
Abstract Interpretation of Algebraic Polynomial Systems
(Extended Abstract)

Patrick Cousot1 and Radhia Cousot2

1 LIENS, �Ecole Normale Sup�erieure, 45 rue d'Ulm, 75230 Paris cedex 05, France
cousot@dmi.ens.fr http://www.dmi.ens.fr/~cousot

2 LIX, CNRS & �Ecole Polytechnique, 91140 Palaiseau cedex, France
rcousot@lix.polytechnique.fr http://lix.polytechnique.fr/~rcousot

Abstract. We de�ne a hierarchy of compositional formal semantics of
algebraic polynomial systems over F-algebras by abstract interpretation.
This generalizes classical formal language theoretical results and context-
free grammar ow-analysis algorithms in the same uniform framework
of universal algebra and abstract interpretation.

1 Introduction
We consider algebraic polynomial systems generalizing language-theoretic context-
free grammars to F-algebras [Courcelle, 1996Mezei & Wright, 1967]. We provide
a compositional �xpoint derivation tree semantics and show that by abstract
interpretation [Cousot & Cousot, 1977Cousot & Cousot, 1979], we can derive a
hierarchy of formal �xpoint semantics generalizing results from the theory of
formal languages e.g. [Ginsburg & Rice, 1962Sch�utzenberger, 1962] as well as
grammar analysis algorithms e.g. [M�oncke & Wilhelm, 1991Jeuring & Swierstra, 1994Jeuring & Swierstr
We extend the results to in�nite terms.

2 Algebraic Polynomial Systems
Let S be a set of sorts. An S-signature is a set F of function symbols equipped
with a mapping type 2 F 7�! S� � S. We write fs1�:::�sn!s for type(f) =

hs1 : : : sn; si and f�!s when n = 0. AnF-algebra [Meinke & Tucker, 1992Wirsing, 1990]
is a pair A = hfAsgs2S ; ffAgf2Fi where the domain As of sort s of A is a non-
empty set and for each f 2 F of type s1 � : : :� sn ! s, the operation fA is a
total mapping As1 � : : :�Asn 7�! As. Classical examples of F-algebras are the
monoids of words and traces, trees, graphs with sources, etc. [Courcelle, 1996].

Let X be an S-sorted set of free variables x (disjoint from function symbols).
We write xs for type(x) = s. Let Ms;X be the set of monomials of type s over
variables X with the following syntax:

Ms;fxsg[Y
! xs; monomial of type s over variables fxsg [Y;

Ms;Y
! f�!s(L�;Y); f 2 F , (c() is written c for constants c�!s);

Ls��;Y ! Ms;Y; L�;Y; list of monomials of type s� over variables Y;

Ls;Y ! Ms;Y; unary list.

139

Let D be an S-sorted set of derivation labels ds (disjoint from function symbols
and variables). Let � 2 X 7�! }(D) such that 8xs 2 X s : 8d 2 �(xs) : d 2 Ds

and 8x; y 2 X : x 6= y =) �(x)\�(y) = ; be an assignment of derivation labels
to variables. For each ds 2 D, we let �(ds) 2 Ms;X be a monomial of type s
over the variables X representing the derivation labeled ds 2 �(xs) for variable
xs. An S-sorted polynomial system P is a tuple hF ; X ; D; �; �i de�ning the
system of equations fxs = �(ds) j s 2 S ^ xs 2 X s ^ ds 2 �(xs)g.

Example 1 (Polynomial system). The polynomial system given by S = fsg, F
= fbs�s!s; a�!sg, X = fA;Bg, D = fd1; d2g, �(A) = fd1; d2g, �(B) = ;, �(d1)
= b(A;A) and �(d2) = a with equations fA = b(A;A); A = ag can be written
as: A = b(A;A) [d1] + a [d2], B =
. ut

If F is an S-signature then F+ is F enlarged for each sort s 2 S with a new sym-
bol +s of type s�s! s and a new constant
s of type �! s. The syntax of an
F+-polynomial system P over X and D [Courcelle, 1996Mezei & Wright, 1967]
of type � is given by the following context-free attribute grammar with axiom
S�;X ;X ;D, � 2 S+ (for short we often omit the derivation labels):

Ss��;X;Y;D1[D2 ! Es;x
s;Y;D1 S�;Xnfxsg;Y;D2,

polynomial system of type s� (s 62 �) with left-variables X � X ,
right-variables Y � X and labels D1 [D2 � D (D1 \D2 = ;);

Ss;fx
sg;Y;D

! Es;x
s;Y;D; monoequational polynomial system;

Es;x
s;Y;D

! xs = Ps;Y;D; equation of type s;

Es;x
s;Y;;

! xs =
s; void equation;

Ps;Y;fd
sg[D

! Ms;Y [ds] +s P
s;Y;D; polynomial of type s over variables Y and

derivation labels fdsg [D with ds 62 D;

Ps;Y;fd
sg
! Ms;Y [ds]; labeled derivation.

The corresponding label assignments and derivations are given by:

�[[ES]] = �[[E]] [�[[S]]; �[[ES]] = �[[E]] [�[[S]];

�[[x = P]] = fhx; �[[P]]ig; �[[x = P]] = �[[P]];

�[[x =
]] = ;; �[[x =
]] = ;;

�[[M [d] + P]] = fdg [�[[P]]; �[[M [d] + P]] = fhd; Mig [�[[P]];

�[[M [d]]] = fdg; �[[M [d]]] = fhd; Mig :

Context-free grammars can be considered as algebraic polynomial systems in sev-
eral ways [Courcelle, 1996]. The meta-syntax of context-free grammars is given
by the following meta-grammar1:

G ! P G j P ; Grammar; R ! V R j R; Right sides;

P ! N `!' A; Production; A ! A `j' R j R j `"'; Alternative
right sides.V ! N j T ; Vocabulary;

1 We omit attributes ensuring that all productions with the same left side nonterminal have
their right sides grouped, with the alternative right sides separated by j.

140

In this meta-grammar the meta-terminals are f`!', `j', `"'g and the meta-nonter-
minals are fG , P , A, R, V , N , T g. The meta-productions for nonterminalsN 2
N and terminals T 2 T (not containing!, j and ") have been left unspeci�ed.
The meta-vocabulary V is T [N . A grammar G is usually presented as a triple
hT ; N ; P[[G]]i or a quadruple hT ; N ; A; P[[G]]i, where the axiom A 2 N is a
distinguished nonterminal, and the productions are:

P[[PG]]
�

= P[[P]] [P[[G]]; P[[N ! A]]
�

= fN ! r j r 2 A[[A]]g;

A[[A j R]]
�

= A[[A]] [A[[R]]; A[[R]]
�

= fR[[R]]g; A[["]]
�

= f"g;

R[[VR]]
�

= R[[V]] R[[R]]; R[[T]]
�

= T ; R[[N]]
�

= N :

Example 2 (Sentence generating grammars). If grammars are understood as
de�ning a set of sentences then there is only one sort string. The nullary function
symbols are " (empty string) and the terminals T 2 T . The only binary func-
tion symbol is the concatenation � of strings also denoted by juxtaposition. F+
includes +, also denoted j for alternative/language union and
 which denotes
the empty language. The nonterminals N 2 N are the variables. For example,

if N
�

= fx; y; zg and T
�

= fa; bg then the grammar x ! yx j y, x ! yx j y cor-
responds to x = y � x [1] + y [2], y = a [3] + b [4], z =
. The translation is
given by:

P[[PG]]
D1[D2 �

= P[[P]]
D1

P[[G]]
D2

P[[N ! A]]
D �

= N = A[[A]]
D

A[[A j R]]
D[fdg �

= A[[A]]
D

+ A[[R]]
d

A[[R]]
d �

= R[[R]] [d]

A[["]]
d �

= " [d] R[[VR]]
�

= V � R[[R]] : ut

Example 3 (Parse tree generating grammars). We can also interpret gram-
mars as generating parse trees, for example x ! yx j y, x ! yx j y corresponds
to �x = x2(�y; �x) + x1(�y), �y = y1(a) + y1(b), �z =
. The translation is then:

P[[PG]]
�

= P[[P]] P[[G]]; P[[N ! A]]
�

= N = A[[N ;A]];

A[[N ;A j R]]
�

= A[[N ;A]] + A[[N ;R]]; A[[N ;R]]
�

= N `[[R]](R[[R]]);

A[[N ; "]]
�

= N 1("); R[[VR]]
�

= R[[V]];R[[R]];

R[[T]]
�

= T ; R[[N]]
�

= N ;

`[[VR]]
�

= `[[V]] + `[[R]]; `[[V]]
�

= 1 : ut

3 Small Step Operational Semantics: States and Transitions

The transition/small-step operational semantics associates a discrete transition
system to each algebraic polynomial system that is a pair h�; �i where � is a
(non-empty) set of states, � � � � � is the binary transition relation between
a state and its possible successors. We write s � s 0 or �(s; s 0) for hs; s 0i 2 �

using the isomorphism }(� � �) ' (� � �) 7�! B where B
�

= ftt;�g is the set

of booleans. ��
�

= fs 2 � j 8s 0 2 � : :(s � s 0)g is the set of �nal/blocking

141

states. We formally de�ne several transition systems h�[[P]]; �[[P]]i associated
with polynomial system P which generalize the term rewriting system and the
derivation trees of [Courcelle, 1996].

Example 4 (Protosentence transition system). In order to generalize the pro-
tosentence derivation relation for context-free grammars, the set �

s
[[P]] of states

for the polynomial system P de�ned by A = b(A;A) + a is the language gen-
erated by the grammar A 0

! A 0A 0 j a j A with terminals fa;Ag and non-
terminals fA 0g. More generally states can be chosen as protosentences that is
sentences containing constants c�!s 2 F and variables x 2 X . The set �

s
[[P]]

of states of the S-sorted polynomial system P = hF ; X ; D; �; �i is the lan-
guage generated by the grammar G = hV ; fx 0 j x 2 X g; Pi where vocabulary is

V
�

= ff j c�!s 2 Fg[X and the productions are P = fx 0 ! x j x 2 X g[fx 0 !

' 0(�(d)) j x 2 X ^ d 2 �(x) ^ �(d) 6=
g with ' 0(x)
�

= x 0, ' 0(c�!s)
�

= c,

' 0(f�!s(L))
�

= ' 0(L) when � 6= � and ' 0(M;L) = ' 0(M)' 0(L). The transition
relation is then:

�
s
[[P]]

�

= fhpxq; p'(�(d))qi j x 2 X ^ 9d 2 �(x) : �(d) 6=
g (1)

with '(x)
�

= x, '(c�!s)
�

= c, '(f�!s(L))
�

= '(L) when � 6= � and '(M;L) =

'(M)'(L). This one-step derivation hs; s 0i 2 �
s
[[P]] is written as s

P
=) s 0. ut

Example 5 (Context transition system). For top-down analysis, it is conve-
nient to consider the derivation sequence where all replacements are delimited
by brackets. The transition system is: h�

c
[[P]]; �

c
[[P]]i with:

�
c
[[P]]

�

= V?
� f[g � V?

� f]g � V? where V
�

= X [fc�!s j c 2 Fg; (2)

�
c
[[P]]

�

= fhp[qxq 0]p 0; pq['(�(d))]q 0p 0i j x 2 X ^ d 2 �(x)^ �(d) 6=
g:

For the example polynomial system P de�ned by A = b(A;A)+c(A)+d(a;A)+

a, two possible derivations sequences with delimited contexts would be [A]
P
=)

[aA]
P
=) a[A] and [A]

P
=) [AA]

P
=) [a]A. ut

Example 6 (Parse tree transition system). Parse trees for context free gram-
mar generalize to F-algebras [Meinke & Tucker, 1992]. The states of the transi-
tion system h�

p
[[P]]; �

p
[[P]]i for the polynomial system P = hF ; X ; D; �; �i are

parse trees in parenthesized form. They derive from the nonterminals x 00, x 2 X
in the meta-grammar with productions:

x 00 ! [x 0]; for each x 2 X ;

x 00 ! x; for each x 2 X ;

x 0 ! x : � 0(�(d)); for each x 2 X ; d 2 �(x) and �(d) 6=
;

with � 0(x)
�

= x 0, � 0(c�!s)
�

= c, � 0(f�!s(L))
�

= f[� 0(L)] when � 6= � and
� 0(M;L) = � 0(M); � 0(L). For example the parse tree [A : b[A : a;A]] is a state
of the polynomial system P de�ned by A = b(A;A) + a. Transitions construct
children of a variable node in a parse tree as given by the right-hand side of the
polynomial system equations:

142

�
p
[[P]]

�

= fhp[qxq 0]p 0; p[qx : � 0(�(d))q 0]p 0i j d 2 �(x)^ �(d) 6=
^ q 0 6= [q 00]g: (3)

For the A = b(A;A) + a example, a possible transition is [A : b[A;A]]
P
=) [A :

b[A : a;A]]. ut

Example 7 (Derivation tree transition system). More generally, we can built
the parse tree and record which variables are expanded in parallel at each
derivation step thus generalizing the derivation trees of [Courcelle, 1996]. For
example, the states of the polynomial system A = b(A;A) [d1] + a [d2] are
given by A 0

! hAi j A j A[d1]b(A
0; A 0) j A[d2]a where hAi is to be de-

rived as in hAi
P
=) A[d1]b(hAi; hAi)

P
=) A[d1]b(A[d1]b(hAi; A); A[d2]a)

P
=)

A[d1]b(A[d1](A[d2]a; hAi); A[d2]a)
P
=)A[d1]b(A[d1]b(A[d2]a;A[d2]a); A[d2]a).

Given an S-sorted polynomial system P = hF ; X ; D; �; �i, the set of state is

the set �
d
[[P]] of derivation trees Ts of sort s de�ned by the following grammar:

Ts ! xs variable,

j hxsi substitution variable,

j fs1�:::�sn!s(Ts1; : : : ; Tsn) node,

j c�!s leave,

j xs[ds]fs1�:::�sn!s(Ts1; : : : ; Tsn) substituted node,

j xs[ds]c�!s substituted leave.

A substitution � maps variables xs 2 X to sets �(x) of monomialsms of type s
over the variables fx; hxi j x 2 X g. The identity substitution � satis�es 8x 2 X :

�(x) = fx; hxig. The application T j[[�]]j of substitution � for derivation label d
to a tree T is de�ned as follows:

xs j[[�]]jds
�

= fxs; hxsig;

hxsi j[[�]]jds
�

= fxs[ds]ms j ms 2 �(xs)g;

f
s1�:::�sn!s

(Ts1; : : : ; Tsn) j[[�]]jds
�

= ff(ms1 ; : : : ;msn) j

n̂

i=1

msi 2 Tsi j[[�]]jdsg;

c�!s j[[�]]jds
�

= fcg;

xs[ds
0
]f
s1�:::�sn!s

(Ts1; : : : ; Tsn) j[[�]]jds
�

= fxs[ds
0
]f(ms1 ; : : : ;msn) j

n̂

i=1

msi 2 Tsi j[[�]]jdsg;

xs[ds
0
]c�!s j[[�]]jds

�

= fxs[ds
0
]cg :

The transition relation consists in replacing all substitution variables in a deriva-
tion tree by corresponding right-hand side monomials and then in choosing sub-
stitution variables for the next step:

�
d
[[P]]

�

= fhT; T 0i j 9� : 8x 2 X : 9d 2 �(x) : �(x) � �(d) j[[�]]j ^ T 0 2 T j[[�]]jdg :

hT; T 0i 2 �
d
[[P]] is written T

P
=) T 0,

P

=?) is the reexive transitive closure. ut

143

4 Fixpoint Semantics

A �xpoint semantic speci�cation is a pair hD; Fi where the semantic domain
hD; v; ?; ti is a poset with partial order v, in�mum ? and partially de�ned

least upper bound (lub) t and the semantic transformer F 2 D
m
7�! D is

a total monotone map from D to D assumed to be such that the trans�nite

iterates of F from ?, that is F0
�

= ?, F�+1
�

= F(F�) for successor ordinals � + 1

and F�
�

= t
�<�

F� for limit ordinals � are well-de�ned (e.g. when hD; v; ?; ti is a

directed-complete partial order or DCPO). By monotonicity, these iterates form
an increasing chain, hence reach a �xpoint so that the iteration order can be
de�ned as the least ordinal � such that F(F�) = F�. This speci�es the �xpoint

semantics S as the v-least �xpoint S
�

= lfp
v

F = F� of F.

5 Derivation Semantics, Its Fixpoint Characterization

The set �+ of �nite derivations for the transition system h�; �i is the set �~?
�

=

[
n>0

�~n where the set of non-empty sequences of n states separated by transitions

� is �~n
�

= f�0 : : : �n-1 j 8i 2 [0; n - 1[: h�i; �i+1i 2 �g.

Example 8. A possible maximal derivation for the polynomial system A =

b(A;A) [d1] + a [d2] is hAi
P
=) A[dd1]b(hAi; A)

P
=) A[1]b(A[d2]a; hAi)

P
=)

A[d1]b(A[d2]a;A[d2]a). ut

The set �~? of �nite derivations for the transition system h�; �i can be char-
acterized in �xpoint top-down/forward and bottom-up/backward form:

�~? = lfp
�
~T where ~T(X)

�

= �
~1 [(X ; �

~)2 (top-down/forward), (4)

= lfp
�
~B ~B(X)

�

= �
~2 ; (X [�

~1) (bottom-up/backward), (5)

where �
~1 �= � is the set of state sequences �0 2 � of length one and X ; Y

�

=

f�0 : : : �n-1 � � 01 : : : �
0
m-1 j �0 : : : �n-1 2 X ^ �n-1 = � 00 ^ � 00 : : : �

0
m-1 2 Yg

is the sequential composition of sets of �nite derivations. The transformers ~T
and ~B are [-additive on the complete lattice h}(�+); �; ;; �; [; \i of sets of
derivation sequences.

6 Fixpoint Semantics Transfer and Approximation

In abstract interpretation, the concrete semantics S\ is approximated by a
(usually computable) abstract semantics S] via an abstraction function � 2
D\ 7�! D] such that �(S\) v] S] 2. The abstraction is exact if �(S\) = S] and
approximate if �(S\) @] S].

2 More generally, we look for an abstract semantics S] such that �(S\) �] S] for the approx-

imation partial ordering �] corresponding to logical implication which may di�er from the
computational partial orderings v used to de�ne least �xpoints [Cousot & Cousot, 1994].

144

6.1 Fixpoint Semantics Approximation

To derive S] from S\ by abstraction or S\ from S] by re�nement, we can use
the following �xpoint approximation theorems (as usual, we call a function f

Scott-continuous, written f : D
c
7�! E, if it is monotone and preserves the lub

of any directed subset A of D):

Theorem 9 (S. Kleene �xpoint approximation). Let hhD\;v\;?\; t\i; F\i and
hhD]; v]; ?]; t]i; F]i be concrete and abstract �xpoint semantic speci�cations. If

the?-strict Scott-continuous abstraction function � 2 D\
?,c
7�! D] is such that for

all x 2 D\ such that x v\ F\(x) there exists y v\ x such that �(F\(x)) v] F](�(y))

then �(lfp
v\

F\) v] lfp
v]

F]. ut

Theorem 10 (A. Tarski �xpoint approximation). Let hD\; F\i and hD]; F]i be
concrete and abstract �xpoint semantic speci�cations such that hD\; v\; ?\; >\;

t\; u\i and hD]; v]; ?]; >]; t]; u]i are complete lattices. If the monotone

abstraction function � 2 D\ m
7�! D] is such that for all y 2 D] such that

F](y) v] y there exists x 2 D\ such that �(x) v] y and F\(x) v\ x then

�(lfp
v\

F\) v] lfp
v]

F]. ut

6.2 Fixpoint Semantics Transfer

When the abstraction must be exact, that is �(S\) = S], we can use the following
�xpoint transfer theorem, which provide guidelines for designing S] from S\ (or
dually) in �xpoint form [Cousot & Cousot, 1979, theorem 7.1.0.4(3)]:

Theorem 11 (S. Kleene �xpoint transfer). Let hD\; F\i and hD]; F]i be con-
crete and abstract �xpoint semantic speci�cations. If the ?-strict Scott-contin-

uous abstraction function � 2 D\
?,c
7�! D] satis�es the commutation condition

F] � � = � � F\ then �(lfp
v\

F\) = lfp
v]

F]. Moreover the respective iterates F\�

and F]�, � 2 O of F\ and F] from ?\ and ?] satisfy 8� 2 O : �(F\�) = F]
� and the

iteration order of F] is less than or equal to that of F\. ut

Observe that in theorem Theorem 11 (as well as in theorem Theorem 9), Scott-
continuity of the abstraction function � is a too strong hypothesis since we only
use the fact that � preserves the lub of the iterates of F\ starting from ?\. When
this is not the case, but � preserves glbs, we can use:

Theorem 12 (A. Tarski �xpoint transfer). Let hD\; F\i and hD]; F]i be con-
crete and abstract �xpoint semantic speci�cations such that hD\; v\; ?\; >\;

t\; u\i and hD]; v]; ?]; >]; t]; u]i are complete lattices. If the abstraction
function � 2 D\ u

7�! D] is a complete u-morphism satisfying the commu-
tation inequality F] � � v] � � F\ and the post-�xpoint correspondence

8y 2 D] : F](y) v] y =) 9x 2 D\ : �(x) = y ^ F\(x) v\ x then �(lfp
v\

F\)

= lfp
v]

F]. ut

6.3 Semantics Abstraction
An important particular case of abstraction function � 2 D\ 7�! D] is when
� preserves existing lubs �

�
t\

i2�
xi
�
= t]

i2�
�(xi). In this case there exists a unique

145

map 2 D] 7�! D\ (so-called the concretization function [Cousot & Cousot, 1977])

such that the pair h�; i is a Galois connection, writtenhD\; v\i �! �
�

hD];v]i,

which means that hD\; v\i and hD]; v]i are posets, � 2 D\ 7�! D], 2 D] 7�!
D\, and 8x 2 D\ : 8y 2 D] : �(x) v] y () x v\ (y). If � is surjective (resp.

injective, bijective) then we have a Galois insertion written !�! �
�

(resp. em-

bedding3 written �! �
�

, bijection written !�! �

�

). The use of Galois connections

in abstract interpretationwas motivated by the fact that �(x) is the best possible
approximation of x 2 D\ withinD] [Cousot & Cousot, 1977Cousot & Cousot, 1979].

We often use the fact that Galois connections compose4. If hD[; v[i �! �
�1

1
hD\;

v\i and hD\; v\i �! �
�2

2
hD]; v]i then hD[; v[i �! �

�2��1

1�2
hD]; v]i.

Example 13 (Elementwise subset abstraction). If D\ is a set and D] � D\

then the subset abstraction is h}(D\); �i !�! �
�

h}(D]); �i where �(X)

�

= X\D]

and (Y)
�

= X[:D] (where the complement of E � D is :E
�

= fx 2 D j x 62 Eg).

If @ 2 D\ 7�! D], the elementwise abstraction is h}(D\); �i �! �
�

h}(D\);

�i, where:

� 2 }(D\) 7�! }(D]); �(X)
�

= f@(s) j s 2 Xg; (6)

 2 }(D]) 7�! }(D\); (Y)
�

= fs j @(s) 2 Yg : (7)

Moreover, if @ is surjective then so is �.
If S � D\ and @ 2 S 7�! D] then by composition, we get the elementwise

subset abstraction h}(D\); �i �! �
�

h}(D\); �i where �(X)

�

= f@(x) j x 2 X\Sg

and
�

= fx j @(x) 2 Yg[:S. ut

Example 14 (Transitive derivation relation). In order to illustrate �xpoint
transfer Theorem 11, let us consider the reexive transitive closure �? of the
transition relation �. It is the image �(�~?) of the derivation sequences for � by

the elementwise abstraction h}(�+); �i !�! �
�

h}(� � �); �i de�ned by (6) for

the abstraction mapping which records initial and �nal states of derivations:

@ 2 �+ 7�! � � �; @(�0 : : : �n-1)
�

= h�0; �n-1i : (8)

The classical �xpoint characterization:

�? = lfpT?; where T?(�)
�

= 1� [(� � �) (9)

and 1� is the identity relation on states �, can be derived from the �xpoint
characterization (4) of derivation sequences by �xpoint transfer Theorem 11

since � � ~T(X) = T? � �(X). ut

3 If � and are Scott-continuous then this is an embedding-projection pair.
4 contrary to Galois's original de�nition corresponding to the semi-dual hD\; v\i �! �

�

hD];

w]i.

146

7 Examples of Abstractions

We now give a number of useful abstractions to relate di�erent semantics of
algebraic polynomial systems, at various levels of abstraction.

7.1 State Abstraction

Example 15 (Parse tree to protosentence abstraction). A protosentence is a
less informative state than a parse tree since the details of the derivation process
are lost. The abstraction mapping @

ps 2 �
p
7�! �

s
atten a parse tree to its

tips. For example @ps([A : b[A : a;A]]) = aA. Formally:

@
ps([�])

�

= @
ps(�), @

ps(x)
�

= x, @
ps(x : c�!s)

�

= c, (10)

@
ps(x : fs1�:::�sn!s[�s1 ; : : : ; �sn])

�

= @
ps(�s1) � : : : � @

ps(�sn) . ut

Example 16 (Context to protosentence abstraction). The same way, the ab-
straction mapping:

@
cs 2 �

c
7�! �

s
; @

cs(p[r]q)
�

= p � r � q

abstracts contexts to protosentences. The @
cs abstraction does not preserve

blocking states (as shown by the counter example @cs(a[A]) = @
cs([a]A) = aA

but [a]A is a blocking state for �
c
[[P]] when P is A = b(A;A)+c(A)+d(a;A)+a

while a[A] is not). It follows that in general f@(�) j � 2 �~?g 6= @(�)
~? so that it

is a priori not equivalent to reason on contexts and protosentences. However we
observe that:

hs; s 0i 2 �
c
[[P]]

?
=) h@cs(s); @cs(s 0)i 2 �

s
[[P]]

?
;

while the inverse implication does not hold. Nevertheless:

Theorem 17. If x 2 X , V 2 X [fc�!s j c 2 Fg and hx; p � V � qi 2 �
s
[[P]]

?

then hx; p 0[p 00 � V � q 00]q 0i 2 �
s
[[P]]

?
, hp 0 � p 00; pi 2 �

s
[[P]]

?
and hq 00 � q 0; qi 2

�
s
[[P]]

?
.

These abstractions can be extended to sets of states by (6). ut

7.2 Transition Abstraction

Given an abstraction mapping @ 2 � 7�! �
]
, a concrete transition system h�;

�i can be approximated by any abstract transition system h�
]
; �

]
i such that:

hs; s 0i 2 � =) h@(s); @(s 0)i 2 �
]
: (11)

The least such �-upper approximation is:

@(�)
�

= fh�; � 0i j 9s; s 0 : � = @(s)^ � 0 = @(s 0)^ hs; s 0i 2 �g : (12)

Example 18. Applying (12) to the abstraction (10) of parse trees into pro-
tosentences, the parse tree transition system (3) is approximated by �

s
[[P]] =

@
ps(�

p
[[P]]) as de�ned in (1). ut

147

7.3 Derivation Abstraction

An abstraction mapping on states @ 2 � 7�! �
]
can be extended pointwise to

derivation sequences (i.e. non empty sequences of states):

@ 2 �+ 7�! �
]+

; @(�0 : : : �n-1) = @(�0) � : : : � @(�n-1) :

Example 19. According to (10), the parse tree derivation sequence [A]
P
=) [A :

b[A;A]]
P
=) [A : b[A : a;A]]

P
=) [A : b[A : a;A : a]] for the algebraic polynomial

system A = b(A;A) + a can be approximated by the protosentence derivation

A
P
=) AA

P
=) aA

P
=) aa. ut

If h�
]
; �

]
i is an @-abstraction of h�; �i (i.e. satisfying (11)) then the abstraction

process can only introduce more derivation sequences:

f@(�) j � 2 �~?g � �
]~?

:

We say that the abstraction mapping @ preserves blocking states for � if and
only if:

8s; s 0 2 � : [@(s) = @(s 0)^ 9s 00 : hs; s 00i 2 �] =) [9s 00 : hs 0; s 00i 2 �]

In this case, the abstraction of the concrete derivation sequences for h�; �i is

exactly the set of abstract derivation sequences for h�
]
; @(�)i:

f@(�) j � 2 �~?g = @(�)
~?
: (13)

8 Lattice of Semantics

A preorder can be de�ned on semantics �\ 2 D\ and �] 2 D] when �] = �](�\)

and hD\; �i �! �
�]

]

hD]; 5i. The quotient poset is isomorphic to M. Ward lattice

[Ward, 1942] of upper closure operators] � �] on h}(�+); �i, so that we get a
lattice of semantics of algebraic polynomial systems which is part of the lattice
of abstract interpretations of [Cousot & Cousot, 1977, sec. 8]. We illustrate a
few abstract semantics in the lattice below.

9 Bottom-Up/Backward Abstract Semantics of Algebraic
Polynomial Systems

For bottom-up analysis, we use a �xpoint semantics of the form:

�? = lfpB?; where B?(�)
�

= (� � �) [1� : (14)

9.1 Compositional Bottom-Up Abstract Semantics

By re�ning the speci�cation (14), the big-step semantics �[[P]]
? can be expressed

in compositional form, that is by induction on the syntax of algebraic polynomial
systems, as an instance of the following bottom-up abstract semantics:

S[[P]]
�

= lfp
v

B[[P]]; (15)

148

where hL;v;?;ti is a cpo, hP;�;5i is a poset and thev-monotonic transformer
B[[S]] 2 L m

7�! L and B[[P]] 2 L m

7�! P are de�ned compositionally by induction
on the syntax S of systems P and P of polynomials, as follows:

B[[ES]]r
�

= B[[E]]r t B[[S]]r; B[[x]]r
�

= xhri;

B[[x = P]]r
�

= h1i t hx ��B[[P]]rir; B[[f�!s(L)]]r
�

= fhri(B[[L]]r); (16)

B[[
]]r
�

= h
i; B[[M;L]]r
�

= B[[M]]r
 B[[L]]r;

B[[M+ P]]r
�

= B[[M]]r5 B[[P]]r; B[[c�!s]]r
�

= chri :

Example 20 (Big-step protosentence semantics). For �
s
[[P]]

?
, we have (recall

that V
�

= fc j c�!s 2 Fg [X):

Ls vs ?s ts Ps �s 5s h
is h1is hx ��Risr
s xhris fhris(R) chris

}(V?�V?) � ; [}(V?) � [; 1V? y � z R fcg

y is fhpNq; p 0mq 0i j hp; p 0i 2 r^m 2 R^ hq; q 0i 2 rg; X � Y is fxy j x 2 X^ y 2 Yg

and z is fp j hx; pi2rg:

The proof relies on the fact that �
s
[[P]]

?
is a relational morphism, that is r �

V? � V? such that:

hm � p; qi 2 r () 9m 0; p 0 : hm; m 0i 2 r^ hp; p 0i 2 r^ q = m 0
� p 0; (17)

which generalizes F-homomorphisms [Meinke & Tucker, 1992]). ut

Example 21 (Finitary Powerset F-Algebra Semantics). The same way, the
powerset F-algebra semantics S?[[P]] of [Courcelle, 1996] is given by choosing L?

�

= X 7�!}(M), P? �

= }(M) where M
�

= [fMs;; j s 2 Sg is the set of ground
monomials, and:

v? ?? t? �? 5? h
i? h1i?x hx ��RiLy
? xhLi? fhLi?(R) chLi?

_� _; _[� [; ; ((y = x ? R > ;)) � L(x) f[R] fcg

where fs1�:::�sn!s[R]
�

= ff(x1; : : : ; xn) j hx1; : : : ; xni 2 Rg. ut

9.2 Compositional Bottom-Up Abstract Interpretations

This compositional presentation is preserved by abstract interpretation. If we
have de�ned a concrete semantics S[2 L[(15) compositionally (16), we may

want, given an abstraction hL[; v[i !�! �
�

hL]; v]i, to derive an abstract se-

mantics S]
�

= �(S[) which can be de�ned in the same compositional form (15),

(16). By the �xpoint transfer theorem Theorem 11, S]
�

= �(S[) can be de�ned
in compositional form (15) and (16) if we can check the following conditions:

hL[; v[i !�! �
�

hL]; v]i; �(hx ��Ri[r) = hx ��� 0(R)i]�(r);

hP[; �[i !�! �
� 0

 0

hP]; �]i; � 0(r1
[r2) = � 0(r1)
] � 0(r2);

h
i] = �(h
i[); � 0(fhri[) = fh� 0(r)i];
h1i] = �(h1i[); chri] = � 0(chri]) :

(18)

149

This generalizes the homomorphism result of [Mezei & Wright, 1967] for the case
of power-set F-algebra (also [Courcelle, 1996, proposition 3.7]).

When hL]; v]i satis�es the ascending chain condition, (15) and (16) can be
understood as the speci�cation of an abstract interpreter de�ned in terms of the
abstract operations (18) and computing �xpoints iteratively. The abstract inter-
preter is generic and can be instantiated for particular applications as considered
in the next section.

10 Examples of Bottom-Up Algebraic Polynomial Systems
Abstract Interpretations

The following few examples are abstractions of bottom-up big-step polynomial
system semantics and generalize classical results for context free grammars.

10.1 Examples of Bottom-Up Algebraic Polynomial Systems Semantics

Example 22 (Generated Protolanguage). The abstraction �(r)
�

= �x
�

fp j hx;

pi 2 rg of the big-step semantics Ss[[P]]
�

= �
s
[[P]]

?
provides the protolanguage

Sv[[P]]x generated for each variable x 2 X by the polynomial system P . � 0 is the
identity. The corresponding compositional �xpoint de�nition is obtained from

(15) and (16) with Lv �

= X 7�!}(V?), Pv �

= }(V?) and:

vv ?v tv �v 5v h
iv h1ivx hx ��RivLy
v hxivL hfivL(R) hcivL

_� _; _[� [; fxg ((y = x ? R > ;)) � L(x) R fcg

where the test ((b ? t > e)) is t is b is true (tt 2 B) and e if b is false (� 2 B)

and hX 7�!}(V?); _�; _;; �x
�

V?; _[; _\i is the pointwise extension of the complete
lattice h}(V?); �; ;; V?; [; \i. ut

Example 23 (Generated Language). Ginsburg & Rice [1962] and Sch�utzen-
berger [1962] �xpoint characterization of the language generated by a context-
free grammar is easily generalized to polynomial systems by the further abstrac-

tion St[[P]]
�

= �(Sv[[P]]) which consists in ignoring nonterminal sentences: �(L)
�

= �x
�

fp j p 2 L(x)\T ?g where T
�

= fc j c�!s 2 Fg. St[[P]] is de�ned by (15) and

(16) with Lt �

= X 7�!}(T ?), Pt �

= }(T ?) and:

vt ?t tt �t 5t h
it h1itx hx ��RitLy
t hxitL hfitL(R) hcitL

_� _; _[� [; ; ((y = x ? R > ;)) � L(x) R fcg .

This is also an abstraction of the powerset F-algebra semantics of Example 21 by

�(L)
�

= �x
�

f@(m) j m 2 L(x)g where @(c)
�

= c and @(fs1�:::�sn!(ms1 ; : : : ;msn))
�

= @(ms1) � : : : � @(msn). ut

10.2 Examples of Bottom-Up Algebraic Polynomial Systems Analysis

Other classical examples of abstraction for grammars are also easily general-
izable to algebraic polynomial systems such as variable productivity, the set
First[[P]](x) of constants c that begin the strings derived from x, etc. [Wilhelm & Maurer, 1995].

150

In this last case, empty grammatical production N ! " have no direct coun-
terpart for algebraic polynomial systems, so that we can de�ne First[[P]](E)x as
the set of constants c which can start a protosentence deriving from variable x
when erasing all symbols in E or " if the string resulting from this erasure is
empty. Observe that the two de�nitions coincide when grammars are translated
into polynomial systems as speci�ed in Example 2 and E = f"g. Formally, we
de�ne:

First[[P]](x)
�

= �E(S
t[[P]]); @E(c � p)

�

= ((c 2 E ? @E(p) > x));

�E(r)x
�

= f@E(p) j hx; pi 2 rg; @(�)
�

= " :

In compositional form, First[[P]](E) is de�ned by (15) and (16) where L �

=

X 7�!}(T), P �

= }(T) and:

v ? t � 5 h
i h1ix hx ��RiLy X
 Y xhLi fhLi(R) chLi

_� _; _[� [; ; ((y = x ? R > ;)) y L(x) R fcg

T
�

= fc j c
�!s 2 Fg n E and y is X [((X \ E 6= ; ? Y > ;)) [f" j X \ E 6= ;^ Y \ E 6= ;g:

11 Top-Down/Forward Compositional Abstract Semantics of
Algebraic Polynomial Systems

Top-down/forward abstract semantics are abstractions of derivation sequence
semantics (4), such as (9). The big-step semantics �[[P]]

?
can be de�ned as an

instance of the top-down abstract semantics:

S[[P]]
�

= lfp
v

T[[P]];

where hL; v; ?; ti is a cpo, hP; �; 5i is a poset, the v-monotonic transformer
T[[S]] 2 L m

7�! L and T[[P]] 2 P are de�ned compositionally by induction on the
syntax S of P and P of polynomials, as follows:

T[[ES]]r
�

= T[[E]]r t T[[S]]r; T[[x]]
�

= hxi;

T[[x = P]]r
�

= h1i t hx��T[[P]]ir; T[[f�!s(L)]]
�

= hfi(T[[L]]);

T[[
]]
�

= h
i; T[[M;L]]
�

= T[[M]]
 T[[L]]; (19)

T[[M [d0] + P]]
�

= hd0iT [[M]]5 T[[P]]; T[[c�!s]]
�

= hci :

T[[M [d0]]]
�

= hd0iT [[M]];

For the big-step derivation tree semantics �
d
[[P]]

?
, we choose Ld �

= }(�
d
��

d
),

Pd �

= D 7�! }(�
d
) and:

vd ?d td �d 5d hd0iM h
id h1id hx��Ridr
d hxid hfidR hcid

� ; [_� _[y �d0
�
; 1

�
d z � fx; hxig f?(R) fcg

z is fhT; T 00i j hT; T 0i 2 r^ d0 2 D ^ R(d0) 6= ;^ T 00 = T 0 j[[�y
�
((y = x ? R(d0) > ;))]]jdg;

y is �d
�
((d = d0 ? M > ;)) and f

?

(M)
�

= ff(ms1 ; : : : ; msn) j hms1 ; : : : ; msni 2Mg:

For the big-step protosentence semantics �
s
[[P]]

?
, we choose:

151

Ls vs ?s ts Ps �s 5s hd0iR h
is h1is hx��Risr
s hxis hfisR hcis

}(V?�V?) � ; [}(V?) � [R ; 1V? z � fxg R fcg

where z is fhp; qmq 0i j hp; qxq 0i 2 r^m 2 Rg:

For the big-step context semantics �
c
[[P]]

?
, we choose:

Ls vs ?s ts Ps �s 5s hd0iR h
is h1is hx��Risr
s hxis hfisR hcis

}(�
c
��

c
) � ; [}(�

c
) � [R ; 1

�
c z � fxg R fcg

where z is fhp; q[q 0m`]` 0i jhp; q[q 0x`]` 0i 2 r^m 2 Rg:

12 Examples of Top-Down Algebraic Polynomial Systems
Analysis

We consider a few examples which are abstractions of the top-down semantics
and are classical applications for context grammars [Wilhelm & Maurer, 1995].

Accessible Variables: Given an axiom A 2 X , a variable x is accessible (writ-

ten Reachable(x)) if and only if hA; pxqi 2 �
s
[[P]]

?
. It is not possible to use

Kleene �xpoint transfer Theorem 11 or Tarski's �xpoint transfer Theorem 12
with the big-step protosentence semantics �

s
[[P]]

?
. The abstraction would be

Reachable(x) = �(�
s
[[P]]

?
) with �(r) = �x

�

hA; pxp 0i 2 r. For equation x = P,
we would have:

�(hx��Risr)

= �x
�

hA; pxp 0i 2 fhp; qmq 0i j hp; qxq 0i 2 r^m 2 Rg (defs. � & hx��Ris)

= �x
�

pxp 0 = qmq 0 ^ hA; qxq 0i 2 r^m 2 R :

The di�culty is now that we have to consider the cases when x occur in q or
q 0 for which no inductive information is available. Fortunately, thanks to (17),

we can avoid this phenomenon using the big-step context semantics �
c
[[P]]

?
in

compositional form (19) where:

L v ? t P � 5 hd0iX h
i h1iy hx��Xiry
 hxi hfiX hci

X 7�! B _=) _� __ }(X) � [X ; y = A r(x)^ y 2 X [fxg X ; .

Follow: The set Follow[[P]](E)x of constants c 2 T which, after erasure of the
symbols belonging to E, can follow variable x in a protosentence derived from
the axiom A 2 X or a if x can appear at the end of such a protosentence. Again
by (17), we can use the big-step context semantics �

c
[[P]]

?
with the abstraction.

�1(r)
�

= �x
�

fc 2 First 0(m 0p 0) j h[A]; p[mxm 0]p 0i 2 rg;

First
0(p)

�

= First(p) - f"g [((" 2 First(p) ? fag > ;)) :

This does not exactly lead to the classical algorithm [Aho et al., 1986] which
relies on the fact that all nonterminals are assumed to be accessible. We get L
�

= X 7�!}(T), P �

= }(V?) and:

152

v ? t � 5 hd0iM h
i h1ix hx��Rir
 hxi hfiR hci

_� _; _[� [M ; ((x = A ? fag > ;)) z � fxg R c

where z is �y
�
((Reachable(x)^ pyq 2 R ?
First(q) - f"g [((" 2 First(q) ? r(x) > ;)) > ;)) :

Since Follow makes use of Reachable, we can use the reduced product of the two
abstractions [Cousot & Cousot, 1979] (whereas the lattice lifting technique used
in [Jeuring & Swierstra, 1995] is speci�c to the combination with Reachable).

13 Generalization to Infinite Terms
Let M?

s;X (respectively M!
s;X) be the set of �nite (resp. in�nite) trees of root

sort s 2 S built with the function symbols F and variables X . The �nite trees

are isomorphic with monomialsMs;X . LetM1

s;X

�

=M?
s;X [M

!
s;X . We drop the

s subscript when considering the join for all sorts s 2 S and the X subscript
when X = ; that is for ground trees. The in�nitary powerset F-algebra seman-

tics S1[[P]] is de�ned compositionally by (15) and (16) when choosing L1 �

=

X 7�!}(M1), P1 �

= }(M1) and:

v1 ?1 t1 �1 51 h
i1 h1i1x hx ��Riry
1 xhri1 fhri1(R) chri1

_� �xs
�
Ms _\ � [; ; ((r = x ?

R > ;))
� r(x) f[R] fcg

.

De�ne the �nite projection X? = X \ M? and the in�nite projection X! =
X \M!. The abstraction to �nite sentences de�ned by the Galois connection

hX 7�!}(M1); _v1i !�! �
�

hX 7�!}(M?); _�i, where �(r)

�

= �x
�

r(x)
?
and (r)

�

= �x
�

r(x) [M!, yields to the �nitary powerset F-algebra semantics S?[[P]]

of [Courcelle, 1996] considered at Example 21 in greatest �xpoint form5. The
abstraction to in�nite terms de�ned by the Galois connection hX 7�!}(M1);

_v1i !�! �
�

hX 7�!}(M!); _�i, where �(r)

�

= �x
�

r(x)
!
and (r)

�

= �x
�

r(x)[M?,

yields to a generalization S![[P]] of Nivat's [1977, 1978] greatest �xpoint charac-
terization of the in�nite language generated by grammar to algebraic polynomial

systems. We get L! �

= X 7�!}(M!), P!
�

= }(M!) and:

5 The complete lattice h}(M1); v1; ?1; >1; t1; u1i with generalized Scott's or-

dering X v1 Y
�
= X? � Y? ^ X! � Y!, in�mum ?1

�
= M!, supremum >1

�
=

M?, lub t
1

i2�
Xi

�
= [

i2�
Xi

? [\
i2�

Xi
! and glb u

1

i2�
Xi

�
= \

i2�
Xi

? [[
i2�

Xi
! introduced

in [Cousot & Cousot, 1992] to provide a �xpoint characterization of the �nite and in�-
nite execution traces of a transition system cannot be directly generalized. A counter
example is x = a + b(x) + c(x; x) since the iterates start with X0 = M!, so that
X1 = fa;b(x); c(x; y) j x; y 2 X0g, hence the limit, does not contain the in�nite tree
with equation t = c(b(a)); t) with �nite subtree b(a) 62 X0. When least and greatest
�xpoints may di�er, we can resort to the traditional topological notions based on the pre-
�x ordering [see e.g. de Bakker et al., 1983] which naturally generalizes to inverse limits
[Meinke & Tucker, 1992] but then their is a \discontinuity" in the passage to the limit, all
pre�xes being �nite objects while the limit is an in�nite one. This causes problems when
considering abstractions (which are not admissible in the sense of Scott-induction).

153

v! ?! t! �! 5! h
i! h1i!x hx ��Riry
! xhri! fhri!(R) chri!

_� �xs
�
M!

s
_\ � [; ; ((r = x ?

R \M! > ;))
� r(x) f[R] fcg

.

The least �xpoint lfp
_�

B[[P]] in (15) is Nivat's greatest for _�.

14 Infinite Abstract Domains

As an example of in�nite abstract domain, let us consider the abstraction of
terminal sentences by the vector of number of instances of each terminal in the
sentence: @(")T = 0, @(T�)T = 1+@(�)T , @(T�)T 0 = @(�)T 0 when T 6= T 0.
The extension to languages is elementwise (6). By Parikh's theorem [1966], the
abstraction of the generated language is the union of a �nite number of linear
sets. Another abstraction consists in taking the convex-hull of the semi-linear
set, using a widening to speed-up convergence [Cousot & Halbwachs, 1978] that
would allow us to determine relationships such as \the number of a's in a sen-
tence is greater than twice the number of b's". This is not possible in the re-
stricted framework of [Wilhelm & Maurer, 1995].

15 Conclusion

Traditional abstract interpretations have been mainly based on small step/big-
step operational semantics or denotational semantics whereas algebraic seman-
tics have been rather neglected, except may-be for Prolog. The di�culty is often
that the proposed analyses are quite dependent on the considered programming
language semantics. Since there is no universal semantics, the analyzes can be
hard to generalize from one semantic framework to another. We think that the
use of algebraic semantics could solve this problem since many analyzes can be
expressed using the algebraic metastructure in a language independent way. As
a �rst step, algebraic polynomial systems which generalize context-free gram-
mars with their �xpoint semantics seem to be very well suited for expressing
�rst-order �xpoint abstract semantics. To do this the semantics of algebraic
polynomial systems must be extended to in�nite terms, so as e.g. to be able
to encode in�nite execution paths. The program abstract semantics is then one
of the semantics of the algebraic polynomial system representing the abstract
equations e.g. the protosentence semantics where terminals correspond to atomic
actions of the program while variables correspond to procedure calls or using
the Follow abstraction, the set of atomic actions which can follow a call to a
given procedure.

Algebraic polynomial systems could themselves be used as abstract values in
program analysis, the abstract program analysis equations being now algebraic
polynomial system transformers. This would generalize grammar-based or set-
based analysis abstract interpretations [Cousot and Cousot, 1995Heintze, 1992Jones and Muchnick, 1981
It remains to explore the idea that abstract semantics of the algebraic polynomial
system resulting from the abstract equations resolution would yield a hierarchy

154

of information on the program executions abstracted by the algebraic polynomial
system.

Acknowledgments

We thank A. Venet for his comments on a preliminary version of this paper.

Bibliography

A.V. Aho, R. Sethi & J.D. Ullman. Compilers. Principles, Technique and
Tools. Addison-Wesley, 1986.

B. Courcelle. The monadic second-order logic of graphs X: Linear orders. TCS,
160:87{143, 1996.

P. Cousot & R. Cousot. Abstract interpretation: a uni�ed lattice model for
static analysis of programs by construction or approximation of �xpoints. 4th

ACM POPL, pp. 238{252, 1977.
P. Cousot & R. Cousot. Systematic design of program analysis frameworks. 6th

ACM POPL, pp. 269{282, 1979.
P. Cousot & R. Cousot. Inductive de�nitions, semantics and abstract interpre-
tation. 19th ACM POPL, pp. 83{94, 1992.

P. Cousot & R. Cousot. Higher-order abstract interpretation (and application
to comportment analysis generalizing strictness, termination, projection and
PER analysis of functional languages), invited paper. Proc. 1994 ICCL, pp.
95{112, 1994. IEEE Comp. Soc. Press.

P. Cousot and R. Cousot. Formal language, grammar and set-constraint-based
program analysis by abstract interpretation. Proc. 7th ACM FPCA, pp.
170{181, 1995.

P. Cousot & N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. 5th ACM POPL, pp. 84{97, 1978.

J.W. de Bakker, J.-J.Ch. Meyer & J.I. Zucker. On in�nite computations in
denotational semantics. TCS, 26:53{82, 1983. (Corrigendum: TCS 29:229{
230, 1984).

S. Ginsburg & G. Rice. Two families of languages related to ALGOL. J. ACM,
9:350{371, 1962.

N. Heintze. Set Based Program Analysis. PhD thesis, CMU, Pittsburgh, 1992.
J. Jeuring & D. Swierstra. Bottom-up grammar analysis | a functional formu-
lation |. Proc. ESOP '94, LNCS 788, pp. 317{332, 1994. Springer-Verlag.

J. Jeuring & D. Swierstra. Constructing functional programs for grammar anal-
ysis problems. Proc. 7th ACM FPCA, pp. 259{269, 1995.

N.D. Jones and S.S. Muchnick. Flow-analysis and optimization of Lisp-like
structures. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis:
Theory and Applications, pp. 102{131. Prentice-Hall, 1981.

K. Meinke & J.V. Tucker. Universal algebra. In S. Abramsky, D.M. Gabbay &
T.S.E. Maibaum, editors, Background: Mathematical Structures, vol. 1 of
Handbook of Logic in Com . Sci., ch. 3, pp. 189{411. Clarendon Press, 1992.

J. Mezei & J. Wright. Algebraic automata and context-free sets. Inf. & Cont.,
11:3{29, 1967.

155

U. M�oncke & R. Wilhelm. Grammar ow analysis. Proc. Int. Summer School
SAGA, LNCS 545, pp. 151{186, 1991. Springer-Verlag.

M. Nivat. Mots in�nis engendr�es par une grammaire alg�ebrique. RAIRO In-
formatique Th�eorique, 11:311{327, 1977.

M. Nivat. Sur les ensembles de mots in�nis engendr�es par une grammaire
alg�ebrique. RAIRO Informatique Th�eorique, 12:259{278, 1978.

R.J. Parikh. On context-free languages. J. ACM, 13(4):570{581, 1966.
M.P. Sch�utzenberger. On a theorem of R. Jungen. Proc. Amer. Math. Soc.,
13:885{889, 1962.

J.S. Uhl and R.N. Horspool. Flow grammars | a ow analysis methodology.
Proc. CC '94, LNCS 786, pp. 203{217, 1994. Springer-Verlag.

M. Ward. The closure operators of a lattice. Ann. Math., 43:191{196, 1942.
R. Wilhelm & D. Maurer. Compiler Design. Addison-Wesley, 1995.
M. Wirsing. Algebraic speci�cation. In J. van Leeuwen, editor, Formal Models
and Semantics, vol. B of Handbook of TCS, ch. 13, pp. 675{788. Elsevier,
1990.

Published in M. Johnson, editor, Proceedings of the Sixth International
Conference on Algebraic Methodology and Software Technology, AMAST '97,
Sydney, Australia, 13{18 December 1997. Lecture Notes in Computer Science
1349, pages 138{154. Springer-Verlag, Berlin, Germany.

	Introduction
	Algebraic Polynomial Systems
	Small Step Operational Semantics: States and Transitions
	Fixpoint Semantics
	Derivation Semantics, Its Fixpoint Characterization
	Fixpoint Semantics Transfer and Approximation
	Fixpoint Semantics Approximation
	Fixpoint Semantics Transfer
	Semantics Abstraction

	Examples of Abstractions
	State Abstraction
	Transition Abstraction
	Derivation Abstraction

	Lattice of Semantics
	Bottom-Up/Backward Abstract Semantics of Algebraic Polynomial Systems
	Compositional Bottom-Up Abstract Semantics
	Compositional Bottom-Up Abstract Interpretations

	Examples of Bottom-Up Algebraic Polynomial Systems Abstract Interpretations
	Examples of Bottom-Up Algebraic Polynomial Systems Semantics
	Examples of Bottom-Up Algebraic Polynomial Systems Analysis

	Top-Down/Forward Compositional Abstract Semantics of Algebraic Polynomial Systems
	Examples of Top-Down Algebraic Polynomial Systems Analysis
	Generalization to Infinite Terms
	Infinite Abstract Domains
	Conclusion

