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Abstract. Abstract interpretation is used in program static analysis
and model checking to cope with infinite state spaces and/or with com
puter resource limitations. One common problem is to check abstract
fixpoints for specifications. The abstraction is partially complete when
the checking algorithm is exact in that, if the algorithm ever terminates,
its answer is always affirmative for correct specifications. We character
ize partially complete abstractions for various abstract fixpoint checking
algorithms, including new ones, and show that the computation of com
plete abstract domains is essentially equivalent to invariance proofs that
is to concrete fixpoint checking.

1 Introduction

In computer assisted program formal verification, program static analysis and
model-checking, one must design algorithms to check fixpoints lfp

≤
λX · I ∨

F (X) ≤ S 1,2. For theoretical undecidability reasons or because of practical
computer resource limitations, one must often resort to abstract interpretation
[6 , 10 , 12] and check instead γ

(
lfp

�
λX ·α(I ∨ F (γ(X)))

)
≤ S. Soundness re

quires that a positive abstract answer implies a positive concrete answer. So no
error is possible when reasoning in the abstract. Completeness requires that a
positive concrete answer can always be found in the abstract. Since termination
is a separate problem in the abstract (which can be solved by other means such
as a coarser abstraction and/or widenings/narrowings), we consider partial com
pleteness 3 requiring that in case of termination of the abstract fixpoint checking
algorithms, no positive answer can be missed. The problem that we study in this
paper is “to constructively characterize the abstractions 〈α,γ〉 for which abstract

1 The ≤-least fixpoint lfp
≤

ϕ is the ≤-least fixpoint of ϕ , if it exists, which is the case
e.g. by Knaster-Tarski fixpoint theorem [34].

2 We use Church’s λ-notation such that if ϕ
�= λ x · e if the value of ϕ(y) is that of e

where the value of x is y.
3
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The phrasing recalls that of partial correctness after [21].



fixpoint algorithms are partially complete ”. This highlights the problems related
to the generalization of model-checking to infinite (or very large) state systems
and the approximation ideas which are recurrent in static program analysis by
abstract interpretation.

2 Concrete Fixpoint Checking

2.1 The Concrete Fixpoint Checking Problem

Program static analysis, as formalized by abstract interpretation [6 , 10] , consists
in automatically determining program properties by a fixpoint computation and
then in checking that the computed program properties imply a specification
given by the programming language semantics. Universal model-checking [3 , 32]
consists in checking that a model of a system satisfies a specification given by
some temporal logic formula.

From a mathematical point of view, the principle is, in both cases, that we
are given a complete lattice 〈L, ≤, 0, 1, ∨, ∧〉 of properties and a transformer
F ∈ L

mon�−→ L which is a ≤-monotonic mapping from L to L. One must check
that lfp

≤
λX · I ∨ F (X) ≤ S where 〈I, S〉 ∈ L2 is the given specification 4.

Example 1. It is quite frequent in abstract interpretation [6 , 12] , to specify the
program semantics by a transition system 〈	, τ, I〉 where 	 is a set of states,
τ ⊆ 	 × 	 is the transition relation and I ⊆ 	 is the set of initial states. The
collecting semantics is the set post[τ�](I) = lfp

≤
λX · I ∨ post[τ ](X) of states

which are reachable from the initial states in I (where post[τ ](X) �= {s′ | ∃s ∈
X : 〈s, s′〉 ∈ τ} is the right-image of X ⊆ 	 by relation τ and τ� is the
reflexive transitive closure of τ). Let S ⊆ 	 be a safety specification (typically
the specification of absence of run-time errors). The safety specification S is
satisfied if and only if post[τ�](I) ⊆ S that is lfp

≤
λX · I ∨ F (X) ≤ S where

F = post[τ ] and 〈L,≤, 0, 1, ∨, ∧〉 is 〈℘(	),⊆, ∅, 	, ∪, ∩〉. ��

2.2 The Concrete Fixpoint Checking Algorithm

The hypotheses for the Knaster-Kleene-Tarski fixpoint theorem [11, 34] are:

Hypotheses 1 1. 〈L,≤, 0, 1, ∨, ∧〉 is a complete lattice;
2. F ∈ L

mon�−→ L is ≤-monotonic.

This theorem leads to the following iterative Alg. 1 to check that lfp
≤
λX · I ∨

F (X) ≤ S. This Alg. 1 is classical in abstract interpretation [10] and apparently
more recent in model-checking [16, 26] 5:
4 The ≤-least fixpoint lfp

≤
ϕ of ϕ exists by Knaster-Tarski fixpoint theorem [34]. The

same way, gfp
≤

ϕ is the ≤-greatest fixpoint of ϕ , if it exists.
5 In the programming language, the logical disjunction is denoted &, the conjunction
is | and the negation is ¬.



Algorithm 1
X := I; Go := (X ≤ S);
while Go do

X ′ := I ∨ F (X);
Go := (X �= X ′) & (X ′ ≤ S);
X := X ′;

od;
return (X ≤ S);

In the general context of program analysis, this algorithm does not terminate
for the collecting semantics defining the program properties but it can be used
whenever e.g. L satisfies the ascending chain condition which is the common
case in finite-state model-checking [3 , 32] (	 is finite).

Theorem 2. Under Hyp. 1, Alg. 1 is partially correct 6: when terminating, it
returns lfp

≤
λX · I ∨ F (X) ≤ S.

Proof. We have I ≤ I ∨ F (I) so, as shown in [11] , the transfinite sequence
X0 �= I , Xδ+1 �= I ∨F (Xδ) for all successor ordinals δ ∈ O and Xλ �=

∨
δ<λ Xδ

for all limit ordinals λ ∈ ω.O is increasing and ultimately stationary, its limit
being the least fixpoint of λX · I∨F (X) greater than I , that is the least fixpoint
of λX · I∨F (X). By recurrence, Xn , n ∈ O is the value of the program variable
X at the end of the n-th iteration in the loop, if any, with X0 = I being the
initial value of X upon entry of the loop.

If the algorithm does terminate then three cases must be considered.
1. The first case is when the loop is never entered so I �≤ S. Observe that

I ≤ lfp
≤
λX · I∨F (X) so lfp

≤
λX · I ∨F (X) ≤ S implies by transitivity that

I ≤ S. By contraposition, I �≤ S implies lfp
≤
λX · I ∨F (X) �≤ S so that Alg.

1 correctly returns false since upon termination I = X �≤ S.

Otherwise the loop is iterated at least once. Upon termination after n ≥ 1
iterates, if ever, we have (Xn = I ∨ F (Xn)) | (Xn �≤ S) , so two cases remain
to be considered.

2. The second case is when Xn = I ∨F (Xn). Since Xn is a fixpoint of λX · I ∨
F (X) and for all iterates Xn ≤ lfp

≤
λX · I ∨ F (X) [11] , we have Xn =

lfp
≤
λX · I∨F (X). Alg. 1 returns Xn = X ≤ S whence lfp

≤
λX · I ∨F (X) ≤

S as required.
3. The third and last case is when Xn = X �≤ S. For all iterates we have

Xn ≤ lfp
≤
λX · I ∨ F (X) , so lfp

≤
λX · I ∨ F (X) ≤ S implies by transitivity

that Xn ≤ S. By contraposition, Xn �≤ S implies lfp
≤
λX · I ∨ F (X) �≤ S so

that Alg. 1 correctly returns false that is Xn = X �≤ S as required. ��

6 Recall that partial correctness is correctness whenever the algorithm terminates.



2.3 Adjoined Invariance Proof Methods

Concrete Adjoinedness In the following, we assume that:

Hypothesis 2 F has an adjoint F̃ such that 〈L, ≤〉 −−−→←−−−
F

F̃ 〈L, ≤〉 is a Galois
connection 7.

Observe that in a Galois connection, both maps are monotonic so that Hyp. 2
subsumes Hyp. 1.2.

Example 3. We have 〈℘(	), ⊆〉 −−−−−−→←−−−−−−
post[τ ]

p̃re[τ ]
〈℘(	), ⊆〉 where pre[τ ] �= post [τ−1] ,

τ−1 is the inverse of τ and p̃re[τ ](X) = ¬pre[τ ](¬X) 8. To prove this, observe

that:

p̃re[τ ](Y )
�= ¬post[τ−1](¬Y )

= ¬{s | ∃s′ : s′ ∈ ¬Y ∧ 〈s′, s〉 ∈ τ−1} �def. post[τ−1]�

= {s | ∀s′ : (〈s, s′〉 ∈ τ) =⇒ (s′ ∈ Y ) �def. set complement ¬ , inverse τ−1 of a
relation τ and logical implication =⇒.�

It follows that:

post[τ ](X) ⊆ Y

⇐⇒ �def. post[τ ] and set inclusion ⊆�

∀s′ ∈ 	 : (∃s ∈ 	 : s ∈ X ∧ 〈s, s′〉 ∈ τ) =⇒ (s′ ∈ Y )

⇐⇒ �def. logical implication =⇒�

∀s ∈ 	 : ∀s′ ∈ 	 : (s ∈ X) =⇒ ((〈s, s′〉 ∈ τ) =⇒ (s′ ∈ Y ))

⇐⇒ �def. set inclusion ⊆�

X ⊆ {s | ∀s′ : (〈s, s′〉 ∈ τ) =⇒ (s′ ∈ Y )}
⇐⇒ �def. p̃re[τ ]�

X ⊆ p̃re[τ ](Y ) . ��

Invariance Proof Methods The Floyd-Naur [21 , 31] as well as Morris &
Wegbreit [30] invariance proof methods can be generalized to fixpoint checking
[13]. We have:

7 A Galois connection , written 〈L, ≤〉 −−−→←−−−
f

g
〈M, 	〉 , is such that 〈L, ≤〉 and 〈M, 	〉

are posets and the maps f ∈ L �→ M and g ∈ M �→ L satisfy ∀x ∈ L : ∀y ∈ M :
f(x) 	 y if and only if x ≤ g(y). This is the semi-dual of a Galois correspondence
〈L,≤〉 −−−→←−−−

f

g
〈M,〉 as originally defined by E. Galois.

8 ¬X
�= � \X is the set complement.



Theorem 4. Under Hyps. 1.1 & 2,

lfp
≤
λX · I ∨ F (X) ≤ S

⇐⇒ ∃A ∈ L : I ≤ A & F (A) ≤ A & A ≤ S (1)

⇐⇒ ∃A ∈ L : I ≤ A & A ≤ F̃ (A) & A ≤ S

⇐⇒ I ≤ gfp
≤
λX ·S ∧ F̃ (X) .

Proof. By the Galois connection, F ∈ L
mon�−→ L and F̃ ∈ L

mon�−→ L are ≤-

monotonic so that by the Knaster-Kleene-Tarski fixpoint theorem [11, 34] , the

extreme fixpoints do exist. Moreover:

lfp
≤
λX · I ∨ F (X) ≤ S

⇐⇒ �For =⇒ , A = lfp
≤
λX · I ∨ F (X) satisfies A = I ∨ F (A) so (I ∨

F (A)) ≤ A by reflexivity and A ≤ S. For ⇐=, I ∨ F (A) ≤ A so
the Knaster-Tarski fixpoint theorem [34] stating that lfp

≤
ϕ =

∧
{X |

ϕ(X) ≤ X} , implies that lfp
≤
λX · I∨F (X) =

∧
{X | (I∨F (X)) ≤ X}

≤ A ≤ S.�
∃A : (I ∨ F (A)) ≤ A & A ≤ S

⇐⇒ �def. least upper bound ∨�

∃A : I ≤ A & F (A) ≤ A & A ≤ S

⇐⇒ �Galois connection 〈L,≤〉 −−−→←−−−
F

F̃ 〈L,≤〉 so by definition F (A) ≤ A if and

only if A ≤ F̃ (A)�
∃A : I ≤ A & A ≤ F̃ (A) & A ≤ S

⇐⇒ �def. greatest lower bound ∧�

∃A : I ≤ A & A ≤ (S ∧ F̃ (A))

⇐⇒ �For ⇐=, A = gfp
≤
λX ·S ∧ F̃ (X) satisfies A = S ∧ F̃ (A) so A ≤

(S ∧ F̃ (A)) by reflexivity and I ≤ A . For =⇒ , A ≤ S ∧ F̃ (A) so
the dual of Knaster-Tarski fixpoint theorem [34] stating that gfp

≤
ϕ =∨

{X | X ≤ ϕ(X)} , implies that I ≤ A ≤
∨
{X | X ≤ (S ∧ F̃ (X))} =

gfp
≤
λX ·S ∧ F̃ (X).�

I ≤ gfp
≤
λX ·S ∧ F̃ (X) ��

Corollary 5. Under Hyps. 1.1 & 2, if 〈L,≤〉 −−−→←−−−
F

F̃ 〈L,≤〉 then

〈L,≤〉 −−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−
λ I · lfp≤

λX · I∨F (X)

λ S · gfp≤
λ X ·S∧F̃ (X)

〈L,≤〉.

Proof. This simply restates that lfp
≤
λX · I ∨ F (X) ≤ S if and only if I ≤

gfp
≤
λX ·S ∧ F̃ (X). ��



Concrete Invariants We call A ∈ L an invariant for 〈F , I, S〉 if and only if it
satisfies the verification conditions (1) stated in Th. 4.

Theorem 6. Under Hyps. 1.1 & 2, the set I of invariants for 〈F , I, S〉 is a
complete lattice 〈I, ≤ , lfp

≤
λX · I ∨ F (X) , gfp

≤
λX ·S ∧ F̃ (X) , ∨ , ∧〉.

Proof. As shown above, lfp
≤
λX · I ∨ F (X) is an invariant, and any invariant

A is such that lfp
≤
λX · I ∨ F (X) ≤ A proving that lfp

≤
λX · I ∨ F (X) is the

≤-least invariant.
If Ai, i ∈ � is a family of invariants then ∀i ∈ � : I ≤ Ai so obviously,

I ≤
∨

i∈ Ai. Similarly, ∀i ∈ � : Ai ≤ S so
∨

i∈ Ai ≤ S by definition of

lubs 9. Finally ∀i ∈ � : F (Ai) ≤ Ai so
∨

i∈ F (Ai) ≤
∨

i∈ Ai. But 〈L,≤〉 −−−→←−−−
F

F̃

〈L, ≤〉 so F is a complete joint morphism and consequently F (
∨

i∈ Ai) =∨
i∈ F (Ai) ≤

∨
i∈ Ai. We conclude that

∨
i∈ Ai ∈ I is an invariant so ∨ is

obviously the lub in I.
That λS · gfp

≤
λX ·S ∧ F̃ (X) is the greatest invariant and ∧ is the glb 10

follows by the order-theoretic duality principle where the dual of I is S and that
of F is F̃ . ��

2.4 The Dual Concrete Fixpoint Checking Algorithm

It follows, as observed in [17] , that Alg. 2 below which is based upon the iter
ative computation of gfp

≤
λX ·S ∧ F̃ (X) is equivalent to the previous Alg. 1

for checking that lfp
≤
λX · I ∨ F (X) ≤ S. For the special case of reachability

analysis (where F̃ = p̃re[τ ]) this Alg. 2 corresponds to the backward state space
traversal which is traditional in model-checking [26]. It is nonetheless traditional
in program analysis (see a.o. [7]):

Algorithm 2
Y := S; Go := (I ≤ Y );
while Go do

Y ′ := S ∧ F̃ (Y );
Go := (Y �= Y ′) & (I ≤ Y ′);
Y := Y ′;

od;
return (I ≤ Y );

Theorem 7. Under Hyps. 1.1 & 2, Alg. 2 is partially correct: when terminating,
it returns lfp

≤
λX · I ∨ F (X) ≤ S.

9 lub is short for least upper bound.
10 glb is short for greatest lower bound.



Proof. By order-theoretic duality extended so that the dual of I is S and that
of F is F̃ so 〈L,≥〉 −−−→←−−−

F̃

F 〈L,≥〉 , we know from the proof of Alg. 1 that Alg. 2

returns true if and only if I ≤ gfp
≤
λX ·S ∧ F̃ (X) or equivalently, by Th. 4 , if

and only if lfp
≤
λX · I ∨ F (X) ≤ S as desired. ��

2.5 Adjoined Concrete Fixpoint Checking

Adjoined Concrete Fixpoint Checking and its Dual Define G
�= λX · I ∨

F (X) and G̃
�= λX ·S ∧ F̃ (X). We have:

Theorem 8. Under Hyps. 1.1 & 2, lfp
≤
G ≤ S if and only if lfp

≤
G ≤ gfp

≤
G̃.

Proof. We have lfp
≤
G = G(lfp

≤
G) = I ∨F (lfp

≤
G) so F (lfp

≤
G) ≤ lfp

≤
G by def.

of lubs. It follows that lfp
≤
G ≤ F̃ (lfp

≤
G) by the Galois connection 〈L,≤〉 −−−→←−−−

F

F̃

〈L, ≤〉. So if lfp
≤
G ≤ S then lfp

≤
G ≤ S ∧ F̃ (lfp

≤
G) hence lfp

≤
G ≤ G̃(lfp

≤
G)

proving lfp
≤
G ≤ gfp

≤
G̃ since gfp

≤
G̃ =

∨
{x | x ≤ G̃(x)} by the dual of Tarski’s

fixpoint theorem [34]. Reciprocally, if lfp
≤
G ≤ gfp

≤
G̃ then lfp

≤
G ≤ S∧F̃ (gfp

≤
G̃)

by the fixpoint property and def. of G̃ so lfp
≤
G ≤ S by def. of glbs. We conclude

that lfp
≤
G ≤ S if and only if lfp

≤
G ≤ gfp

≤
G̃. ��

By duality, we have

Theorem 9. Under Hyps. 1.1 & 2, I ≤ gfp
≤
G̃ if and only if lfp

≤
G ≤ gfp

≤
G̃.

Proof. By the order theoretic duality principle where I is the dual of S and F̃
that of F , hence G̃ that of G. ��

The Adjoined Concrete Fixpoint Checking Algorithm This observation
leads to the combination of the above two Algs. 1 and 2 in the new one:

Algorithm 3
X := I; Y := S; Go := (X ≤ Y );
while Go do

X ′ := I ∨ F (X); Y ′ := S ∧ F̃ (X);
Go := (X �= X ′) & (Y �= Y ′) & (X ′ ≤ Y ′);
X := X ′; Y := Y ′;

od;
return (X ≤ Y );

Optimizations including parallel versions can be easily derived from the above
basic version of Alg. 3. They will not be considered here, although they are es
sential to be more time-efficient than the previous Algs. 1 and 2. The advantage



of this parallel version of Alg. 3 is that errors lfp
≤
λX · I∨F (X) �≤ S may be dis

covered faster than with either Alg. 1 or Alg. 2 since the (parallel) computation
of the fixpoints stops as soon as a fixpoint is reached or an error is found.

The partial correctness proof of the algorithm is not completely trivial and is
given below. Total correctness, hence termination, requires additional hypothe
ses such as L satisfies the ascending and descending chain conditions e.g. follow
ing from the finite-state hypothesis.

Theorem 10. Under Hyps. 1.1 & 2, Alg. 3 is partially correct: when terminat
ing, it returns lfp

≤
λX · I ∨ F (X) ≤ S.

Proof. By the Galois connection 〈L,≤〉 −−−→←−−−
F

F̃ 〈L,≤〉 , F is 0-strict and a complete

∨-morphism so G is a complete ∨-morphism. Let X0 = I be the initial value of
X in the loop and Xn its value at the end of the n-th iteration. Let ϕ0(x) �= x

and ϕn+1(x) �= ϕ(ϕn(x)). We have X0 = I = F 0(I) = I ∨ 0 = I ∨ F (0) = G(0).
Assume by induction hypothesis that Xn =

∨n
k=0 F

k(I) = Gn+1(0). We have
Xn+1 = I ∨ F (Xn) = G(Xn) = G(Gn+1(0)) = Gn+2(0). Moreover Xn+1 =
I∨F (Xn) = I∨F (

∨n
k=0 F

k(I)) = I∨
∨n

k=0 F (F k(I)) = F 0(I)∨
∨n

k=0 F
k+1(I) =∨n+1

k=0 F k(I). It follows by recurrence and the Kleene-Tarski theorem [11, 34] that
∀n ∈ O : I ≤ Xn ≤

∨
k≥0G

n(0) ≤ lfp
≤
G.

The order-theoretic dual of the above proof, extended so that the dual of I is
S , that of F is F̃ so that of G is G̃ , shows that ∀n ∈ O : gfp

≤
G̃ ≤

∧
k≥0 G̃

n(1) ≤
Y n ≤ S.

Combining the above results by transitivity, we observe that if lfp
≤
G ≤ S

then lfp
≤
G ≤ gfp

≤
G̃ so ∀n ∈ O : Xn ≤ lfp

≤
G ≤ gfp

≤
G̃ ≤ Y n. By contraposition

∃n ∈ O : Xn �≤ Y n implies lfp
≤
G �≤ S.

If the algorithm terminates then four cases must be considered.
1. The first case is when the loop is never entered so I �≤ S. We have lfp

≤
λX · I∨

F (X) ≤ S which implies I ≤ gfp
≤
λX ·S∧F̃ (X) = S∧F̃ (gfp

≤
λX ·S∧F̃ (X))

by the fixpoint property so that I ≤ S by definition of least upper bounds.
So I �≤ S implies lfp

≤
λX · I ∨ F (X) �≤ S. Therefore the algorithm returns

false , as required;

Otherwise the loop is entered at least once and termination implies (X =
X ′) ∨ (Y = Y ′) ∨ (X �≤ Y ).

2. In the second case, termination is with X �≤ Y so ∃n ∈ O : Xn �≤ Y n which
implies lfp

≤
G �≤ S so lfp

≤
λX · I∨F (X) �≤ S and the algorithm returns false ,

as required;
3. The third case is (X = X ′) & (X ≤ Y ). We have X = G(X) and ∃n ∈

O : X = Xn ≤ lfp
≤
G so X = lfp

≤
G by def. of the least fixpoint. Moreover,

Y = Y n ≤ S whence X ≤ Y implies lfp
≤
G ≤ S that is lfp

≤
λX · I∨F (X) ≤ S

and the algorithm returns true , as required.



4. The fourth and final case is (Y = Y ′) & (X ≤ Y ). The order-theoretic dual
of the above proof, extended so that the dual of I is S , that of F is F̃ so
that of G is G̃ , shows that I ≤ gfp

≤
λX ·S ∧ F̃ (X) or equivalently, by Th.

4 , lfp
≤
λX · I ∨ F (X) ≤ S and the algorithm returns true , as required. ��

3 Abstract Fixpoint Checking

3.1 Abstract Interpretation

In the context of program analysis, abstraction [10] is needed for expressive
ness (the elements of L are not computer-representable) and undecidability
(the fixpoints are not effectively computable). In the context of model-checking
[4] , abstraction is needed for concrete complexity reasons, because of machine
memory-size (so called state-explosion problem) and/or computation time lim
itations. The difference is that in program analysis, the concrete semantics is
not computable whereas it is in the case of model-checking 11. Abstract in
terpretation [10 , 12] can be used in both cases, but an important difference
is that the abstraction/concretization can be considered to be computable for
model-checking which is hardly conceivable for program analysis. In the latter
case the abstraction/concretization process must be handled by hand (may be
with some computer assistance) whereas in the first case, it can be (at least
partially) automatized (see e.g. [5 , 20 , 24]).

3.2 The Abstract Fixpoint Checking Algorithm

We now consider an abstract complete lattice 〈M, �, ⊥, �, �, �〉 which is an
abstraction of 〈L,≤,0,1,∨,∧〉 by the abstraction/concretization pair 〈α, γ〉. For
simplicity we assume that any concrete property p ∈ L has a best approximation
α(p) ∈M which is tantamount to assuming that 〈L,≤〉 −−−→←−−−α

γ
〈M,�〉 is a Galois

connection [12 , 14]:

Hypotheses 3 1. The abstract domain 〈M,�,⊥,�,�,�〉 is a complete lattice;
2. 〈L,≤〉 −−−→←−−−

α

γ
〈M,�〉.

Example 11. As observed in [18] , the abstraction which is almost exclusively
used in abstract model-checking has the form αh(X) �= {h(x) | x ∈ X} and
γh(Y ) �= {x | h(x) ∈ Y } where h ∈ 	 �→ 	. Considering the function h as a
relation, we have αh = post [h] and γh = p̃re[h] so that 〈℘(	),⊆〉 −−−→←−−−

αh

γh 〈℘(	),
⊆〉 , as shown in Ex. 3. An example for 	 = Z consists in choosing h(z) to be
the sign of z [12]. ��
11 Obviously, if the state space is infinite then the situation may be the same in
model-checking as it is in program analysis. However the boolean abstractions used in
model-checking with BDD encoding, are too weak when considering complex data
structures, higher-order recursion, etc. which are a common difficulty in program
analysis.



The abstract form Alg. 4 below of the fixpoint checking Alg. 1 is classical in
abstract interpretation [7 , 10 , 12] 12:

Algorithm 4
X := α(I); Go := (γ(X) ≤ S);
while Go do

X ′ := α(I ∨ F (γ(X)));
Go := (X �= X ′) & (γ(X ′) ≤ S);
X := X ′;

od;
return if (γ(X) ≤ S) then true else I don’t know;

Theorem 12. Under Hyps. 1.1 & 3, Alg. 4 is partially correct: if it terminates
and returns “true” then lfp

≤
λX · I ∨ F (X) ≤ S.

Proof. We have 〈L, ≤〉 −−−→←−−−α

γ
〈M, �〉 so α is a complete join morphism hence

α(I ∨ F (γ(X))) = α(I) � α(F (γ(X))). It follows that α(I) ≤ α(I) � α ◦ F ◦

γ(I) 13 so, as shown in [11] , the transfinite sequence X0 �= α(I) , Xδ+1 �=
α(I ∨F (γ(Xδ)) for all successor ordinals δ ∈ O and Xλ �=

⊔
δ<λ Xδ for all limit

ordinals λ ∈ ω.O is increasing and ultimately stationary, its limit being the least
fixpoint of λX ·α(I ∨ F (γ(X))) greater than α(I) , that is the least fixpoint of
λX ·α(I ∨ F (γ(X)). By recurrence, Xn is the value of the program variable X
at the end of the n-th iteration in the loop, if any, with X0 = α(I) being the
initial value of X upon entry of the loop.

If the algorithm does terminate then three cases must be considered.
1. The first case is when the loop is never entered so γ(I) �≤ S. Then Alg. 4

returns I don’t know which is certainly correct.
Otherwise the loop is iterated at least once. Upon termination after n ≥ 1
iterates, if ever, we have (Xn = α(I ∨F (γ(Xn))) | (γ(Xn) ≤ S) , so two cases
remain to be considered.

2. The second case is when Xn = α(I ∨ F (γ(Xn))). Since Xn is a fixpoint of
λX ·α(I ∨ F (γ(X))) and for all iterates Xn � lfp

�
α(I ∨ F (γ(X))) [11] , we

have Xn = lfp
�
λX ·α(I ∨ F (γ(X))). Alg. 4 checks γ(Xn) = γ(X) ≤ S.

When returning true , we have γ(lfp
�
λX ·α(I ∨ F (γ(X)))) ≤ S. By a classi

cal fixpoint approximation result of abstract interpretation [12 , Th. 7.1.0.4] ,
α(lfp

≤
λX · I ∨ F (X)) � lfp

�
λX ·α(I ∨ F ◦ γ(X)) so by 〈L, ≤〉 −−−→←−−−α

γ
〈M,

�〉 , we have lfp
≤
λX · I ∨ F (X) ≤ γ(lfp

�
λX ·α(I ∨ F ◦ γ(X))) whence by

transitivity lfp
≤
λX · I ∨ F (X) ≤ S as required.

12 Since in program analysis neither γ nor ≤ is computable the termination condition
γ(X) ≤ S is replaced by the abstract form X 	 α(S). When assuming that S is
an abstract specification in that S = γ(α(S)) , this abstract condition is stronger
(whence correct) since X 	 α(S) implies by monotony that γ(X) 	 γ(α(S)) = S.

13 ◦ is functional composition f ◦ g(x) �= f(g(x)).



3. The third and last case is when γ(Xn) ≤ S. Then γ(Xn) = γ(X) �≤ S so
that Alg. 4 returns I don’t know which is certainly correct. ��

3.3 Partial Completeness

We have seen that any abstraction 〈α, γ〉 is sound in that Alg. 4 returns true
only if lfp

≤
λX · I ∨ F (X) ≤ S.

This abstraction is said to be partially complete if, whenever Alg. 4 termi
nates and lfp

≤
λX · I ∨ F (X) ≤ S then the returned result is true14.

Because soundness is mandatory, partial completeness corresponds to the
case when Alg. 4 returns true upon termination exactly when lfp

≤
λX · I ∨

F (X) ≤ S , that is Alg. 4 is equivalent to Alg. 1 , up to termination 15.

3.4 Partially Complete Abstractions for Algorithm 4

Characterization of Partially Complete Abstractions for Algorithm
4 It was informally observed in [15] (and similarly in [27]) that partial com
pleteness in abstract interpretation requires an invariance proof. More formally
the abstract domain must contain the exact representation A = α(A′) of an
invariant A′ = γ(A) for 〈F , I, S〉:

Theorem 13. Under Hyps. 1.1 & 3, the abstraction 〈α,γ〉 is partially complete
for Alg. 4 if and only if α(L) contains an abstract value A such that γ(A) is an
invariant for 〈F , I, S〉.

Proof. Assume that 〈α, γ〉 is a partially complete abstraction for Alg. 4. If
lfp

≤
λX · I ∨ F (X) ≤ S then Alg. 4 must return true so upon exit γ(X) ≤ S.

By definition of the loop termination condition ¬Go , the loop must have been
entered at least once. So upon termination, after n ≥ 1 iterations, the final value
Xn of X satisfies Xn = α(I ∨ F (γ(X))) = α(I) � α ◦ F ◦ γ(Xn) so α(I) � Xn

and α ◦ F ◦ γ(Xn) � Xn by definition of lubs, whence by 〈L,≤〉 −−−→←−−−α

γ
〈M,�〉 ,

I ≤ γ(Xn) and F ◦ γ(Xn) ≤ γ(Xn). We conclude that γ(Xn) is an invariant
for 〈F , I, S〉 , so A = Xn.

Reciprocally let A ∈ α(L) be such γ(A) is an invariant for 〈F , I, S〉. We
have I ≤ γ(A) so by 〈L, ≤〉 −−−→←−−−α

γ
〈M, �〉 α(I) � A whence X0 � A. By

recurrence, assume that Xn � A and that one more iterate is needed in the
loop. We have I ≤ γ(A) and F (γ(A)) ≤ γ(A) so by 〈L, ≤〉 −−−→←−−−α

γ
〈M, �〉 ,

14 Observe that this notion of partial completeness is different from the notions of
fixpoint completeness (α(lfp

≤
G) = lfp

�
α ◦ G ◦ γ) and the stronger one of local

completeness (α ◦ G = α ◦ G ◦ γ ◦ α) introduced in [12] and further studied in
[22 , 23].

15 Observe that for locally complete abstractions, termination of the concrete Alg. 1
implies that of the abstract Alg. 4 since, as shown in [9 , Th. 3] , convergence of the
abstract iterates to a fixpoint is faster than that of the concrete iterates for locally
complete abstractions.



α(I) � A and α(F (γ(A))) � A whence by monotony Xn+1 = α(I∨F (γ(Xn))) �
α(I ∨ F (γ(A))) = α(I) � α(F (γ(A))) � A. Observe that upon termination, if
any, X has value Xn such that Xn � A so by monotony γ(Xn) ≤ γ(A). Since
γ(A) is an invariant γ(A) ≤ S so by transitivity X = γ(Xn) ≤ S whence the
algorithm returns true , if it terminates, as required. ��

The Most Abstract Partially Complete Abstraction for Algorithm 4
Among the partially complete abstractions, we are interested in the simplest
ones, with a minimal number of abstract values, in particular those correspond
ing to the weakest or strongest concrete properties. Formally:

Definition 14. The most abstract partially complete abstraction 〈α, γ〉 , if it
exists, is defined such that:
1. The abstract domain M = α(L) has the smallest possible cardinality;
2. If another abstraction 〈α′,γ′〉 is a partially complete abstraction with the same

cardinality, then there exists a bijection β such that ∀x ∈ M : γ′(β(x)) ≤
γ(x) 16.

Theorem 15. Under Hyps. 1.1 & 3, the most abstract partially complete ab
straction for Alg. 4 is such that:
– if S = 1 then M = {�} where α

�= λX ·� and γ
�= λY · 1;

– if S �= 1 then M = {⊥,�} where ⊥ � ⊥ � � � � with 〈α, γ〉 such that:

α(X) �= ⊥ if X ≤ gfp
≤
λX ·S ∧ F̃ (X)

α(X) �= � otherwise

γ(⊥) �= gfp
≤
λX ·S ∧ F̃ (X) (2)

γ(�) �= 1

Proof. In the first case S = 1, we have I ≤ 1 , F (1) ≤ 1 and 1 ≤ S so γ(�) = 1
is invariant for 〈F , I, S〉 whence, by Th. 13 , the abstraction 〈α, γ〉 is partially
complete for Alg. 4. M = {�} has the smallest possible cardinality since a
complete lattice is not empty (�∅ must exist). M = {�} is obviously the most
abstract since γ(�) = 1.

The second case is when S �= 1. By definition (2), α(L) contains ⊥ such that
γ(⊥) �= gfp

≤
λX ·S ∧ F̃ (X) which, by Th. 6 , is an invariant so that, by Th. 13 ,

the abstraction 〈α, γ〉 is partially complete for Alg. 4.
To show that the cardinality of M is minimal, let us consider another M ′ =

α′(L) such that 〈α′, γ′〉 is partially complete for Alg. 4. Observe that L is a
complete lattice whence M ′ = α(L) is also a complete lattice whence not empty.
Let �′ be its supremum. We have α′(1) � �′ whence 1 ≤ γ′(�′) so 1 = γ′(�′)
by antisymmetry since 1 is the supremum. Since S �= 1, we have γ′(�′) �≤ S so
that γ′(�′) is not an invariant for 〈F , I, S〉. By Th. 13 , it follows that M ′ must
16 Otherwise stated, the abstract values in α(L) are more approximate than the corre
sponding elements in α′(L).



contain another element A ∈M ′ such that γ′(A) is an invariant for 〈F , I, S〉 so
A �= �′ proving that the cardinality of M ′ = α′(L) must be at least 2. It follows
that the cardinality of M is minimal.

To show that 〈α,γ〉 is the most abstract, let us consider another M ′ = α′(L)
of cardinality 2 (i.e. M ′ = {⊥′,�′} , ⊥′ �′ ⊥′ �′ �′ �′ �′) such that 〈α′,
γ′〉 is partially complete for Alg. 4. Since �′ is the supremum of M ′ and 〈L,

≤〉 −−−→←−−−
α′

γ′

〈M ′,�′〉 , we have γ′(�′) = 1 = γ(�) which are not invariant for 〈F ,I,

S〉. By partial completeness hypothesis and Th. 13 , γ′(⊥′) must be an invariant
for 〈F , I, S〉 so, by Th. 6 , γ′(⊥′) ≤ gfp

≤
λX ·S ∧ F̃ (X) = γ(⊥). The bijection

β(⊥) = ⊥′ and β(�) = �′ is such that ∀x ∈ M : γ′(β(x)) ≤ γ(x) , proving that
〈α, γ〉 is the most abstract partially complete abstraction for Alg. 4. ��

The Least Abstract Partially Complete Abstraction for Algorithm 4
The least abstract partially complete abstraction is defined dually to definition
14.

Theorem 16. Under Hyps. 1.1 & 3, the least abstract partially complete ab
straction for Alg. 4 is such that:
– if I = 1 then M = {�} where α

�= λX ·� and γ
�= λY · 1;

– if I �= 1 then M = {⊥,�} where ⊥ � ⊥ � � � � with 〈α, γ〉 such that:

α(X) �= ⊥ if X ≤ lfp
≤
λX · I ∨ F (X)

α(X) �= � otherwise

γ(⊥) �= lfp
≤
λX · I ∨ F (X) (3)

γ(�) �= 1

Proof. In the first case I = 1, we have lfp
≤
λX · I ∨F (X) = 1 so if lfp

≤
λX · I ∨

F (X) ≤ S then 1 ≤ S so S = 1. We have I = 1 ≤ 1 , F (1) ≤ 1 and 1 ≤ 1 = S
so γ(�) = 1 is invariant for 〈F , I, S〉 whence, by Th. 13 , the abstraction 〈α, γ〉
is partially complete for Alg. 4. M = {�} has the smallest possible cardinality
since a complete lattice is never empty. let M ′ = {�′} be another partially
complete abstraction 〈α′, γ′〉 with the same cardinality. We have γ′(�′) which
is an invariant for 〈F , I, S〉 so γ′(�′) ≥ I = 1 proving that γ′(�′) = 1. We have
∀x ∈M : γ′(β(x)) ≤ γ(x) by definition β(�) = �′.

The second case is when I �= 1. By definition (3), α(L) contains ⊥ such that
γ(⊥) �= lfp

≤
λX · I ∨ F (X) which, by Th. 6 , is an invariant so that, by Th. 13 ,

the abstraction 〈α, γ〉 is partially complete for Alg. 4.
To show that the cardinality of M is minimal, let us consider another M ′ =

α′(L) such that 〈α′, γ′〉 is partially complete for Alg. 4. Observe that L is a
complete lattice whence M ′ = α(L) is also a complete lattice whence not empty.
Let �′ be its supremum. We have α′(1) � �′ whence 1 ≤ γ′(�′) so 1 = γ′(�′)
by antisymmetry since 1 is the supremum. Since I �= 1, we have I �≤ γ′(�′) so



that γ′(�′) is not an invariant for 〈F , I, S〉. By Th. 13 , it follows that M ′ must
contain another element A ∈M ′ such that γ′(A) is an invariant for 〈F , I, S〉 so
A �= �′ proving that the cardinality of M ′ = α′(L) must be at least 2. It follows
that the cardinality of M is minimal.

To show that 〈α, γ〉 is the least abstract, let us consider another M ′ = α′(L)
of cardinality 2 (i.e. M ′ = {⊥′,�′} , ⊥′ �′ ⊥′ �′ �′ �′ �′) such that 〈α′,
γ′〉 is partially complete for Alg. 4. Since �′ is the supremum of M ′ and 〈L,

≤〉 −−−→←−−−
α′

γ′

〈M ′,�′〉 , we have γ′(�′) = 1 = γ(�) which are not invariant for 〈F ,I,

S〉. By partial completeness hypothesis and Th. 13 , γ′(⊥′) must be an invariant
for 〈F , I, S〉 so, by Th. 6 , γ(⊥) ≤ lfp

≤
λX · I ∨ F (X) ≤ γ′(⊥′). The bijection

β(⊥) = ⊥′ and β(�) = �′ is such that ∀x ∈ M : γ′(β(x)) ≥ γ(x) , proving that
〈α, γ〉 is the least abstract partially complete abstraction for Alg. 4. ��

The Complete Lattice of Minimal Partially Complete Abstractions
for Algorithm 4 By Th. 6 , the set I of invariants is a complete lattice 〈I, ≤ ,
lfp

≤
λX · I ∨ F (X) , gfp

≤
λX ·S ∧ F̃ (X) , ∨ , ∧〉. Its abstract image leads to the

partially complete abstractions of minimal cardinality for Alg. 4:

Theorem 17. Under Hyps. 1.1 & 3, the set A of partially complete abstractions
of minimal cardinality for Alg. 4 is the set of all 〈M, �, α, γ〉 such that M =
{⊥,�} with ⊥ � ⊥ � � � � , Hyp. 3.2 holds, γ(⊥) ∈ I and ⊥ = � if and only
if γ(�) ∈ I.

The relation 〈{⊥,�},�,α〉γ ! 〈{⊥′,�′},�′,α′〉γ′ is a pre-ordering on A. Let
〈{⊥,�},α,γ〉 ∼= 〈{⊥′,�′},α′,γ′〉 if and only if γ(⊥) = γ′(⊥′) be the corresponding
equivalence.

The quotient A/∼= is a complete lattice 17 for ! with infimum class represen
tative 〈M, α, γ〉 and supremum 〈M, α, γ〉.

Proof. We have γ(�) ∈ I or γ(⊥) ∈ I so by Th. 13 , 〈M,�, α, γ〉 is a partially
complete abstraction for Alg. 4.

By Hyp. 3.2 , α(1) � � so 1 ≤ γ(�) whence γ(�) = 1. If γ(�) ∈ I then
⊥ = � so the cardinality is minimal since M is a complete lattice whence not
empty. Otherwise γ(�) �∈ I and γ(⊥) ∈ I so ⊥ �= �. Again the cardinality of M
is minimal since by Th. 13 , M must contain an element A such that γ(A) ∈ I
and, in this second case, A cannot be �. So we conclude that A is the set of
partially complete abstractions of minimal cardinality for Alg. 4.

By definition ! is a pre-order on A since ≤ is a partial order on L. Conse
quently the restriction of ! to the representatives of the equivalent classes of
the quotient A/∼= is a poset.

Let 〈Mi,�i, αi, γi〉 , i ∈ � be given elements of A. By Th. 6 ,
∨

i∈ γi(⊥) ∈ I
is an invariant. So there is some 〈M, �, α, γ〉 ∈ A (may be with ⊥ = �) such
that γ(⊥) =

∨
i∈ γi(⊥). Trivially, the class of 〈M,�, α, γ〉 ∈ A is the lub of the

set {〈Mi,�i, αi, γi〉 | i ∈ �} for !.
17 Observe however that it is not a sublattice of the lattice of abstract interpretations
of [10 , 12] with reduced product as glb.



The fact that 〈M,α,γ〉 and 〈M,α,γ〉 are representative of the extreme classes
of A/∼= is also a direct consequence of Th. 6. ��

3.5 Abstract Adjoinedness

In the following, we assume that we have a dual abstraction:

Hypothesis 4 〈L,≥〉 −−−→←−−−
α̃

γ̃
〈M,#〉.

Example 18. A classical example [18] when 〈L, ≤, 0, 1, ∨, ∧, ¬〉 and 〈M, �, ⊥,

�, �, �, �〉 are complete boolean lattices and 〈L, ≤〉 −−−→←−−−α

γ
〈M, �〉 is to define

α̃ = � ◦ α ◦ ¬ and γ̃ = ¬ ◦ γ ◦ � so that 〈L, ≥〉 −−−→←−−−
α̃

γ̃
〈M, #〉 or equivalently

〈M,�〉 −−−→←−−−
γ̃

α̃ 〈L,≤〉. Indeed:

α̃(X) # Y

⇐⇒ � ◦ α ◦ ¬(X) # Y �def. α̃�

⇐⇒ α ◦ ¬(X) � �Y �contraposition in M�

⇐⇒ ¬(X) ≤ γ(�Y ) �〈L,≤〉 −−−→←−−−α

γ
〈M,�〉�

⇐⇒ X ≥ ¬ ◦ γ ◦ �(Y ) �contraposition in L�

⇐⇒ X ≥ γ̃(Y ) �def. γ̃�

For a typical example, we have 〈℘(	), ⊆〉 −−−−−−→←−−−−−−
post[τ ]

p̃re[τ ]
〈℘(	),⊆〉 and p̃re[τ ](X) =

¬pre[τ ](¬X) (see Ex. 3) so that by defining p̃ost[τ ](X) = ¬post[τ ](¬X) we have

〈℘(	),⊇〉 −−−−−−→←−−−−−−
p̃ost[τ ]

pre[τ ]
〈℘(	),⊇〉 or equivalently 〈℘(	),⊆〉 −−−−−−→←−−−−−−

pre[τ ]

p̃ost[τ ]
〈℘(	),⊆〉. ��

We have:

Theorem 19. Under Hyps. 2, 3.2 & 4, 〈M,�〉 −−−−−−→←−−−−−−
α◦F◦γ̃

α̃◦F̃◦γ
〈M,�〉.

Proof.

α ◦ F ◦ γ̃(X) ⇐⇒ Y

⇐⇒ �Galois connection 〈L,≤〉 −−−→←−−−α

γ
〈M,⇐⇒〉�

F ◦ γ̃(X) ≤ γ(Y )

⇐⇒ �Galois connection 〈L,≤〉 −−−→←−−−
F

F̃ 〈L,≤〉�
γ̃(X) ≤ F̃ ◦ γ(Y )

⇐⇒ F̃ ◦ γ(Y ) ≥ γ̃(X) �inverse ≥ of ≤�

⇐⇒ �Galois connection 〈L,≥〉 −−−→←−−−
α̃

γ̃
〈M,#〉�

α̃ ◦ F̃ ◦ γ(Y ) # X

⇐⇒ X � α̃ ◦ F̃ ◦ γ(Y ) �inverse � of #� ��



3.6 The Dual Abstract Fixpoint Checking Algorithm

The dual of Alg. 4 is the following:

Algorithm 5
Y := α̃(S); Go := (I ≤ γ̃(Y ));
while Go do

Y ′ := α̃(S ∧ F̃ (γ̃(Y )));
Go := (Y �= Y ′) & (I ≤ γ̃(Y ′));
Y := Y ′;

od;
return if (I ≤ γ̃(Y )) then true else I don’t know;

Theorem 20. Under Hyps. 1.1, 2, 3.1 & 4, Alg. 5 is partially correct: if it
terminates and returns “true” then lfp

≤
λX · I ∨ F (X) ≤ S.

Proof. The proof is the order-theoretic dual of the proof of Alg. 4 where the
dual of I is S , that of F is F̃ and that of 〈α, γ〉 satisfying Hyp. 3.2 is 〈α̃, γ̃〉
satisfying Hyp. 4. Its conclusion is that upon termination while returning true ,
I ≤ gfp

≤
λX ·S ∧ F̃ (X) that is, by Th. 4 , lfp

≤
λX · I ∨ F (X) ≤ S. ��

3.7 Characterization of Partially Complete Abstractions for
Algorithm 5

By Th. 4 , the notion of partial completeness of Sec. 3.3 is self-dual and A is an
invariant for 〈F , I, S〉 if and only if A is a dual invariant for 〈F̃ , S, I〉. Therefore
we have:

Theorem 21. Under Hyps. 1.1, 2, 3.1, & 4, the abstraction 〈α̃, γ̃〉 is partially
complete for Alg. 5 if and only if α̃(L) contains an abstract value A such that
γ̃(A) is an invariant for 〈F , I, S〉.

Proof. The proof of Th. 21 is the order-theoretic dual of the proof of Th. 13
where the dual of I is S , that of F is F̃ and that of 〈α, γ〉 satisfying Hyp. 3.2 is
〈α̃, γ̃〉 satisfying Hyp. 4. ��

3.8 The Complete Lattice of Minimal Partially Complete
Abstractions for Algorithm 5

Theorem 22. Under Hyps. 1.1, 4 & 3.1, the dual of Th. 17 holds for Alg. 5.

Proof. The proof of Th. 21 is the order-theoretic dual of the proof of Th. 17
where the dual of I is S , that of F is F̃ and that of 〈α, γ〉 satisfying Hyp. 3.2 is
〈α̃, γ̃〉 satisfying Hyp. 4. ��



3.9 The Particular Case of Complement Abstraction

Alg. 5 is better known in the important particular case when the following
hypotheses 5 below, which scope is local to this Sec. 3.9 , hold:

Hypotheses 5 1. 〈L,≤, 0, 1, ∨, ∧, ¬〉 is a complete boolean lattice;
2. 〈M,�,⊥,�, �, �, �〉 is a complete boolean lattice;
3. 〈L,≤〉 −−−→←−−−

α

γ
〈M,�〉;

4. 〈L,≤〉 −−−→←−−−
F

F̃ 〈L,≤〉;

5. F̃
�= ¬ ◦ F ◦ ¬, α̃

�= � ◦ α ◦ ¬ and γ̃
�= ¬ ◦ γ ◦ �.

in which case Hyp. 4 holds so that Alg. 5 becomes [19]:

Algorithm 6
Z := α(¬S); Go := (I ∧ γ(Z) = 0);
while Go do

Z ′ := α(¬S ∨ F (γ(Z)));
Go := (Z �= Z ′) & (I ∧ γ(Z ′) = 0);
Z := Z ′;

od;
return if (I ∧ γ(Z) = 0) then true else I don’t know;

Corollary 23. Under Hyp. 5, Alg. 6 is partially correct: if it terminates and
returns “true” then lfp

≤
λX · I ∨ F (X) ≤ S.

Proof. First observe that 〈L,≥〉 −−−→←−−−
α̃

γ̃
〈M,#〉 since:

α̃(X) # Y

⇐⇒�(α(¬(X))) # Y �def. 5.5 of α̃�

⇐⇒α(¬(X))) � �(Y ) �def. complement � in Hyp. 5.2�

⇐⇒¬(X)) ≤ γ(�(Y )) �Galois connection of Hyp. 5.3�

⇐⇒¬ ◦ γ ◦ �(Y ) ≤ X �def. complement ¬ in Hyp. 5.1�

⇐⇒X ≥ γ̃(Y ) �def. 5.5 of α̃�

Then we observe that the value of Z in Alg. 6 is that of �Y in Alg. 5. ��

3.10 The Adjoined Abstract Fixpoint Checking Algorithm

If follows that Alg. 3 can be used in the abstract to check that lfp
≤
λX · I ∨

F (X) ≤ S (assuming, as is the case for model-checking, that abstraction/
concretization is computable):



Algorithm 7
X := α(I); Y := α̃(S); Go := (γ(X) ≤ S) & (I ≤ γ̃(Y ));
while Go do

X ′ := α(I ∨ F ◦ γ(X)); Y ′ := α̃(S ∧ F̃ ◦ γ̃(Y ));
Go := (X �= X ′) & (Y �= Y ′) & (γ(X ′) ≤ S) & (I ≤ γ̃(Y ′));
X := X ′; Y := Y ′;

od;
return if (γ(X) ≤ S) | (I ≤ γ̃(Y )) then true else I don’t know;

Theorem 24. Under Hyps. 1.1, 2, 3.1 & 4, Alg. 7 is partially correct: if it
terminates and returns “true” then lfp

≤
λX · I ∨ F (X) ≤ S.

Proof. The respective values of X and Y after n ≥ 0 iterations, if ever, are
Xn and Y n as respectively defined in the proofs of Th. 10 and Th. 20. If the
algorithm does terminate, then
1. either the loop is never entered so the values of X and Y are respectively

X0 = α(I) and Y 0 = α̃(S) such that γ(X) �≤ S | I �≤ γ̃(Y ) , in which case
Alg. 7 correctly returns I don’t know;
or the loop is entered at least once so that upon exit after n ≥ 1 iterations, we
have Xn = α(I∨F ◦ γ(Xn))|Y n = α̃(S∧F̃ ◦ γ̃(Y n))|γ(Xn) �≤ S |I �≤ γ̃(Y n).

2. If γ(Xn) �≤ S | I �≤ γ̃(Y n) then Alg. 7 correctly returns I don’t know;
otherwise, we have γ(Xn) ≤ S & I ≤ γ̃(Y n) and two cases remain to be
considered.

3. If Xn = α(I ∨ F ◦ γ(Xn)) & γ(Xn) ≤ S , then we conclude as in the proof of
Th. 10;

4. if Y n = α̃(S ∧ F̃ ◦ γ̃(Y n)) & I �≤ γ̃(Y n) , then we conclude as in the proof of
Th. 20. ��

3.11 The Adjoined Abstract Fixpoint Abstract Checking Algorithm

In program static analysis, one cannot compute γ , γ̃ and ≤ and sometimes
neither I nor S may even be machine representable. So Alg. 7 , which can be
useful in model-checking, is of limited interest in program static analysis. In
that latter case, the termination condition (γ(X ′) ≤ S) & (I ≤ γ̃(Y ′)) must be
checked in the abstract, as proposed in Alg. 8 below. This is less precise but is
nevertheless correct with the following:

Hypotheses 6 1. ∀X ∈ L : γ ◦ α̃(X) ≤ X;
2. ∀X ∈ L : X ≤ γ̃ ◦ α(X).

Example 25. Continuing Ex. 11 with α
�= post[h] , γ

�= p̃re[h] , α̃
�= p̃ost[h] and

γ̃
�= pre[h] , we have:



γ̃ ◦ α(X)

= �def. γ̃ = pre[h] = λX · {x | h(x) ∈ X} and α = post[h] = λX · {h(y) |
y ∈ X}�

{x | ∃y ∈ X : h(x) = h(y)}
⊇ X . �choosing y = x�

In particular for all X ∈ L:

¬X ⊆ γ̃ ◦ α(¬X)

=⇒ ¬γ̃ ◦ α(¬X) ⊆ X �by contraposition in L�

=⇒ � γ̃ = pre[h] = ¬ ◦ p̃re[h] ◦ ¬ = ¬ ◦ γ ◦ ¬�

¬ ◦ ¬ ◦ γ ◦ ¬ ◦ α ◦ ¬(X) ⊆ X

=⇒ � ¬ ◦ α ◦ ¬ = ¬ ◦ post[h] ◦ ¬ = p̃ost[h] = α̃ and ¬ ◦ ¬(Y ) = Y �

γ ◦ α̃(X) ⊆ X . ��
Algorithm 8

X := α(I); Y := α̃(S); Go := (X � Y );
while Go do

X ′ := α(I) � α ◦ F ◦ γ(X); Y ′ := α̃(S) � α̃ ◦ F̃ ◦ γ̃(Y );
Go := (X �= X ′) & (Y �= Y ′) & (X ′ � Y ′);
X := X ′; Y := Y ′;

od;
return if X � Y then true else I don’t know;

Theorem 26. Under Hyps. 1.1, 2, 3.1, 4 & 6, Alg. 8 is partially correct: if it
terminates and returns “true” then lfp

≤
λX · I ∨ F (X) ≤ S.

Proof. If the loop ever terminates after n ≥ 0 iterations then upon exit we have
α(I) � Xn = X and Y = Y n � α̃(S). So if X � Y then by Hyp. 6 and
monotony, γ(X) ≤ γ(Y ) ≤ γ ◦ α̃(S) ≤ S and I ≤ γ̃ ◦ α(I) ≤ γ̃(X) ≤ γ̃(Y ). So
X � Y implies γ(X) ≤ S & I ≤ γ̃(Y ) and the argument used in the proof of Th.
24 concludes the partial correctness proof of Alg. 8. ��
Theorem 27. Under Hyps. 1.1, 2, 3.1, 4 & 6, the abstraction 〈α, γ〉 and 〈α̃,
γ̃〉 is partially complete for Alg. 4 if and only if either α(L) contains an abstract
value A such that γ(A) is an invariant for 〈F , I, S〉 or dually α̃(L) contains an
abstract value Ã such that γ̃(Ã) is an invariant for 〈F , I, S〉.
Proof. The proof is similar to that of Th. 13 or its dual.

Then Def. 14 and Th. 15 are easily generalized in order to characterize the most
abstract partially complete abstractions 〈α, γ〉 and 〈α̃, γ̃〉 for Alg. 8.

Finally, we can apply Alg. 3 to 〈M, �〉 −−−−−−→←−−−−−−
α◦F◦γ̃

α̃◦F̃◦γ
〈M, �〉. We get Alg. 9

below using basic operations performing exclusively on the abstract domain.
The correctness of Alg. 9 follows from:



Theorem 28. Under Hyps. 1.1, 1.2 or 2, 3 and 6, we have lfp
≤
λX · I ∨F (X)

≤ γ(lfp
�
λX ·α(I) � α ◦ F ◦ γ̃(X)).

Proof. Let Xδ , δ ∈ O and X̃δ , δ ∈ O the respective transfinite sequences of

iterates for λX · I∨F (X) and λX ·α(I)�α ◦ F ◦ γ̃(X) which by monotony and

definition on complete lattices are well-defined, increasing, ultimately stationary

and respectively converging to lfp
≤
λX · I ∨ F (X) and lfp

�
λX ·α(I) � α ◦ F ◦

γ̃(X) as shown in [11]. Let us show by transfinite induction that ∀δ ∈ O : X̃δ #
α(Xδ). For the basis, X̃0 �= ⊥ = α(0) = α(X0). For successor ordinals:

X̃δ+1

= α(I) � α ◦ F ◦ γ̃(X̃δ) �by def. of the iterates.�

# α(I) � α ◦ F ◦ γ̃ ◦ α(Xδ) �by ind. hyp. and monotony�

# α(I) � α ◦ F (Xδ) �by Hyp. 6.2 and monotony�

= α(I ∨ F (Xδ)) �by Hyp. 3.2 so that α preserves lubs�

= Xδ+1 �by def. of the iterates.�

For limit ordinals λ ∈ ω.O:

X̃λ

=
⊔

β<λ

X̃β �by def. of the iterates.�

#
⊔

β<λ

α(Xβ) �ind. hyp. and def. lubs�

# α(
∨

β<λ

Xβ) �by Hyp. 3.2 so that α preserves lubs�

= α(Xλ) �by def. Xλ.�

There exists ε ∈ O such that α(lfp
≤
λX · I ∨ F (X)) = α(Xε) � X̃ε =

lfp
�
λX ·α(I) � α ◦ F ◦ γ̃(X) so that by the Galois connection Hyp. 3.2 , we

conclude that lfp
≤
λX · I ∨ F (X) ≤ γ(lfp

�
λX ·α(I) � α ◦ F ◦ γ̃(X)). ��

By duality, we get:

Theorem 29. Under Hyps. 1.1, 2, 3.1, 4 and 6, we have gfp
≤
λX ·S ∧ F̃ (X)

≥ γ̃(gfp
�
λX · α̃(S) � α̃ ◦ F̃ ◦ γ(X)).

Proof. The proof is order-theoretic dual of that of Th. 28 where I is S , F is F̃ ,
the rôles of 〈α, γ〉 and 〈α̃, γ̃〉 are exchanged so that Hyp. 6 is self-dual. ��

We obtain Alg. 9 below which operates only on the abstract domain:



Algorithm 9
X := α(I); Y := α̃(S); Go := (X � Y );
while Go do

X ′ := α(I) � α ◦ F ◦ γ̃(X); Y ′ := α̃(S) � α̃ ◦ F̃ ◦ γ(Y );
Go := (X �= X ′) & (Y �= Y ′) & (X ′ � Y ′);
X := X ′; Y := Y ′;

od;
return if X � Y then true else I don’t know;

Theorem 30. Under Hyps. 1.1, 2, 3, 4 & 6, Alg. 9 is partially correct: if it
terminates and returns “true” then lfp

≤
λX · I ∨ F (X) ≤ S.

Proof. 1. If the loop is never entered then Alg. 9 terminates with X �� Y so the
returned result I don’t know is correct;
Otherwise the loop is entered at least once so that if it is ever exited, we have
X = α(I) � α ◦ F ◦ γ̃(X) | Y = α̃(S) � α̃ ◦ F̃ ◦ γ(Y ) | X �� Y .

2. If X �� Y , the returned result I don’t know is correct;
Otherwise X � Y and two cases remain to be considered;

3. if X = α(I) � α ◦ F ◦ γ̃(X) and X � Y then by Th. 28 and monotony, we
have lfp

≤
λX · I ∨ F (X) ≤ γ(lfp

�
λX ·α(I) � α ◦ F ◦ γ̃(X)) ≤ γ(X) ≤ γ(Y )

≤ γ(α̃(S) ≤ S (by Hyp. 6.1), as required;
4. if Y = α̃(S) � α̃ ◦ F̃ ◦ γ(Y ) then by Th. 29 and monotony, we have dually

gfp
≤
λX ·S ∧ F̃ (X) ≥ γ̃(gfp

�
λX · α̃(S) � α̃ ◦ F̃ ◦ γ(X)) ≥ γ̃(Y ) ≥ γ̃(X) ≥

γ̃(α(I)) ≥ I (by Hyp. 6.2), as required. ��

3.12 On Termination

Observe that, due to classical undecidable results for program analysis, if the
abstract fixpoint checking algorithms of Sec. 3 are required to always terminate
(e.g. by choosing a coarse enough abstraction or by enforcing convergence by
widening/narrowing [12]) then there must be some programs for which the al
gorithm terminates and returns I don’t know. This can be either because the
program is incorrect (i.e. lfp

≤
λX · I ∨ F (X) �≤ S) or because the abstraction is

too imprecise to prove its correctness.

4 Conclusion

The traditional universal model checking Alg. 2 [3 , 32] is the dual of the tradi
tional algorithm for program analysis [7 , 10, 12] (with no abstraction i.e. 〈α, γ〉
is the identity). Both algorithms are logically equivalent (Th. 4) although, be
cause of computer resources limitations, one may fail while the other succeeds.
We have introduced a new Alg. 3 combining these Algs. 1 and 2 which par
allel version is logically equivalent (Th. 10) but more time efficient than both
algorithms.



When considering infinite-sate systems, model-checking must resort to ab
straction, which is always the case in program static analysis. Abstract inter
pretation [7 , 10 , 12] yields the abstract Alg. 4 and its dual Alg. 5 (with its
particular case Alg. 6 used in universal abstract model checking [19]) which are
both sound (Th. 12 , 20 and Col. 23) and logically equivalent. Again their (par
allel) combination in algorithm 7 is possible, sound (Th. 24) and more efficient.
Finally Algs. 4 , 5 , 6 and 7 compute abstract fixpoints but use a concrete spec
ification checking (e.g. γ(X) ≤ S for Alg. 4) so are hardly usable for program
static analysis. In this last case one must resort to Algs. 8 or 9 , or their parallel
versions, which operate only in the abstract.

In model-checking one is deeply interested in partially complete abstractions
which, despite the loss of information inherent to approximate abstract interpre
tations, always yield an affirmative answer when the specification is correct and
the checking algorithm does terminate. Would soundness be required only, but
not completeness (i.e. including termination, not considered here), abstract uni
versal model-checking would be nothing more than classical transition system
analysis by abstract interpretation [12] (and existential model checking its mere
dual).

We have characterized these partially complete abstractions and shown for
both Algs. 4 and 5 that any partially complete abstract domain must contain
the exact abstraction of an invariant, as computed by e.g. by Algs. 1 and 2
respectively (Th. 13 and 21 respectively).

In practice, this means that no full automation of the abstraction process is
possible for infinite-state transition systems (but for particular cases of limited
interest such as specific classes of program specifications), since finding or com
puting the proper abstraction always boils down to making a full correctness
proof. This appears to be a fundamental restriction to this popular approach
[1 , 2 , 5 , 20 , 24 , 25, 28 , 33] , and shows that some human assistance is ultimately
necessary as long recognized in the use of abstract interpretation to design pro
gram static analyzers manually or with interactive computer assistance [29].
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