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Abstract. We provide a rapid overview of the theoretical foundations and main applications
of abstract interpretation and show that it currently provides scaling solutions to achieving
assurance in mission- and safety-critical systems through verification by fully automatic,
semantically sound and precise static program analysis.
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1 Abstract interpretation

Abstract interpretation [9–13] is a theory of abstraction and constructive approximation
of the mathematical structures used in the formal description of programming languages
and the inference or verification of undecidable program properties.

The design of an inference or verification method by abstract interpretation starts with
the formal definition of the semantics of a programming language (formally describing all
possible program behaviors in all possible execution environments), continues with the
formalization of program properties, and the expression of the strongest program property
of interest in fixed point form.

The theory provides property and fixed point abstraction methods than can be construc-
tively applied to obtain formally verified abstract semantics of the programming languages
where, ideally, only properties relevant to the considered inference or verification problem
are preserved while all others are abstracted away.

Formal proof methods for verification are derived by checking fixed point by induction.
For property inference in static analyzers, iterative fixed point approximation methods
with convergence acceleration using widening/narrowing provide effective algorithms to
automatically infer abstract program properties (such as invariance or definite termination)
which can then be used for program verification by fixed point checking.

Because program verification problems are undecidable for infinite systems, any fully
automatic formal method will fail on infinitely many programs and, fortunately, also suc-
ceed on infinitely many programs. An abstraction over-approximates the set of possible
concrete executions and so may include executions not existing in the concrete. This is
not a problem when such fake executions do not affect the property to be verified (e.g. for
invariance the execution time is irrelevant). Otherwise this may cause a false alarm in that



the property is violated by an inexistent execution. In this case, the abstraction must be
refined to better distinguish between actual and fake program executions.

To maximize success for specific applications of the theory, it is necessary to adapt
the abstractions/approximations so as to eliminate false alarms (when the analysis is too
imprecise to provide a definite answer to the verification problem) at a reasonable cost.
The choice of an abstraction which is precise enough to check for specified properties and
imprecise enough to be scalable to very large programs is difficult. This can be done by
refining or coarsening general-purpose abstractions.

A convenient way to adjust the precision/cost ratio of a static analyser consists in or-
ganizing the effective abstract fixed point computation in an abstract interpreter (mainly
dealing with control) parameterized by abstract domains (mainly dealing with data). These
abstract domains algebraically describe classes of properties and the associated logical oper-
ations, extrapolation operators (widening and narrowing needed to over-approximate fixed
points) and primitive transformers corresponding to basic operations of the programming
language (such as assignment, test, call, etc).

To achieve the desired precision, the various abstract domains can combined by the
abstract interpreter, e.g. with a reduced product [28], so as to eliminate false alarms at a
reasonable cost.

Several surveys of abstract interpretation [1, 7, 19, 21] describe this general methodology
in more details.

2 A few applications of abstract interpretation

Abstract interpretation has applications in the syntax [22], semantics [14], and proof [20] of
programming languages where abstractions are sound (no possible case is ever omitted in
the abstraction) and complete (the abstraction is precise enough to express/verify concrete
program properties in the abstract without any false alarm) but in general incomputable
(but with severe additional hypotheses such as finiteness). Full automation of the verifica-
tion task requires further sound but incomplete abstractions as applied to static analysis [9,
30], contract inference [27], type inference [6], termination inference [23] model-checking [8,
15, 16], abstraction refinement [29], program transformation [17] (including watermarking
[18]), combination of decision procedures [28], etc.

3 Applications to assurance in mission- and safety-critical systems

Abstract interpretation has been successful this last decade in program verification for
mission- and safety-critical systems. Significant applications of abstract interpretation to
aerospace systems include e.g. airplane control-command [31, 34, 35] and autonomous ren-
dezvous and docking for spacecraft [5].

An example is Astrée [1–4, 24–26] (www.astree.ens.fr) which is a static analyzer to
verify the absence of runtime errors in structured, very large C programs with complex



memory usages, and involving complex boolean as well as floating-point computations
(which are handled precisely and safely by taking all possible rounding errors into account),
but without recursion or dynamic memory allocation. Astrée targets embedded applications
as found in earth transportation, nuclear energy, medical instrumentation, aeronautics and
space flight, in particular synchronous control/command such as electric flight control.

Astrée reports any division by zero, out-of-bounds array indexing, erroneous pointer
manipulation and dereferencing (null, uninitialized and dangling pointers), integer and
floating-point arithmetic overflow, violation of optional user-defined assertions to prove
additional run-time properties (similar to assert diagnostics), code it can prove to be un-
reachable under any circumstances (note that this is not necessarily all unreachable code
due to over-approximations), read access to uninitialized variables. Astrée offers power-
ful annotation mechanisms, which enable the user to make external knowledge available
to Astrée, or to selectively influence the analysis precision for individual loops or data
structures. Detailed messages and an intuitive GUI help the user understand alarms about
potential errors. Then, true runtime errors can be fixed, or, in case of a false alarm, the an-
alyzer can be tuned to avoid them. These mechanisms allow to perform analyses with very
few or even zero false alarms. Astrée is industrialised by AbsInt (www.absint.com/astree).

AstréeA [32, 33] is built upon Astrée to prove the absence of runtime errors and data
races in parallel programs. Asynchrony introduces additional difficulties due to the se-
mantics of parallelism (such as the abstraction of process interleaving, explicit process
scheduling, shared memory model, etc).

4 Conclusion

Abstract interpretation has a broad spectrum of applications from theory to practice.
Abstract interpretation-based static analysis is automatic, sound, scalable to industrial
size software, precise, and commercially supported for proving the absence of runtime
errors. It is a premium formal method to complement dynamic testing as recommended by
DO-178C/ED-12C (http://www.rtca.org/doclist.asp).
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