
Linear Absolute Value Relation Analysis ?

Liqian Chen1, Antoine Miné2,3, Ji Wang1, and Patrick Cousot2,4

1 National Laboratory for Parallel and Distributed Processing, Changsha, P.R.China
{lqchen,wj}@nudt.edu.cn

2 École Normale Supérieure, Paris, France
{mine,cousot}@di.ens.fr

3 CNRS, France
4 CIMS, New York University, New York, NY, USA

Abstract. Linear relation analysis (polyhedral analysis), devoted to discovering
linear invariant relations among variables of a program, remains one of the most
powerful abstract interpretations but is subject to convexity limitations. Absolute
value enjoys piecewise linear expressiveness and thus natively fits to encode cer-
tain non-convex properties. Based on this insight, we propose to use linear ab-
solute value relation analysis to discover linear relations among values and ab-
solute values of program variables. Under the framework of abstract interpreta-
tion, the analysis yields a new numerical abstract domain, namely the abstract
domain of linear absolute value inequalities (Σkak xk + Σkbk |xk | ≤ c), which can
be used to analyze programs involving piecewise linear behaviors (e.g., due to
conditional branches or absolute value function calls). Experimental results of
our prototype are encouraging; The new abstract domain can find non-convex
invariants of interest in practice.

1 Introduction

Abstract interpretation [7] provides a general framework for static analysis. One pre-
dominant application is numerical static analysis, i.e., to discover numerical properties
of a program statically and automatically. Linear relation analysis [9], devoted to dis-
covering linear invariant relations among variables of a program, is one of the earliest
but still most powerful abstract interpretations. It yields the known convex polyhedra
abstract domain (Σkak xk ≤ c) [9], since the set of the reachable states at each program
point is abstracted as a convex polyhedron. Over the last 30 years, linear relation analy-
sis has a wide range of applications, especially in the field of analysis and verification
of programs and hybrid systems [14]. Moreover, a variety of weakly (linear) relational
abstract domains have been proposed in recent years, for discovering restricted forms
of linear relations, such as the Octagon domain (±x ± y ≤ c) [21], the Two Variables
Per Inequality (TVPI) domain (ax + by ≤ c) [28], and the Template Polyhedra domain
(Σkak xk ≤ c where variable coefficients ak are fixed beforehand) [25].

The concrete semantics of a program often involves non-convex behaviors. E.g.,
conditional branch statements often introduce disjunctive behaviors, since different com-
putations are performed depending on whether the condition evaluates to true or false.
? This work is supported by the INRIA project “Abstraction" common to CNRS and ENS in

France, and by the National Natural Science Foundation of China under Grant No.60725206.

Besides, many program properties that users may be interested in are non-convex,
e.g., the division-by-zero error. However, the polyhedra abstract domain together with
weakly (linear) relational abstract domains can express only convex sets (without re-
sorting to powerset extensions). The convexity limitations may lead to imprecision in
the analysis and thus can cause many false alarms.

Absolute value (AV) is a fundamental concept in mathematics and of high relevance
in practice. AV function is essentially a kind of piecewise linear functions, and thus
fits to express piecewise linear behaviors in a program that account for a large class
of non-convex behaviors in practice. Moreover, complex non-linear program behaviors
can be abstracted into piecewise linear behaviors, as in the field of hybrid systems. On
the other hand, AV functions are provided by many modern programming languages,
e.g., the abs (absolute value of an integer), fabs (absolute value of a floating-point num-
ber) functions in the C language. And several commonly used mathematical functions
such as fmin (minimum value), fmax (maximum value), fdim (positive difference) in the
C99 standard can be also expressed by AV functions, e.g., max(x, y) = 1

2 (|x− y|+ x + y).
Besides, rounding errors in floating-point arithmetic can be also abstracted by AV func-
tions: |round(x) − x| ≤ εrel · |x| + εabs where εrel denotes a relative error and εabs denotes
an absolute error [20]. In addition, in Sect. 2.4, we will show that linear constraints
with interval coefficients which may appear in numerical static analysis [4] can be also
rewritten via AV functions. However, due to non-linearity, AV functions are rarely con-
sidered during program analysis and verification.

In this paper, we propose an analysis to discover linear absolute value relations
among variables of a program, i.e., linear relations among the values and the absolute
values of variables. The analysis yields a new abstract domain, namely the abstract
domain of linear absolute value inequalities (AVI), to infer relationships of the form
Σkak xk+bk |xk | ≤ c over program variables xk (k = 1, . . . , n) where constants ak, bk, c ∈ R
are automatically inferred by the analysis. The new domain is more expressive than
the classic convex polyhedra domain and allows expressing certain non-convex (even
unconnected) sets due to the utilization of absolute value. Its domain operations are
constructed based a double description method. The preliminary experimental results
of the prototype implementation are promising on benchmark programs; AVI can find
non-convex invariants of interest in practice.

To sum up, this paper aims at exploiting the piecewise-linear expressiveness of ab-
solute value to design non-convex abstract domains which can be used to capture dis-
junctive information in a program and which for example will apply to programs in-
volving AV(-like) function calls. In other words, this paper is dedicated to coping with
disjunctive behaviors of a program at the level of abstract domains, with no need to
resort to other techniques to deal with disjunctions [3, 8, 24].

The rest of the paper is organized as follows. Section 2 shows the equivalence
among linear absolute value inequality systems, extended linear complementary prob-
lem (XLCP) systems and interval linear inequality systems. Section 3 presents a double
description method for XLCP on top of that for polyhedra. Section 4 proposes an ab-
stract domain of linear AV inequalities based on the double description method for
XLCP. Section 5 presents our prototype implementation together with preliminary ex-
perimental results. Section 6 discusses some related work before Section 7 concludes.

2

2 Linear absolute value inequality systems and their equivalents

2.1 Linear absolute value inequality systems (AVIs)

Let | · | denote absolute value (AV). We consider the following system of linear absolute
value inequalities (AVI)

Ax + B|x| ≤ c (1)

where A, B ∈ Rm×n and c ∈ Rm.

Theorem 1. Any AV inequality∑
i aixi +

∑
i,p bi|xi| + bp|xp| ≤ c

where bp > 0, can be reformulated as a conjunction of two AV inequalities{∑
i aixi +

∑
i,p bi|xi| + bpxp ≤ c∑

i aixi +
∑

i,p bi|xi| − bpxp ≤ c

Theorem 1 implies that any AVI system Ax + B|x| ≤ c can be reformulated as an AVI
system A′x + B′|x| ≤ c where B′ ≤ 0.

2.2 Extended linear complementarity problems (XLCPs)

Given a matrix M ∈ Rn×n and a vector q ∈ Rn, the (standard) linear complementarity
problem (LCP) is defined as the problem of finding vectors x+ and x− such that

x+ = Mx− + q (2)
x+, x− ≥ 0 (3)

(x+)T x− = 0. (4)

Note that if x+ and x− are solutions of the above LCP, then it follows from (3-4) that

x+
i x−i = 0 for i = 1, . . . , n

i.e., for each i the following holds: If x+
i > 0 then x−i = 0 holds, and if x−i > 0 then x+

i = 0
holds. In other words, the zero patterns of x+

i and x−i are complementary. Thus, condi-
tion (4) is called the complementarity condition of the above LCP. The LCP problem
is one of the fundamental problems in mathematical optimization theory, which sub-
sumes many mathematical programming problems such as linear programs, quadratic
programs [6]. Here, we present one extension of the LCP that is of interest to us.

Given M,N ∈ Rm×n and a vector q ∈ Rm, find x+, x− ∈ Rn such that

Mx+ + Nx− ≤ q (5)
x+, x− ≥ 0 (6)

(x+)T x− = 0. (7)

We call the above problem eXtended Linear Complementary Problem (XLCP), since it
can be proved equivalent to eXtended LCP of Mangasarian and Pang [19].

3

2.3 Interval linear inequality systems (ILIs)

Let x = [x, x] be an interval with its bounds (endpoints) x ≤ x. Let IR be the set of all
real intervals [a, a] where a, a ∈ R. Let A, A ∈ Rm×n be two matrices with A ≤ A where
the order is defined element-wise, then the set of matrices A = [A, A] = {A ∈ Rm×n : A ≤
A ≤ A} is called an interval matrix and the matrices A, A are called its bounds. Let us
define the center matrix of A as Ac = 1

2 (A + A) and the radius matrix as 4A = 1
2 (A− A).

Then, A = [A, A] = [Ac − 4A, Ac + 4A]. Note that 4A ≥ 0 always holds.
Let b be a regular vector in Rm. The following system of interval linear inequalities

Ax ≤ b

denotes an interval linear inequality system (ILI), that is, the family of all systems of
linear inequalities Ax ≤ b such that A ∈ A. A vector x ∈ Rn is called a weak solution of
the interval linear inequality system Ax ≤ b, if it satisfies Ax ≤ b for some A ∈ A.

2.4 Equivalence among AVIs, XLCPs and ILIs

Equivalence between AVIs and XLCPs. Let x = (xi)n
i=1 be a vector. Let vectors x+

and x− be defined by x+ = (max(xi, 0))n
i=1 and x− = (max(−xi, 0))n

i=1, so that

x+ ≥ 0, x− ≥ 0, (x+)T x− = 0

and

x = x+ − x−, |x| = x+ + x− (8)

x+ =
1
2

(x + |x|), x− =
1
2

(|x| − x) (9)

wherein |x| = (|xi|)n
i=1.

According to (8), AVI (1) can be reformulated as the following XLCP:

(A + B)x+ + (B − A)x− ≤ c

x+, x− ≥ 0
(x+)T x− = 0

Similarly, according to (9), XLCP (5-7) can be reformulated as the following AVI:

1
2

(M − N)x +
1
2

(M + N)|x| ≤ q

Equivalence between AVIs and ILIs. From Theorem 2.19 in [23] (which states that a
vector x ∈ Rn is a weak solution of Ax ≤ b iff it satisfies Acx − 4A|x| ≤ b) together with
Theorem 1 in this paper, we can prove that any system of absolute value inequalities
Ax + B|x| ≤ b can be reformulated as a system of interval linear inequalities A′x ≤ b′

where A, B ∈ Rm×n, b ∈ Rm,A′ ∈ IRk×n, b′ ∈ Rk. The converse also holds.

Example 1. Consider the following AVI: {|x| ≤ 1,−|x| ≤ −1}. Its corresponding XLCP
will be {x+ + x− ≤ 1,−x+− x− ≤ −1, x+ ≥ 0, x− ≥ 0, (x+)T x− = 0}, and its corresponding
ILI will be {x ≤ 1,−x ≤ 1, [−1, 1]x ≤ −1}.

4

Until now, we have shown the equivalence among AVIs, XLCPs and ILIs, which
indicates that we can reuse the method that can solve one of them to solve the others. In
this paper, we reduce AVIs (as well as ILIs) to XLCPs and propose a double description
method to characterize all solutions of an XLCP. On the other hand, the equivalence
implies that the AVI domain proposed in this paper can be reused to infer other kinds
of equivalent relations, e.g., to deal with linear constraints with interval coefficients
that may appear in numerical static analysis [4]. In Sect. 4.1, we will see that the AVI
domain is as expressive as the existing interval polyhedra domain [4] (that employs ILIs
for domain representation) but enjoys better (optimal) domain operations.

3 Double description method for XLCP

By Minkowski-Weyl theorem [26], the set P ⊆ Rn is a polyhedron, iff it is finitely
generated, i.e., there exist finite sets V,R ∈ Rn such that P can be generated by (V,R):

P =


|V |∑
i=1

λiVi +

|R|∑
j=1

µ jR j

∣∣∣∣∣∣∣∀i, λi ≥ 0, ∀ j, µ j ≥ 0,
|V |∑
i=1

λi = 1


where |V |, |R| denote the cardinality of sets V,R respectively. Elements in V are called ex-
treme points, while elements in R are called extreme rays. Using the double description
method, a convex polyhedron can be represented by either its constraint representation
{Ax ≤ b} or its generator representation (V,R). The two representations are duals: Each
can be computed from the other by Chernikova’s algorithm [18]. And the classic convex
polyhedra abstract domain [9] is designed based on the dual representations.

In this section, we will construct a double description method for XLCP, on top of
that for convex polyhedra. The main idea is the following. Intuitively, (5-6) of an XLCP
describes a convex polyhedron P = {x+ ∈ Rn, x− ∈ Rn | Mx++Nx− ≤ q, x+ ≥ 0, x− ≥ 0},
while the complementary condition (7) specifies that x+

i = 0 ∨ x−i = 0 holds for all
i = 1, . . . , n, which indicates 2n complementary patterns. Overall, XLCP (5-7) can be
considered as a union of a set of polyhedra, the number of which is in the worst case
2n (one for each complementary pattern). E.g., when n = 1, XLCP (5-7) is equivalent
to the union of 21 polyhedra: {x+ ∈ Rn, x− ∈ Rn | Mx+ + Nx− ≤ q, x+ = 0, x− ≥
0} ∪ {x+ ∈ Rn, x− ∈ Rn | Mx+ + Nx− ≤ q, x+ ≥ 0, x− = 0}. It is worth noting that
first not all generators g of P will be the generators of XLCP (5-7), since g may not
satisfy the complementary condition. Second, even for those generators of P that satisfy
the complementary condition, not all combinations of them will result in solutions of
XLCP (5-7). Essentially, we need to group generators according to the complementary
patterns such that each group corresponds to a convex polyhedron and any combination
of generators in one group will always result in a solution of XLCP (5-7).

Example 2. Consider the following XLCP: {−x+ − x− ≤ −1, x+ ≤ 2, x− ≤ 2, x+ ≥

0, x− ≥ 0, x+x− = 0}. As shown in Fig. 1, the polyhedral generators of {−x+ − x− ≤
−1, x+ ≤ 2, x− ≤ 2, x+ ≥ 0, x− ≥ 0} will be

(V,R) =

((
x+

x−

)
:

{(
1
0

)
,

(
2
0

)
,

(
0
1

)
,

(
0
2

)
,

(
2
2

)}
, ∅

)

5

x+

x−

Fig. 1. Generators and their grouping for XLCP

Firstly, the extreme point (2 2)T does not satisfy the complementary condition x+x− = 0,
and thus should be removed, since no combination involving (2 2)T will satisfy x+x− =

0 either. Secondly, for other extreme points that satisfy the complementary condition,
not all convex combinations of them will satisfy x+x− = 0, e.g., convex combinations
of (1 0)T and (0 1)T . To precisely characterize the solution set of the original XLCP,
two groups need to be constructed such that any convex combination of extreme points
from either group (without mixing) forms a XLCP solution:{ ((

x+

x−

)
:

{(
1
0

)
,

(
2
0

)}
, ∅

)
,

((
x+

x−

)
:

{(
0
1

)
,

(
0
2

) }
, ∅

) }
Taking the first group as an example, the convex combinations between extreme points
(1 0)T and (2 0)T from the first group define points lying on the line segment connecting
(1 0)T and (2 0)T . Indeed, all those points are solutions of the original XLCP.

3.1 Conversion from the constraint to the generator representation

3.1.1 Homogeneous case
Finding non-negative solutions of a polyhedral cone satisfying the complementary
condition. Let us denote x = (x+, x−)T , where x ∈ R2n, x+, x− ∈ Rn. Now we consider
a set of the form

C± = {x ∈ R2n | Ax ≥ 0, x ≥ 0, (x+)T x− = 0}

A vector y ∈ R2n is said to be a complementary generator of C±, iff y is a polyhedral
generator of {x | Ax ≥ 0, x ≥ 0} and satisfies (y+)T y− = 0. One simple way to find all
the complementary generators for C± is to first calculate all the polyhedral generators of
{x | Ax ≥ 0, x ≥ 0} using Chernikova’s algorithm [18] and then remove those generators
that do not satisfy (x+)T x− = 0 at the very end of the whole process. However, this may
cause a lot of unnecessary computation, and even combinatorial explosion.

We aim to design a method that can generate directly only complementary gen-
erators, by taking into account the complementary condition during the intermediate
computation. First, let C = {x | Ax ≥ 0, x ≥ 0} be a polyhedral cone and let y be a vec-

tor in C. Let D be the matrix associated with the constraint system of C, i.e., D =

[
A
I

]
where I ∈ Rn×n denotes the identity matrix. We use S (y,D) = {a | a is a row of D

6

such that ay = 0} to denote the set of rows saturated by y. Let Q be the non-redundant
set of polyhedral generators of C. Note that generators of pointed polyhedral cone are
all extreme rays except the extreme point 0. We apply the following rule to check ad-
jacency: Two rays y1 and y2 are adjacent in Q, denoted as adjacent(y1, y2) = true,
if |S (y1,D) ∩ S (y2,D)| ≥ 1 and there is no y′ distinct from y1, y2 in Q such that
S (y1,D) ∩ S (y2,D) ⊆ S (y′,D).

Let Q± = {y1, . . . , yr} be the non-redundant set of complementary extreme rays of
C±. Let H = {x | cx ≥ 0}. Three sets can be defined with respect to the product cyi:

Q=
± = {y | y ∈ Q±, cy = 0}

Q>
± = {y | y ∈ Q±, cy > 0}

Q<
± = {y | y ∈ Q±, cy < 0}.

The non-redundant set of complementary extreme rays of the new cone C±∩H, denoted
as Q′±, can be then constructed as:

Q′± = Q=
± ∪ Q>

± ∪ Q±

where Q± is defined by:

{y | cy = 0, y = λy1 + µy2, (y1, y2) ∈ Q>
± × Q<

±, adjacentc(y1, y2), λ > 0, (y+)T y− = 0}

where adjacentc(y1, y2) = true, if |S (y1,D) ∩ S (y2,D)| >= 1 and there is no y′ distinct
from y1, y2 in Q± such that S (y1,D) ∩ S (y2,D) ⊆ S (y′,D).

Note that to state adjacentc(y1, y2) = true, we check over only the set Q± that
is a subset of Q since some of the elements in Q may not satisfy the complemen-
tary condition. Thus, it may happen that adjacentc(y1, y2) = true (defined via Q±) but
adjacent(y1, y2) = false (defined via Q). However, in fact, in this case it can be proved
that no positive combination of such y1 and y2 will satisfy the complementary condition.
Let R be the set of extreme rays for C = {x | Ax ≥ 0, x ≥ 0}. Let Rc be the resulting set
of complementary extreme rays for C± = {x | Ax ≥ 0, x ≥ 0, (x+)T x− = 0} computed
by the above method via Q±. The following theorem guarantees the correctness of the
above incremental process of computing complementary extreme rays for C±.

Theorem 2. Rc contains all and only complementary extreme rays, that is, Rc = R∩{y |
y+y− = 0}.

Theorem 2 implies that Rc is equivalent to the result given by first computing all extreme
rays (i.e., R) for C and then removing at the very end those extreme rays that do not
satisfy the complementary condition.
Grouping complementary extreme rays. Note that not all non-negative combinations
of rays in Rc satisfy the complementary condition (x+)T x− = 0 and thus are necessary
in C±. To precisely describe C±, we need to classify Rc into several groups such that the
grouping result Rcc = 〈Rc

s1
, . . . ,Rc

si
, . . . ,Rc

sm
〉 satisfies

1. ∪m
i=1Rc

si
= Rc, and

2. Within each group Rc
si

, any nonnegative combination y of rays in Rc
si

satisfies the
complementary condition (y+)T y− = 0.

7

Note that Rcc is a cover of Rc. To construct such groups, we use the following
method. First, we construct an undirected graph Θ, where each rc

i ∈ Rc corresponds
to one node in Θ. And there is an edge between two nodes rc

i and rc
j , if the resulting

vector s = max{rc
i , r

c
j} satisfies (s+)T s− = 0. The goal then is to find all the maximal

complete subgraphs in Θ, each of which corresponds to one group Rc
si

in Rc. After that,
we can characterize C±.

Theorem 3. Let C± = {x | Ax ≥ 0, x ≥ 0, (x+)T x− = 0} and let Rcc = 〈Rc
s1
, . . . ,Rc

si
, . . .,

Rc
sm
〉 be the grouping result of its complementary extreme rays. Then x ∈ C±, iff there

exists some i (i ∈ N, 1 ≤ i ≤ m) such that

x =
∑

rc
k∈R

c
si

µkrc
k

where µk ≥ 0.

Intuitively, Theorem 3 states that C± is a union of a set of polyhedral cones and each
group Rc

si
corresponds to one polyhedral cone. While the sufficient condition is obvious,

the necessary condition can be proved as follows: Suppose y ∈ C± = {x | Ax ≥ 0, x ≥
0, (x+)T x− = 0}. First, we know that y can be and can only be generated through a
positive combination of a subset of rays in Rc = R ∩ {x | (x+)T x− = 0}, since the
result z of any positive combination involving r ∈ R \ Rc will not satisfy (z+)T z− = 0.
Assume that y can be generated through a positive combination of a set of rays Rc

y where
Rc

y ⊆ Rc, which implies that any nonnegative combination of rays in Rc
y will satisfy the

complementary condition. Hence, any Rc
si

satisfying Rc
y ⊆ Rc

si
can generate y. Therefore,

there exists some i (1 ≤ i ≤ m) such that y =
∑

rc
k∈R

c
si

µkrc
k where µk ≥ 0.

3.1.2 Inhomogeneous case
Finding non-negative solutions of a convex polyhedron. By introducing a fresh vari-
able h ∈ R, the inhomogeneous linear system {Ax ≥ b, x ≥ 0} (where x ∈ R2n) can
be transformed into an equivalent homogeneous one: {[A − b]y ≥ 0, y ≥ 0} where
y = (x h)T is a column (2n + 1)-vector with h ≥ 0.

Each extreme ray r of the above homogeneous system has the form of r = (x h)T

with h ≥ 0. We use rh to denote the h component of the vector r. For each extreme ray r,
there are two possibilities: rh = 0 or rh > 0. The set of extreme rays of the homogeneous
system, denoted as Rh, can be divided into two groups: R0 = {r | r ∈ Rh, rh = 0} and
R1 = {r/rh | r ∈ Rh, rh > 0}. Then, we extract the x part out of the vectors from R0 and
R1. Assume that we get R = {x | (x 0)T ∈ R0} and V = {x | (x 1)T ∈ R1}. The generators
in V are called extreme points while the generators in R are called extreme rays of the
inhomogeneous system. In other words, we get the generator representation G = (V,R)
for the inhomogeneous system {Ax ≥ b, x ≥ 0}.

Finding non-negative solutions of a convex polyhedron satisfying the complemen-
tary condition. Similarly as above, from the set of complementary extreme rays of
{y | Ay ≥ 0, y ≥ 0, (x+)T x− = 0, y = (x+ x− h)T } which can be obtained via the method
in Sect. 3.1.1, we can derive the set of complementary generators Gc = (Vc,Rc) for

P± = {x | Ax ≥ b, x ≥ 0, (x+)T x− = 0}.

8

Again, to precisely describe P±, we need to classify Gc into several groups such that
the grouping result Gcc = 〈Gc

s1
, . . . ,Gc

si
, . . . ,Gc

sm
〉 where Gc

si
= (Vc

si
,Rc

si
), satisfies

1. ∪m
i=1Vc

si
= Vc, ∪m

i=1Rc
si

= Rc, and
2. Within each group Gc

si
, any sum z of an arbitrary convex combination of extreme

points from Vc
si

and an arbitrary nonnegative combination of extreme rays from Rc
si

,
satisfies the complementary condition (z+)T z− = 0.

Similarly, to construct such groups, we can use algorithms that find all the maximal
complete subgraphs of an undirected graph. Now we can characterize P±.

Theorem 4. Let P± = {x ∈ R2n | Ax ≥ b, x ≥ 0, (x+)T x− = 0}, and let Gcc =

〈Gc
s1
, . . . ,Gc

si
, . . . ,Gc

sm
〉 be the grouping result of its complementary generators where

Gc
si

= (Vc
si
,Rc

si
). Then x ∈ P±, iff there exists some i (i ∈ N, 1 ≤ i ≤ m) such that

x =
∑

vc
j∈V

c
si

λ jvc
j +

∑
rc

k∈R
c
si

µkrc
k

where λ j, µk ≥ 0, Σ jλ j = 1.

Theorem 4 states that P± is a union of a set of convex polyhedra, the number of which is
sm. Each group Gc

si
describes a polyhedron. Note that sm is not necessarily equal to the

number of complementary patterns (i.e., 2n), since a certain complementary pattern may
define an empty polyhedron and the union of some polyhedra stemming from distinct
complementary patterns may be exactly representable by a single polyhedron.

It is worth noting that generating all the maximal complete subgraphs of an undi-
rected graph is an NP-complete problem [10]. Fortunately, as we will see in Sect. 4, to
design the AVI abstract domain, we do not need to group the complementary generators,
since no domain operation requires Gcc and all domain operations can be implemented
based on only a non-redundant set of complementary generators Gc. In this paper, the
notion of Gcc is only useful to get Theorem 4 which is interesting as it precisely char-
acterizes the topological properties of P± and shows that P± is essentially a (possibly)
non-convex union of a set of convex polyhedra.

3.2 Conversion from the generator to the constraint representation

Let Gc = (Vc,Rc) be the set of complementary generators of a convex polyhedron P±
satisfying {x ≥ 0, (x+)T x− = 0}. We now consider the problem of constructing the
constraint representation for P± from Gc. It can be achieved by the following steps:

1. Consider Gc = (Vc,Rc) as the regular generator representation of some convex
polyhedron. Then we use the standard Chernikova’s algorithm to compute the cor-
responding polyhedral constraint representation, i.e., a linear system such as

M′x+ + N′x− ≤ b′

2. Add x+, x− ≥ 0 to the above system and remove those constraints from M′x+ +

N′x− ≤ b′ that become redundant after adding x+, x− ≥ 0. Suppose we get

Mx+ + Nx− ≤ b

x+, x− ≥ 0

9

3. Add (x+)T x− = 0 to the above system, and we get

Mx+ + Nx− ≤ b

x+, x− ≥ 0

(x+)T x− = 0

which will be the XLCP constraint representation for P±.

Observe that the resulting XLCP constraint representation for P± is not necessarily
non-redundant. However, this does not matter much for designing abstract domains,
since a non-redundant generator representation for P± can be ensured.

4 An abstract domain of linear absolute value inequalities

In this section, we propose a new abstract domain, namely the abstract domain of linear
absolute value inequalities (AVI). The key point is to use a system of linear absolute
value inequalities as the domain representation. AVI can be used to infer relationships
of the form Σkak xk + Σkbk |xk | ≤ c over program variables xk (k = 1, . . . , n), where
constants ak, bk, c ∈ R are automatically inferred by the analysis.

4.1 Representation

An AVI domain element P is described as an AVI system Ax + B|x| ≤ c, where A, B ∈
Rm×n, c ∈ Rm, and m is the number of constraints in the system. It represents the set
γ(P) = {x ∈ Rn | Ax + B|x| ≤ c}, in which each point x ∈ γ(P) represents a possible
program environment (or state), i.e., an assignment of numerical/real values to program
variables.

From Sect. 2, we know that a linear AV inequality system is equivalent to an interval
linear inequality system. Thus the AVI domain is as expressive as the interval polyhe-
dra abstract domain [4]. In other words, each AVI domain element is geometrically an
interval polyhedron. Hence, the set of AVI domain elements has the same topological
properties as the set of interval polyhedra:

– An AVI domain element is non-convex (even unconnected) in general.
– The intersection of an AVI domain element with each orthant inRn gives a (possibly

empty) convex polyhedron.

Specifically, from Theorem 6 in Sect. 4.2, we will see that the set union of bounded
convex polyhedra with one per each (closed) orthant can be exactly represented by one
AVI domain element.

Expressiveness lifting. Note that in the AVI domain representation, absolute value
| · | applies to only (single) variables rather than expressions. E.g., consider the relation
y = x − |x + 1| + |x − 1| which encodes the following piecewise linear function

y =


x + 2 if x ≤ −1
−x if − 1 ≤ x ≤ 1
x − 2 if x ≥ 1

10

whose plot is shown in Fig. 2. The AVI domain can not express directly this piecewise
linear function (in the space of x, y), since | · | applies to two expressions: x+1 and x−1.
Indeed, in Fig. 2 the region in each orthant is not a convex polyhedron.

−2 −1 1 2

1

0

−1

x

y

Fig. 2. A piecewise linear function

In order to express such piecewise linear relations, we lift the expressiveness of the
AVI domain by introducing new auxiliary variables to denote those expressions that
appear inside the AV function. E.g., we could introduce two auxiliary variables ν1, ν2
to denote the values of the expressions x + 1 and x − 1 respectively. Then using AVI
domain elements in the space with higher dimension (involving 4 variables: x, y, ν1, ν2),
such as {y = x − |ν1| + |ν2|, ν1 = x + 1, ν2 = x − 1}, we could express complex piecewise
linear relations in the space over lower dimension (involving 2 variables: x, y), such as
y = x − |x + 1|+ |x − 1|. Note that {y = x − |ν1|+ |ν2|, ν1 = x + 1, ν2 = x − 1} is indeed an
AVI domain element. Following the same strategy, we can also express piecewise linear
relations with nestings of absolute value functions. E.g., to express y = ||x| −1|+ ||z| −2|,
by introducing auxiliary variables ν1, ν2, we could use {y = |ν1| + |ν2|, ν1 = |x| − 1, ν2 =

|z| − 2}.
In fact, a large subclass of piecewise linear functions of practical interest can be

represented via AV functions through a so-called canonical (piecewise linear) represen-
tation [5], as known in the field of circuits and systems. Thus, most piecewise linear
relations of interest in the program could be also expressed by the AVI domain, pro-
vided that necessary auxiliary variables are introduced.

4.2 Domain operations

In the convex polyhedra domain, domain operations can be implemented based on the
double description method for convex polyhedra [9]. Similarly, we will construct do-
main operations for the AVI domain based on the double description method for AVI
systems (which are equivalent to XLCPs). During the implementation, we maintain the
map between abstract environments over x and abstract environments over x+, x− as:

x = x+ − x−, |x| = x+ + x−

x+ =
1
2

(x + |x|), x− =
1
2

(|x| − x)

where x+, x− satisfy
x+ ≥ 0, x− ≥ 0, (x+)T x− = 0

11

More precisely, we will construct domain operations for the AVI domain over x, based
on the double description method for XLCP over x+, x−. Note that for the implemen-
tation of the AVI domain, we need only the set of complementary generators Gc =

(Vc,Rc), without resorting to the grouping information Gcc of the complementary gen-
erators. And the cost of the AVI domain is dominated by the dual conversions between
XLCP constraints and complementary generators.

For the sake of simplicity, from now on, we assume that the AVI element P corre-
sponds to the following XLCP system:

Mx+ + Nx− ≤ b

x+ ≥ 0, x− ≥ 0, (x+)T x− = 0

and we denote its set of complementary generators as

Gc = (Vc,Rc).

Now, we describe the implementation of most common domain operations required
for static analysis over the AVI domain, some of which require only constraints or
generators while some of which require both.

(1) Lattice operations

– Emptiness test: P is empty, iff Vc = ∅.
From now on, let P,P′ be two non-empty AVI domain elements.

– Inclusion test: P v P′ that is γ(P) ⊆ γ(P′), iff

∀v ∈ Vc, M′ v+ + N′ v− ≤ b′ ∧ ∀r ∈ Rc, M′ r+ + N′ r− ≤ 0

– Meet: P u P′ is an AVI domain element whose XLCP system is

Mx+ + Nx− ≤ b
M′x+ + N′x− ≤ b′

x+ ≥ 0, x− ≥ 0, (x+)T x− = 0

– Join: P t P′ is the least AVI domain element containing P and P′, whose set of
complementary generators is the union of those of P and P′: (Vc ∪ V ′c,Rc ∪ R′c).
We show by the following theorem that this join operation is optimal, i.e., its output
gives the smallest AVI domain element containing the two input elements.

Theorem 5. Given two AVI domain elements P and P′, for any AVI domain element Q
satisfying γ(P) ⊆ γ(Q) and γ(P′) ⊆ γ(Q), we have γ(P t P′) ⊆ γ(Q).

From this theorem together with Theorem 4, we have the following theorem that
explores further the expressiveness of the AVI domain.

Theorem 6. Given a set of bounded convex polyhedra with one per each closed or-
thant, their set union can be exactly represented by one AVI domain element (through
the same set of variables).

Note that, however, Theorem 6 may not hold when one of the input AVI domain ele-
ments is not bounded. Theorem 6 implies that given two AVI systems that are bounded,
the result of the AVI join is equivalent to the result given by the set union of convex
polyhedral hulls in each orthant.

12

(2) Transfer functions

– Test transfer function: τ[[cx + d|x| ≤ e]]#(P), whose XLCP system is defined as

Mx+ + Nx− ≤ b
(c + d)x+ + (d − c)x− ≤ e

x+ ≥ 0, x− ≥ 0, (x+)T x− = 0

– Projection: τ[[x j := random()]]#(P), whose set of complementary generators is
defined as (Vc,Rc ∪ {e+

j , e
−
j , −e+

j ,−e−j }), where e+
j denotes a canonical basis vector

wherein all the components are 0 except x+
j = 1, and e−j denotes a canonical basis

vector wherein all the components are 0 except x−j = 1. Observe that τ[[x j :=
random()]]#(P) is optimal in the AVI domain, although its result may be less precise
than ∃x j.P

def
= {x[x j/y] | x ∈ γ(P), y ∈ R} which may be not an AVI domain

element, where x[x j/y] denotes the vector x in which the j-th element is replaced
with y.

– Assignment transfer function: τ[[x j := Σiaixi + Σibi|xi| + c]]#(P), can be modeled
using test transfer function, projection and variable renaming as follows:(

τ[[x j := random()]]# ◦ τ[[Σiaixi + Σibi|xi| + c − x′j = 0]]#(P)
)

[x′j/x j]

Note that the assignment transfer function is optimal but not exact. E.g., assign-
ments may cause a polyhedron in one orthant to cross orthant boundaries. In such
case, the result in each orthant is then updated to a possible overapproximation of
the polyhedral convex hull of the regions which belong to that orthant after the
transfer operation.

(3) Widening

– Widening: Given two AVI domain elements P v P′, we define

P O P′ def
= S1 ∪ S2 ∪ {x+, x− ≥ 0, (x+)T x− = 0}

where

S1 = { ϕ1 ∈ (Mx+ + Nx− ≤ b) | P′ |= ϕ1 },

S2 =

{
ϕ2 ∈ (M′x+ + N′x− ≤ b′)

∣∣∣∣∣∣∃ϕ1 ∈ (Mx+ + Nx− ≤ b),
γ(P) = γ((P \ {ϕ1 }) ∪ {ϕ2 })

}
The above widening for the AVI domain is designed following the same principle as
the standard widening of the convex polyhedra domain. The first set S1 contains all
inequalities from the Mx+ + Nx− ≤ b part of P that are not violated by the larger P′,
while S2 consists of inequalities from the M′x+ + N′x− ≤ b′ part of P′ that can be
exchanged with an inequality from the Mx+ + Nx− ≤ b part of P without changing
the represented state. S2 ensures that the result is independent of the (syntactic)
representation of P and P′. Here, we use ϕ1 ∈ (Mx+ + Nx− ≤ b) to denote that ϕ1
is one constraint from the system Mx+ + Nx− ≤ b. Let ϕ1 be (cx+ + dx− ≤ e). The
entailment P′ |= ϕ1 can be implemented by checking

13

∀v′ ∈ V ′c, c v′+ + d v′− ≤ e ∧ ∀r′ ∈ R′c, c r′+ + d r′− ≤ 0

Next, we use the following example to show in detail how AVI domain operations
can be constructed based on the double description method. We choose to show the
join operation, since the join is rather interesting (especially when comparing it with
polyhedral convex hull of the convex polyhedra domain [9] as well as weak join of the
interval polyhedra domain [4]).

Example 3. Consider two AVI domain elements P′ = {(x y)T | 1 ≤ x ≤ 2,−1 ≤ y ≤
1} = {(x+ x− y+ y−)T | 1 ≤ x+ − x− ≤ 2,−1 ≤ y+ − y− ≤ 1, x+ ≥ 0, x− ≥ 0, y+ ≥

0, y− ≥ 0, x+x− = 0, y+y− = 0} and P′′ = {(x y)T | −2 ≤ x ≤ −1} = {(x+ x− y+ y−)T |

−2 ≤ x+ − x− ≤ −1, x+ ≥ 0, x− ≥ 0, y+ ≥ 0, y− ≥ 0, x+x− = 0, y+y− = 0}, shown in
Figure 3(1). Note that P′ is a bounded convex polyhedron while P′′ is an unbounded
convex polyhedron. And the polyhedral convex hull of P′ and P′′ results in {(x y)T |

−2 ≤ x ≤ 2} that is a convex polyhedron. Since P′′ is unbounded, we can not apply
Theorem 6 to the set union of P′ and P′′ which indeed cannot be exactly described by
any AVI domain element (through the same set of variables).

First, if we omit the condition x+x− = 0 ∧ y+y− = 0, the set of regular (polyhedral)
generators for P′ and P′′ over (x+, x−, y+, y−)T will be respectively

(VP′ ,RP′) =




x+

x−

y+

y−

 :




1
0
0
0

 ,


2
0
0
0

 ,


1
0
0
1

 ,


2
0
0
1

 ,


1
0
1
0

 ,


2
0
1
0


 ,




1
1
0
0

 ,


0
0
1
1





(VP′′ ,RP′′) =




x+

x−

y+

y−

 :




0
1
0
0

 ,


0
2
0
0


 ,




0
0
0
1

 ,


0
0
1
0

 ,


1
1
0
0





If we take into account x+x− = 0∧ y+y− = 0, we get the sets of complementary genera-
tors for P′and P′′ over (x+, x−, y+, y−)T :

(Vc
P′ ,R

c
P′) =




x+

x−

y+

y−

 :




1
0
0
0

 ,


2
0
0
0

 ,


1
0
0
1

 ,


2
0
0
1

 ,


1
0
1
0

 ,


2
0
1
0


 , ∅


(Vc

P′′ ,R
c
P′′) =




x+

x−

y+

y−

 :




0
1
0
0

 ,


0
2
0
0


 ,




0
0
0
1

 ,


0
0
1
0





And (Vc
P′ ∪Vc

P′′ ,R
c
P′ ∪Rc

P′′) will be the set of complementary generators for P′tP′′, i.e.,


x+

x−

y+

y−

 :




1
0
0
0

 ,


2
0
0
0

 ,


1
0
0
1

 ,


2
0
0
1

 ,


1
0
1
0

 ,


2
0
1
0

 ,


0
1
0
0

 ,


0
2
0
0


 ,




0
0
0
1

 ,


0
0
1
0





14

Then, by converting it into the constraint representation, we will get the following
XLCP system for P′ t P′′:

{1 ≤ x+ + x− ≤ 2, x+ ≥ 0, x− ≥ 0, x+x− = 0, y+ ≥ 0, y− ≥ 0, y+y− = 0}

Finally, we can get the following AVI representation for P′ t P′′:

P′ t P′′ = {(x y)T | 1 ≤ |x| ≤ 2}

And the regions of the inputs P′ and P′′ together with the output Q of the AVI join
operation are shown in Figure 3.

(1)

x

y

P ′′ P ′

P ′

P ′′

x−

x+ y+

y−

P ′′

P ′′

P ′

(2)

y

x
Q Q

(a) xy

Q

x−

x+

(b) x+x−

Q

Q

y−

y+

(c) y+y−

Fig. 3. Subfigure (1) shows the two input AVI domain elements of the join: P′ = {1 ≤ x ≤ 2,
−1 ≤ y ≤ 1} and P′′ = {−2 ≤ x ≤ −1}, while subfigure (2) shows the join over the AVI domain:
Q = P′ t P′′ = {1 ≤ |x| ≤ 2}. The columns (a), (b), (c) depict the regions over the xy, x+x−, y+y−

planes respectively.

5 Implementation and experimental results

Our prototype domain, rAVI, is developed based on Sect. 4 using multi-precision ratio-
nal numbers. It makes use of GMP (the GNU Multiple Precision arithmetic library) [1]
and NewPolka [15] that is a rational implementation of the convex polyhedra domain.
rAVI is interfaced to the Apron numerical abstract domain library [15]. Our experiments
were conducted using the Interproc [16] static analyzer. In order to assess the preci-
sion and efficiency of rAVI, we compare the obtained invariants and the performance of

15

rAVI with NewPolka as well as our previous work itvPol which is a sound floating-point
implementation of the interval polyhedra domain [4].

To demonstrate the expressiveness of rAVI, two simple programs are shown in
Figs. 4-5, together with the invariants generated by the analyzer. In Fig. 4, for AVtest1,
the initial state consists of four points that are respectively from 4 different orthants
over the x-y plane: (1, 1), (−1, 1), (−1,−1), (1,−1). The loop increases the values of x
and y in each orthant simultaneously, along the direction y = x and y = −x respec-
tively. At program point ¬, rAVI can prove that |y| = |x| ∧ |x| ≥ 1 while NewPolka
obtains no information. itvPol can only prove that [−1, 1]x ≤ −1 ∧ [−1, 1]y ≤ −1 (i.e.,
|x| ≥ 1∧ |y| ≥ 1) and thus can not find any relations among x and y due to the weak join
used in itvPol [4].

real x, y;
assume x = 1 or x = −1;
assume y = 1 or y = −1;
while (true) {
¬ if (x ≥ 0) { x := x + 1; }

else { x := x − 1; }
if (y ≥ 0) { y := y + 1; }
else { y := y − 1; }

}

Loc NewPolka itvPol rAVI
¬ > [−1, 1]x ≤ −1 |x| = |y| ∧ |x| ≥ 1

(no information) ∧ [−1, 1]y ≤ −1

Fig. 4. Program AVtest1 (left) and the generated invariants (right)

The program CmplxTest1 shown in Fig. 5 comes from [13] where it is used as
an example for analyzing time complexity of the program. Here, we modify a bit the
program by introducing a fresh variable t to denote the value of n − x0. The main goal
is to find an upper bound for the loop counter i. However, NewPolka and itvPol can not
find any upper bound for i, while rAVI can prove that i ≤ 1

2 (|t|+t), i.e., i ≤ max(0, n−x0),
which shows that the time complexity of CmplxTest1 is max(0, n − x0) in terms of the
input parameters x0, n.

CmplxTest1(int x0, n)
x := x0; i := 0;
t := n − x0;
while (x < n) {

i := i + 1;
x := x + 1;

} ¬

Loc NewPolka itvPol rAVI
¬ i ≥ 0 i ≥ 0 i ≥ 0
∧ i = x − x0 ∧ i = x − x0

∧ i ≤ 1
2 (|t| + t)

∧ . . .

Fig. 5. Program CmplxTest1 (left) and the generated invariants related to i (right)

Table 1 shows the comparison of performance and result invariants for a selection
of benchmark examples. Programs AVtest1, CmplxTest1 correspond to those programs

16

shown in Figs. 4-5. CmplxTest1-3 come from [13] wherein they are used for analyzing
time complexity of programs. program4 and program5 come from our previous work
[4]. “#vars” indicates the total number of program variables in each program. And for
each program, the value of the widening delay parameter for Interproc is set to 1.
“#iter.” gives the number of increasing iterations during the analysis.

Table 1. Experimental results for benchmark examples

Program NewPolka itvPol rAVI Res.

name #vars #iter. t(ms) #iter. t(ms) #iter. t(ms) Inv.

AVtest1 2 4 11 4 45 4 48 A A

AVtest2 2 4 8 3 14 4 31 A A

AVtest3 2 4 9 4 16 5 73 A A

CmplxTest1 5 4 7 4 26 4 57 A A

CmplxTest2 5 6 10 6 34 6 150 A A

CmplxTest3 8 4 17 4 242 4 310 A A

program4 1 5 2 4 4 4 10 A =

program5 2 6 9 5 20 8 45 A A

Invariants. The column “Res. Inv.” compares the invariants obtained. The left sub-
column compares rAVI with NewPolka while the right sub-column compares rAVI with
itvPol. A “A” indicates that rAVI outputs stronger invariants than NewPolka or itvPol,
while a “=” indicates that rAVI outputs equivalent invariants as NewPolka or itvPol.
The results in Table 1 show that rAVI outputs stronger invariants than NewPolka for
all these examples. Note that traditional convex domains (such as the convex polyhedra
domain) are not fit for the benchmark examples shown in Table 1, since these programs
involve non-convex properties that are out of the expressiveness of convex domains.

And in most cases, rAVI outputs stronger invariants than itvPol, although the two
domains have the same expressiveness. This is because domain operations in rAVI are
optimal while most domain operations in itvPol are weak (e.g., the join operation).
For program4, the two domains generate equivalent invariants, because this program
involves only one variable and most domain operations in itvPol become optimal in this
case. During the experiments, we observed that most linear absolute value invariants
generated by rAVI are essentially due to piecewise linear behaviors in the program,
e.g., branches inside loops. In the examples CmplxTest1-3 that are used to show time
complexity, the piecewise linear behaviors mainly come from case by case discussions
over the difference between the loop counter and the input parameter (or the initial
value), e.g., whether the difference is greater than 0 or not.

Performance. The column “t(ms)” presents the analysis times in milliseconds when the
analyzer runs on a 2.4GHz PC with 2GB of RAM running Fedora Linux. From Table 1,

17

we can see that rAVI is much less efficient than NewPolka, because for these examples
the polyhedra generated by NewPolka during the analysis are rather simple (with very
few or even no non-trivial constraints). Similarly, we can see that rAVI is less efficient
than itvPol, because itvPol is implemented based on floating-point arithmetic and also
because domain operations in itvPol are weak operations with low computational cost.

6 Related work

In numerical static analysis, linear relations are considered as the most important kind
of numerical relations among variables of a program. The convex polyhedra abstract
domain [9], devoted to linear relation analysis, is one of the earliest but still remains
one of the most powerful and commonly used numerical abstract domains. For the sake
of efficiency, a variety of weakly relational abstract domains are designed as subdo-
mains of the convex polyhedra domain, such as the Octagon domain [21], the Two
Variables Per Inequality (TVPI) domain [28], the Template Polyhedra domain [25], and
the SubPolyhedra domain [17]. However, this paper goes the other direction. Rather
than aiming at discovering restricted forms of linear relations, we generalize the linear
relation analysis to linear absolute value relation analysis that allows discovering a kind
of piecewise linear relations.

Numerical abstract domains often use conjunctions of convex constraints as the do-
main representation, and thus most domains can only represent convex sets. The con-
vexity limitations may lead to imprecision during analysis. To deal with disjunctions, a
known solution in abstract interpretation is to use disjunctive completion [8, 11], such
as powerset extension. However, it can be very costly and widening operators for such
domains are difficult to design [3].

There also exists much work on elaborating the control flow information of the
program to improve the precision. Rival and Mauborgne [22] proposed the trace parti-
tioning abstract domain, which is based on the partitioning of program traces. Sankara-
narayanan et al. [24] showed that a fixed point computed over a powerset extension
corresponds to a fixed point over the base domain computed on an elaboration of the
control flow graph of the program. Simon [27] used a boolean flag to encode the union
of two polyhedra and to perform control flow splitting when necessary.

This paper aims at designing abstract domains that can natively encode non-convex
information. Until now, few existing abstract domains natively allow representing non-
convex sets, e.g., congruences [12], max-plus polyhedra [2], domain lifting by max
expressions [13], interval polyhedra [4].

The AVI domain that we introduce in this paper is closest to our previous work
on the interval polyhedra domain [4]. The AVI domain is as expressive as the interval
polyhedra domain, but differs from it in the following respects: First, the AVI domain
enjoys optimal domain operations while operations in the interval polyhedra domain
are not optimal; Second, for representation, the AVI domain uses the double descrip-
tion method while the interval polyhedra domain uses solely constraints; Third, to im-
plement domain operations, the AVI domain employs Chernikova’s algorithm while the
interval polyhedra domain employs linear programming and Fourier-Motzkin elimina-
tion algorithms; Finally, prototype rAVI for the AVI domain is implemented via rational

18

numbers while prototype itvPol for the interval polyhedra domain in [4] is implemented
via floating point numbers.

7 Conclusion

In this paper, we present an analysis to discover linear absolute value relations among
variables of a program (Σkak xk + Σkbk |xk | ≤ c), which generalizes the classic linear
relation analysis (Σkak xk ≤ c) [9]. The analysis explores absolute value (AV) to de-
scribe piecewise linear relations in the program, as a mean to deal with non-convex or
non-linear behaviors in the program. First, we show the equivalence among linear AV
inequality systems, extended linear complementarity problem (XLCP) systems and in-
terval linear inequality systems. The equivalence implies that linear AV relation analysis
can be reused to infer other kinds of equivalent relations in a program, such as interval
linear relations which is of high relevance in numeric static analysis [4]. Then, we con-
struct a double description method for XLCP on top of that for convex polyhedra. On
this basis, we propose an abstract domain of linear AV inequalities that natively allows
expressing non-convex properties and enjoys optimal transfer functions. The AVI do-
main is implemented using rational numbers based on the double description method for
XLCP. Experimental results are encouraging: The AVI domain can discover interesting
non-convex properties, especially for programs involving piecewise linear behaviors.

It remains for future work to consider automatic methods to introduce auxiliary
variables on the fly that can be used inside the AV function to improve the precision
of AVI analysis. Another direction of work is to consider weakly relational abstract
domains over absolute value, with less expressiveness but higher efficiency.

References

1. Gnu multiple precision arithmetic library. http://gmplib.org/.
2. X. Allamigeon, S. Gaubert, and E. Goubault. Inferring min and max invariants using max-

plus polyhedra. In SAS’08, volume 5079 of LNCS, pages 189–204. Springer Verlag, 2008.
3. R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset domains. In

VMCAI’04, volume 2937 of LNCS, pages 135–148. Springer Verlag, 2004.
4. L. Chen, A. Miné, J. Wang, and P. Cousot. Interval polyhedra: An abstract domain to infer

interval linear relationships. In SAS’09, volume 5673 of LNCS, pages 309–325. Springer
Verlag, 2009.

5. L.O. Chua and A.-C. Deng. Canonical piecewise-linear representation. IEEE Trans. on
Circuits and Systems, 35(1):101–111, 1988.

6. R.W. Cottle, J.-S. Pang, and R.E. Stone. The Linear Complementarity Problem. Academic
Press, New York, 1992.

7. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In ACM POPL’77, pages 238–252.
ACM Press, New York, 1977.

8. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In ACM
POPL’79, pages 269–282. ACM Press, New York, 1979.

9. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In ACM POPL’78, pages 84–96. ACM Press, New York, 1978.

19

10. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

11. R. Giacobazzi and F. Ranzato. Optimal domains for disjunctive abstract interpretation. Sci.
Comput. Program, 32(1-3):177–210, 1998.

12. P. Granger. Static analysis of arithmetical congruences. International Journal of Computer
Mathematics, pages 165–199, 1989.

13. B. S. Gulavani and S. Gulwani. A numerical abstract domain based on expression abstraction
and max operator with application in timing analysis. In CAV’08, volume 5123 of LNCS,
pages 370–384. Springer-Verlag, 2008.

14. N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verification of real-time systems using linear
relation analysis. Formal Methods in System Design, 11(2):157–185, 1997.

15. B. Jeannet and A. Miné. Apron: A library of numerical abstract domains for static analysis.
In CAV’09, volume 5643 of LNCS, pages 661–667. Springer, 2009.

16. G. Lalire, M. Argoud, and B. Jeannet. Interproc. http://pop-art.inrialpes.fr/
people/bjeannet/bjeannet-forge/interproc/.

17. V. Laviron and F. Logozzo. Subpolyhedra: A (more) scalable approach to infer linear in-
equalities. In VMCAI’09, volume 5403 of LNCS, pages 229–244. Springer Verlag, 2009.

18. H. LeVerge. A note on Chernikova’s algorithm. Technical Report 635, IRISA, France, 1992.
19. O. L. Mangasarian and J. S. Pang. The extended linear complementarity problem. SIAM J.

Matrix Anal. Appl., 16(2):359–368, 1995.
20. A. Miné. Relational abstract domains for the detection of floating-point run-time errors. In

ESOP’04, volume 2986 of LNCS, pages 3–17. Springer, 2004.
21. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation, 19(1):31–

100, 2006.
22. X. Rival and L. Mauborgne. The trace partitioning abstract domain. ACM Transactions on

Programming Languages and Systems (TOPLAS), 29(5), 2007.
23. J. Rohn. Solvability of systems of interval linear equations and inequalities. In Linear

Optimization Problems with Inexact Data, pages 35–77. Springer, 2006.
24. S. Sankaranarayanan, F. Ivancic, I. Shlyakhter, and A. Gupta. Static analysis in disjunctive

numerical domains. In SAS’06, volume 4134 of LNCS, pages 3–17. Springer, 2006.
25. S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of linear systems using

mathematical programming. In VMCAI’05, volume 3385 of LNCS, pages 25–41. Springer
Verlag, 2005.

26. A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, Inc., 1986.
27. A. Simon. Splitting the Control Flow with Boolean Flags. In SAS’08, volume 5079 of LNCS,

pages 315–331. Springer, 2008.
28. A. Simon, A. King, and J. M. Howe. Two Variables per Linear Inequality as an Abstract

Domain. In LOPSTR’03, volume 2664 of LNCS, pages 71–89. Springer, 2003.

20

