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Abstract. Formal methods combining abstract interpretation and model-checking have been considered for automated analysis
of software.

In abstract model-checking, the semantics of an infinite transition system is abstracted to get a finite approximation on which
temporal-logic/µ-calculus model-checking can be directly applied.

The paper proposes two improvements of abstract model-checking which can be applied to infinite abstract transition systems:

– A new combination of forwards and backwards abstract fixed-point model-checking computations for universal safety. It
computes a more precise result than that computed by conjunction of the forward and backward analyses alone, without
needing to refine the abstraction;

– When abstraction is unsound (as can happen in minimum/maximum path-length problems), it is proposed to use the partial
results of a classical combination of forward and backward abstract interpretation analyses for universal safety in order to
reduce, on-the-fly, the concrete state space to be searched by model-checking.
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1. Introduction

In the design and development of software using model-based automatic analysis – such
as model-checking or state space exploration – one is confronted with high complexity
for very large systems and undecidability as soon as one has to consider infinite sets of
states. Consequently, all properties of all systems cannot be automatically verified in fi-
nite or reasonable time. Some form of approximation has to be considered. For exam-
ple syntax-driven proof techniques ultimately rely on some form of assistance from the
user. Although one can prove very precise assertions with an interactive automatic theorem
prover, the technique is necessarily approximate in the sense that the output of the theorem-
prover may not be understandable by the user and/or the user’s answers may mislead the
theorem-prover into dead-ends. Model checking (Clarke et al., 1983) places no restric-
tion on verifiable properties (CTL?, µ-calculus and the like) but consider only finite state
systems (or finite abstraction of infinite systems). Program analysis by abstract interpreta-
tion (Cousot and Cousot, 1977, 1979, Cousot, 1996) places no restriction on systems/pro-
gramming languages (which can be imperative, functional, logic, object-oriented, parallel)
but places restrictions on verifiable properties since abstract properties are necessarily ap-
proximate. Both model-checking and abstract interpretation have benefited from mutual
cross-fertilization. In particular model-checking can now consider infinite-state systems
whereas in abstract interpretation it is common to consider properties significantly more
complex than safety/invariance (see e.g. (Dams et al., 1997, Dill and Wong-Toi, 1995, Fer-
nandez, 1993, Halbwachs, 1994) and (Steffen, 1991)). We would like to consider further
combinations of abstract interpretation and universal safety model-checking.
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Reduction by abstractionconsists in approximating infinite or very large finite transition
systems by finite ones, on which existing algorithms designed for finite automata are di-
rectly applicable. This semi-verification idea was first introduced by (Clarke et al., 1992)
and progressively refined to cope with wider classes of temporal-logic (Kelb, 1994, Dams
et al., 1997, Cleaveland et al., 1995) orµ-calculus formulæ (Graf and Loiseaux, 1993,
Loiseaux et al., 1995, Cridlig, 1995, Cridlig, 1996). We extend this to abstract transition
systems which are infinite. The algorithms designed for universal safety analysis of fi-
nite transition systems can be simply extended to the infinite case. One can use abstract
interpretation techniques such as widening and narrowing to enforce, on the fly, the con-
vergence of fixpoint computations. It is known in abstract interpretation that this is not
as precise as could it be (Cousot, 1978, Cousot and Cousot, 1992a). Hence we propose a
combination of forward and backward upper-approximate universal safety checking which
is more precise than the mere conjunction of these forward and backward analyses (which
are indeed equivalent for finite states).

We also suggest another possible interaction between abstract interpretation and model-
based automatic analysis of infinite systems (Cousot, 1995). It is based on the remark that
although the transition system is infinite, all behaviors considered in practice may be finite
e.g. when there is a termination requirement, or more generally a liveness requirement ex-
cluding infinite behaviors. In this case, abstract interpretation may be used, on the infinite
state system, to eliminate the impossible potentially infinite behaviors. In the favorable
case, this preliminary analysis by abstract interpretation may be used to restrict the states
which must be explored to a finite number. Even in the case of finite but very large state
spaces, the method can be useful to reduce the part of the state graph which need to be
explored for verification, before this verification or better in parallel with it, so as to avoid
additional costs in time.

2. Definitions

A poset〈L, v〉 a setL with a partial orderv (that is a reflexive, antisymmetric and transi-
tive binary relation onL). A complete partial order(cpo)〈L, v, ⊥, t〉 is a poset〈L, v〉
such that⊥ is the infimum and increasing chainsx0 v x1 v . . . of elements ofL have a
least upper bound (lub)

⊔
i≥0

xi .

A mapF ∈ L 7→ L of L into L is monotonic(writtenF ∈ L 7−m→ L) if and only if:

∀x, y ∈ L : x v y H⇒ F(x) v F(y) .

If F ∈ L 7−m→ L is a monotonic map ofL into L andmv F(m) then lfp
v
m
F denotes the

v-least fixpoint ofF which isv-greater than or equal to m:

F(lfp
v
m
F) = lfp

v
m
F,

m v lfp
v
m
F,

(mv x) ∧ (F(x) = x) H⇒ lfp
v
m
F v x .
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lfp
v
F
4= lfp

v
⊥ F is the least fixpoint ofF . The greatest fixpoint (gfp) is defined dually,

replacingv by its inversew, the infimum⊥ by the supremum>, the lubt by the greatest
lower bound (glb)u, etc.

As a generalization of Kleene/Knaster/Tarski fixpoint theorem, the transfinite iteration
sequence is:

F̄
0 4= m,

F̄
δ+1 4= F(F̄δ) for successor ordinals,

F̄
λ 4=

⊔
δ<λ

F̄
δ for limit ordinals .

This increasing sequence is ultimately stationary and converges to lfp
v
m
F . This directly

leads to an iterative algorithm which is finitely convergent whenL satisfies the ascending
chain condition (ACC)1.

Thecomplement¬P of a subsetP ⊆ Sof a setS is {s ∈ S | s 6∈ P}. Theleft-restriction
P e t of a relationt on S to P ⊆ S is {〈s, s′〉 ∈ t | s ∈ P}. Thecompositionof relations is

t ◦ r
4= {〈s, s′′〉 | ∃s′ ∈ S : 〈s, s′〉 ∈ t ∧ 〈s′, s′′〉 ∈ r }. The iteratesof the relationt are

defined inductively by:

t0 4= 1S
4= {〈s, s〉 | s ∈ S} (that is identity on the setS),

and tn+1 4= t ◦ tn = tn ◦ t, for n ≥ 0.

Thereflexive transitive closure t? of the relationt is:

t?
4=
⋃
n≥0

tn .

3. Framework

The considered (real-time) concurrent systems are assumed to be modeled by atransition
system, that is tuple〈S, t, I , F〉 whereS is the set ofstates, t ⊆ S× S is thetransition
relation, I ⊆ S is the set ofinitial statesand F ⊆ S is the set offinal states. There is
no finiteness restriction on the setS of states. Moreover initial and final states must be
understood in a broad sense. For a terminating program this can be the states in which
execution can start and end. For a non-terminating process this can be respectively the
states in which a resource is requested and those in which it has later been allocated. For
simplicity, we assume that initial and final states are disjoint (I ∩ F = ∅). An example
of transition system is given in Figure 1. Such transition systems have been used to intro-
duce abstract interpretation in a language independent way, since they model small-step
operational semantics of programs (Cousot and Cousot, 1979).

The pre-imagepre[t ] P of a setP ⊆ S of states by a transition relationt is the set of
states from which it is possible to reach a state inP by a transitiont :

pre[t ] P
4= {s | ∃s′ : 〈s, s′〉 ∈ t ∧ s′ ∈ P} .
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Figure 1.A (finite) transition system (◦: state,−→I: transition)
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pre[t ]{3} = {0,1}
p̃re[t ]{3} = {0,4}

post[t ]{1} = {2,3}
p̃ost[t ]{1} = {0,1,2}

Figure 2. (Dual) pre- and post-images (◦: state,−→I: transition)

Thedual pre-imagẽpre[t ] P is the set of states from which any transition, if any, must lead
to a state inP:

p̃re[t ] P
4= {s | ∀s′ : 〈s, s′〉 ∈ t H⇒ s′ ∈ P} .

Thepost-imagepost[t ] P is the set of states which are reachable fromP ⊆ Sby a transition
t :

post[t ] P
4= {s′ | ∃s : s ∈ P ∧ 〈s, s′〉 ∈ t} .

Thedual post-imagẽpost[t ] P is the set of states which can only be reached, if ever possi-
ble, by a transitiont from P:

p̃ost[t ] P
4= ¬ post[t ](¬P) = {s′ | ∀s : 〈s, s′〉 ∈ t H⇒ s ∈ P} .

This is illustrated in Figure 2. We have the fixpoint characterizations (see e.g. (Cousot,
1978), (Cousot, 1981)):
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pre[t?] F = lfp
⊆
λX .F ∪ pre[t ] X = lfp

⊆
F
λX .X ∪ pre[t ] X,

p̃re[t?] F = gfp
⊆
λX .F ∩ p̃re[t ] X = gfp

⊆
F
λX .X ∩ p̃re[t ] X,

post[t?] I = lfp
⊆
λX . I ∪ post[t ] X = lfp

⊆
I
λX .X ∪ post[t ] X,

p̃ost[t?] I = gfp
⊆
λX . I ∩ p̃ost[t ] X = gfp

⊆
I
λX .X ∩ p̃ost[t ] X .

ALGORITHM 1 The invariance/safety property, post[t?] I ⊆ P, can be checked by the
following well-known fixpoint computation procedure (Cousot and Cousot, 1977, Cousot
and Cousot, 1979, Cousot, 1981):

function f-ai1 (I );
X := I ;
repeat

Y := X;
X := Y ∪ post[t ] Y ;

until X = Y ;
return X;

function f-mc1(I , P);
return f-ai1 (I ) ⊆ P.

The correctness of this algorithm follows directly from the Kleene/Knaster/Tarski fixpoint
theorem, stating that:

lfp
⊆
I
λX .X ∪ post[t ] X =

⋃
n≥0

Xn, where:

X0 = I and

Xn+1 = Xn ∪ post[t ] Xn .

ALGORITHM 2 Since post[t?] I ⊆ P if and only if pre[t?] ¬P ⊆ ¬I , the forward model-
checking procedure f-mc1is equivalent2 to the following backward one (Clarke and Emer-
son, 1981, Queille and Sifakis, 1982, Clarke et al., 1983):

function b-ai1 (P);
X := ¬P;
repeat

Y := X;
X := Y ∪ pre[t ] Y ;

until X = Y ;
return X;

function b-mc1(I , P);
return b-ai1 (P)⊆ ¬I .

The state space exploration procedures “f-mc1” and “b-mc1” are effective for finite set of
states only. During the last few years, they became practical and widely usable (Burch
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et al., 1992, Henzinger et al., 1992, Daws et al., 1996) thanks tosymbolicimplementations
using compact symbolic formula representation of (the characteristic function of) sets of
states. For example, the symbolic formula can be encoded by BDDs (Akers, 1978, Bryant,
1986) or by affine inequality relations (Cousot and Halbwachs, 1978). So it is understood
that such symbolic representations of sets of states should be used in “f-mc1” and “b-mc1”.

4. Abstract Interpretation Based Model Checking

Abstract interpretation is a theory of semantic approximation (Cousot, 1996) where “ap-
proximation” means logical implication i.e. subsets of states inclusion. Here, the semantics
to be approximated is theforward collecting semanticspost[t?] I , thebackward collecting
semanticspre[t?] F (Cousot, 1978, Cousot and Cousot, 1979) or post[t?] I ∩pre[t?] F that
is the set post[t?] I of descendants of the initial statesI which are in the set pre[t?] F
of ancestors of the final statesF (Cousot, 1978, Cousot and Cousot, 1992a). We briefly
recall how the upper-approximationsD of post[t?] I and A of pre[t?] F can be automati-
cally computed by abstract interpretation. The upper/over approximationU of post[t?] I ∩
pre[t?] F will be considered in Section 5.2. We only consider upper approximations (U is
an upper approximation ofE meaningE ⊆ U ) since lower/under approximations (L is a
lower approximation ofE meaningL ⊆ E) are dual, both approximations being useful in
abstract interpretation (see e.g. (Dams et al., 1997) and (Dill and Wong-Toi, 1995) in the
context of abstract model checking).

4.1. Forward Abstract Interpretation Based Model Checking

In order to obtain an upper approximationD of the forward collecting semantics post[t?] I
= lfp

⊆
λX . I ∪ post[t ] X = lfp

⊆
I
λX .X ∪ post[t ] X one considers aGalois connection3:

〈℘(S), ⊆〉 −→←−α
γ 〈L, v〉,

that is, by definition, a pair of mapsα ∈ ℘(S) 7→ L andγ ∈ L 7→ ℘(S) from the powerset
℘(S) ordered by subset inclusion⊆ into the poset〈L, v〉 of abstract properties4 partially
ordered byv such that:

∀P ∈ ℘(S) : ∀Q ∈ L : α(P) v Q⇐⇒ P ⊆ γ (Q) .

EXAMPLE: Given a relationr on a setS, a classical example of Galois connection is:

〈℘(S), ⊆〉 −→←−
pre[r ]

p̃ost[r ] 〈℘(S), ⊆〉 .

The same way, we have:

〈℘(S), ⊆〉 −→←−
post[r ]

p̃re[r ] 〈℘(S), ⊆〉 .
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For an application proving the equivalence of the model-checking algorithms “f-mc1” and
“b-mc1”, we have post[t?] I ⊆ P if and only if I ⊆ p̃re[t?] P that is, by definition of̃pre,
I ⊆ ¬ pre[t?] ¬P or equivalently pre[t?] ¬P ⊆ ¬I .

In a Galois connection〈℘(S), ⊆〉 −→←−α
γ 〈L, v〉, α preserves existing lubs andγ preserves

glbs hence both are monotonic. Moreover any concrete propertyP ∈ ℘(S) has a best
(i.e. most precise) upper approximationα(P) in L, such thatP ⊆ γ (α(P)). Whenα is
surjective (or equivalentlyγ is injective orα ◦ γ = 1L is the identity onL) we have a

Galois insertionand we write〈℘(S), ⊆〉 →−→←−α
γ 〈L, v〉. In this case, the poset〈L, v〉 is

necessarily a complete lattice〈L, v, ⊥, >, t, u〉 with α(℘ (S)) = L. α(P) should be
machine-representable which, in general, may not be the case ofP.

The appropriate choice of the abstract domainL is problem dependent. The design and
composition of convenient abstract domains has been extensively developed in the abstract
interpretation literature and will not be further considered here. Often the abstraction can

be defined by stages. For example one can consider a first abstraction〈℘(S), ⊆〉 −→←−α1

γ1

〈L, v〉 for a class of program properties which is then composed with a second problem-

specific abstraction〈L, v〉 −→←−α2

γ2 〈M, �〉. The correctness follows from the fact that

Galois connection compose:〈℘(S), ⊆〉 −→←−
α2◦α1

γ1◦γ2 〈M, �〉. An abstraction can also be pa-

rameterized so as to allow for problem dependent instantiations, as shown by the following
example.

EXAMPLE: (Clarke et al., 1992), (Cleaveland et al., 1995), (Dams et al., 1997), (Jackson,
1994) and others implicitly consider a restricted form of abstraction given by the Galois

connection〈℘(S), ⊆〉 −→←−
α[h]

γ [h] 〈℘(S]), ⊆〉, whereS is the set of concrete states,S] is the

set of abstract states,α[h](X)
4= {h(x) | x ∈ X} andγ [h](Y)

4= {x | h(x) ∈ Y} where
h ∈ S 7→ S] is the state approximation mapping. Ifh is surjective (as assumed e.g. in

(Jackson, 1994)), then so isα[h] whence〈℘(S), ⊆〉 →−→←−
α[h]

γ [h] 〈℘(S]), ⊆〉. However this

specific form of abstraction is restrictive and cannot e.g. account for relational analyses
such as (Halbwachs et al., 1994).

Once an abstraction〈α, γ 〉 has been chosen, we then use the fact that if〈M, �, 0, ∨〉 is
a cpo, the pair〈α, γ 〉 is a Galois connection〈M, �〉 −→←−α

γ 〈L, v〉, F ∈ M 7−m→ M and

F
] ∈ L 7−m→ L are monotonic and

∀y ∈ L : α ◦ F ◦ γ (y) � F](y)
or else ∀x ∈ M : α ◦ F(x) v F] ◦ α(x)
or else ∀y ∈ L : F ◦ γ (y) � γ ◦ F](y)

then

lfp
�
F � γ (lfp

v
F
])

and equivalently α(lfp
�
F) v lfp

v
F
],
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see (Cousot and Cousot, 1979).

4.1.1. Abstract Domains Satisfying the Ascending Chain ConditionWhen the abstract
domain satisfies the ascending chain condition (such as e.g. the linear equality relations of
(Karr, 1976)), the fixpoints can be computed iteratively.

ALGORITHM 3 The model-checking algorithm “f-mc1” can be approximated using an

abstract domain〈L, v〉, a Galois connection〈℘(S), ⊆〉 −→←−α
γ 〈L, v〉, an abstract initial

state predicate I] such thatα(I ) v I ] and an abstract forward predicate transformer
F
] ∈ L 7−m→ L such thatα ◦ (λX .X ∪ post[t ] X) ◦ γ v F], pointwise:

function f-ai2 (I ]);
X := I ];
repeat

Y := X;
X := F](Y);

until X = Y ;
return X;

function f-mc2(I ], P);
X := f-ai2(I ]);
if γ (X) ⊆ P then

return true
else

return unknown.

If P is not computer representable or the testγ (X) ⊆ P is not computable then a weaker
computable form should be used instead, such as Xv P] whereγ (P]) ⊆ P.

Since the successive values Xi , i ≥ 0 of the variable X form av-increasing chain, the
testγ (X) 6⊆ P can be added in the loop of “f-ai2” to exit sooner from “f-mc2” with the
“unknown” result. However the result “true” can only be returned upon termination.

ALGORITHM 4 Strictly speaking the formal verification algorithm “f-mc2” is not in the
model-checking realm because no abstract transition system is explicitly used. However
“f-ai2” can be refined into anabstract model-checking algorithmusing the specific state
abstraction of Example 4.1, by considering an abstract transition system〈S], t], I ], F]〉
preserving universal properties:

α(I ) ⊆ I ],

∀s, s′ ∈ S : 〈s, s′〉 ∈ t H⇒ 〈h(s), h(s′)〉 ∈ t] .

This implies that:

∀X ⊆ S : α(X ∪ post[t ] X) ⊆ α(X) ∪ post[t]] α(X),

whence

α(lfp
⊆
I
λX .X ∪ post[t ] X) ⊆ lfp

⊆
I ]
λX .X ∪ post[t]] X .

It follows that

post[t?] I ⊆ γ (lfp
⊆
I ]
λX .X ∪ post[t]] X)
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so that

γ (lfp
⊆
I ]
λX .X ∪ post[t]] X) ⊆ P

implies

post[t?] I ⊆ P .

Thisreduction by abstractionleads to the following model-checking algorithm (Kelb, 1994,
Dams et al., 1997) which considers exact properties of an approximate semantics, hence,
in general, is incomplete (see however (Cleaveland et al., 1995)):

function f-ai3 (I ]);
X := I ];
repeat

Y := X;
X := Y ∪ post[t]] Y ;

until X = Y ;
return X;

function f-mc3(I ], P);
X := f-ai3 (I ]);
if γ (X) ⊆ P then

return true
else

return unknown.

Observe that “f-mc3” amounts to “f-mc1” when the Galois connection〈α, γ 〉 is an iso-
morphism. So the only difference between symbolic model-checking and abstract interpre-
tation based model-checking is the possibility of information loss when necessary i.e. when
concrete symbolic model-checking fails.

4.1.2. Abstract Domains Not Satisfying the Ascending Chain ConditionIn general how-
ever, the iterates̄Fδ, δ ≥ 0 of F] ∈ L 7−m→ L in “f-ai2” do not converge to lfp

v
F]

in finitely many steps (as in e.g. (Cousot and Halbwachs, 1978), (Henzinger and Ho,
1995)). Hence, one must resort to awidening operator5 which can be used both to
upper-approximate non-existent lubs (as in e.g. (Cousot and Halbwachs, 1978)) and to en-
force finite convergence of increasing iterations (Cousot and Cousot, 1977, Cousot and
Halbwachs, 1978). The widening operator5 ∈ L× L 7→ L is defined so as to be an upper
bound:

∀x, y ∈ L : x v x 5 y, and

∀x, y ∈ L : y v x 5 y,

and, if termination is required, to enforce finite convergence:

For all increasing chainsx0 v x1 v . . . v xi v . . . the increasing chain defined
by y0 = x0, . . . , yi+1 = yi 5 xi+1, . . . is not strictly increasing.

Examples of widenings are given by (Halbwachs, 1993), (Halbwachs, 1994) for affine
inequality relations and (Mauborgne, 1998) for BDDs.

Theupward iteration sequence with wideningfor F] from I] (with I ⊆ γ (I ])) is:

F̂
0 4= I ],

F̂
i+1 4= F̂

i , if F](F̂ i ) v F̂ i (1)

F̂
i+1 4= F̂

i 5F](F̂ i ), otherwise.
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By definition of the widening5, this upward iteration sequence is ultimately stationary
and its limitF̂ is a sound upper approximation of lfp

v
F] in that:

lfp
v
F
] v F̂ .

If F](F̂) @ F̂ and the iterates:

F̌
0 4= F̂,

F̌
δ+1 4= F

](F̌δ), for successor ordinals

F̌
λ 4=

δ<λ

F̌
δ, for limit ordinals

do not finitely converge, we use a narrowing operator4 to speed up the convergence. A
narrowing operator4 ∈ L × L 7→ L is defined such that:

∀x, y ∈ L : x v y H⇒ x v x 4 y v y

and, if termination is required, to enforce finite convergence:

For all decreasing chainsx0 w x1 w . . . the decreasing chain defined byy0 =
x0, . . . , yi+1 = yi 4 xi+1, . . . is not strictly decreasing.

So, ifF](X) = X v F(F̂) v F̂ then thedownward iteration sequence with narrowingis
defined by:

F̌
0 4= F̂,

F̌
i+1 4= F̌

i , if F](F̌ i ) = F̌ i , (2)

F̌
i+1 4= F̌

i 4 F](F̌ i ), otherwise.

This downward iteration sequence is ultimately stationary and its limitF̌ is a sound upper
approximation of the fixpoint which is better than the oneF̂ obtained by widening:

X v F̌ v F̂

In conclusion

lfp
v
F
] v F̌ v F̂

so that by monotony

post[t?] I = lfp
⊆
λX . I ∪ post[t ] X ⊆ γ (F̌) ⊆ γ (F̂) .

It follows that we can choose the upper approximationD of post[t?] I to be:

D
4= γ (F̌) .

ALGORITHM 5 If the set S] of abstract states is infinite,〈℘(S]), ⊆〉 does not satisfies
the ascending chain condition, so that, in general, “f-ai3” may not converge, converge too
slowly or require too much memory. In such cases, rapid convergence can be enforced
using widening/narrowing operators, as follows:
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function f-ai4 (I ]);
X := I ];
loop

Y := X;
X := post[t]] Y ;
exit if X v Y ;
X := Y 5 X;

repeat;
while X 6= Y do

Y := X;
X := Y 4 post[t]] Y ;

od;
return X;

function f-mc4(I ], P);
X := f-ai4 (I ]);
if γ (X) ⊆ P then

return true
else

return unknown.

Observe that “f-mc4” amounts to “f-mc3” when the abstract domain satisfies the ascend-
ing chain condition in which case5 = t and the narrowing phase (with4 = u) is not
executed (since X= Y ) hence is useless.

Because the least fixpoint is overshot, it is no longer possible to anticipate the “un-
known” result within the loops of “f-ai2” as was the case for “f-ai2” and “f-ai3”.

As already mentioned, the design of the abstract algebra〈L, v, ⊥, >, t, u, 5, 4, f1,
. . . , fn〉 and of the transformerF] (usually composed out of the primitivesf1, . . . , fn)
by structural induction on the syntax of programs are problem dependent and will not be
further considered here.

4.2. Backward Abstract Interpretation Based Model Checking

Because pre[t ] = post[t−1], the situation is similar for computing an upper approximation
A of the backward collecting semantics pre[t?] F = lfp

⊆
λX .F ∪pre[t ] X usingB] ∈ L 7−

m→ L such thatα ◦ (λX .F∪pre[t ] X) ◦ γ v B], pointwise5 (Cousot and Cousot, 1979).

ALGORITHM 6 “b-mc1” can be abstracted usinḡP] such thatα(¬P) v P̄] and an
abstract backward predicate transformerB] ∈ L 7−m→ L such thatα ◦ (λX .X ∪
pre[t ] X) ◦ γ v B]:

function b-ai2 (P̄]);
X := P̄];
repeat

Y := X;
X := B](Y);

until X = Y ;
return X;

function b-mc2(I , P̄]);
X := b-ai2 (P̄]);
if γ (X) ⊆ ¬I then

return true
else

return unknown.
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ALGORITHM 7 The abstraction of Example 4.1 and the conditions:

α(¬P) ⊆ P̄],

∀s, s′ ∈ S : 〈s, s′〉 ∈ t H⇒ 〈h(s), h(s′)〉 ∈ t],

imply that:

∀X ⊆ S : α(X ∪ pre[t ] X) ⊆ α(X) ∪ pre[t]] α(X),

which leads, by reduction by abstraction, to the following abstract version of the model-
checking procedure “b-mc1”:

function b-ai3 (P̄]);
X := P̄];
repeat

Y := X;
X := Y ∪ pre[t]] Y ;

until X = Y ;
return X;

function b-mc3(I , P̄]);
X := b-ai3 (P̄]);
if γ (X) ⊆ ¬I then

return true
else

return unknown.

Observe again that “b-mc3” amounts to “b-mc1” when the Galois connection〈α, γ 〉 is
an isomorphism.

For abstract domains not satisfying the ascending chain condition, one first uses an up-
ward iteration sequence with widening converging toB̂ followed by a downward iteration
sequence with narrowing converging toB̌ such that lfp

v
B] v B̌ v B̂ whence by monotony

pre[t?] F = lfp
⊆
λX .F∪pre[t ] X ⊆ γ (B̌)⊆ γ (B̂). It follows that we can choose the upper

approximationA of pre[t?] F to beA
4= γ (B̌).

ALGORITHM 8 The widening/narrowing based version of the abstract model checking al-
gorithm of “b-mc3” is (the assignment “Over := true;” and “send(. . .)” command should
be ignored at the moment, i.e.send(. . .) returns a void value):

function b-ai4 (P̄]);
X := P̄];
loop

Y := X;
X := pre[t]] Y ;
exit if X v Y ;
X := Y 5 X;

repeat;
Over := true;
while X 6= Y do

send(γ (X));
Y := X;
X := Y 4 pre[t]] Y ;

od;
return X;

function b-mc4(I , P̄]);
X := b-ai4 (P̄]);
if γ (X) ⊆ ¬I then

return true
else

return unknown.
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Observe again that “b-mc4” amounts to “b-mc3” when the abstract domain satisfies the
ascending chain condition in which case5 = t and the narrowing phase (with4 = u) is
useless.

The approximation of̃post[t?] I andp̃re[t?] F can also be handled in the same way to
yield dual abstract model-checking algorithms. .

4.3. Combining Forward and Backward Abstract Interpretation Based Model Checking

Observe that “f-mc1” and “b-mc1” are equivalent6 whereas, because of the abstraction, “f-
mc2” and “b-mc2”, “f-mc3” and “b-mc3” as well as “f-mc4” and “b-mc4” are not and may
produce different answers. One algorithm might produce an affirmative answer whereas
the other might be inconclusive. Therefore it is natural to combine the forward and back-
ward information7.

For that purpose, let us consider any sequenceXn, n ≥ 0 defined simultaneously with
An, n ≥ 0 andDn, n ≥ 0 such that:

– X0 ⊇ I ,

– post[t?] Xn ⊆ Dn,

pre[t?](Dn − P) ⊆ An,

Xn+1 ⊇ Xn ∩ An,

Let us call a state “safe” if all its descendants byt satisfy P. The Xn, n ≥ 0 are (smaller
and smaller) sets of unsafe (ideally initial) states.Dn is an upper approximation of the
descendants ofXn. An is an upper approximation of the ancestors ofDn not in P.
THEOREM 1 ∀n ≥ 0 : post[t?](I − Xn) ⊆ P.

Proof: This proof is by recurrence onn.
For X0 ⊇ I , we have post[t?](I − X0) = post[t?] ∅ = ∅ ⊆ P.
Assume, by induction hypothesis, that post[t?](I − Xn) ⊆ P. We have:

pre[t?](Dn − P) ⊆ An

⇐⇒ ¬An ⊆ ¬ pre[t?](Dn − P) by X ⊆ Y⇐⇒ ¬Y ⊆ ¬X,

⇐⇒ ¬An ⊆ ¬ pre[t?](Dn ∩ (¬P)) by def. X − Y
4= X ∩ (¬Y),

⇐⇒ ¬An ⊆ p̃re[t?]((¬Dn) ∪ P)) since¬(X ∩ (¬Y)) = ¬(X) ∪ Y,
⇐⇒ post[t?](¬An) ⊆ ((¬Dn) ∪ P)) since〈post[t?], p̃re[t?]〉 is a Galois

connection.

We then have:

post[t?](I − Xn+1)

⊆ post[t?](I − (Xn ∩ An)) since post[t?] is monotonic,
= post[t?]((I − Xn) ∪ (I ∩ (Xn − An)))

= post[t?](I − Xn) ∪ post[t?](I ∩ (Xn − An)) since post[t?] preserves lubs,
⊆ P ∪ post[t?](I ∩ (Xn − An)) by induction hypothesis,
⊆ P ∪ post[t?](Xn − An) since post[t?] is monotonic,
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= P ∪ post[t?](Xn ∩ (¬An)) by def. X − Y
4= X ∩ (¬Y),

⊆ P ∪ (post[t?] Xn ∩ post[t?](¬An)) since post[t?] is monotonic,
⊆ P ∪ (Dn ∩ post[t?](¬An)) by hypothesis,
⊆ P ∪ (Dn ∩ ((¬Dn) ∪ P)) by the above lemma,
= P ∪ (Dn ∩ P)
= P since(Dn ∩ P) ⊆ P.

COROLLARY 1 If ∃n ≥ 0 : Xn ∩ I = ∅ then post[t?] I ⊆ P.

Proof: If Xn ∩ I = ∅ then I − Xn = I so post[t?](I ) ⊆ P by Theorem 1.
ALGORITHM 9 Assuming that I], P̄] and⊥ are respective abstractions of I ,¬P and∅,
more precisely:

α(I ) ⊆ I ],
γ (P̄]) ⊇ ¬P,

and γ (⊥) = ∅,
(3)

this leads to the following abstract model-checking algorithm (where “f-ai5” and “b-ai5”
are any one of the forward and backward abstract interpretation algorithms considered
previously, such as “f-ai4” and “b-ai4”):

function mc5(I ], P̄]);
Y := I ];
repeat

X := Y ;
D := f-ai5(X);
A := b-ai5(D u P̄]);
Y := X 4 A;

until X = Y ;
if I ] u X = ⊥ then

return true
else

return unknown.

THEOREM 2 (Correctness of the abstract model-checking algorithm “mc5”)
If (3) holds and “mc5(I ], P̄])” returns “true” then post[t?] I ⊆ P.

Proof: We haveI ⊆ γ (I ]) so X0 = γ (I ]) ⊇ I .
At then-th iteration of the loop, we letXn = γ (X) so thatDn = γ (D) ⊇ post[t?] Xn by

correctness of the abstract interpretation function “f-ai5”.γ preserves glbs, hence we have
γ (D u P̄]) = γ (D)∩ γ (P̄]) ⊇ Dn ∩ (¬P) and pre[t?](γ (D u P̄]))⊇ γ (A) by correctness
of the abstract interpretation function “b-ai5” whenceAn = γ (A) ⊇ pre[t?](Dn ∩ (¬P)
by monotony. MoreoverXn+1 = γ (Y) = γ (X 4 A) ⊇ γ (X) ∩ γ (A).

By definition of the narrowing operation4, the sequence of values of the variableX
cannot be strictlyv-decreasing so that the loop must terminate.

Upon termination, aftern iterations, we have:
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I ] u Xn = ⊥
H⇒ γ (I ] u Xn) = γ (⊥)
H⇒ γ (I ]) ∩ γ (Xn) = γ (⊥) sinceγ preserves lubs,

H⇒ γ (I ]) ∩ γ (Xn) = ∅ by hypothesisγ (⊥) = ∅,
H⇒ I ∩ γ (Xn) = ∅ by hypothesisα(I ) ⊆ I ] ⇐⇒ I ⊆ γ (I ]),

proving, by Theorem 1, the correctness post[t?] I ⊆ P of the abstract model-checking
algorithm “mc5”.

A possible improvement of “mc5” would be to initializeD0 to the supremum> and to run
in parallel the computations of

Dn+1 := f-ai5(Xn)

and An+1 := b-ai5(Dn u P̄]) .

If γ (D1) ⊆ P then we can conclude positively (as would have done the forward algorithm
“f-mc4”). If γ (A1) ⊆ ¬I then we can also conclude positively (as would have done the
backward algorithm “b-mc4”). Otherwise “mc5” cannot conclude on the first iteration
(but in this case neither “f-mc4” nor “b-mc4” would be conclusive). If further iterations
are needed to conclude then the result is obtained highly automatically whereas a manual
adjustment of the abstraction would be needed for “f-mc4” or “b-mc4” to get the same
result. Experience with abstract interpretation shows that a few iterates only are needed for
convergence (typically 3, see e.g. (Bourdoncle, 1993)).

5. Combining Abstract Interpretation and Model Checking when Abstract Model
Checking is Inadequate

We now consider the verification of infinite state concurrent systems for which neither the
exact symbolic nor the abstract model-checking algorithms are applicable.

5.1. Verification Problems For Which Abstract Model Checking is Inadequate

5.1.1. Minimum Delay Problem The minimum delay problem(see e.g. (Halbwachs,
1993)) for a transition system〈S, t, I , F〉 consists in computing the length` of (i.e. num-
ber of edges in) a shortest path from an initial state inI to a final state inF .

`
4= min{n | ∃s ∈ I , s′ ∈ F : 〈s, s′〉 ∈ tn},

where the minimum min∅ of the empty set∅ is chosen to be infinity∞:

min∅ 4= ∞ .

An example of transition system and corresponding minimum delays is given in Figure 3.
The following model-checkingminimum delay algorithmis due to (Campos et al., 1995):
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Figure 3.Minimum delays
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Figure 4.Execution trace of algorithm “minimum1”

function minimum1(I , F);
R := I ;
n := 0;
stable :=(R∩ F 6= ∅);
while ¬stabledo

R′ := R∪ post[t ] R;
n := n+ 1;
stable :=(R= R′) ∨ (R′ ∩ F 6= ∅);
R := R′;

od;
return if (R∩ F 6= ∅) then n else∞.

An example of execution trace of the “minimum1” algorithm is given in Figure 4. In order
to consider infinite state sets, it is necessary to enforce finite convergence. Abstract model-
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checking techniques, with abstractions of transitions, are not applicable since they would
either lead to erroneous results (unless a lower or upper bound of the minimum delay is
acceptable) or state space reduction would be precluded8. Classical symbolic methods for
speeding up model-checking algorithms such as BDDs to encode boolean formulas repre-
senting sets of states, the transition relation, and so on or “on-the-fly” property checking,
without state graph generation are applicable in this case. However, there is a serious po-
tential inefficiency problem because of useless exploration of dead-end states which are
reachable but cannot lead to a final state. These dead-end states are marked◦© in Figure
4.

However, we can still use abstract interpretation to cut down the size of the model-
checking search space by determining, as shown in Section 4.1, a super-setA of the ances-
tors of the final states:

pre[t?] F ⊆ A .

The states in the set pre[t?] F of ancestors of the final statesF are marked• in Figure
5. This information can then be used to restrict the exploration of the transition graph
for computing the minimum delay. Therevisited minimum delay algorithmis now (the
receive(. . .) commands should be ignored at the moment, i.e.receive(. . .) returns a void
value):

function minimum2(I , F);
R := I ;
n := 0;
stable :=(R∩ F 6= ∅);
while ¬stabledo

receive(A);

R′ := R∪ (post[t ] R∩ A) ;

n := n+ 1;
stable :=(R= R′) ∨ (R′ ∩ F 6= ∅);
R := R′;

od;
return if (R∩ F 6= ∅) then n else∞.

A trace of this algorithm “minimum2” is given in Figure 5.
Observe that:

– any upper-approximate solution pre[t?] F ⊆ A can be used in algorithm “minimum2”;
– the upper approximationA of pre[t?] F which is used in the loop can be different at each

iteration; and
– in the worst possible case, when the analysis by abstract interpretation is totally unfruit-

ful, we haveA = S in which case algorithm “minimum2” simply amounts to algorithm
“minimum1”.

5.1.2. Maximum Delay Problem The maximum delay problemconsists in computing
the lengthm of (i.e. number of edges in) a longest path from an initial state inI to a final
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state inF :

m
4= max{n | ∃s ∈ I , s′ ∈ F : 〈s, s′〉 ∈ (¬F e t)n},

where the left-restriction¬F e t of a relationt to ¬F ⊆ S has been defined as{〈s, s′〉 ∈
t | s 6∈ F} and the maximum maxN of the setN of natural numbers is chosen to be infinity
∞:

maxN
4= ∞ .

An example of maximum delays is given in Figure 6. The followingmaximum delay
algorithmhas been proposed by (Campos et al., 1995):
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Figure 7.Execution trace of the “maximum1” algorithm

function maximum1(I , F);
R′ := S;
n := 0;
R := (S− F);
while (R 6= R′ ∧ R∩ I 6= ∅) do

R′ := R;
n := n+ 1;
R := pre[t ] R′ ∩ (S− F);

od;
return if (R′ = R) then∞ elsen.

An example of an execution trace of the “maximum1” algorithm is given in Figure 7.
Although this is left unspecified by (Campos et al., 1995), the correctness of this “max-

imum1” delay algorithm relies on several hypotheses. First the sets of initial statesI
and final statesF must be nonempty and disjoint. Second, there exists at least one path
from some initial state to some final state. Third, there is no path starting from an initial
state, ending in a blocking state (with no successor by the transition relation) never passing
through a final state. Fourth and finally, there is no infinite or endless cyclic path starting
from an initial state and never passing through a final state. If one of these hypotheses is
not satisfied, the algorithm maximum1 returns an upper bound of the maximal path length.

Once again abstraction of the transition system would also provide an upper bound of the
maximal path length hence would be incorrect. Exact symbolic methods have a potentially
serious inefficiency problem because of useless exploration of dead-end states (marked
© in Figure 7) which are not reachable from initial states or cannot lead to a final state.
Observe that partial-order methods (Valmari, 1993), which are based on the fact that in
concurrent systems, the total effect of a set of actions is often independent of the order
in which the actions are taken, would locally reduce the number of considered paths, but
would not perform a global elimination of the remaining paths that are useless for the
verification.
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Figure 8.Execution trace of the “maximum2” algorithm

Once again an automatic analysis by abstract interpretation can determine a super-setU
of the descendants of the initial statesI which are ancestors of the final statesF (the prin-
ciple of determination ofU by abstract interpretation will be precisely defined in Section
5.2):

U ⊇ post[t?] I ∩ pre[t?] F,

= {s | ∃s′ ∈ I , s′′ ∈ F : 〈s′, s〉 ∈ t? ∧ 〈s, s′′〉 ∈ t?} .
The states in the set of descendants of the initial statesI which are ancestors of the fi-
nal statesF are marked• in Figures 7 and 8. This leads to arevisited maximum delay
algorithm, as follows (thereceive(. . .) commands should be ignored at the moment, i.e.
receive(. . .) returns a void value):

function maximum2(I , F);
R′ := S;
n := 0;
receive(U );

R := (U − F) ;

while (R 6= R′ ∧ R∩ I 6= ∅) do
R′ := R;
n := n+ 1;
receive(U );

R := pre[t ] R′ ∩ (U − F) ;

od;
return if (R′ = R) then∞ elsen.

An example of execution trace of the “maximum2” algorithm is given in Figure 8.
Observe that any upper-approximation post[t?] I ∩ pre[t?] F ⊆ U of the descendants of

the initial statesI which are ancestors of the final statesF is correct, since in the worst
possible case, whenU = S, algorithm “maximum2” simply amounts to “maximum1”.
Moreover, a different upper approximationU of post[t?] I ∩ pre[t?] F can be used at each
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iteration in the loop. Notice also that this restriction idea applies both to exhaustive and
on-the-fly state space exploration techniques.

In the case of symbolic model-checking, say with BDDs (or polyhedron or set of polyhe-
dra), the intersection pre[t ] R′∩(U−F)may be a BDD (or polyhedron or set of polyhedra)
of much greater size than pre[t ] R′, although it describes a smaller set of states. In this case,
the computation of the intersection is not mandatory, the information being still useful for
simplifying the BDD (or polyhedra), e.g. by pruning, in order to reduce its size. Several
such operators have been suggested such as thecofactor (Touati et al., 1990),constrain
(Coudert, Berthet, and Madre, 1990) orrestrict (Coudert, Madre, and Berthet, 1990) op-
erators on BDDs and thepolyhedron simplificationof (Halbwachs and Raymond, 1996).

5.2. Combining Forward and Backward Analysis by Abstract Interpretation

We are left with the problem of computing an upper-approximationof post[t?] I∩pre[t?] F .
We use an upper-abstractionF] = λX . I ] t post[t]] X of λX . I ∪ post[t ] X so as to
compute an abstractioňF = f-ai4 (I ]) of post[t?] I , as defined in Section 4.1.2. The same
way, using an upper-abstractionB] = λY .pre[t]] Y t F] of λY .pre[t ] Y ∪ F , we can
compute an abstractioňB = b-ai4 (F]) of pre[t?] F , as defined in Section 4.2. We then
have the trivial solution post[t?] I ∩ pre[t?] F ⊆ γ (F̌ u B̌).

This can be improved using the following approximation sequence which limit is always
more precise than or equal tǒF u B̌ (Cousot, 1978, Cousot and Cousot, 1992a):

– U̇0 is the limit of the upward iteration sequence with widening (1) for the func-
tion F] andÜ0 is the limit of the corresponding downward iteration sequence with
narrowing9 (2);

– · · ·
– U̇2n+1 is the limit of the upper upward iteration sequence with widening forλX .(Ü2nu
F](X)) andÜ2n+1 is the limit of the corresponding downward iteration sequence
with narrowing;

– U̇2n+2 is the limit of the upward iteration sequence with widening for the function
λX .(Ü2n+1 u B](X)) andÜ2n+2 is the limit of the corresponding downward itera-
tion sequence with narrowing.

– · · ·
Observe that the sequenceU̇0, Ü0, U̇1, Ü1, . . . , U̇2n, Ü2n, U̇2n+1, Ü2n+1, . . . is a de-
scending chain and the concretization of any element in this sequence is a⊆-upper ap-
proximation of post[t?] I ∩ pre[t?] F .

Observe that if no abstraction is performed (that isF] = λX . I ∪ post[t ] X, B] =
λY .pre[t ] Y ∪ F ,5 = ∪,4 = ∩) and the set of states is finite thenU̇0 = Ü0 = post[t?] I
andU̇1 = Ü1 = post[t?] I ∩ pre[t?] F . So in this particular case, convergence to the exact
solution is immediate. However in general the abstraction introduces a loss of informa-
tion and the additional computational work of computing the limit of the sequenceU̇ i , Ü i ,
i ≥ 0 is justified by the improved precision.

EXAMPLE: The same phenomenon appears in abstract model-checking algorithm “mc5”,
where the computation ofA := b-ai5(D u P̄]) will be more precise when intersecting with
D. The same way, the computation ofD := f-ai5(X) can use an abstract intersectionuwith
A, initially > = α(S).
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ALGORITHM 10The concretization of the result of “ai6” below is av-upper approxima-
tion of post[t?] I ∩pre[t?] F. We use a global counter n≥ 0 so as to indicate by comments
{U̇2n = . . .}, {Ü2n = . . .}, {U̇2n+1 = . . .} and{Ü2n+1 = . . .} how and when the elements
of the sequencėU0, Ü0, U̇1, Ü1, . . . , U̇2n, Ü2n, U̇2n+1, Ü2n+1, . . . have been computed.
The correspondingsend(. . .) commands should be ignored at the moment, i.e.send(. . .)
returns a void value.

function f-ai6 (A);
X := ⊥;
loop

Y := X;
X := F](Y) u A;
exit if X v Y
X := (Y 5 X) u A;

forever;
{U̇2n = Y}
send(γ (Y));
while X 6= Y do

Y := X;
X := F](Y) u A;
X := (Y 4 X) u A;

od;
return X.

function b-ai6 (D);
X := ⊥;
loop

Y := X;
X := B](Y) u D;
exit if X v Y
X := (Y 5 X) u D;

forever;
{U̇2n+1 = Y}
send(γ (Y)) %
while X 6= Y do

Y := X;
X := B](Y) u D;
X := (Y 4 X) u D;

od;
return X.

function ai6 ();
D := >;
A := >;
n := 0;
repeat

D := f-ai6 (A);

{Ü2n = D}
send(γ (D));
A := b-ai6 (D);
{Ü2n+1 = A}
send(γ (A));
n := n + 1;

until A = D;
return γ (A).

Observe that if the lattice L does not satisfy the descending chain condition (DCC)10,
this approximation sequence may be infinite. We can enforce finite convergence using a
narrowing as suggested in (Cousot, 1978, Cousot and Cousot, 1992a) (“A := b-ai6(D);”
being replaced by “A := D4 b-ai6 (D);”).

We are now in position to explain how the verification by model-checking can interact with
the analysis of the system by abstract interpretation. The general idea is to improve the ef-
ficiency of symbolic model-checking algorithms for verifying systems by using properties
of the system that can be automatically inferred by abstract interpretation.

5.3. Sequential Combination of Abstract Interpretation and Model Checking

A simple interaction of an analysis of the system by abstract interpretation with a verifi-
cation by model-checking algorithm “maximum2” consists in first running “ai6” so as to
get an upper-approximation “U = ai6 ()” of post[t?] I ∩ pre[t?] F which is then used in
“maximum2”. The benefit is that the state space to be searched can be reduced to a fi-
nite set (else “maximum2” fails anyway). The inconvenience is the additional cost of the
preliminary analysis.

5.4. Parallel Combination of Abstract Interpretation and Model Checking

5.4.1. Maximum Delay ProblemThis untimeliness can be remedied by running the
abstract interpretation and model-checking algorithms in parallel. Intermediate abstract
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interpretation results can be used, as they become available, to reduce the size of the state
space to be explored during parallel model-checking. The parallel algorithm is then:
ALGORITHM 11

[[ ai6 () ‖maximum2(I , F) ]]

The semantics of the “send(V );” and “ receive(U);” commands is that of an asyn-
chronous one-place buffered communication where the buffer is initialized to the supre-
mum> = α(S), “ send(V );” replaces the current value of the buffer with V while “
receive(U);” assigns to U the current value of the buffer which is left unchanged.

So execution of algorithm “maximum2” is started in parallel with the computation of
the upper approximation sequence>, U̇0, Ü0, . . . , U̇2n, Ü2n, U̇2n+1, Ü2n+1, . . . . At
each iteration of the main loop in “maximum2”, one can chose U as the element in this
sequence which is currently available11. A double-buffering system can be considered to
minimize the mutually exclusive accesses to read and write the shared buffer. Then there is
no synchronization cost since the parallel computation is completely asynchronous. This
computation should be stopped as soon as the execution of “maximum2” terminates.

Finally, it should be observed that initially the model-checking algorithm manipulates
small sets while the information>w U̇0 w Ü0w . . . provided by abstract interpretation is
rough. While the parallel computations go on, the model-checking algorithm manipulates
larger and larger sets while the informationU provided by abstract interpretation . . .w
U̇2n w Ü2n w U̇2n+1 w Ü2n+1 w . . . is more and more precise, so that the restriction is
more efficient. It follows that the parallel strategy is adequate since the precise information
will be available when most strongly needed.

5.4.2. Minimum Delay Problem In the case of algorithm “minimum2”, the first iterates
B̂0 = ∅, B̂1, . . . of the upward iteration sequence with widening forB] = λX .F] t
pre[t]] X are not upper approximations of pre[t?] F . It follows that one has to choose
A = S while waiting for their limit B̂ to be computed. Once available, one can use the
iteratesB̌0 = B̂, B̌1, . . . of the corresponding downward iteration sequence with narrowing
as successive values ofA in “minimum2” (where the assignment “Over := true;” should be
ignored in “b-ai4”):

ALGORITHM 12

[[ b-ai4 (α(F)) ‖minimum2(I , F) ]]

However, while waiting forB̂ to be available, the successive values ofA can be chosen
as the downward iterates for the greatest fixpoint gfp

v
B] since they are all upper approxi-

mations of lfp
v
B] and more precise thanS:
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ALGORITHM 13

Over := false;
[[ b-ai7 (α(F)) ‖ b-ai4 (α(F)) ‖minimum2(I , F) ]]

where termination is driven by that of “minimum2” and “b-ai7” is defined as:

function b-ai7 (F]);
X := >;
while¬ Overdo

X := F ] t pre[t]] X;
send(X);

od;

Finally observe that weak fairness ensures that the abstract interpretation and model check-
ing cooperate effectively. However in an unfair computation where “b-ai7” and “b-ai4” are
blocked, the buffer will always contains the supremum> so that the computation of “min-
imum2” will simply amount to that of “minimum1”.

6. Conclusion

We have proposed refinements of universal safety model-checking by abstract interpreta-
tion with infinite approximation of transition systems and sets of states:

– The combination of forwards and backwards abstract fixed-point model-checking com-
putations for universal safety computes a more precise result than that computed by
conjunction of the forward and backward analyses alone, without needing to refine the
abstraction;

– When abstraction is unsound (as can happen in minimum/maximum path-length prob-
lems), the partial results of a classical combination of forward and backward abstract
interpretation analyses for universal safety can be used to reduce, on-the-fly, the con-
crete state space to be searched by model-checking.

Other forms of restrictions have been proposed by (Halbwachs and Raymond, 1996) which
are amenable to parallelization in a similar way. Such methods, which make no approx-
imation on the states and transitions of the model, are nevertheless partial since it is not
guaranteed that the reduction always leads to a finite state exploration sub-graph. Because
of its precision, it should be tried first or in parallel. In case of computational verification
costs which remain prohibitive despite the restriction, one can always later resort to the
more classical property and transition abstraction.

Remarkably enough, the method then remains applicable to the more abstract model of
properties and/or transitions. Indeed, by (Cousot and Cousot, 1992c), the abstract inter-
pretation of the refined model will always be more precise than the analysis of the abstract
model. Consequently the preliminary analysis has not been done for nothing. It follows
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that the idea canalwaysbe applied, and thanks to an abstract interpretation performed in
parallel with the model-checking verification, should have a marginal cost only.

Similar restriction ideas apply to bisimulation equivalence checking (see e.g. (Bouajjani
et al., 1992, Fernandez, 1993)). They seem indispensable to cope with infinite state sys-
tems, real-time systems (Halbwachs, 1994) and hybrid systems (Halbwachs et al., 1994), in
particular to take possible values of variables, messages, queues, and the like into account,
which would be a significant step in the automated analysis of software.
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Notes

1. L satisfies the ACC if and only if any strictly ascending chainx0 @ x1 @ · · · of elements ofL is necessarily
finite.

2. Equivalence means that if the two procedures terminate then they return exactly the same result.

3. Strictly speaking this is asemi-dual Galois connectionsince, as observed in (Cousot and Cousot, 1979), the

original definition corresponds to〈℘(S), ⊆〉 −→←−
α

γ 〈L , w〉.
4. Weaker models of abstract interpretation can be considered (Cousot and Cousot, 1992b), which are mandatory

when considering abstract properties with no best approximation (e.g. (Cousot and Halbwachs, 1978)).
5. More generally one could consider a different abstract domain for backward analysis, the generalization being

immediate.

6. Again, equivalence means that if the two procedures terminate then they return exactly the same result.

7. Notice that the proposed combination is inspired from the technique of (Cousot, 1978, Cousot and Cousot,
1992a) to upper approximate post[t?] I ∩pre[t?] F as briefly recalled in Section 5.2 but is different, as shown
by the proof of Theorem 1. Another forward-backward combination was also proposed by (Dill and Wong-
Toi, 1995), which consists in computing separate upper and lower approximations of both post[t?] I and
p̃re[t?] P

8. For example a referee suggested that “One must simply make the restriction that the abstraction function not
collapse two states that are separated by a non-cyclic edge”. For an acyclic graph with “non-cyclic edges”
only (as in Figure 3), no abstraction is possible with this restriction.

9. Depending on the problem under consideration, it might be semantically equivalent but more efficient to start
with B] instead ofF].

10. L satisfies the DCC if and only if any strictly descending chainx0 A x1 A · · · of elements ofL is necessarily
finite.

11. Observe that all iterates of the downward iteration with narrowing to computeÜk from U̇k could also have
been included in this sequence.
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