100

150

200
T
im

e
(s
ec
on

ds
)

Fig. 2. Execution time as a function of `′× ln `, where `′ is the expanded subject
program size and ` its size.

velopment, test, and maintenance processes. Thanks to parameterization, the
end-user can easily adjust the analysis to cope with small modifications of the
program.

9 Conclusion

When first reading the program, we were somewhat pessimistic on the chances
of success of the zero false alarm objective since the numerical computations
which, not surprisingly for a non-linear control program, represent up to 80%
of the program, looked both rather complex and completely incomprehensible
for the neophyte. The fact that the code is mostly machine-generated did not
help. Using complex numerical domains (such as polyhedral domains) would
have been terribly costly. So, the design criterion was always the simpler, i.e.,
the most abstract, the better, i.e., the most efficient.

Because of undecidability, human hinting is necessary to analyze programs
without false alarm:

– in deductive methods this is done by providing inductive arguments (e.g.
invariants) as well as hints for the proof strategy;

– in model-checking, this is done by providing the finite model of the program
to be checked;



0 10 k 20 k 30 k
Size (LOCs)

0

50 k

100 k

150 k

Si
ze

(E
xp

an
de

d
L
O
C
s)

Fig. 3. Procedure-expanded program size `′ as a function of the subject program
size `.

– in static program analysis, we have shown on a non-trivial example that this
can be done by providing hints on the local choice of the abstract domains
and widenings.

In all cases, some understanding of the verification technique is necessary. We
have the feeling that hints to a parameterized analyzer are much easier to pro-
vide than correct invariants or program models. Once specialists have designed
the domain-specific static analyzer in a parameterized way, the local refinement
process is very easy to specify by end-users who are not specialists in static
program analysis.

We have serious doubts on the fact that this refinement process can be fully
automated. A counter-example based refinement to handle false alarms would
certainly be able only to refine abstract domains, abstract element by abstract
element, where these abstract elements directly refer to concrete values. In such
an approach, the size of the refined analysis would grow exponentially. Clearly, a
non-obvious inference step and a significant rewriting of the analyzer are required
to move from examples to abstraction techniques such as partitioning or the
relational domain handling the loop counters.

So, our approach to get zero false alarm was to design a special purpose
analyzer which is parameterized to allow for casual end-users to choose for the



0 10 k 20 k 30 k
Size (LOCs)

0

50

100

150

200
T
im

e
(s
ec
on

ds
)

Fig. 4. Execution time as a function of the subject program size.

specific refinements which must be applied for any program in the considered
family.

The project is now going on with real-life much larger programs (over 250, 000
LOCs) . The resource usage estimates of Figures 1 and 5 were confirmed. Not sur-
prisingly, false alarms showed up since the floating-point numerical computations
in these programs are much involved than in the reported first experimentation.
A new refinement cycle is therefore restarted to design appropriate abstract do-
mains which are definitely necessary to reach the zero alarm objective at a low
analysis cost.

References

1. J.-R. Abrial. On B. In D. Bert, editor, Proc. 2nd Int. B Conf. , B’98: Recent
Advances in the Development and Use of the B Method, Montpellier, FR, LNCS
1393, pages 1–8. Springer-Verlag, 22–24 Apr. 1998.

2. American National Standards Institute, Inc. IEEE standard for binary
floating-point arithmetic. Technical Report 754-1985, ANSI/IEEE, 1985.
http://grouper.ieee.org/groups/754/ .

3. P. R. Bevington and D. K. Robinson. Data Reduction and Error Analysis for the
Physical Sciences. McGraw-Hill, 1992.

4. P. Cousot. The Marktoberdorf’98 generic abstract interpreter.
http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml , Nov. 1998.

http://grouper.ieee.org/groups/754/
http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml


10

20

30

40

0
0 50k 100k 150k 200k 250k 300k

(LOCs)Size

(m
in
ut
es
)

T
im

e

Fig. 5. Extrapolated execution time as a function of the subject program size
(y = 2.2134× 10−11 + 5.16024× 10−8 × x+ 0.00015309× x× (lnx)1.55729).

5. P. Cousot. Abstract interpretation based formal methods and future challenges,
invited paper. In R. Wilhelm, editor, « Informatics — 10 Years Back, 10 Years
Ahead », volume 2000 of LNCS, pages 138–156. Springer-Verlag, 2000.

6. P. Cousot. Partial completeness of abstract fixpoint checking, invited paper. In
B.Y. Choueiry and T. Walsh, editors, Proc. 4th Int. Symp. SARA ’2000, Horseshoe
Bay, TX, US, LNAI 1864, pages 1–25. Springer-Verlag, 26–29 Jul. 2000.

7. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proc. 2nd Int. Symp. on Programming, pages 106–130. Dunod, 1976.

8. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th POPL,
pages 238–252, Los Angeles, CA, 1977. ACM Press.

9. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
6th POPL, pages 269–282, San Antonio, TX, 1979. ACM Press.

10. D. Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv., 23(1):5–48, Mar. 1991.

11. M. Handjieva and S. Tzolovski. Refining static analyses by trace-based partitioning
using control flow. In G. Levi, editor, Proc. 5th Int. Symp. SAS ’98, Pisa, IT, 14–16
Sep. 1998, LNCS 1503, pages 200–214. Springer-Verlag, 1998.

12. G.J. Holzmann. Software analysis and model checking. In E. Brinksma and K.G.
Larsen, editors, Proc. 14th Int. Conf. CAV ’2002, Copenhagen, DK, LNCS 2404,
pages 1–16. Springer-Verlag, 27–31 Jul. 2002.

13. N. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Int. Series in Computer Science. Prentice-Hall, June 1993.

14. JTC 1/SC 22. Programming languages — C. Technical report, ISO/IEC 9899:1999,
16 Dec. 1999.



15. X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml
system, documentation and user’s manual (release 3.04). Technical report, INRIA,
Rocquencourt, FR, 10 Dec. 2001. http://caml.inria.fr/ocaml/ .

16. A. Miné. A new numerical abstract domain based on difference-bound ma-
trices. In 0. Danvy and A. Filinski, editors, Proc. 2nd Symp. PADO’2001,
Århus, DK, 21–23 May 2001, LNCS 2053, pages 155–172. Springer-Verlag, 2001.
http://www.di.ens.fr/~mine/publi/article-mine-padoII.pdf .

17. S. Owre, N. Shankar, and D.W.J. Stringer-Calvert. PVS: An experience report. In
D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, editors, PROC Applied For-
mal Methods - FM-Trends’98, International Workshop on Current Trends in Ap-
plied Formal Method, Boppard, DE, LNCS 1641, pages 338–345. Springer-Verlag,
7–9 Oct. 1999.

http://caml.inria.fr/ocaml/
http://www.di.ens.fr/~mine/publi/article-mine-padoII.pdf

