
An Abstract Domain to Discover
Interval Linear Equalities ?

Liqian Chen1,2, Antoine Miné1,3, Ji Wang2, and Patrick Cousot1,4

1 École Normale Supérieure, Paris, France
{chen,mine,cousot}@di.ens.fr

2 National Laboratory for Parallel and Distributed Processing, Changsha, P.R.China
wj@nudt.edu.cn
3 CNRS, France

4 CIMS, New York University, New York, NY, USA

Abstract. We introduce a new abstract domain, namely the domain of Interval
Linear Equalities (itvLinEqs), which generalizes the affine equality domain with
interval coefficients by leveraging results from interval linear algebra. The repre-
sentation of itvLinEqs is based on a row echelon system of interval linear equali-
ties, which natively allows expressing classical linear relations as well as certain
topologically non-convex (even unconnected or non-closed) properties. The row
echelon form limits the expressiveness of the domain but yields polynomial-time
domain operations. Interval coefficients enable a sound adaptation of itvLinEqs
to floating-point arithmetic. itvLinEqs can be used to infer and propagate interval
linear constraints, especially for programs involving uncertain or inexact data.
The preliminary experimental results are encouraging: itvLinEqs can find a larger
range of invariants than the affine equality domain. Moreover, itvLinEqs provides
an efficient alternative to polyhedra-like domains.

1 Introduction

In 1976, Karr [12] developed a polynomial-time algorithm to discover affine relation-
ships among program variables (

∑
k ak xk = b). This algorithm is also understood as an

abstract domain of affine equalities under the framework of abstract interpretation [5].
The affine equality domain features that the lattice of affine equalities has finite height,
thus no widening is needed to ensure termination of the analysis, which makes it suit-
able for certain analyses, such as precise interprocedural analysis for affine programs
[18]. Up to now, the affine equality domain is still one of the most efficient relational
numerical abstract domains.

In recent related work [10, 17, 18], one difficulty observed associated with the affine
equality domain is that a rational implementation of this domain can lead to exponen-
tially large numbers. To alleviate this problem, in this paper we seek to implement the
affine equality domain using floating-point numbers, as we did for the convex poly-
hedra domain in [2]. However, simply adapting the affine equality domain to floating-
point arithmetic, both soundness and precision are difficult to guarantee due to pervasive
? This work is supported by the INRIA project “Abstraction” common to CNRS and ENS in

France, and by the National Natural Science Foundation of China under Grant No.60725206.

rounding errors. E.g., in the floating-point world, when normalizing the coefficient of x
to be 1 in the equality 3x + y = 1, the only way to be sound is to throw this equality
away, since the new coefficient 1

3 is not a representable floating-point number. Thus, a
proper and natural way is to extend the affine equality domain with interval coefficients,
using intervals to enclose numbers not exactly representable in floating-point.

In the analysis and verification of real-life systems, the application data in the
model, especially some physical quantities, may not be known exactly, e.g., elicited
by inexact methods or by expert estimation. To handle such uncertainty, the application
data are often provided in terms of intervals. Moreover, in program analysis, to cope
with non-linearity in programs (such as multiplication/division of expressions, floating-
point arithmetic), non-linear expressions may be abstracted into linear expressions with
interval coefficients through certain abstraction techniques [16]. Thus, intervals appear
naturally in program expressions during static analysis.

This paper introduces an abstract domain of interval linear equalities (itvLinEqs),
to infer relationships of the form

∑
k[ak, bk] × xk = [c, d] over program variables xk

(k = 1, . . . , n), where constants ak, bk, c, d ∈ R∪{−∞,+∞} are automatically inferred by
the analysis. Intuitively, itvLinEqs is an interval extension of the affine equality domain
(
∑

k ak xk = b) [12] and a restriction to equalities of our previous work on the interval
polyhedra domain (

∑
k[ak, bk]xk ≤ c) [3]. itvLinEqs maintains a row echelon system

of interval linear equalities and its domain operations can be constructed analogously
to those of the affine equality domain. Like the affine equality domain, both the time
and space complexity of itvLinEqs is polynomial in the number of program variables
(respectively quartic and quadratic in the worst case).

We illustrate itvLinEqs for invariant generation using a motivating example shown
in Fig. 1. Both the affine equality domain [12] and the convex polyhedra domain [6]
will obtain no information at ¬, while itvLinEqs obtains x + [−2,−1]y = 1 at ¬ and
proves y = [−1,−0.5] at ­, which indicates that neither overflow nor division by zero
happens in the statement y := 1/y + 1.

real x, y;
if random()
then x := y + 1;
else x := 2y + 1;
endif; ¬

assume x == 0; ­

y := 1/y + 1;

Loc Affine equalities/Convex polyhedra itvLinEqs
¬ >(no information) x + [−2,−1]y = 1
­ x = 0 x = 0 ∧ y = [−1,−0.5]

Fig. 1. A motivating example

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 reviews basic theory of interval linear systems. Section 4 presents the repre-
sentation of itvLinEqs. Section 5 describes domain operations of itvLinEqs. Section 6
discusses reduction with the interval domain and the floating-point implementation of
itvLinEqs. Section 7 presents initial experimental results before Section 8 concludes.

2

2 Related Work

Static Analysis. In the literature, the affine equality domain has been generalized in var-
ious ways, such as the domain of convex polyhedra (

∑
k ak xk ≤ b) [6] and the domain of

linear congruence equalities (
∑

k ak xk = b mod c) [9]. Recently, Müller-Olm and Seidl
have generalized the analysis of affine relations to polynomial relations of bounded de-
gree [18]. In another direction, Gulwani and Necula [10] presented a polynomial-time
randomized algorithm to discover affine equalities using probabilistic techniques.

The idea of using intervals to help the affine equality domain is not new. Feret has
used a reduced product between the interval domain and the affine equality domain for
the analysis of mobile systems [7]. Recently, the domain of SubPolyhedra [14] has been
proposed based on delicate reductions between intervals and the affine equality domain,
but allows only the constant term of the equality to be an interval.

More recently, we have proposed to use intervals in our domain of interval poly-
hedra (

∑
k[ak, bk]xk ≤ c) [3] which generalizes the convex polyhedra domain by using

interval linear inequalities. itvLinEqs differs from it in the following respects:

1. itvLinEqs limits the constraint system to be in row echelon form, while the interval
polyhedra domain has no such limit but restricts interval coefficients to be finite.
E.g., [−∞,+∞]x = 1 (i.e., x , 0) is only representable in itvLinEqs while {x + y ≤
1, x + 2y ≤ 1} is only representable in the interval polyhedra domain.

2. Concerning the implementation, the interval polyhedra domain relies a lot on lin-
ear programming (LP). Since most state-of-the-art LP solvers are implemented us-
ing floating-point numbers, both soundness and “numerical instability” issues of
floating-point LP should be carefully considered [2]. However, itvLinEqs avoids
LP and is lightweight.

Interval Linear Algebra. The challenging problem of solving interval linear systems
has received much attention in the community of interval analysis [19]. Both checking
the solvability and finding the solution of an interval linear system are found to be NP-
hard. Different semantics of solutions of an interval linear system have been considered,
such as weak and strong solutions.

In contrast to the above community, we are interested in designing an abstract do-
main. Thus, we mainly focus on designing new operators for manipulating interval
linear constraints according to program semantics. In addition, endpoints of interval
coefficients are restricted to be finite in the above mentioned work but not in this pa-
per, since infinite interval coefficients may appear naturally after operations such as
linearization [16] and widening (Sect. 5.7) in static analysis.

3 Preliminaries

We first briefly recall basic theory and results on standard interval linear systems [19].
We extend interval linear systems with infinite interval coefficients. Let x = [x, x] be an
interval with its bounds (endpoints) x ≤ x. Let IR be the set of all real intervals [a, a]
where a, a ∈ R. Let IE be the set of all intervals [a, a] where a ∈ R∪{−∞}, a ∈ R∪{+∞}.
Throughout the paper, intervals and other interval objects are typeset in boldface letters.

3

Let A ∈ (R ∪ {−∞})m×n, A ∈ (R ∪ {+∞})m×n be two matrices with A ≤ A where the
order is defined element-wise. Then the set of matrices

A = [A, A] = {A ∈ Rm×n: A ≤ A ≤ A}

is called an (extended) interval matrix, and the matrices A, A are called its bounds.
An interval vector is a one-column interval matrix b = {b ∈ Rm: b ≤ b ≤ b}, where
b ∈ (R ∪ {−∞})m, b ∈ (R ∪ {+∞})m and b ≤ b.

Let A be an interval matrix of size m× n, b be an interval vector of size m, and x be
a vector of variables in Rn. The following system of interval linear equalities

Ax = b

denotes an (extended) interval linear system, that is the family of all systems of linear
equalities Ax = b with data satisfying A ∈ A, b ∈ b.

Definition 1 (Weak solution). A vector x ∈ Rn is called a weak solution of the interval
linear system Ax = b, if it satisfies Ax = b for some A ∈ A, b ∈ b. And the set

Σ∃∃(A,b) = {x ∈ Rn : ∃A ∈ A,∃b ∈ b. Ax = b}

is said to be the weak solution set of the system Ax = b.

The weak solution set Σ∃∃(A,b) can be characterized by the following theorem.

Theorem 1. Let Σn
j=1[Ai j, Ai j]x j = [bi, bi] be the i-th row of Ax = b. Then a vector

x ∈ Rn is a weak solution of Ax = b iff both linear inequalities ∑n
j=1 A′i jx j ≤ bi

−
∑n

j=1 A′′i jx j ≤ −bi

hold for all i = 1, . . . ,m where A′i j, A
′′
i j are defined through

A′i j =


Ai j if x j > 0
0 if x j = 0
Ai j if x j < 0

A′′i j =


Ai j if x j > 0
0 if x j = 0
Ai j if x j < 0

Theorem 1 can be derived from Theorem 2.11 in [19] that we extended to the case
of infinite interval coefficients. Note that for the linear inequality

∑n
j=1 A′i jx j ≤ bi in

Theorem 1, each term A′i jx j will never result in +∞, since A′i j = −∞ may hold only
when x j > 0 and A′i j = +∞ may hold only when x j < 0. Whenever one term A′i jx j

results in −∞, the linear inequality
∑n

j=1 A′i jx j ≤ bi defines the universal space and can
be omitted from the system. The same argument holds for −

∑n
j=1 A′′i jx j ≤ −bi.

Recall that a (closed) orthant is one of the 2n subsets of an n-dimensional Euclidean
space defined by constraining each Cartesian coordinate to be either nonnegative or
nonpositive. In a given orthant, each component x j of x keeps a constant sign, so the
intersection of the weak solution set Σ∃∃(A,b) with each orthant can be described as a
not necessarily closed convex polyhedron. In fact, the possible non-closeness happens
in a restricted way so that making it closed will add only a set of points satisfying x j = 0
for some x j. Particularly, if A ∈ IRm×n, the region in each closed orthant is a closed
convex polyhedron [3]. In general, Σ∃∃(A,b) can be non-convex and even unconnected,
e.g., [−1, 1]x = 1 describes the set {x : x ∈ [−∞,−1] ∪ [1,+∞]}.

4

Example 1. Given [−∞,+∞]x = 1, according to Theorem 1,

[−∞,+∞]x = 1⇔


{(−∞)x ≤ 1,−(+∞)x ≤ −1} ⇔ {−∞ ≤ 1,−∞ ≤ −1} if x > 0
{(+∞)x ≤ 1,−(−∞)x ≤ −1} ⇔ {−∞ ≤ 1,−∞ ≤ −1} if x < 0
{0x ≤ 1,−0x ≤ −1} ⇔ {0 ≤ 1, 0 ≤ −1} if x = 0

To sum up, [−∞,+∞]x = 1 means x , 0 (since in the case of x = 0 the corresponding
constraint system of [−∞,+∞]x = 1 is infeasible).

4 Representation

Now, we introduce the abstract domain of interval linear equalities (itvLinEqs). The
main idea of itvLinEqs is to use a row echelon system of interval linear equalities as its
representation. The concretization of each element in itvLinEqs is defined as the weak
solution set of the corresponding constraint system.

Constraint Normalization. Throughout this paper, we fix a variable ordering x1 ≺

x2 ≺ . . . ≺ xn. Σk[ak, ak]xk = [b, b] is a universal constraint if [b, b] = [−∞,+∞] or
0 ∈ [b, b] ∧ ∀k. 0 ∈ [ak, ak]. We use Σk[0, 0]xk = [0, 0] as a normalized form for uni-
versal constraints. Let ϕ be a non-universal constraint Σk[ak, ak]xk = [b, b]. Its leading
variable xi is the variable with the least index i such that [ai, ai] , [0, 0]. ϕ is said
to be normalized if the interval coefficient of its leading variable xi satisfies [ai, ai] ∈
{[0, 1], [0,+∞], [1, c], [−1, c′], [−∞,+∞]} where c, c′ ∈ R ∪ {+∞}, c ≥ 1, c′ > 0. Then,
given ϕ which is not normalized, its normalized form can be obtained by dividing the
whole constraint ϕ by either −1 (if [ai, ai] = [−∞, 0]), ±ai (if ai < {0,−∞}), or ±ai

(if ai < {0,+∞}). Note that this normalization operation is exact, i.e., it will cause
no precision loss. For convenience sake, we enforce a normalized form on constraints
throughout this paper.

Row Echelon Form. Let Ax = b be an interval linear system with A ∈ IEm×n and
b ∈ IEm. The system Ax = b is said to be in row echelon form if

1) m = n, and
2) Either xi is the leading variable of the i-th row, or the i-th row is filled with zeros.

itvLinEqs Elements. Each domain element P in itvLinEqs is described as an interval
linear system Ax = b in row echelon form, where A ∈ IEn×n and b ∈ IEn. It represents
the set γ(P) = Σ∃∃(A,b) = {x ∈ Rn : ∃A ∈ A,∃b ∈ b. Ax = b} where each point x is a
possible environment (or state), i.e., an assignment of real values to abstract variables.
Some examples of itvLinEqs elements are shown in Fig. 2.

Row Echelon Abstraction. A system of affine equalities can be equivalently con-
verted into row echelon form via elementary matrix transformations. Unfortunately, not
all systems of interval linear equalities can be exactly expressed in row echelon form.
Let P be an arbitrary system of interval linear equalities. We seek a system in row ech-
elon form ρ(P) such that γ(P) ⊆ γ(ρ(P)). Unfortunately, row echelon abstraction ρ(P)
may not be uniquely defined and the best abstraction may not exist. A row echelon

5

-1

-2

1 20-1-2

1

2

y

x

(a)

1

y

4

-4

1 4 x-4 0

(b)

4 101

-3

1

y

x-4

3

0

(c)

Fig. 2. Examples of itvLinEqs elements in 2 dimensions: (a) {[−1, 1]x+y = [0, 1], [−1, 1]y = 0.5};
(b) {[1,+∞]x + y = 1}; (c) {[1, 2]x + [1, 2]y = [2, 4], y = [−3, 3]}.

abstraction ρ(P) for P can be constructed based on constraint addition (Sect. 5.3), by
“adding” the constraints in P one by one to a row echelon system initially filled with 0.

Although row echelon abstraction may cause some loss of precision, we enforce
row echelon form in itvLinEqs since it yields polynomial-time domain operations and
avoids the “exponential growth” problem (i.e., producing exponential output) [21]. Fur-
thermore, row echelon form can still represent exactly any affine space. Finally, row
echelon form also makes it easier for us to construct our new domain by following an
analogous framework to the already known domain of affine equalities.

5 Domain Operations

In this section, we discuss the implementation of most common domain operations
required for static analysis over itvLinEqs.

5.1 Constraint Comparison

To enforce a row echelon form, we often need to compare several candidate constraints
and choose the best one to take the place of the i-th row of the system. We first use some
heuristic metrics to estimate the precision of the information contained in a normalized
constraint ϕ.

Definition 2. Let ϕ : (
∑

k[ak, ak]xk = [b, b]) be a normalized constraint and [xk, xk] be
the bounds of xk. Then metrics fweight(ϕ), fwidth(ϕ) ∈ R ∪ {+∞}, fmark(ϕ) ∈ R are defined
as:
1) fweight(ϕ) def

=
∑

k(ak − ak) × (xk − xk) + (b − b),

2) fwidth(ϕ) def
=
∑

k(ak − ak) + (b − b),

3) fmark(ϕ) def
=
∑

k δ(ak, ak) + δ(b, b), where

δ(d, d) def
=


−1 if d = d,
+200 else if d = −∞ and d = +∞,
+100 else if d = −∞ or d = +∞,

0 otherwise.

6

Definition 3 (Constraint comparison). Given two normalized constraints ϕ and ϕ′,
we write ϕ � ϕ′ if (fweight(ϕ), fwidth(ϕ), fmark(ϕ)) ≤ (fweight(ϕ′), fwidth(ϕ′), fmark(ϕ′)) holds
in the sense of lexicographic order.

Specifically, fweight takes into account variable bounds information; fwidth considers
only the width information of interval coefficients; fmark gives marks to those constraints
having infinite interval coefficients. In this sense, it is guaranteed that an affine equality
is always smaller for � than other kinds of constraints. E.g., (x + y = 1) � (x + y =
[1, 2]) � (x+ y = [1,+∞]). For convenience, we say that a non-universal constraint ϕ is
better than ϕ′ if ϕ � ϕ′ or ϕ′ is a universal constraint. (If ϕ � ϕ′ and ϕ′ � ϕ, we choose
the best one according to the context.) Constraint comparison requires O(n) time.

5.2 Projection

In program analysis, projection is an important primitive to construct assignment trans-
fer functions and interprocedural analysis. In itvLinEqs, it is also useful for constraint
addition and join. We use {�,�,�,l} for interval arithmetic operations.

We first introduce a partial linearization operator ζ(ϕ, x j) to linearize the interval
coefficient of x j in ϕ to be a scalar.

Definition 4 (Partial linearization). Let ϕ: (
∑

k [ak, ak] × xk = [b, b]) be an interval
linear equality and [x j, x j] be the bounds of x j.

ζ(ϕ, x j)
def
=
(
c × x j +

∑
k, j [ak, ak] × xk = [b, b] � [a j − c, a j − c] � [x j, x j]

)
where c can be any real number.

A good choice of c that causes less precision loss depends on the values of a j, a j, x j, x j.
In practice, when [a j, a j] is finite, we often choose c = (a j+a j)/2 that is the midpoint of
[a j, a j], which gives good results in most cases. If one endpoint of the interval [a j, a j]
is infinite, we choose the other endpoint as c. When x j has infinite bounds, we choose
the best one w.r.t. � between resulting constraints given by c = a j and by c = a j.

Theorem 2 (Soundness of the partial linearization operator). Given an interval lin-
ear equality ϕ and a variable x j ∈ [x j, x j], ζ(ϕ, x j) soundly over-approximates ϕ, that
is, ∀x.(x j ∈ [x j, x j] ∧ x ∈ γ(ϕ))⇒ x ∈ γ(ζ(ϕ, x j)).

Now, we consider the problem of projecting out a variable from one constraint and from
a pair of constraints.
Projection by Bounds. To project out x j from one constraint ϕ: (

∑
k[ak, ak]xk = [b, b]),

we simply choose c = 0 in ζ(ϕ, x j). Then
∑

k, j[ak, ak]xk = [b, b]� [a j, a j]� [x j, x j] will
be an overapproximation of ϕ which does not involve x j any more.

Projection by Combination. Let ϕ: (
∑

k[ak, ak]xk = [b, b]) and ϕ′: (
∑

k[a′k, a
′
k]xk =

[b′, b
′
]) be two constraints satisfying [a j, a j] , [0, 0] and [a′j, a

′
j] , [0, 0]. To compute

a constraint φ that does not involve x j and satisfies γ(ϕ) ∪ γ(ϕ′) ⊆ γ(φ), we follow a
similar way to Gaussian elimination. First, we convert the interval coefficient of x j in ϕ
to 1 (e.g., by ζ(ϕ, x j) with c = 1). Assume that we get x j +

∑
k, j[a′′k , a

′′
k]xk = [b′′, b

′′
].

7

Algorithm 1 P(P, x j)
Input: P : an itvLinEqs element Ax = b;

x j : a variable to be projected out;
Output: P′: an itvLinEqs element that does not involve x j and satisfies γ(P) ⊆ γ(P′).

1: P′ ← P
2: for i = 1 to j − 1 do
3: if ([Ai j, Ai j] , [0, 0]) then
4: ϕ← ζ(P′i , x j) with c = 0 // projection by bounds
5: for k = i + 1 to j do
6: if ([Ak j, Ak j] , [0, 0]) then
7: let ϕ′ be the resulting constraint by combining P′i and P′k to project out x j

8: if (ϕ′ � ϕ) then ϕ← ϕ′
9: P′i ← ϕ // ϕ is the best constraint with leading variable xi that does not involve x j

10: P′j ← [0, 0]1×(n+1)

11: return P′

Then by substituting x j with ([b′′, b
′′

]−
∑

k, j[a′′k , a
′′
k]xk) in ϕ′, the combination of ϕ and

ϕ′ to eliminate x j can be achieved as

φ :
(∑

k, j([a′k, a
′
k] � [a′j, a

′
j] � [a′′k , a

′′
k])xk = [b′, b

′
] � [a′j, a

′
j] � [b′′, b

′′
]
)
.

Particularly, when 0 < [a j, a j], converting [a j, a j] to 1 in ϕ can be also achieved by
the following theorem.

Theorem 3. Let ϕ be
∑

k[ak, ak]xk = [b, b] with 0 < [a j, a j]. Then

ϕ′′ :
(
x j +
∑

k, j([ak, ak] l [a j, a j])xk = [b, b] l [a j, a j]
)

is an overapproximation of ϕ, that is, γ(ϕ) ⊆ γ(ϕ′′).

To convert [a j, a j] to 1 in ϕ, the “division” method in Theorem 3 does not depend on
the bounds of x j but requires that 0 < [a j, a j], while ζ(ϕ, x j) with c = 1 is more general
but depends on the bounds of x j. Both methods may cause some loss of precision.
In practice, in most cases Theorem 3 gives more precise results, especially when the
bounds of x j are coarse or even infinite. E.g., given ϕ : ([1, 2]x+ y = 2) with no bounds
information, converting the coefficient of x to be 1, ζ(ϕ, x j) with c = 1 will give a
universal constraint while Theorem 3 will result in ϕ′′ : (x + [0.5, 1]y = [1, 2]). Note
that some loss of precision happens here, e.g., point (0,1) satisfies ϕ′′ but not ϕ.

Projection in itvLinEqs. We denote as Pi the i-th row of P. Based on the above projec-
tion operations on constraints, we now propose Algorithm 1 to project out x j from an
itvLinEqs element P, denoted as P(P, x j). For each row, we try various elimination
methods (by bounds and by combining with other constraints) and keep the best result-
ing constraint w.r.t. �. E.g., given P = {x − y = 0, [−1, 1]y = [2,+∞]}, P(P, y)
results in {[−1, 1]x = [2,+∞]}. Note that the affine space of the result of P(P, x j)
is always as precise as that given by projecting out x j from the affine space of P via
Gaussian elimination. The worst-case complexity of Algorithm 1 is O(n3).

8

5.3 Constraint Addition

We now consider the problem of “adding” a new constraint ϕ : (
∑

k[ak, ak]xk = [b, b])
to an itvLinEqs element P, denoted as [[ϕ]]#(P), i.e., to derive a row echelon abstraction
P′ such that γ(P) ∩ γ(ϕ) ⊆ γ(P′). Let xi be the leading variable of ϕ. We first initialize
P′ as P. Then, we compare ϕ with the i-th row ϕ′ of P′ (i.e., ϕ′ = P′i).

1) If ϕ is parallel to ϕ′, i.e., ∀k.[ak, ak] = [a′k, a
′
k], P′i will be updated as

∑
k[a′k, a

′
k]xk =

[max{b, b′},min{b, b
′
}]. If max{b, b′} > min{b, b

′
}, then P′ is infeasible.

2) Otherwise, we choose the best one for � between ϕ and ϕ′ to replace P′i . Next,
we combine ϕ with ϕ′ to eliminate xi (Sect.5.2) and recursively “add” the resulting
constraint ϕ′′ to the updated P′. As the index of the leading variable of the constraint
to add increases strictly, this process terminates when ϕ′′ becomes universal.

Unfortunately, in general neither γ(P′) ⊆ γ(P) nor γ(P′) ⊆ γ(ϕ) holds.
Constraint addition is used as a primitive for operations such as transfer functions,

row echelon abstraction, intersection. The intersection of two itvLinEqs elements P and
P′, denoted as P uw P′, can be implemented via “adding” the constraints from P′ to
P one by one, from the first row to the last. Note that γ(P) ∩ γ(P′) ⊆ γ(P uw P′), but
the converse may not hold. Also, uw is not commutative. Constraint addition can be
computed in time O(n2) and P uw P′ in time O(n3).

5.4 Join

In order to abstract the control-flow join, we need to design a join operation that returns
an itvLinEqs element which geometrically encloses the two input itvLinEqs elements.
However, in general, there is no best join available for itvLinEqs that computes the
smallest itvLinEqs element enclosing the input arguments. In this paper, we propose a
cheap join operation that we call weak join, which can compute the exact affine hull of
the affine spaces of the input arguments (i.e., no affine relation is missed) and performs
well but without precision guarantee on general interval linear constraints.

5.4.1 Approximate Convex Combination
In the affine equality domain, the join of two affine spaces can be computed via affine
hull that is based on affine combination.1 In the convex polyhedra domain, the join
of two convex polyhedra can be computed via polyhedral convex hull that is based
on convex combination [21].2 Following the same idea, we seek to construct a join
operation for itvLinEqs based on an approximate convex combination.

Given two itvLinEqs elements γ(P) = {x |Ax = b} and γ(P′) = {x |A′x = b′}, based
on the convex combination of points respectively from P and P′ we define a set of points

γ(P) d γ(P′) =

x ∈ Rn

∣∣∣∣∣∣∣∣
∃σ1, σ2 ∈ R, z, z′ ∈ Rn.
x = σ1z + σ2z′ ∧ σ1 + σ2 = 1 ∧ σ1 ≥ 0 ∧

Az = b ∧ A′z′ = b′ ∧ σ2 ≥ 0


1 An affine combination of vectors x1, . . . , xn is a vector of the form Σn

i=1λi xi with Σn
i=1λi = 1.

2 A convex combination of vectors x1, . . . , xn is a vector of the form Σn
i=1λi xi with Σn

i=1λi = 1 and
∀i.λi ≥ 0.

9

It is obvious that γ(P) d γ(P′) is an overapproximation of the union of γ(P) (when
σ1 = 1) and γ(P′) (when σ2 = 1). To avoid the non-linear terms σ1z and σ2z′, we
introduce y = σ1z as well as y′ = σ2z′ and relax the system intox ∈ Rn

∣∣∣∣∣∣∣∣
∃σ1, σ2 ∈ R, y, y′ ∈ Rn.
x = y + y′ ∧ σ1 + σ2 = 1 ∧ σ1 ≥ 0 ∧

Ay = σ1b ∧ A′y′ = σ2b′ ∧ σ2 ≥ 0


which can be rewritten asx ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣
∃σ1 ∈ R, y ∈ Rn.
A′x − A′y + b′σ1 = b′ ∧

A y − bσ1 = 0 ∧

σ1 = [0, 1]

 (1)

which is in row echelon form with respect to the variable ordering x1 ≺ . . . ≺ xn ≺

y1 ≺ . . . ≺ yn ≺ σ1. Projecting out y, σ1 from (1) in sequence (i.e., y1, . . . , yn, σ1) via
the projection operation in itvLinEqs (see Algorithm 1) yields an itvLinEqs element,
denoted as P dw P′. Then we have

γ(P) ∪ γ(P′) ⊆ γ(P) d γ(P′) ⊆ γ(P dw P′).

Note that P dw P′ which is computed via the projection operation in itvLinEqs is def-
initely an itvLinEqs element, while γ(P) d γ(P′) which is a point set defined via exact
existential quantifiers may not be exactly representable in itvLinEqs.

Pdw P′ will not miss any affine equality that the affine equality domain will generate
through affine combination, since an affine equality is always kept when compared with
other non-affine equalities according to the definition of constraint comparison �. More-
over, Pdw P′ can also generate other kinds of interesting interval linear constraints, such
as linear stripes (of the form

∑
k ak xk = [b, b]), to take the place of those rows where

no affine relation holds anymore after the join operation. In contrast to polyhedral con-
vex hull which is of exponential time in the worst case and the result of which is always
convex, Pdw P′ can be achieved in polynomial time O(n4) and can generate non-convex
constraints (although it may miss some linear inequalities).

5.4.2 Interval Combination
Definition 5 (Interval combination). Given two constraints ϕ′: (

∑
k [a′k, a

′
k] × xk =

[b′, b
′
]) and ϕ′′: (

∑
k [a′′k , a

′′
k] × xk = [b′′, b

′′
]), the interval combination of ϕ′ and ϕ′′

is defined as

ϕ′] ϕ′′ :
(∑

k [min(a′k, a
′′
k),max(a′k, a

′′
k)] × xk = [min(b′, b′′),max(b

′
, b
′′

)]
)
.

This definition straightforwardly lifts to itvLinEqs elements. Given two elements in
itvLinEqs P′ and P′′, we define P′] P′′ as P such that Pi = P′i] P′′i for all i = 1, . . . , n.

Theorem 4 (Soundness of the interval combination). Given two interval linear equal-
ities ϕ′ and ϕ′′, their interval combination ϕ′]ϕ′′ soundly over-approximates the union
of ϕ′ and ϕ′′, that is, γ(ϕ′) ∪ γ(ϕ′′) ⊆ γ(ϕ′] ϕ′′).

Theorem 4 implies the soundness of] on itvLinEqs, i.e., γ(P′) ∪ γ(P′′) ⊆ γ(P′] P′′).
P] P′ can be computed in time O(n2).

10

5.4.3 Weak Join
Definition 6 (Weak join). Given two itvLinEqs elements P and P′, we define a weak
join operation for the itvLinEqs domain as

P tw P′ def
= (P dw P′) uw (P] P′).

Intuitively, the part P dw P′ follows a similar way as the polyhedral convex hull
of the convex polyhedra domain and thus can construct some important convex con-
straints (such as affine equalities and linear stripes). Especially, P dw P′ can calculate
the exact affine hull of the affine spaces of the input. However, for non-affine relations,
in general Pdw P′ has no precision guarantee, since it is implemented based on a series
of projections which often depend on the bounds of variables. Thus, we use the other
part P] P′ to recover some precision by generating non-convex constraints based on
syntactic heuristics. P]P′ does not depend on the bounds of variables and can be easily
implemented via the join of the interval domain. Ptw P′ can be computed in time O(n4).

Example 2. Given two itvLinEqs elements P = {I = 2, J − K = 5, [−1, 1]K = 1} and
P′ = {I = 3, J − K = 8, [−1, 4]K = 2}. P dw P′ = {3I − J + K = 1, J − K = [5, 8]}.
P]P′ = {I = [2, 3], J−K = [5, 8], [−1, 4]K = [1, 2]}. Thus, PtwP′ = {3I−J+K = 1, J−
K = [5, 8], [−1, 4]K = [1, 2]}. Whereas, when considering only the join of their affine
spaces {I = 2, J−K = 5} and {I = 3, J−K = 8}, affine hull gives {3I − J+K = 1} in the
affine equality domain and polyhedral convex hull gives {3I − J+K = 1, J−K = [5, 8]}
in the convex polyhedra domain.

Theorem 5 (Soundness of the weak join). Given two itvLinEqs elements P and P′,
the weak join P tw P′ overapproximates both P and P′, i.e., γ(P) ∪ γ(P′) ⊆ γ(P tw P′).

5.5 Assignment Transfer Function

The assignment of an interval linear expression e to a variable x j can be modeled using
constraint addition, projection and variable renaming as follows:

[[x j:= e]]#(P) def
= (P([[x′j − e = 0]]#(P), x j))[x′j/x j] .

The fresh variable x′j, introduced to hold the value of the expression e, is necessary when
x j appears in e, e.g., x := [−1, 1]x + 1. The assignment transfer function [[x j:= e]]#(P)
can be computed in time O(n3) and its soundness is obvious.

5.6 Inclusion Test

The best order relation v on itvLinEqs is defined as P v P′ iff γ(P) ⊆ γ(P′). The-
orem 1 shows that v can be in principle checked by checking the inclusion in each
orthant in the convex polyhedra domain. However, it may be too expensive to com-
pute (an exponential number of linear programs). To solve this problem, we introduce
an approximate order relation vs on itvLinEqs. Given ϕ: (Σk[ak, ak]xk = [b, b]) and
ϕ′: (Σk[a′k, a

′
k]xk = [b′, b

′
]), ϕ vs ϕ

′ iff [b, b] ⊆ [b′, b
′
] and ∀k.[ak, ak] ⊆ [a′k, a

′
k]. Given

two itvLinEqs elements P and P′, P vs P′ iff for each row P′i of P′, either P′i is a uni-
versal constraint or Pi vs P′i . Then, P vs P′ implies P v P′, while the converse may not
hold. Checking P vs P′ requires O(n2) time.

11

5.7 Widening

Unlike the affine equality domain, itvLinEqs does not satisfy the ascending chain con-
dition. Thus, to cope with loops, a widening [5] operator is needed to ensure the con-
vergence of fixpoint computations.

Definition 7. Given two interval linear equalities ϕ′ : (
∑

k[a′k, a
′
k]xk = [b′, b

′
]) and

ϕ′′ : (
∑

k[a′′k , a
′′
k]xk = [b′′, b

′′
]), we define the widening on constraints ϕ′ and ϕ′′ as

ϕ′ 5row ϕ
′′ :
(∑

k([a′k, a
′
k] 5itv [a′′k , a

′′
k])xk = ([b′, b

′
] 5itv [b′′, b

′′
])
)

where 5itv is any widening of the interval domain [4], such as:

[a, a]Oitv[b, b] = [a ≤ b ? a : −∞, a ≥ b ? a : +∞]

Then we define the widening in the itvLinEqs domain as follows:

Definition 8 (Widening of itvLinEqs). Given two itvLinEqs elements P′ v P′′, we
define the widening as P′ 5ile P′′ def

= P where

Pi =

{
P′′i if P′′i is an affine equality
P′i 5row P′′i otherwise

Note that if P′ v P′′ does not hold, we use P′ 5ile (P′ tw P′′) instead. The widening
5ile keeps all affine equalities from P′′, thus will not cause any precision loss on affine
relations. When no affine relation holds at the i-th row, P′i 5row P′′i recovers precision
by capturing the stable information between a pair of evolving constraints P′i and P′′i . It
is easy to check that the widening 5ile satisfies P′ v (P′ 5ile P′′) and P′′ v (P′ 5ile P′′).
And the convergence of the widening 5ile can be guaranteed by the following two facts:
1) The lattice of affine equalities has finite height, and the number of affine equalities
in P′′ is decreasing until it reaches the dimension of the affine space in the program; 2)
The number of interval coefficients (including both variable coefficients and constant
coefficients) in an itvLinEq element is at most 1

2 n(n + 3), and the interval widening
5itv at each position of these interval coefficients will guarantee the convergence of the
non-affine part. The complexity of the widening 5ile is O(n2).

Widening with Thresholds. Widening with thresholds [1] 5T is a widening param-
eterized by a finite set of threshold values T , including −∞ and +∞. Widening with
thresholds for the interval domain is defined as:

[a, a] 5T
itv [b, b] = [a ≤ b ? a : max{` ∈ T | ` ≤ b},

a ≥ b ? a : min{h ∈ T | h ≥ b}]

By replacing 5itv with 5T
itv in 5row, our widening with thresholds 5T

row lifts the inter-
val widening with thresholds from individual variables to multiple variables in a natural
way. Quite interestingly, it can guess not only the lower and upper bounds of the con-
stant term (like augmenting the template polyhedra domain [20] with thresholds on the
constant term), but also the shape (i.e., the

∑
k[ak, ak]xk part) of the stable invariants.

12

Example 3.

real x, y;
x := 0.75 ∗ y + 1;
while true do
¬ if random()

then x := y + 1;
else x := 0.25 ∗ x + 0.5 ∗ y + 1;

done;

Given the above program, after the first iteration, the input arguments of the widening
at ¬ are ϕ : ([1, 1]x + [−0.75,−0.75]y = [1, 1]) and ϕ′ : ([1, 1]x + [−1,−0.6875]y =
[1, 1.25]). ϕ5rowϕ

′ results in [1, 1]x+[−∞,+∞]y = [1,+∞]. However, if we use ±n±0.5
(n ∈ N and n ≤ 2) together with +∞ and −∞ as the threshold set T , ϕ5T

row ϕ
′ will result

in [1, 1]x + [−1,−0.5]y = [1, 1.5], which will be stable in the subsequent iterations.

6 Implementation

Reduction with the Interval Domain. Variable bounds play a very important role
in our domain. E.g., both partial linearization (Def. 4) and constraint comparison (in
Sect. 5.1) rely on variable bounds. However, itvLinEqs itself has limited ability to infer
bounds information. Thus we employ the interval domain to maintain such information.

To avoid the well-known convergence problem of interaction between reduction and
widening [15], we perform reduction between the interval domain and itvLinEqs only
in one direction, i.e., from itvLinEqs to the interval domain. After certain domain oper-
ations (such as test/assignment transfer functions, meet), we propagate the information
from itvLinEqs to the interval domain to tighten the bounds. Such bound tightening is
performed through constraint propagation techniques, as in [2], by exploiting the fact
that each constraint can be used to tighten the bounds of those variables involved.
Floating-Point Implementation. Up to now, the whole domain of itvLinEqs was con-
sidered in exact arithmetic. Now, we consider the problem of implementing itvLinEqs
using floating-point numbers, since floating-point numbers are time and memory effi-
cient. itvLinEqs is mainly based on interval arithmetic, which can be easily implemented
soundly via interval arithmetic with outward rounding (i.e., rounding upper bounds up-
ward and lower bounds downward). And this is sufficient to guarantee that all domain
operations implemented in floating-point in this way are sound.

However, a floating-point implementation of itvLinEqs may also cause other issues.
First, floating-point itvLinEqs may miss some affine equalities due to rounding errors,
that is to say, floating-point itvLinEqs is not necessarily strictly more powerful than
the exact (rational) affine equality domain. Normalizing an interval linear equality may
not be exact any more in the floating-point world, e.g., normalizing 3x + y = 1. Also,
the analysis based on floating-point itvLinEqs may suffer from the known stabilization
problem of floating-point iterations [1]. However, the widening with thresholds can
partly alleviate this problem. E.g., we can choose thresholds like ±2±n(n ∈ N), as the
division and multiplication by these threshold values are simply shifting binary bits and
are exact in most cases.

13

Program Analyzer FP-itvLinEqs polkaeq Result
name(#vars) #∇delay #iter. #= #' time(ms) #iter. #= time(ms) Invar.

Karr1(3) 1 4 1 1 13 4 1 8 >

Karr2(4) 1 1 2 1 10 1 2 7 >

GS1(4) 1 1 2 3 19 1 2 13 >

GS2(4) 1 1 2 0 9 1 2 7 =

MOS1(6) 1 8 1 1 66 8 1 33 >

MOS2(1) 1 1 1 0 3 1 1 5 =

policy1(2) 1 4 1 1 12 4 1 10 >

Karr1 f(3) 1 5 0 2 19 3 0 9 >

Deadcode(2) 1 1 1 1 4 1 0 11 >

Fig. 3. Experimental results comparing FP-itvLinEqs with a domain for affine equalities.

7 Experiments

We have developed a prototype domain, FP-itvLinEqs, using double precision floating-
point numbers. FP-itvLinEqs is interfaced to the A numerical abstract domain li-
brary [11]. Our experiments were conducted using the I [13] static analyzer.
In order to assess the precision and efficiency of FP-itvLinEqs, we compare the ob-
tained invariants and the performance of FP-itvLinEqs with polkaeq [11] which is an
implementation in exact arithmetic to infer affine equalities,3 NewPolka [11] which is
an implementation in exact arithmetic of the convex polyhedra domain, as well as itvPol
[3] which is a sound floating-point implementation of our interval polyhedra domain.

We evaluated FP-itvLinEqs on three sets of examples. The results are summarized
in Figs. 3-5. The column “#∇delay” specifies the value of the widening delay param-
eter for I (i.e., the number of loop iterations performed before applying the
widening operator). “#iter.” gives the number of increasing iterations during the anal-
ysis. “Result Invar.” compares as a whole the invariants obtained. A “>” (“<”, “,”)
indicates that the left analysis outputs stronger (weaker, incomparable) invariants than
the right analysis. “time” presents the analysis times (where “>1h” indicates a timeout)
when the analyzer is run on a 1.6GHz PC with 768MB of RAM running Fedora 9.

Comparison with a Domain for Affine Equalities. We first compare FP-itvLinEqs
with polkaeq on a collection of small examples for discovering affine equalities, which
were obtained from [12, 18, 10, 8]. Fig. 3 summarizes the results on these examples. The
number of discovered invariants is given by “#=” for affine equalities and “#'” for other
kinds of constraints. For these programs, FP-itvLinEqs can find all the affine relations
that polkaeq finds, since indeed such programs involve only small integer values, thus
the floating-point computation causes little or even no precision loss. FP-itvLinEqs also
finds additional non-affine constraints. For the program Karr1 f which is the floating-
point version of Karr1, the affine equalities that hold in Karr1 do not hold in Karr1 f
any more, but FP-itvLinEqs can still find an interval linear invariant that involves 3

3 In fact, polkaeq is implemented on top of NewPolka convex polyhedra rather than Karr’s al-
gorithm [12], but polkaeq is as expressive as Karr’s algorithm.

14

Program Analyzer FP-itvLinEqs NewPolka itvPol Result
name(#vars) #∇delay #iter. #≤ #' time #iter. #≤ time #iter. #≤ #' time Invar.
policy2(2) 1 5 3 1 20ms 6 2 22ms 5 3 0 46ms > >

policy3(2) 1 5 2 2 18ms 6 2 20ms 5 2 2 49ms > <
policy4(2) 1 5 3 1 19ms 7 1 24ms 6 2 1 59ms > ,

bubblesort(4) 1 3 3 3 87ms 8 2 58ms 8 1 3 123ms > ,
symmetricalstairs(2) 1 6 3 0 33ms 6 3 31ms 5 2 0 45ms < >

maccarthy91(3) 1 5 1 2 28ms 4 2 15ms 4 2 3 83ms , <
incdec(32) 3 8 26 12 32s × × >1h × × × >1h > >

mesh2X2(32) 5 8 24 18 20s × × >1h 7 5 3 190s > ,

bigjava(44) 3 7 18 16 43s × × >1h 6 6 4 1206s > ,

Fig. 4. Experimental results comparing FP-itvLinEqs with domains for inequalities.

variables. For the program Deadcode (whose source code is {x := [0, 1]; if (x==2) then
y := 1; else y := x;}), at the end of the program, FP-itvLinEqs proves y = x whereas
polkaeq can not find any affine equality.

Comparison with Domains for Inequalities. The second set of examples obtained
from [8, 2, 20] is for discovering inequalities, as shown in Fig. 4. The number of discov-
ered invariants is given by “#≤” for linear inequalities (including affine equalities and
linear stripes, each of which is counted as two linear inequalities), and “#'” for other
kinds of constraints. The left sub-column of “Result Invar.” compares FP-itvLinEqs
with NewPolka while the right sub-column compares FP-itvLinEqs with itvPol. Com-
pared with NewPolka, in most cases FP-itvLinEqs gives more precise results, since
FP-itvLinEqs finds some non-convex interval linear invariants which make the over-
all feasible space of the invariants found (at each program point) smaller than that by
NewPolka. Particularly, for large-dimension examples, NewPolka fails to complete the
analysis in 1h, while FP-itvLinEqs works well. Compared with itvPol, FP-itvLinEqs
seems rather efficient. In fact, the efficiency difference becomes increasingly promi-
nent when the number of variables increases. Besides, FP-itvLinEqs generates some
invariants with infinite interval coefficients (e.g., 2 such constraints for policy3 and
bubblesort, 5 for incdec and mesh2X2, 12 for bigjava) out of the reach of itvPol.

Widening with Thresholds. In Fig. 5, we compare FP-itvLinEqs using widening with
thresholds and without thresholds (while we use only widening without thresholds in
Figs. 3-4). Example3 corresponds to the previous example in Sect. 5.7. ratelimiter f is
a floating-point program extracted from a real-life system [2]. nonlinear is an example

Program Analyzer
FP-itvLinEqs Result

without thresholds with thresholds Invar.
name(#vars) #∇delay #iter. time(ms) #iter. #newinv. time(ms)
Example3(2) 1 4 12 4 1 18 <

ratelimiter f(5) 2 5 88 5 2 91 <

nonlinear(3) 1 5 29 7 1 56 <

Fig. 5. Experimental results for widening with thresholds.

15

involving nonlinear expressions. When using widening with thresholds ({±n ± 0.5 | n ∈
N, n ≤ 150} ∪ {−∞,+∞}), FP-itvLinEqs finds tighter or new invariants, the number of
which is given by “#newinv.” in Fig. 5.

8 Conclusion

We have presented an abstract domain of interval linear equalities (itvLinEqs), which
extends the affine equality domain with interval coefficients. itvLinEqs can represent
and manipulate interval linear constraints, which natively allows expressing classical
linear relations as well as certain non-convex properties. itvLinEqs enforces a row ech-
elon form of the constraint system, which enables a polynomial-time implementation.
We have shown through experiments that itvLinEqs can find interesting interval linear
invariants in practice, including commonly used affine equalities, linear stripes, linear
inequalities. itvLinEqs provides a time and space efficient alternative to polyhedra-like
domains.

Future work will consider the variable ordering in itvLinEqs, since it has an impact
on the precision of the overall analysis. In order to choose a proper variable ordering,
data dependencies between variables need to be considered. It is also possible to main-
tain dynamic variable ordering, e.g., different orderings in different loops. It would be
also interesting to consider other heuristic strategies to choose which constraint to keep
and which to drop to maintain a row echelon form, e.g., to keep those constraints ap-
pearing syntactically in the program. We also plan to improve the prototype implemen-
tation (e.g., using a sparse representation for the constraint matrix) and use itvLinEqs
for analyzing large realistic programs. Another direction of the work is to relax the row
echelon form and allow several constraints per leading variable.

Acknowledgements. We would like to thank Axel Simon for useful discussions, and
the reviewers for their helpful comments.

References

1. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X.
Rival. A static analyzer for large safety-critical software. In ACM PLDI’03, pages 196–207.
ACM Press, 2003.

2. L. Chen, A. Miné, and P. Cousot. A sound floating-point polyhedra abstract domain. In
APLAS’08, volume 5356 of LNCS, pages 3–18. Springer Verlag, 2008.

3. L. Chen, A. Miné, J. Wang, and P. Cousot. Interval polyhedra: An abstract domain to infer
interval linear relationships. In SAS’09, volume 5673 of LNCS, pages 309–325. Springer
Verlag, 2009.

4. P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In Proc.
of the 2nd International Symposium on Programming, pages 106–130. Dunod, Paris, 1976.

5. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In ACM POPL’77, pages 238–252.
ACM Press, 1977.

6. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In ACM POPL’78, pages 84–96. ACM Press, 1978.

16

7. J. Feret. Occurrence counting analysis for the pi-calculus. In GETCO’00, volume 39(2) of
Electr. Notes Theor. Comput. Sci., pages 1–18. Elsevier, 2001.

8. S. Gaubert, E. Goubault, A. Taly, and S. Zennou. Static analysis by policy iteration on
relational domains. In ESOP’07, volume 4421 of LNCS, pages 237–252. Springer, 2007.

9. P. Granger. Static analysis of linear congruence equalities among variables of a program. In
TAPSOFT’91, volume 493 of LNCS, pages 169–192. Springer-Verlag, 1991.

10. S. Gulwani and G. Necula. Discovering affine equalities using random interpretation. In
ACM POPL’03, pages 74–84. ACM Press, 2003.

11. B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static analysis.
In CAV’09, volume 5643 of LNCS, pages 661–667. Springer, 2009.

12. M. Karr. Affine relationships among variables of a program. Acta Inf., 6:133–151, 1976.
13. G. Lalire, M. Argoud, and B. Jeannet. Interproc. http://pop-art.inrialpes.fr/people/bjeannet/

bjeannet-forge/interproc/.
14. V. Laviron and F. Logozzo. Subpolyhedra: A (more) scalable approach to infer linear in-

equalities. In VMCAI’09, volume 5403 of LNCS, pages 229–244. Springer, 2009.
15. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation, 19(1):31–

100, 2006.
16. A. Miné. Symbolic methods to enhance the precision of numerical abstract domains. In

VMCAI’06, volume 3855 of LNCS, pages 348–363. Springer, 2006.
17. M. Müller-Olm and H. Seidl. A note on Karr’s algorithm. In ICALP’04, volume 3142 of

LNCS, pages 1016–1028. Springer, 2004.
18. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear algebra. In

ACM POPL’04, pages 330–341. ACM Press, 2004.
19. J. Rohn. Solvability of systems of interval linear equations and inequalities. In Linear

Optimization Problems with Inexact Data, pages 35–77. Springer, 2006.
20. S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of linear systems using

mathematical programming. In VMCAI’05, volume 3385 of LNCS, pages 25–41. Springer
Verlag, 2005.

21. A. Simon and A. King. Exploiting sparsity in polyhedral analysis. In SAS’05, volume 3672
of LNCS, pages 336–351. Springer Verlag, 2005.

17

