
Formal Verification by Abstract Interpretation

Patrick Cousot

CIMS NYU, New York, USA & CNRS–ENS–INRIA, Paris, France

Abstract. We provide a rapid overview of the theoretical foundations and main applications
of abstract interpretation and show that it currently provides scaling solutions to achieving
assurance in mission- and safety-critical systems through verification by fully automatic,
semantically sound and precise static program analysis.

Keywords: Abstract interpretation, Abstraction, Aerospace, Certification, Cyber-physical
system, Formal Method, Mission-critical system, Runtime error, Safety-critical system,
Scalability, Soundness, Static Analysis, Validation, Verification.

1 Abstract interpretation

Abstract interpretation [9–13] is a theory of abstraction and constructive approximation
of the mathematical structures used in the formal description of programming languages
and the inference or verification of undecidable program properties.

The design of an inference or verification method by abstract interpretation starts with
the formal definition of the semantics of a programming language (formally describing all
possible program behaviors in all possible execution environments), continues with the
formalization of program properties, and the expression of the strongest program property
of interest in fixed point form.

The theory provides property and fixed point abstraction methods than can be construc-
tively applied to obtain formally verified abstract semantics of the programming languages
where, ideally, only properties relevant to the considered inference or verification problem
are preserved while all others are abstracted away.

Formal proof methods for verification are derived by checking fixed point by induction.
For property inference in static analyzers, iterative fixed point approximation methods
with convergence acceleration using widening/narrowing provide effective algorithms to
automatically infer abstract program properties (such as invariance or definite termination)
which can then be used for program verification by fixed point checking.

Because program verification problems are undecidable for infinite systems, any fully
automatic formal method will fail on infinitely many programs and, fortunately, also suc-
ceed on infinitely many programs. An abstraction over-approximates the set of possible
concrete executions and so may include executions not existing in the concrete. This is
not a problem when such fake executions do not affect the property to be verified (e.g. for
invariance the execution time is irrelevant). Otherwise this may cause a false alarm in that



the property is violated by an inexistent execution. In this case, the abstraction must be
refined to better distinguish between actual and fake program executions.

To maximize success for specific applications of the theory, it is necessary to adapt
the abstractions/approximations so as to eliminate false alarms (when the analysis is too
imprecise to provide a definite answer to the verification problem) at a reasonable cost.
The choice of an abstraction which is precise enough to check for specified properties and
imprecise enough to be scalable to very large programs is difficult. This can be done by
refining or coarsening general-purpose abstractions.

A convenient way to adjust the precision/cost ratio of a static analyser consists in or-
ganizing the effective abstract fixed point computation in an abstract interpreter (mainly
dealing with control) parameterized by abstract domains (mainly dealing with data). These
abstract domains algebraically describe classes of properties and the associated logical oper-
ations, extrapolation operators (widening and narrowing needed to over-approximate fixed
points) and primitive transformers corresponding to basic operations of the programming
language (such as assignment, test, call, etc).

To achieve the desired precision, the various abstract domains can combined by the
abstract interpreter, e.g. with a reduced product [28], so as to eliminate false alarms at a
reasonable cost.

Several surveys of abstract interpretation [1, 7, 19, 21] describe this general methodology
in more details.

2 A few applications of abstract interpretation

Abstract interpretation has applications in the syntax [22], semantics [14], and proof [20] of
programming languages where abstractions are sound (no possible case is ever omitted in
the abstraction) and complete (the abstraction is precise enough to express/verify concrete
program properties in the abstract without any false alarm) but in general incomputable
(but with severe additional hypotheses such as finiteness). Full automation of the verifica-
tion task requires further sound but incomplete abstractions as applied to static analysis [9,
30], contract inference [27], type inference [6], termination inference [23] model-checking [8,
15, 16], abstraction refinement [29], program transformation [17] (including watermarking
[18]), combination of decision procedures [28], etc.

3 Applications to assurance in mission- and safety-critical systems

Abstract interpretation has been successful this last decade in program verification for
mission- and safety-critical systems. Significant applications of abstract interpretation to
aerospace systems include e.g. airplane control-command [31, 34, 35] and autonomous ren-
dezvous and docking for spacecraft [5].

An example is Astrée [1–4, 24–26] (www.astree.ens.fr) which is a static analyzer to
verify the absence of runtime errors in structured, very large C programs with complex



memory usages, and involving complex boolean as well as floating-point computations
(which are handled precisely and safely by taking all possible rounding errors into account),
but without recursion or dynamic memory allocation. Astrée targets embedded applications
as found in earth transportation, nuclear energy, medical instrumentation, aeronautics and
space flight, in particular synchronous control/command such as electric flight control.

Astrée reports any division by zero, out-of-bounds array indexing, erroneous pointer
manipulation and dereferencing (null, uninitialized and dangling pointers), integer and
floating-point arithmetic overflow, violation of optional user-defined assertions to prove
additional run-time properties (similar to assert diagnostics), code it can prove to be un-
reachable under any circumstances (note that this is not necessarily all unreachable code
due to over-approximations), read access to uninitialized variables. Astrée offers power-
ful annotation mechanisms, which enable the user to make external knowledge available
to Astrée, or to selectively influence the analysis precision for individual loops or data
structures. Detailed messages and an intuitive GUI help the user understand alarms about
potential errors. Then, true runtime errors can be fixed, or, in case of a false alarm, the an-
alyzer can be tuned to avoid them. These mechanisms allow to perform analyses with very
few or even zero false alarms. Astrée is industrialised by AbsInt (www.absint.com/astree).

AstréeA [32, 33] is built upon Astrée to prove the absence of runtime errors and data
races in parallel programs. Asynchrony introduces additional difficulties due to the se-
mantics of parallelism (such as the abstraction of process interleaving, explicit process
scheduling, shared memory model, etc).

4 Conclusion

Abstract interpretation has a broad spectrum of applications from theory to practice.
Abstract interpretation-based static analysis is automatic, sound, scalable to industrial
size software, precise, and commercially supported for proving the absence of runtime
errors. It is a premium formal method to complement dynamic testing as recommended by
DO-178C/ED-12C (http://www.rtca.org/doclist.asp).

References

1. J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Static analysis
and verification of aerospace software by abstract interpretation. In AIAA Infotech@Aerospace 2010,
Atlanta, Georgia, 20–22 April 2010. American Institute of Aeronautics and Astronautics.

2. J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Static analysis
by abstract interpretation of embedded critical software. ACM SIGSOFT Software Engineering Notes,
36(1):1–8, 2011.

3. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
Design and implementation of a special-purpose static program analyzer for safety-critical real-time
embedded software. In T. Æ. Mogensen, D. A. Schmidt, and I. H. Sudborough, editors, The Essence of
Computation, Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones [on occasion
of his 60th birthday], volume 2566 of Lecture Notes in Computer Science, pages 85–108. Springer, 2002.



4. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A
static analyzer for large safety-critical software. In Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation 2003, San Diego, California, USA, June 9-11,
2003, pages 196–207. ACM, 2003.

5. O. Bouissou, E. Conquet, P. Cousot, R. Cousot, J. Feret, K. Ghorbal, âric Goubault, D. Lesens,
L. Mauborgne, A. Miné, S. Putot, X. Rival, and M. Turin. Space software validation using abstract
interpretation. In Proc. of the Int. Space System Engineering Conf., Data Systems in Aerospace (DASIA
2009), volume SP-669, pages 1–7, Istambul, Turkey, May 2009. ESA.

6. P. Cousot. Types as abstract interpretations. In POPL, pages 316–331, 1997.
7. P. Cousot. The calculational design of a generic abstract interpreter. In M. Broy and R. Steinbrüggen,

editors, Calculational System Design. NATO ASI Series F. IOS Press, Amsterdam, 1999.
8. P. Cousot. Partial completeness of abstract fixpoint checking. In B. Y. Choueiry and T. Walsh, editors,

Abstraction, Reformulation, and Approximation, 4th International Symposium, SARA 2000, Horseshoe
Bay, Texas, USA, July 26-29, 2000, Proceedings, volume 1864 of Lecture Notes in Computer Science,
pages 1–25. Springer, 2000.

9. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 1977, Los Angeles, California, USA,
January 17-19, 1977, pages 238–252, 1977.

10. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Proceedings of the
6th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 1979, San
Antonio, Texas, USA, January 17-19, 1979, pages 269–282, 1979.

11. P. Cousot and R. Cousot. Abstract interpretation and application to logic programs. J. Log. Program.,
13(2&3):103–179, 1992.

12. P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Log. Comput., 2(4):511–547, 1992.
13. P. Cousot and R. Cousot. Comparing the galois connection and widening/narrowing approaches to

abstract interpretation. In M. Bruynooghe and M. Wirsing, editors, Programming Language Imple-
mentation and Logic Programming, 4th International Symposium, PLILP’92, Leuven, Belgium, August
26-28, 1992, Proceedings, volume 631 of Lecture Notes in Computer Science, pages 269–295. Springer,
1992.

14. P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpretation. In POPL, pages
83–94, 1992.

15. P. Cousot and R. Cousot. Refining model checking by abstract interpretation. Autom. Softw. Eng.,
6(1):69–95, 1999.

16. P. Cousot and R. Cousot. Temporal abstract interpretation. In Proceedings of the 4th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2000, Boston, Massachusetts,
USA, January 19-21, 2000, pages 12–25, 2000.

17. P. Cousot and R. Cousot. Systematic design of program transformation frameworks by abstract inter-
pretation. In POPL, pages 178–190, 2002.

18. P. Cousot and R. Cousot. An abstract interpretation-based framework for software watermarking. In
N. D. Jones and X. Leroy, editors, Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2004, Venice, Italy, January 14-16, 2004, pages 173–185.
ACM, 2004.

19. P. Cousot and R. Cousot. Basic concepts of abstract interpretation. In R. Jacquard, editor, Building
the Information Society, pages 359–366. Kluwer Academic Publishers, 2004.

20. P. Cousot and R. Cousot. Bi-inductive structural semantics. Inf. Comput., 207(2):258–283, 2009.
21. P. Cousot and R. Cousot. A gentle introduction to formal verification of computer systems by abstract

interpretation. In J. Esparza, O. Grumberg, and M. Broy, editors, Logics and Languages for Reliability
and Security, NATO Science Series III: Computer and Systems Sciences, pages 1–29. IOS Press, 2010.

22. P. Cousot and R. Cousot. Grammar semantics, analysis and parsing by abstract interpretation. Theor.
Comput. Sci., 412(44):6135–6192, 2011.



23. P. Cousot and R. Cousot. An abstract interpretation framework for termination. In J. Field and
M. Hicks, editors, Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, pages 245–
258. ACM, 2012.

24. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The Astrée
analyzer. In S. Sagiv, editor, Programming Languages and Systems, 14th European Symposium on
Programming,ESOP 2005, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings, volume 3444 of Lecture Notes in
Computer Science, pages 21–30. Springer, 2005.

25. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Why does astrée scale up?
Formal Methods in System Design, 35(3):229–264, 2009.

26. P. Cousot, R. Cousot, J. Feret, A. Miné, L. Mauborgne, D. Monniaux, and X. Rival. Varieties of static
analyzers: A comparison with astree. In First Joint IEEE/IFIP Symposium on Theoretical Aspects
of Software Engineering, TASE 2007, June 5-8, 2007, Shanghai, China, pages 3–20. IEEE Computer
Society, 2007.

27. P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from intermittent assertions and applica-
tion to contracts on collections. In R. Jhala and D. A. Schmidt, editors, Verification, Model Checking,
and Abstract Interpretation - 12th International Conference, VMCAI 2011, Austin, TX, USA, January
23-25, 2011. Proceedings, volume 6538 of Lecture Notes in Computer Science, pages 150–168. Springer,
2011.

28. P. Cousot, R. Cousot, and L. Mauborgne. The reduced product of abstract domains and the combina-
tion of decision procedures. In M. Hofmann, editor, Foundations of Software Science and Computational
Structures - 14th International Conference, FOSSACS 2011, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3,
2011. Proceedings, volume 6604 of Lecture Notes in Computer Science, pages 456–472. Springer, 2011.

29. P. Cousot, P. Ganty, and J.-F. Raskin. Fixpoint-guided abstraction refinements. In H. R. Nielson and
G. Filé, editors, Static Analysis, 14th International Symposium, SAS 2007, Kongens Lyngby, Denmark,
August 22-24, 2007, Proceedings, volume 4634 of Lecture Notes in Computer Science, pages 333–348.
Springer, 2007.

30. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In
Proceedings of the 5th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 1978, Tucson, Arizona, USA, January 23-25, 1978, pages 84–96, 1978.

31. D. Delmas and J. Souyris. Astrée: From research to industry. In H. R. Nielson and G. Filé, editors,
Static Analysis, 14th International Symposium, SAS 2007, Kongens Lyngby, Denmark, August 22-24,
2007, Proceedings, volume 4634 of Lecture Notes in Computer Science, pages 437–451. Springer, 2007.

32. A. Miné. Field-sensitive value analysis of embedded C programs with union types and pointer arith-
metics. In ACM SIGPLAN/SIGBED Conf. on Languages, Compilers, and Tools for Embedded Systems
(LCTES’06), pages 54–63. ACM Press, June 2006.

33. A. Miné. Static analysis of run-time errors in embedded critical parallel c programs. In G. Barthe,
editor, Programming Languages and Systems - 20th European Symposium on Programming, ESOP
2011, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings, volume 6602 of Lecture Notes in
Computer Science, pages 398–418. Springer, 2011.

34. J. Souyris. Industrial experience of abstract interpretation-based static analyzers. In R. Jacquart,
editor, Building the Information Society, IFIP 18th World Computer Congress, Topical Sessions, 22-
27 August 2004, Toulouse, France, pages 393–400. Kluwer, 2004.

35. J. Souyris and D. Delmas. Experimental assessment of Astrée on safety-critical avionics software.
In F. Saglietti and N. Oster, editors, Computer Safety, Reliability, and Security, 26th International
Conference, SAFECOMP 2007, Nuremberg, Germany, September 18-21, 2007, volume 4680 of Lecture
Notes in Computer Science, pages 479–490. Springer, 2007.


