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Abstract. We present an abstract domain functor whose elements are
binary decision trees. It is parameterized by decision nodes which are a
set of boolean tests appearing in the programs and by a numerical or
symbolic abstract domain whose elements are the leaves. We first define
the branch condition path abstraction which forms the decision nodes
of the binary decision trees. It also provides a new prospective on parti-
tioning the trace semantics of programs as well as separating properties
in the leaves. We then discuss our binary decision tree abstract domain
functor by giving algorithms for inclusion test, meet and join, trans-
fer functions and extrapolation operators. We think the binary decision
tree abstract domain functor may provide a flexible way of adjusting the
cost/precision ratio in path-dependent static analysis.

1 Introduction

In past decades, abstract interpretation [5] has been widely and successfully
applied to the static analysis and verification of programs. Abstract domains,
one of the key concepts in abstract interpretation, aim at collecting informa-
tion about the set of all possible values of the program variables. The biggest
advantage of using abstract domains instead of logic predicates is that they are
fully automatic and can easily scale up. Intervals [4], octagons [14] and polyhe-
dra [6] are the most commonly used numerical abstract domains. These abstract
domains are inferring a conjunction of linear constraints to maintain the informa-
tion of all possible values of program variables and/or the possible relationships
between them. The absence of disjunctions may cause rough approximations and
produce much less precise results, gradually leading to false alarms or even worse
to the complete failure to prove the desired program property.

Let us consider the following example which is modified from the one in [9]:
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Example 1. A motivating example.

x = 0 ; y = 0 ;
lwhile ( y >= 0) {

i f ( x <= 50) y++;
else y−−;
x++;

}
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We know that the strongest invariant at program point l is (0 <= x <= 50 ∧
x = y) ∨ (51 <= x <= 103 ∧ x + y − 102 = 0). When we use the APRON
numerical abstract domain library [12] to generate the invariant at program
point l, we get x >= 0 ∧ y >= −1 with the box (interval) abstract domain and
y >= −1∧x−y >= 0∧x+52y >= 0 with the polka (convex polyhedra) abstract
domain. Both analyses are very imprecise compared to the strongest one. This
is because the true and false branches of “if (x <= 50)” have different behaviors
and those abstract domains do not consider them separately. ⊓%

Hence, we propose the binary decision tree abstract domain that takes those
branches into consideration.

2 Action Path Semantics

We consider the following abstract syntax of commands which describes the
abstract syntax trees (AST) representing the syntactic structure of source code:

C ∈ C:: = skip | x = E | C1 ; C2 | if (B) {C1} else {C2} | while (B) {C}

The trace semantics St[[C]] of a command C describes all possible observations
of executions of the command C. A trace π of length |π| ! n ≥ 1 is a pair π =
⟨π,π⟩ of a finite sequence π = σ0σ1...σn−1 of states separated by a finite sequence
π = A0A1...An−2 of actions. States record the current values of variables in the
environment/memory as well as a label/control point specifying what remains
to be executed while actions record which elementary indivisible elementary
program steps are computed during the execution of commands. An action A
∈ A is either no operation “skip”, an assignment “x = E” or a test which output
is either true (tt) or false (ff). We use action “B” to record that the Boolean
expression B evaluated to true (tt), while action “¬B” records that the Boolean
expression B evaluated to false (ff).

The action path abstraction αa(S) collects the set of action paths, that is
sequences of actions performed along the traces of a trace semantics S. Given
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a trace π = ⟨π,π⟩, αa(π) ! π collects the sequence of actions π executed along
that trace, which may be empty ε for traces reduced to a single state.

Definition 1 (Action Path Abstraction). Given a set of traces S,

αa(S) ! {αa(π) | π ∈ S}

collects the sequences of actions executed along the traces of S. ⊓%

Note that αa preserves both arbitrary unions and non-empty intersections.
We then have the following theorem:

Theorem 1 (Homomorphic Abstraction). Given a function h : C *→ A,
let αh(X) = {h(x) | x ∈ X} and γh(Y ) = {x | h(x) ∈ Y }, then αh and γh form
a Galois connection:

(℘(C),⊆) −−−−→←−−−−
αh

γh
(℘(A),⊆) (1)

Proof. For all X ∈ ℘(C) and Y ∈ ℘(A),

αh(X) ⊆ Y

⇐⇒ {h(x) | x ∈ X} ⊆ Y !definition of αh"
⇐⇒ ∀x ∈ X : h(x) ∈ Y !definition of ⊆"
⇐⇒ X ⊆ {x | h(x) ∈ Y } !definition of ⊆"
⇐⇒ X ⊆ γh(Y ) !definition of γh"

⊓%

Hence, by defining γa(A) ! {π | αa(π) ∈ A}, we will have αa and γa form the
Galois connection by Theorem 1 where h is αa.

A control flow graph (CFG) is a directed graph, in which nodes correspond to
the actions in the program and the edges represent the possible flow of control.
The CFG G[[C]] of command C can be built by structural induction on the syntax
of the command C:
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Then the action path semantics Ga[[G[[C]]]] of CFG G[[C]] of command C can be
defined as:

The following Theorem 2 states that the action path semantics of the control
flow graph of a program is an over-approximation, hence a sound abstraction,
of the action paths that would be collected directly from the trace semantics.

Theorem 2. αa(St[[C]]) ⊆ Ga[[G[[C]]]].

Proof. The proof can be done by the structural induction on the syntax of the
command C. More details can be found in the Appendix of [2]. ⊓%

3 Branch Condition Path Abstraction

We introduce branch condition graphs Gb[[C]] of command C which can be viewed
as further abstractions of the control flow graphs G[[C]]. We define the branch
condition path semantics Gb[[Gb[[C]]]] as an abstract interpretation αb of the action
path semantics Ga[[G[[C]]]] of the control flow graph G[[C]] of command C.

3.1 Branch Condition Graph

A branch condition is the test B occurring in a command “if (B) {C1} else {C2}”
while a loop condition is the test B occurring in a command “while (B) {C}”. A
branch condition graph (BCG) of a program is a directed acyclic graph, in which
each node corresponds to a branch condition occurring in the program and has
two outgoing edges representing its true and false branches. An edge from node
A to node B means that the branch condition corresponding to node B occurs
after the branch condition corresponding to node A in the program and there
are no other branch conditions occurring between them. A trace from the entry
point to the exit point of a BCG is called branch condition path. We use B to
denote the true branch while ¬B denotes the false branch.
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Example 2. Consider the following branch condition graph:

x < y

p > 0

q > 0 q > 0

Its branch condition paths include:

(x < y) · (p > 0) · (q > 0), ¬(x < y) · (p > 0) · (q > 0),
(x < y) · (p > 0) · ¬(q > 0), ¬(x < y) · (p > 0) · ¬(q > 0),
(x < y) · ¬(p > 0) · (q > 0), ¬(x < y) · ¬(p > 0) · (q > 0),
(x < y) · ¬(p > 0) · ¬(q > 0), ¬(x < y) · ¬(p > 0) · ¬(q > 0).

⊓%

The branch condition graph Gb[[C]], like the CFG, can be defined by structural
induction on the syntax of the command C:

Note that the concatenation of and is still

3.2 Branch Condition Path Abstraction

We abstract finite action paths A1·A2·...·An, n ≥ 0 by the finite branch condition
path Ab

1 ·Ab
2 · ... ·Ab

m,m ≤ n where Ab
1 = Ap,Ab

2 = Aq, ...,Ab
m = Ar, 1 ≤ p < q <

... < r ≤ n are distinct branch conditions. The branch condition path is empty
ε when there are no branch conditions occurred in the action path. We say that
two branch conditions Ab

1,A
b
2 are equal if and only if Ab

1 and Ab
2 occur at the

same program point. Moreover, each branch condition in the branch condition
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path must be the last occurrence in the action path being abstracted, that is, if
Ab

i is a branch condition in the branch condition path Ab
1 ·Ab

2 · ... ·Ab
m abstracting

the action path A1 · A2 · ... · An where Ab
i = Aj , then ∀k : j < k ≤ n,Ab

i ̸= Ak.
Note that we only consider finite action paths hence safety properties.

Condition Path Abstraction. The condition path abstraction collects the
set of finite sequences of conditions performed along the action path π and
ignores any skip and assignment in π. Given an action path π, αc(π) collects the
sequence of conditions in the action path, which may be empty ε when there are
no conditions occurred in the action path, by the following induction rules:

αc(skip) ! ε αc(B) ! B
αc(x = E) ! ε αc(¬B) ! ¬B
αc(π1 · π2) ! αc(π1) · αc(π2)

Note that ε · πc = πc · ε = πc. Let AC be the set of conditions and (AC)∗ be
the set of finite, possible empty, condition paths. Given a set of action paths A,
αc(A) collects the sequences of conditions in the action paths A:

αc ∈ ℘(A∗) *→ ℘((AC)∗)
αc(A) ! {αc(π) | π ∈ A}

It follows that αc preserves arbitrary unions and non-empty intersections. By
defining γc(C) ! {π | αc(π) ∈ C}, we will have:

Corollary 1.

(℘(A∗),⊆) −−−→←−−−
αc

γc

(℘((AC)∗),⊆) (2)

Proof. By Theorem 1 where h is αc. ⊓%

Loop Condition Elimination. Given a finite condition path πc, αd(πc) col-
lects the finite sequence of branch conditions (with duplications) by eliminating
all loop conditions in πc. This sequence may be empty ε when there are no
branch conditions occurred in πc. Let AB be the set of branch conditions and AL

be the set of loop conditions, thus AC ! AB ∪ AL and AB ∩ AL = ∅. Note that
we distinguish those conditions by the program points where they occur, not by
themselves.

For all Ab ∈ AB and Al ∈ AL, we have

αd(Ab) ! Ab and αd(Al) ! ε. (3)

Then given two condition paths πc1
and πc2

, we have

αd(πc1
· πc2

) ! αd(πc1
) · αd(πc2

). (4)
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Note that ε · πd = πd · ε = πd. Let (AB)∗ be the set of finite, possible empty,
sequences of branch conditions. Given a set of condition paths C, αd(C) collects
the sequences of branch conditions (with duplications) from the condition paths
C:

αd ∈ ℘((AC)∗) *→ ℘((AB)∗)
αd(C) ! {αd(πc) | πc ∈ C}

It’s easy to see that αd preserves both arbitrary unions and non-empty intersec-
tions. By defining γd(D) ! {πc | αd(πc) ∈ D}, we will have:
Corollary 2.

(℘((AC)∗),⊆) −−−→←−−−
αd

γd

(℘((AB)∗),⊆) (5)

Proof. By Theorem 1 where h is αd. ⊓%

Duplication Elimination. The branch condition paths are the sequences of
branch conditions without duplications. In this part, we introduce the abstrac-
tion function that eliminates duplications in any sequence of branch conditions.

We first define two functions that are used in the abstraction function αℓ.
Given a sequence seq and an element d of seq, erase(seq, d) eliminates all ele-
ments in seq that is equal to d:

erase(d1d2d3...dn, d) ! if d1 = d then erase(d2d3...dn, d)
else d1 · erase(d2d3...dn, d)

(6)

Note that erase(seq, d) may return the empty sequence ε. Then fold(seq) elimi-
nates the duplications of each element in seq starting from the last element:

fold(d1d2...dn) ! if d1d2...dn = ε then ε
else fold(erase(d1d2...dn−1, dn)) · dn

(7)

Hence, given a sequence of branch conditions πd, αℓ(πd) = fold(πd) eliminates
duplications of each branch condition while keeping its last occurrence in πd. Let
D be the set of sequences of branch conditions that have duplications. Given a
set of sequences of branch conditions D, αℓ(D) collects branch condition paths
(sequences of branch conditions without duplications):

αℓ ∈ ℘((AB)∗) *→ ℘((AB)∗ \ D)
αℓ(D) ! {αℓ(πd) | πd ∈ D}

Similarly, we have αℓ preserves both arbitrary unions and non-empty intersec-
tions. By defining γℓ(B) ! {πd | αℓ(πd) ∈ B}, we will have:
Corollary 3.

(℘((AB)∗),⊆) −−−→←−−−
αℓ

γℓ

(℘((AB)∗ \ D),⊆) (8)

Proof. By Theorem 1 where h is αℓ. ⊓%
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Branch Condition Path Abstraction. The branch condition path abstrac-
tion αb[[A]] collects the branch condition paths, which is the set of sequences of
branch conditions with no duplications along the action paths in A. It can be
defined by the composition of αc,αd,αℓ defined in the previous sections as:

αb ∈ ℘(A∗) *→ ℘((AB)∗ \ D)
αb(A) ! αℓ ◦ αd ◦ αc(A)

Respectively, the concretization function γb(B) can be defined by the com-
position of γc, γd, γℓ as:

γb ∈ ℘((AB)∗ \ D) *→ ℘(A∗)
γb(B) ! γc ◦ γd ◦ γℓ(B)

It follows that αb and γb form a Galois connection:

(℘(A∗),⊆) −−−→←−−−
αb

γb

(℘((AB)∗ \ D),⊆) (9)

Proof. The composition of Galois connections is still a Galois connection. ⊓%

Example 3. In Example 1, let A be all possible action path semantics of its CFG,
then αb(A) = {x ≤ 50,¬(x ≤ 50)}.

4 Binary Decision Tree Abstract Domain Functor

We introduce the binary decision tree abstract domain functor to represent and
manipulate invariants in the form of binary decision trees. The abstract property
will be represented by the disjunction of leaves which are separated by the values
of binary decisions, i.e., boolean tests, which will be organized in the decision
nodes of the binary decision trees.

4.1 Definition

Given the trace semantics St[[P]] of a program P, αb ◦αa(St[[P]]) abstracts St[[P]]
into a finite set B of branch condition paths where B = {πb1

, ...,πbN
}. Then

for πbi
∈ B, we have γa ◦ γb(πbi

) ∩ St[[P]] ⊆ St[[P]] and
⋃

i≤N (γa ◦ γb(πbi
) ∩

St[[P]]) = St[[P]]. Moreover, for all distinct pairs (πb1
,πb2

) ∈ B × B, we have
(γa ◦ γb(πb1

) ∩ St[[P]]) ∩ (γa ◦ γb(πb2
) ∩ St[[P]]) = ∅. Each branch condition path

πbi
defines a subset of the trace semantics St[[P]] of a program P. If we can

generate the invariants for each program point only using the information of one
subset of the trace semantics, then for each program point, we will get a finite
set of invariants. It follows that the disjunction of such set of invariants forms
the invariant of that program point. Hence, we encapsulate the set of branch
condition paths into the decision nodes of a binary decision tree where each
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top-down path (without leaf) of the binary decision tree represents a branch
condition path, and store in each leaf nodes the invariant generated from the
information of the subset of the trace semantics defined by the corresponding
branch condition path.

We denote the binary decision tree in the parenthesized form

[[ B1 : [[ B2 : (|P1 |), (|P2 |) ]], [[ B3 : (|P3 |), (|P4 |) ]] ]]

where B1,B2,B3 are decisions (branch conditions) and P1, P2, P3, P4 are invari-
ants. It encodes the fact that either if B1 and B2 are both true then P1 holds,
or if B1 is true and B2 is false then P2 holds, or if B1 is false and B3 is true
then P3 holds, or if B1 and B3 are both false then P4 holds. The parenthe-
sized representation of binary trees uses (| ... |) for leaves and [[ B : tl, tr ]] for
the decision B and tl (resp. tr) represents its left subtree (resp. right sub-
tree). In first order logic, the above binary decision tree would be be written
as (B1 ∧B2 ∧ P1) ∨ (B1 ∧ ¬B2 ∧ P2) ∨ (¬B1 ∧B3 ∧ P3) ∨ (¬B1 ∧ ¬B3 ∧ P4) with
an implicit universal quantification over free variables.

Let D(B) denote the set of all branch conditions appearing in B. Let β =
B or ¬B and B\β denote the removal of β and all branch conditions appearing
before in each branch condition path in B, then we define the binary decision
tree as:

Definition 2. A binary decision tree t ∈ T(B,Dℓ) over the set B of branch
condition paths (with concretization γa ◦ γb) and the leaf abstract domain Dℓ

(with concretization γℓ) is either (| p |) with p is an element of Dℓ and B is empty
or [[B : tt, tf ]] where B ∈ D(B) is the first element of all branch condition paths
πb ∈ B and (tt, tf ) are the left and right subtree of t represent its true and false
branch such that tt, tf ∈ T(B\β ,Dℓ). ⊓%

Example 4. In Example 1, the binary decision tree at program point l will be
t = [[x ≤ 50 : (| 0 ≤ x ≤ 50 ∧ x = y |), (| 51 ≤ x ≤ 103 ∧ x + y − 102 = 0 |)]].

Let ρ be the concrete environment assigning concrete values ρ(x) to variables
x and [[e]]ρ for the concrete value of the expression e in the concrete environment
ρ, we can then define the concretization of the binary decision tree as

Definition 3. The concretization of a binary decesion tree γt is either

γt((| p |)) ! γℓ(p)

when the binary decision tree is reduced to a leaf or

γt([[B : tt, tf ]]) ! {ρ | [[B ]]ρ = true =⇒ ρ ∈ γt(tt) ∧
[[B ]]ρ = false =⇒ ρ ∈ γt(tf )}

when the binary decision tree is rooted at a decision node. ⊓%

Given t1, t2 ∈ T(B,Dℓ), we say that t1 ≡t t2 if and only if γt(t1) = γt(t2). Let
T(B,Dℓ)\≡t be the quotient by the equivalence relation ≡t. The binary decision
tree abstract domain functor is defined as:
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Definition 4. A binary decision tree abstract domain functor is a tuple

⟨T(B,Dℓ)\≡t ,⊑t,⊥t,⊤t,%t,⊓t,▽t,△t⟩

on two parameters, a set B of branch condition paths and a leaf abstract domain
Dℓ where (T is short for T(B,Dℓ)\≡t)

P,Q, ... ∈ T abstract properties
⊑t ∈ T × T → {false, true} abstract partial order

⊥t,⊤t ∈ T infimum, supremum
(∀P ∈ T : ⊥t ⊑t P ⊑t ⊤t) (10)

%t,⊓t ∈ T × T → T abstract join, meet
▽t,△t ∈ T × T → T abstract widening, narrowing

⊓%

The set B of branch condition paths can be constructed from the CFG of the
program. It can be done either in the pre-analysis or on the fly during the
analysis. The static analyzer designer should allow to change the maximal length
of branch condition paths in B so as to be able to adjust the cost/precision ratio
of the analysis. The leaf abstract domain Dℓ for the leaves could be any numerical
or symbolic abstract domains such as intervals, octagons and polyhedra, array
domains, etc., or even the reduced product of two or more abstract domains.
A list of available abstract domains that can be used at the leaves would be
another option of the static analyzer designer. We can use any of these options
to build a particular instance of the binary decision tree abstract functor. The
advantage of this modular approach is that we can change those options to adjust
the cost/precision ratio without having to change the structure of the analyzer.

4.2 Binary Operations

Inclusion and Equality. Given two binary decision tree t1, t2 ∈ T(B,Dℓ) \
{⊥t,⊤t}, we can check t1 ⊑t t2 by comparing each pair (ℓ1, ℓ2) of leaves in
(t1, t2) where ℓ1 and ℓ2 are defined by the same branch condition path πb ∈ B.
If each pair (ℓ1, ℓ2) satisfies ℓ1 ⊑ℓ ℓ2, we can conclude that t1 ⊑t t2; otherwise,
we have t1 ̸⊑t t2.

include(t1 , t2 : binary decision trees )
{

i f (t1 == (|l1|) && t2 == (|l2|)) then return t1 ⊑ℓ t2 ;

let t1 = [[B: t1l , t1r]] and t2 = [[B: t2l , t2r]] ;
return include(t1l , t2l ) & include(t1r , t2r ) ;

}
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Example 5. We have [[x ≤ 50 : (| x = 0 ∧ y = 0 |), (|⊥ℓ |)]] ⊑ [[x ≤ 50 : (| 0 ≤ x ≤
1 ∧ x = y |), (|⊥ℓ |)]] and [[x ≤ 50 : (| x = 0 ∧ y = 0 |), (|⊥ℓ |)]] ̸⊑ [[x ≤ 50 : (| x =
1 ∧ y = 1 |), (|⊥ℓ |)]].

The equality of t1 and t2 can be tested by the fact t1 =t t2 ! t1 ⊑t t2 ∧ t2 ⊑t

t1. When the leaf abstract domain Dℓ has =ℓ, we can also check the equality for
each pair (ℓ1, ℓ2) of leaves in (t1, t2) where ℓ1 and ℓ2 are defined by the same
branch condition path πb ∈ B.

Meet and Join. Given two binary decision tree t1, t2 ∈ T(B,Dℓ), the meet
t = t1 ⊓t t2 can be computed using the meet ⊓ℓ in the leaf abstract domain Dℓ.
Let ℓ1, ℓ2 are leaves of t1, t2 respectively, where the same branch condition path
πb ∈ B leads to ℓ1 and ℓ2, then ℓ = ℓ1 ⊓ℓ ℓ2 is the leaf of t led by the same branch
condition path πb ∈ B. After computing each leaf ℓ = ℓ1 ⊓ℓ ℓ2 in t, we then get
t = t1 ⊓t t2.

meet(t1 , t2 : binary decision trees )
{

i f (t1 == (|l1|) && t2 == (|l2|)) then return t1 ⊓ℓ t2 ;

let t1 = [[B: t1l , t1r]] and t2 = [[B: t2l , t2r]] ;
return [[B: meet( t1l , t2l ) , meet(t1r , t2r)]] ;

}

Similar to the meet, we can compute the join t = t1 %t t2 using the join %ℓ

in the leaf abstract domain Dℓ. But instead of computing the join ℓ1 %ℓ ℓ2 for
each pair (ℓ1, ℓ2) of leaves in (t1, t2) where ℓ1 and ℓ2 are led by the same branch
condition path πb ∈ B, we also use the branch conditions in πb as bound to
prevent precision loss. Let πb = β1 · β2 · ... · βn where βi = Bi or ¬Bi, i = 1, ..., n,
we have ℓ = (ℓ1 %ℓ ℓ2) ⊓ℓ Dℓ(β1) ⊓ℓ Dℓ(β2) ⊓ℓ ... ⊓ℓ Dℓ(βn) (Dℓ(β) means the
representation of β in Dℓ, when αℓ exists in the leaf abstract domain Dℓ, we can
use αℓ(β) instead).

join (t1 , t2 : binary decision trees , bound = ⊤)
{

i f (t1 == (|l1|) && t2 == (|l2|)) then return (t1 %ℓ t2) ⊓ℓ bound;

let t1 = [[B: t1l , t1r]] and t2 = [[B: t2l , t2r]] ;
return [[B: join (t1l , t2l , bound ⊓ℓ Dℓ(B)) ,

join (t1r , t2r , bound ⊓ℓ Dℓ(¬B))]] ;
}
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Example 6. Let t1 = [[x ≤ 50 : (| x = 0 ∧ y = 0 |), (|⊥ℓ |)]], t2 = [[x ≤ 50 : (| x =
1 ∧ y = 1 |), (|⊥ℓ |)]], t3 = [[x ≤ 50 : (| 0 ≤ x ≤ 1 ∧ x = y |), (|⊥ℓ |)]], we have
t1 ⊓t t2 = ⊥t, t1 ⊓t t3 = t1 and t1 %t t2 = t3, t2 ⊓t t3 = t3.

4.3 Transfer Functions

We define transfer functions for both tests and assignments. The tests either
occur in a loop head or occur in the branch. Hence, we define both loop test
transfer function and branch test abstract function for the binary decision tree
abstract domain.

Loop Test Transfer Function. The transfer function for the loop tests is
simple. Given a binary decision tree t ∈ T(B,Dℓ) and a loop test B, we first
define t ⊓t B as: ⊥t ⊓t B ! ⊥t

⊤t ⊓t B ! (|B |)
t ⊓t false ! ⊥t

t ⊓t true ! t

(| p |) ⊓t B ! (| p ⊓ℓ Dℓ(B) |)
[[ B′ : tl, tr ]] ⊓t B ! [[ B′ : tl ⊓t Dℓ(B′ ∩ B), tr ⊓t Dℓ(¬B′ ∩ B) ]]

Then the transfer function fL[[B]]t for the loop test B of the binary decision tree
t can be defined as:

fL[[B]]t ! t ⊓t B.

Example 7. Let t be the binary decision tree in Example 4, then fL[[y >= 0]]t =
[[x ≤ 50 : (| 0 ≤ x ≤ 50 ∧ x = y |), (| 51 ≤ x ≤ 102 ∧ x + y − 102 = 0 |)]].

Branch Test Transfer Function. The binary decision tree can be constructed
in two different ways. On one hand, it can be generated immediately after the
set B of branch condition paths has been generated in the pre-analysis. In this
way, all leaves of the binary decision tree will be set to ⊤ℓ for the first program
point and ⊥ℓ for others (⊤ℓ,⊥ℓ ∈ Dℓ) at the beginning. On the other hand,
both binary decision tree and B can be constructed on the fly during the static
analysis. In this last case, we have B = ∅ and the binary decision tree t = (|⊤ℓ |)
for the first program point and t = (|⊥ℓ |) for others at the beginning.

In the latter case, the branch test transfer function should first construct the
new binary decision tree from the old one by splitting on the branch condition
when it has been first met in the analysis. Given a binary decision condition
t ∈ T(B,Dℓ) and a branch test B that’s been first met, there are two situations.
One situation is that the branch condition B is independent, that is, it does not
occur inside any scope of a branch. In this situation, the new binary decision tree
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t′ can be constructed by replacing each leaf p in the binary tree t with a subtree
[[B : (|p⊓ℓDℓ(B)|), (|p⊓ℓDℓ(¬B)|)]]. We also have B′ = {πb ·B | πb ∈ B}∪{πb ·¬B |
πb ∈ B}. The other situation is that the branch condition B is inside a scope of
a branch. Let B’ be the condition of the branch and there is no other branch
scope between B and B’, if B is inside the true branch of B’, then the new
binary decision tree t′ can be constructed by replacing each left leaf p of B’ in
the binary tree t with a subtree [[B : (|p⊓ℓ Dℓ(B)|), (|p⊓ℓ Dℓ(¬B)|)]]. We also have
B′ = {πb ·B′ ·B | πb ·B′ ∈ B}∪{πb ·B′ ·¬B | πb ·B′ ∈ B}∪(B\{πb ·B′ | πb ·B′ ∈ B}).
If B is inside the false branch of B’, the right leaves of B’ instead of left leaves
should be replaced by the same subtrees and B′ = {πb · ¬B′ · B | πb · ¬B′ ∈
B} ∪ {πb · ¬B′ · ¬B | πb · ¬B′ ∈ B} ∪ (B \ {πb · ¬B′ | πb · ¬B′ ∈ B}).

Then in both ways, the branch test transfer function will do the same thing
as loop test transfer function. Given the branch test B and the binary decision
tree t ∈ T(B,Dℓ), we have:

fB [[B]]t ! t ⊓t B.

Example 8. Let t be the binary decision tree in Example 4, then fB [[x <= 50]]t =
[[x ≤ 50 : (| 0 ≤ x ≤ 50 ∧ x = y |), (|⊥ℓ |)]].

Assignment Transfer Function. Given a binary decision tree t ∈ T(B,Dℓ),
the assignment x = E can be performed at each leaf in t by using the assignment
transfer function of Dℓ. E.g., let t = [[x ≤ 50 : (| 0 ≤ x ≤ 50 |), (|⊥ℓ |)]] and given
an assignment x = x + 1, after performing the assignment transfer function
of Polyhedra abstract domain on each leaf of t, we will get t′ = [[x ≤ 50 :
(| 1 ≤ x ≤ 51 |), (|⊥ℓ |)]]. Generally, the branch condition paths in B are used as
labels separating the abstract properties in disjunctions which are gathered in
the leaves. But this is not always the case. For example, in the join operator, we
use the branch conditions in B to reduce the result of the join. After performing
the assignment transfer function of leaf abstract domain Dℓ on each leaf, we may
also need to manipulate the leaves using the branch condition paths in B. Let’s
check the above result t′ after the assignment, it appears that some leaves in the
new binary decision tree may not satisfy some branch conditions in the branch
condition paths which are leading to them. For example, 1 ≤ x ≤ 51 is not
satisfying the branch condition x ≤ 50. We know the violation part is actually
satisfying the negation of those branch conditions. Hence we need to use the
branch condition x ≤ 50 to separate 1 ≤ x ≤ 51 into 1 ≤ x ≤ 50 ∨ x = 51 and
update the corresponding leaves. For example, we have t′′ = [[x ≤ 50 : (| 1 ≤ x ≤
50 |), (|x = 51 |) ]].

We call this procedure reconstruction on leaves. Given a binary decision tree
t after an assignment, we define the procedure as follow:

1. Collecting all leave properties in t, let it be {p1, p2, ..., pn};
2. For each leaf in t, let πb = β1 ·β2 · ... ·βn be the branch condition path leading

to it. We then calculate p′
i = pi ⊓ℓ (Dℓ(β1 ∧ β2 ∧ ... ∧ βn)).
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3. For each leaf in t, update it with p′
1 %ℓ p′

2 %ℓ ... %ℓ p′
n.

Correctness. Let p = p1 ∨ p2 ∨ ... ∨ pn be the disjunction of all properties in
leaves before reconstruction on leaves. For each leaf ℓi in t, we have ℓi = (p1 ⊓ℓ

(Dℓ(βi
1 ∧βi

2 ∧ ...∧βi
n)))%ℓ ...%ℓ (pn ⊓ℓ (Dℓ(βi

1 ∧βi
2 ∧ ...∧βi

n))) = (p1 %ℓ ...%ℓ pn)⊓ℓ

(Dℓ(βi
1∧βi

2∧...∧βi
n)) after reconstruction on leaves. We then have the disjunction

of all properties in leaves after reconstruction on leaves is p′ = ℓ1 ∨ ... ∨ ℓn =
(p1%ℓ...%ℓpn)⊓ℓ(Dℓ(β1

1∧β1
2∧...∧β1

n))∨...∨(p1%ℓ...%ℓpn)⊓ℓ(Dℓ(βn
1 ∧βn

2 ∧...∧βn
n)) =

(p1 %ℓ ... %ℓ pn) ⊓ℓ ((Dℓ(β1
1 ∧ β1

2 ∧ ... ∧ β1
n)) ∨ ... ∨ (Dℓ(βn

1 ∧ βn
2 ∧ ... ∧ βn

n))) =
(p1%ℓ ...%ℓ pn)⊓ℓ true = p1%ℓ ...%ℓ pn ≡ p. This shows that the reconstruction on
leaves procedure will not change the result of the assignment transfer function.

4.4 Extrapolation Operators

When the leaf abstract domain Dℓ has strictly increasing and/or strictly decreas-
ing infinite chains, widening and/or narrowing operators are required in the
binary decision tree abstract domain to accelerate the convergence of fixpoint
iterates.

Widening. Given two binary decision tree t1, t2 ∈ T(B,Dℓ), the widening t =
t1 ▽t t2 can be computed using the widening ▽ℓ in the leaf abstract domain Dℓ

similar to the join operator, that is, computing the widening ℓ1 ▽ℓ ℓ2 for each
pair (ℓ1, ℓ2) of leaves in (t1, t2) where ℓ1 and ℓ2 are led by the same branch
condition path πb ∈ B while the branch conditions in πb are also used as the
threshold. Let πb = β1 · β2 · ... · βn where βi = Bi or ¬Bi, i = 1, ..., n, we have
each leaf ℓ = (ℓ1 ▽ℓ ℓ2) ⊓ℓ Dℓ(β1) ⊓ℓ Dℓ(β2) ⊓ℓ ... ⊓ℓ Dℓ(βn).

widening(t1 , t2 : binary decision trees , bound = ⊤)
{

i f (t1 == (|l1|) && t2 == (|l2|)) then return (t1 ▽ℓ t2) ⊓ℓ bound;

let t1 = [[B: t1l , t1r]] and t2 = [[B: t2l , t2r]] ;
return [[B: widening(t1l , t2l , bound ⊓ℓ Dℓ(B)) ,

widening(t1r , t2r , bound ⊓ℓ Dℓ(¬B))]] ;
}

Narrowing. The narrowing operator in the binary decision tree abstract
domain is very similar to its meet operator. Given two binary decision tree
t1, t2 ∈ T(B,Dℓ), the narrowing t = t1 △t t2 can be computed using the narrow-
ing △ℓ in the leaf abstract domain Dℓ. Let ℓ1, ℓ2 are leaves of t1, t2 respectively,
where the same branch condition path πb ∈ B leads to ℓ1 and ℓ2, then ℓ = ℓ1 △ℓ ℓ2
is the leaf of t led by the same branch condition path πb ∈ B. After computing
each leaf ℓ = ℓ1 △ℓ ℓ2 in t, we then get t = t1 △t t2.
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narrowing(t1 , t2 : binary decision trees )
{

i f (t1 == (|l1|) && t2 == (|l2|)) then return t1 △ℓ t2 ;

let t1 = [[B: t1l , t1r]] and t2 = [[B: t2l , t2r]] ;
return [[B: narrowing(t1l , t2l ) , narrowing(t1r , t2r)]] ;

}

Example 9. Let t1 = [[x ≤ 50 : (| x = 0 ∧ y = 0 |), (|⊥ℓ |)]] and t2 = [[x ≤ 50 :
(| x = y ∧ 0 ≤ x ≤ 1 |), (|⊥ℓ |)]]. It’s easy to see that t1 ⊆ t2. In polyhedra, we
have (x = 0 ∧ y = 0)▽t (x = y ∧ 0 ≤ x ≤ 1) = x ≥ 0 ∧ x = y. Hence, we have
t1 ▽t t2 = [[x ≤ 50 : (| 0 ≤ x ≤ 50 ∧ x = y |), (|⊥ℓ |)]].

4.5 Other Operators

Although the number of branch conditions in a program is always finite, it
may still be a very large number. A large number of branch conditions means
a large binary decision tree, with a potentially exponential growth which is
not acceptable in practice. Hence, we need limit the size (depth) of the binary
decision trees.

One method is to eliminate decision nodes by merging their subtrees when
the binary decision tree grows too deep. This can be done as follow:

1. Pick up a branch condition B. We can simply use the one in the root, or
the nearest one to the leaves, or by random. We can also design a ranking
function based on the information from the analysis for each branch condition
to estimate how likely it is to be eliminated with minimal information loss.
Then we always choose the most likely one.

2. Eliminate B (B or ¬B) from each branch condition path in B.
3. For each subtree of the form [[B : tt, tf ]], if tt and tf have identical decision

nodes, replace it by tt %t tf .
4. Otherwise, there are decision nodes existing only in tt or tf . For each of those

decision nodes, (recursively) eliminate it by merging its subtrees. When no
such decision node exists, we get t′t and t′f , and they must have identical
decision nodes, so [[B : tt, tf ]] can be replaced by t′t %t t′f .

Another method is to generate a smaller B by abstracting the branch condi-
tion paths in B into shorter ones. We may partition the set of branch conditions
by its appearance inside or outside loops and then only keep the ones appeared
inside the loops in B. We may also only keep the branch conditions which have
some particular form, such as ax $ b, etc.

The second method is different from the first one because it can be done in
the pre-analysis or on the fly before splitting trees, thus no merging is needed
during the analysis. This reduces the cost of the analysis, thus improves its
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efficiency. But because all the branch conditions being eliminated are not based
on the information that is collected during the static analysis, the result may be
less precise than the one generated from the first method. Moreover, eliminating
branch conditions and merging their subtrees allow us to dynamically change the
binary decision trees on the fly. This provides a more flexible way of adjusting
the cost/precision ratio of the static analysis.

5 Example

Let us come back to Example 1. We choose the polyhedra abstract domain as
the leaf abstract domain and we have B = {x <= 50,¬(x <= 50)}. Initially, we
set t = (|⊥ℓ |) in the program point l. After the assignment “x = 0; y = 0;”, we
have “t = (| x = 0 ∧ y = 0 |)”. Let ti be the abstract property at program point
l after the i-th iteration, then t0 = (| x = 0 ∧ y = y |). In the first iteration, we
have to construct the binary decision tree when first reaching the branch test “x
<= 50”. In this case, we have t′0 = [[x ≤ 50 : (| x = 0 ∧ y = 0 |), (|⊥ℓ |)]]. At the
end of the first iteration, we get t′′0 = [[x ≤ 50 : (| x = 1 ∧ y = 1 |), (|⊥ℓ |)]]. Then
t1 = t0 ∪t t′′0 = [[x ≤ 50 : (| x = y ∧ 0 ≤ x ≤ 1 |), (|⊥ℓ |)]]. Afterwards, we apply
the widening and get t′1 = t0 ▽ t1 = [[x ≤ 50 : (| 0 ≤ x ≤ 50 ∧ x = y |), (|⊥ℓ |)]]. In
the second iteration, the assignment “x++;” leads to reconstruction on leaves,
hence we get t′′1 = [[x ≤ 50 : (| 1 ≤ x ≤ 50 ∧ x = y |), (|x = 51 ∧ y = 51 |)]].
Then t2 = t1 ∪t t′′1 = [[x ≤ 50 : (| 0 ≤ x ≤ 50 ∧ x = y |), (| x = 51 ∧ y = 51 |)]].
After the third iteration, t3 = [[x ≤ 50 : (| 0 ≤ x ≤ 50 ∧ x = y |), (| x + y − 102 =
0 ∧ 51 ≤ x ≤ 52 |)]]. We then apply the widening and get t′3 = t2 ▽ t3 = [[x ≤ 50 :
(| 0 ≤ x ≤ 50 ∧ x = y |), (| x + y − 102 = 0 ∧ x ≥ 51 |)]]. One more iteration yields
t4 = [[x ≤ 50 : (| 0 ≤ x ≤ 50 ∧ x = y |), (| x + y − 102 = 0 ∧ 51 ≤ x ≤ 103 |)]]. It
follows that the program analysis converges. Hence t4 is the invariant at program
point l.

6 Related Work

A systematic characterization of the least bases for the disjunctive completion of
abstract domains can be found in [8]. The trace partitioning using control flows
was first introduced in [3]. A static analysis framework via trace partitioning was
proposed by [11]. In this framework, the control flow is used to choose which
disjunctions to keep but it lacks the merge of partitions, which may lead to
exponential cost. In [13], a trace partitioning domain, where the partitioning of
traces are based on the history of the control flow, has been proposed. The main
difference between their partitionings and ours is we only use (part of) branch
conditions while they are considering all conditions and other information.

Decision trees have been used for the disjunctive refinement of an abstract
domain such as [10] for the interval abstract domain based on decision trees.
A general segmented decision tree abstract domain, where disjunctions are
determined by values of variables is introduced in [7]. Moreover, [16] pro-
posed a general disjunctive refinement of an abstract domain based on decision
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trees extended with linear constraints for program termination. The difference
between those works and ours is their partitionings are mainly based on the
value of some variables while ours are directly based on the branch conditions.

There also exist several works on directly allowing disjunction in the domain,
i.e., powerset domain [1]. In [15], the disjunctions are computed on an elabo-
ration, which can be viewed as a multiply duplication, of the programs CFG
structure. Moreover, our binary decision tree abstract domain functor can also
be useful to scale traditional path-sensitive program analysis [17].

7 Conclusion

In this paper, we have introduced a series of abstractions which generates a set of
branch condition paths. Those branch condition paths define a kind of trace par-
titioning on the concrete level (trace semantics of program). By using such infor-
mation for trace partitioning, we proposed a binary decision tree abstract domain
functor that allows finite disjunction of abstract properties generated by existing
abstract domains1. We also discussed the implementation of our binary decision
tree abstract domain functor by providing algorithms for inclusion test, meet
and join, transfer functions and extrapolation operators. Although we bound
the number of disjunctions only to the number of branch conditions in the pro-
gram, the cost of our domain may still be excessive. Thus we also discussed how
to limit the number of disjunctions. Our binary decision tree abstract domain
functor may provide a flexible way of adjusting the cost/precision ratio for static
analysis.
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A Trace Semantics

Let ⇧ denote a set of traces. We define the trace semantics StJCK of commands
C by induction on the syntactic structure of the commands:

StJskipK , {hskip, ⇢i skip��! hstop, ⇢i | ⇢ 2 E}
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B Proof for Theorem 1

The proof is by structural induction on the syntax of the command C.

skip command

↵

a(StJskipK)
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a({hskip, ⇢i skip��! hskip, ⇢i | ⇢ 2 E}) Hdefinition of StJskipKI
= {skip} Hdefinition of ↵
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Assignment

↵
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Union preservation

Let us show that the iteration transformer preserves unions.
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Fixpoint approximation

A consequence of the semi-commutation property is that the abstraction of
the concrete iterates hSn
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It follows that we have the following fixpoint approximation,
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Iterates and least fixpoint of the iteration transformer

Given a set A of action paths, let us define its natural powers as A0 , {"},
A1 , A, An = A · ... · A| {z }

n times

for n > 1. The rule of powers Ap+q = Ap · Aq is

trivial.

Let us calculate the iterates hFn
, n 2 Ni of FaJ
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K)⇤.

Iteration

↵

a(StJwhile (B) {C}K)
= ↵

a(let StiJwhile (B) {C}K , lfp✓F tiJwhile (B) {C}K in {⇡

A�!
hwhile (B) {C}, ⇢i ¬B��! hstop, ⇢i | ⇡ 2 ⇧ ^ ⇡

A�! hwhile (B) {C}, ⇢i 2
StiJwhile (B) {C}K ^ false 2 EJBK⇢}) Hdefinition of StJwhile (B) {C}KI

= let StiJwhile (B) {C}K , lfp✓F tiJwhile (B) {C}K in ↵

a({⇡

A�!
hwhile (B) {C}, ⇢i ¬B��! hstop, ⇢i | ⇡ 2 ⇧ ^ ⇡

A�! hwhile (B) {C}, ⇢i 2
StiJwhile (B) {C}K ^ false 2 EJBK⇢}) Hsince f(let ... in ...) = let ... in f(...)I

= let StiJwhile (B) {C}K , lfp✓F tiJwhile (B) {C}K in ↵

a(StiJwhile (B) {C}K) ·
¬B Hdefinition of ↵

a and ignoring the result false 2 EJBK⇢ of testI
= ↵

a(lfp✓F tiJwhile (B) {C}K) · {¬B} Hdefinition of let ... in ...I
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Hby fixpoint approximation and · preserves unions so is ✓-increasingI
= GaJ

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

tt

ff

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

tt

ff
K Hdefinition of GaJ

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

tt

ff

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

Figure 6: Last Branch Condition Abstract Control Flow Graphs for Com-
mands

skip x := E C C1 C2 B

32

tt

ff
KI

C Proofs in Section 3.2

Theorem 2 (Homomorphic Abstraction). Given a function h : C 7! A, let

↵h(X) = {h(x) | x 2 X} and �h(Y ) = {x | h(x) 2 Y }, then ↵h and �h form a

Galois connection:

(}(C),✓) ����! ����
↵h

�h
(}(A),✓) (11)

Proof. For all X 2 }(C) and Y 2 }(A),

↵h(X) ✓ Y

() {h(x) | x 2 X} ✓ Y Hdefinition of ↵hI
() 8x 2 X : h(x) 2 Y Hdefinition of ✓I
() X ✓ {x | h(x) 2 Y } Hdefinition of ✓I
() X ✓ �h(Y ) Hdefinition of �hI ut

Proof of (1). By Theorem 2 where h is ↵

c.

Proof of (4). By Theorem 2 where h is ↵

d.

Proof of (7). By Theorem 2 where h is ↵

`.

Proof of (8). The composition of Galois connections is still a Galois connection.
For all A 2 }(A⇤) and B 2 }((AB)⇤ \ D),

↵

b(A) ✓ B
() ↵

` � ↵

d � ↵

c(A) ✓ B Hdefinition of ↵

bI
() ↵

d � ↵

c(A) ✓ �

`(B) Hby (}((AB)⇤),✓) ���! ���
↵`

�`

(}((AB)⇤ \ D),✓)I
() ↵

c(A) ✓ �

d � �

`(B) Hby (}((AC)⇤),✓) ���! ���
↵d

�d

(}((AB)⇤),✓)I
() A ✓ �

c � �

d � �

`(B) Hby (}(A⇤),✓) ���! ���
↵c

�c

(}((AC)⇤),✓)I
() A ✓ �

b(B) Hdefinition of �

bI
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