
On Abstraction in Software Verification ‹

Patrick Cousot1 and Radhia Cousot2

1 École normale supérieure, Département d’informatique,
45 rue d’Ulm, 75230 Paris cedex 05, France

Patrick.Cousot@ens.fr www.di.ens.fr/~cousot/

2 CNRS & École polytechnique, Laboratoire d’informatique,
91128 Palaiseau cedex, France

Radhia.Cousot@polytechnique.fr lix.polytechnique.fr/~rcousot

Abstract. We show that the precision of static abstract software check-
ing algorithms can be enhanced by taking explicitly into account the ab-
stractions that are involved in the design of the program model/abstract
semantics. This is illustrated on reachability analysis and abstract test-
ing.

1 Introduction

Most formal methods for reasoning about programs (such as deductive meth-
ods, software model checking, dataflow analysis) do not reason directly on the
trace-based operational program semantics but on an approximate model of this
semantics. The abstraction involved in building the model of the program seman-
tics is usually left implicit and not discussed. The importance of this abstraction
appears when it is made explicit for example in order to discuss the soundness
and (in)completeness of temporal-logic based verification methods [1,2].

The purpose of this paper is to discuss the practical importance of this ab-
straction when designing static software checking algorithms. This is illustrated
on reachability analysis and abstract testing.

2 Transition Systems

We follow [3,4] in formalizing a hardware or software computer system by a
transition system xS, t, I, F, Ey with set of states S, transition relation t Ď
pS ˆ Sq, initial states I Ď S, erroneous states E Ď S, and final states F Ď S.

An example is that of automatic program manipulation techniques based
on the operational semantics of a programming language L. Then there is a
computable function mapping any program p P L to a (symbolic computer rep-
resentation of the) transition relation tvpw (as well as Ivpw, F vpw Evpw).

‹ This work was supported in part by the RTD project IST-1999-20527 daedalus of
the european IST FP5 programme.

D. Brinksma and K. G. Larsen (Eds.): CAV 2002, LNCS 2404, pp. 37–56, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

mailto:Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot/
mailto:Radhia.Cousot@polytechnique.fr
http://lix.polytechnique.fr/~rcousot

38 Patrick Cousot and Radhia Cousot

A program execution trace σ P S8 is a maximal non-empty finite (σ P S`)
or infinite (σ P Sω) sequence σ0 . . . σi . . . of states σi P S. Execution starts with
an initial state σ0 P I . Any state σi is related to its successor state σi`1 as
specified by the transition relation t so that xσi, σi`1y P t. The sequence σ =
σ0 . . . σi . . . σn is finite (of length |σ| “ n ` 1) if and only if the last state is
erroneous σn P E (because of an anomaly during execution) or final σn P F

(because of normal termination). All other states have a successor (formally
@s P S z pE YF q : Ds1 P S : xs, s1y P t) in which case execution goes on normally,
may be for ever (for infinite traces σ of length |σ| “ ω).

3 Reachability

Let t‹ be the reflexive transitive closure of the binary relation t. Let postrtsX
be the post-image of X by t, that is the set of states which are reachable from a
state of X by a transition t: postrtsX

def

“ ts1 P S | Ds P X : xs, s1y P tu [5,6]. Let

lfp
Ď

ϕ be the least fixpoint of a monotone map ϕ on a poset xL, Ďy when it exists

(e.g. xL, Ďy is a cpo or a complete lattice). We have postrt‹s I “ lfp
Ď

FrtsI where

FrtsIpXq
def

“ I Y postrtsX [3,5]. Given a specification Q Ď S, the reachability
problem considered in [5] consists in proving that postrt‹s I Ď Q.

Inverse problems consist in considering the inverse t´1 of the relation t [3].

We let prertsX
def

“ postrt´1sX be the pre-image of X by t that is the set of states
from which there exists a possible transition t to a state of X : prertsX “ ts P S |
Ds1 P X : xs, s1y P tu. From pt‹q´1 = pt´1q‹ we have prert‹sF = postrpt‹q´1sF

= lfp
Ď

Frt´1sF = lfp
Ď

BrtsF where BrtsF pXq
def

“ F Y prertsX [3,4].
Dual problems [3] consist in considering the dual ˝ ϕ ˝ of monotone

functions ϕ on complete boolean lattices where X
def

“ SzX and f ˝ gpxq “

fpgpxqq. The dual notions are ĄpostrrsX
def

“ postrrsp Xq so that ĄpostrrsX =

ts1 | @s : xs, s1y P r ùñ s P Xu and ĂprerrsX
def

“ prerrsp Xq = ts | @s1 : xs,
s1y P r ùñ s1 P Xu. Dual fixpoint characterizations follow from Park’s dual
fixpoint theorem for monotone functions on complete boolean lattices gfpϕ “
 lfp ˝ ϕ ˝ [6].

4 Program Testing

Program testing was extended beyond reachability analysis to liveness properties
such as termination [3,6]. The specifications considered in [3] are of the form:

postrt‹s I ùñ p Eq ^ prert‹sF .

Informally such a specification states that the descendants of the initial states
are never erroneous and can potentially lead to final states.

By choosing different user specified invariant assertions Iv for p Eq and in-
termittent assertions It for F , these forms of specification were slightly extended
by [7] under the name “abstract debugging” to:

postrt‹s I ùñ Iv ^ prert‹s It .

On Abstraction in Software Verification 39

If the states xp, my P S consist of a program point p P P and a memory state
m PM then, when P is finite, the user can specify local invariant assertions Ivp

attached to program points p P Pv Ď P and local intermittent assertions Itp

attached to program points p P Pt so that

Iv “ txp, my | p P Pv ùñ Ivppmqu

and It “ txp, my | p P Pt^ Itppmqu .

Otherwise stated, the descendants of the initial states always satisfy all local
invariant assertions (which always holds) and can potentially lead to states sat-
isfying some local intermittent assertion (which will sometime hold).

Consider for example, the factorial program below (the random assignment
? is equivalent to the reading of an input value or the passing of an unknown
but initialized parameter value and <> is ‰). A specification that this factorial
program should always terminate normally states that any execution should
always reach program point 6. The termination requirement can be very simply
specified as comments in the program text which specify the following local
invariant and intermittent assertions:

0: n := ?; 1: f := 1;

2: while (n <> 0) do

3: f := (f * n);

4: n := (n - 1)

5: od;

6: sometime true;;

Ivppn, fq “ n, f P r´8,`8s, p “ 1, . . . , 6;

Itppn, fq “ false , p “ 1, . . . , 5;

It6pn, fq “ true .

5 Exact Formal Methods

Deductive methods were certainly the first considered to solve the reachability

problem postrt‹s I Ď Q that is lfp
Ď

FrtsI Ď Q exactly. By exact, we mean that
one directly reason on the small-step operational semantics xSvpw, tvpw, Ivpw,
F vpw, Evpwy of the considered program p P L.

5.1 Exact Deductive Methods

By Park fixpoint induction, we have lfp
Ď

FrtsI Ď Q if and only if DJ : FrtsIpJq Ď
J ^ J Ď Q that is DJ : I Ď J ^ postrtsJ Ď J ^ J Ď Q. This is Floyd’s induc-
tive proof method, subgoal induction for the inverse problem and contrapositive
methods for dual problems [8].

Human interaction is necessary both to help discover the inductive argument
J and to assist the prover to check the verification conditions I Ď J , postrtsJ Ď
J and J Ď Q because the implication Ď is not decidable. In general the transition
relation tvpw is specified by a formal semantics of a programming language so
that the formula postrtvpws can be computer-generated by structural induction
on the syntax of program p P L, although human interaction is again needed
since these formulae must be simplified. Moreover, the invariant J is program
specific so the proof is not reusable and may have to be completely redone when
the program is modified.

40 Patrick Cousot and Radhia Cousot

5.2 Exact Model Checking

When the set S of states is finite, model checking [9,10,11] consists in computing

exactly lfp
Ď

FrtsI and checking that the fixpoint iterates are all included in
Q. Efficient data structures and algorithms have been developped for boolean

encodings such as BDDs [12]. To prove lfp
Ď

FrtsI Ę Q, one can prove that there
exist an iterate of FrtsI which is not included in Q using SAT [13]. Unfortunately
this can only be used for debugging and does not presently scale up beyond a
few thousands boolean variables.

In practice the transition system xS, t, I, F, Ey is in general not that of the
semantics xSvpw, tvpw, Ivpw, F vpw, Evpwy of the considered computer system p P L
but an abstraction of this semantics. This abstraction is often done by hand and
its correctness is not discussed. The abstract interpretation framework [4,5] is a
formal basis for making the abstraction explicit and for proving its soundness
and (in)completeness.

6 Abstract Interpretation

Abstract Interpretation [3] is a theory of abstraction of structures. Let us recall
a few basic elements of this theory [4].

An abstraction is defined by a Galois connection xL, Ďy ´́ Ñ́Ð́´́
α

γ
xL7, Ď7y that

is by definition @x P L : @y P L7 : αpxq Ď7 y ðñ x Ď γpyq. The intuition is
that, in the concrete world L, any element x P L can be approximated by any x1

such that x Ď x1 (for example x is a property which implies a weaker one x1). In
the abstract world L7, x can be approximated by any y such that x Ď γpyq. The
best or more precise such abstract approximation is y “ αpxq. It is an upper
approximation since x Ď γ ˝ αpxq. It is the more precise since for any other
abstract approximation y, x Ď γpyq ùñ γ ˝ αpxq Ď γpyq.

In order to abstract fixpoints, let us recall the following classical results in
abstract interpretation [3,4,5]:

Theorem 1 (Fixpoint abstraction). If xL, Ď, K, J, \, [y and xL7, Ď7, K7,

J7, \7, [7y are complete lattices, xL, Ďy ´́ Ñ́Ð́´́
α

γ
xL7, Ď7y is a Galois connection,

and F P L monÞ´́ Ñ́ L, then αplfp
Ď

F q Ď lfp
Ď

7

α ˝ F ˝ γ.

Proof. In a Galois connection, α and γ are monotonic, so by Tarski’s fixpoint the-

orem, the least fixpoints exist. So let Q7 def

“ lfp
Ď

7

α ˝ F ˝ γ. We have α ˝ F ˝ γpQ7q
= Q7 whence F ˝ γpQ7q Ď γpQ7q by definition of Galois connections. It follows

that γpQ7q is a postfixpoint of F whence lfp
Ď

F Ď γpQ7q by Tarski’s fixpoint

theorem or equivalently αplfp
Ď

F q Ď7 Q7 = lfp
Ď

7

α ˝ F ˝ γ. l

Theorem 2 (Fixpoint approximation). If xL7, Ď7, K7, J7, \7, [7y is a com-

plete lattice, F 7, F̄ 7 P L7 monÞ´́ Ñ́ L7, and F 7 Ď7 F̄ 7 pointwise, then lfp
Ď

7

F 7 Ď7

lfp
Ď

7

F̄ 7.

On Abstraction in Software Verification 41

Proof. We have F 7plfp
Ď

7

F̄ 7q Ď7 F̄ 7plfp
Ď

7

F̄ 7q = lfp
Ď

7

F̄ 7 whence lfp
Ď

7

F 7 Ď7

lfp
Ď

7

F̄ 7 since lfp
Ď

7

F 7 =
Ű

7
tX | F 7pXq Ď7 Xu by Tarski’s fixpoint theorem. l

7 Abstract Interpretation Based Formal Methods

In order to reduce the need for human-interaction as in deductive methods some
form of abstraction is needed. This consists in replacing program properties by
abstract ones. For example a set of traces X Ď S8 can be abstracted by sets of
reachable states αpXq where α P ℘pS8q ÞÑ ℘pSq is αpXq

def

“ tσi | σ P X ^ 0 ď

i ă |σ|u and γ P ℘pSq ÞÑ ℘pS8q is γpY q
def

“ tσ P S8 | @i ă |σ| : σi P Y u so

that x℘pS8q, Ďy ´́ Ñ́Ð́´́
α

γ
x℘pSq, Ďy. For reachability, a further abstraction x℘pSq,

Ďy ´́ Ñ́Ð́´́
α

γ
xL7, Ď7y leads, by Th. 1 & 2 to postrt‹s I Ď γplfp

Ď
7

F 7q where α ˝

FrtsI ˝ γ Ď7 F 7 pointwise, so that lfp
Ď

7

F 7 Ď7 Q7 implies postrt‹s I Ď γpQ7q.
Depending on the scope of the abstraction, there are essentially two approaches:

– In static program analysis, an abstraction αvpw has to be conceived by the
designer for all programs p P L of a programming language L;

– In abstract software model checking, a specific abstraction α is designed by
the end-user for each particular program.

We now examine the consequences of these two possible choices.

7.1 Static Program Analysis

In static program analysis, the abstract interpreter is given any program p P L of
a programming language L, establishes equations X “ F 7vpwpXq or constraints
F 7vpwpXq Ď7 X where αvpw ˝ FrtvpwsIvpw ˝ γvpw Ď7 F 7vpw and computes or

effectively upper approximates lfp
Ď

7

F 7vpw.
There is no need for the user to manually design the abstract interpreter,

which is done by specialists. Hence there is no easy fine tuning of the abstract
interpreter for a particular specification and a particular program. A consequence
of this generality is that there will always be some program on which the analyzer
will produce false alarms.

To minimize false alarms, infinite abstract domains are definitely needed in
program analysis for precision (and sometimes efficiency or ease of programming
of the program analyzer). The argument given in [14] uses reachability analysis
with the attribute-independent interval domain [5] for the family of programs of
the form:

x := 0; while (x < n) do x := (x + 1) od;;

where n is a given integer constant. It is easy to prove that for any n ą 0, an
interval analyzer [5] will discover ranges of possible values for numerical variables
as follows (each program point has been numbered and a corresponding local in-
variant (given between parentheses) provides the possible values of the variables
when reaching that program point. The uninitialized value Ω is denoted _O_.):

42 Patrick Cousot and Radhia Cousot

0: { x:_O_ }

x := 0;

1: { x:[0,n] }

while (x < n) do

2: { x:[0,n - 1] }

x := (x + 1)

3: { x:[1,n] }

od

4: { x:[n,n] }

The argument is then as follows:

1. for any given n it is possible to find an abstract domain (here tΩ, r0, ns,
r0, n´ 1s, r1, ns, rn, nsu) and to redesign a corresponding program analyzer
(and its correctness proof) so that the above result can be computed by
this specific analyzer for the specific abstract domain corresponding to this
particular n [15].

2. Any single program analyzer being able to analyze the entire infinite family
of programs must use an abstract domain containing the Ď-strictly increasing
chain r1, ns, n ą 0, hence an infinite abstract domain, as well as a widening,
to cope with non termination (`8 (respectively ´8) typed +oo (resp. -oo)
denotes the greatest (resp. smallest) machine representable integer):

0: { x:_O_ }

x := 0;

1: { x:[0,+oo] }

while (0 < 1) do

2: { x:[0,+oo] }

x := (x + 1)

3: { x:[1,+oo] }

od

4: { x:_|_ }

Program point 4 is not reachable which is denoted by the bottom value K
(typed _|_).

7.2 Abstract Model Checking

Most abstractions considered in abstract model checking [16,17] are state to
state abstractions ℘pSq ÞÑ ℘pS7q of the form αpXq “ tαpsq | s P Xu for a
given state abstraction α P S ÞÑ S7, see [1, sec. 14, p. 23]. Then we have x℘pSq,

Ďy ´́ Ñ́Ð́´́
α

γ
x℘pS7q, Ďy where γpY q

def

“ tx P S | αpxq P Y u. This is of the form x℘pSq,

Ďy ´́´́ ´́ Ñ́Ð́ ´́ ´́ ´́
postrαs

Ąprerαs
x℘pS7q, Ďy which is a slight generalization when the state-to-state

abstraction is relational (α Ď S ˆ S7) and not simply functional (α P S ÞÑ S7).
The need for restricting to state-to-state abstractions follows from the re-

quirement in abstract model-checking to model-check the abstract semantics
which, in order to be able to reuse existing model-checkers, must have the form

On Abstraction in Software Verification 43

of a transition system on (abstract) states. Indeed α ˝ postrts ˝ γ is postrt7s by

defining t7 def

“ txs7, s17
y | Ds, s1 P S : xs, s7y P α ^ xs, s1y P t ^ xs1, s17

y P αu,

I 7 def

“ ts7 | Ds P I : xs, s7y P αu, etc.
Contrary to a common believe not all abstractions are state-to state. So

some abstract semantics (using e.g. the interval abstraction [5] or the polyhe-
dral abstraction [18]) are beyond the scope of abstract model checking. Some
model checking publications use these abstractions or similar ones which are not
state based, e.g. [19]. But then they use abstract interpretation based techniques
such as fixpoint approximation, widening/narrowing, etc. to check safety (mainly
reachability) properties as considered in Sec. 7.1.

In (abstract) model-checking, all efforts are concentrated on the design of the
(abstract) model xS7, t7, I 7, F 7, E7y. By [15], the abstract model can always be
chosen to be boolean, finite and even small enough so that a model-checker will
always succeed. Not surprisingly, [15] shows that for reachability problems, the
discovery of the adequate abstract model is logically equivalent to the discovery
of an inductive invariant J while the soundness proof is logically equivalent to
the inductive proof postrtsJ Ď J (as considered in Sec. 5.1). So the human
effort which was placed in the assistance of a prover for deductive methods is
now placed in the design of an (abstract) model, which is a significant saving
only when the abstract model is not proved correct. However these abstractions
developed for a specific program and an explicit specification of that program
are not reusable hence extremely expansive to design.

7.3 Automatic Abstraction and Abstraction Refinement

Predicate abstraction [20] is the per example automatization of the design of
specific program analyzers by computing αvpw ˝ FrtvpwsIvpw ˝ γvpw for a given
program p with a theorem prover/proof assitant/algebraic simplifier. It is based
on the use of abstract domains using finite sets of predicates in disjunctive nor-
mal form. The abstract domain is refined on a spurious counter example basis
[21]. This is an instance of domain refinement in abstract interpretation [22]
but for the fact that infinite-disjunctions are handled heuristically to cope with
uncomputability.

Beyond the limitations on the automatic use of theorem provers, the huge
cost of the refinement process, the precision of the method as analyzed by [21]
may be insufficient. This is because widening by dropping conjuncts in disjuncts
[21] is not equivalent to the extrapolations to limits involved in abstract domains.
An example is:

x := 100; y := -200;

while x <> 0 do x := (x - 1); y := (y + 2) od;;

always { y = 0 }

which is easily and automatically handled by the linear equalities abstract do-
main [23] (which satisfies the ascending chain condition) since the loop invariant
2x´ y “ 0 and x “ 0 implies y “ 0.

44 Patrick Cousot and Radhia Cousot

7.4 Abstract Software Model Checking

At first sight, abstract testing is model-checking [9,10,11] of the temporal for-
mula3:

lp
ľ

pPPv

atp ùñ Ivpq ^˚p
ł

pPPt

atp^Itpq (1)

for a small-step operational semantics xS, t, Iy of the program (or more precisely,
abstract model-checking since abstract interpretation is involved).

Note that with state to state abstraction, the correctness of the formula in
the abstract does not imply its correctness in the concrete (see [1,2]). A simple
counter-example would be the termination of:

n := ?; f := 1; b := true;

while ((n <> 0) | b) do f := (f * n); n := (n - 1) od;;

where memory states xn, f, by are abstracted by xn, fy. So the verification of (1)
cannot be done with upper approximations only and would also require a lower
approximation or the use of a variant function [1,2].

7.5 Abstract Testing

Since lower approximations are hard to design and the handling of both lower
and upper approximations is computationally complex, abstract testing uses
upper approximations only. This consists in automatically computing local upper
approximations Ap, p P P , such that for A

def

“ txp, my | Appmqu we have:

ppostrt‹s I ^ Iv ^ prert‹s Itq ùñ A .

The information provided by A is p A^postrt‹s Iq ùñ p Iv_Ăprert‹s Itq, that
is reachable states not satisfying A either do not satisfy the invariant assertion
Iv or must inevitably lead to a violation of the intermittent assertion It. So A

should be checked at checking-time or run-time to forestall errors. This consists
in considering the transition system xS, t1, I 1, F, Ey where t1 def

“ tXpS ˆAq and

I 1 def

“ I X A. If S “ P ˆM then defining tpp1
def

“ txxp, my, xp1, m1yy P tu and

succppq
def

“ tp1 P P | tpp1 ‰ Hu, we have t “
Ť

p1Psuccppq tpp1 . An economical way to

check A is to use local checks (denoted :!: in the examples below). This consists

in considering t1 “
Ť

p1Psuccppq t1
pp1 where t1

pp1

def

“ tpp1 if postrtpp1sAp ùñ Ap1 and

t1
pp1

def

“ tpp1XpSˆAp1q otherwise. If A is taken in computer-language representable
abstract domains, the transformed transition system xS, t1, I 1, F, Ey corresponds
to a transformed program, which is a simple form of program monitoring [24].

The automatic analysis of the above factorial program leads to the following
result [25,26]:

3 The temporal operator l Q denotes the set of sequences of states such that all states
satisfy Q, ˚ Q denotes the set of sequences containing at least one state satisfying
Q and the predicate at p holds in all states which control point is p.

On Abstraction in Software Verification 45

0: { n:_O_; f:_O_ }

n := ?;

1:!: { n:[0,+oo]; f:_O_ }

f := 1;

2: { n:[0,+oo]; f:[1,+oo] }

while (n <> 0) do

3: { n:[1,+oo]; f:[1,+oo] }

f := (f * n);

4: { n:[1,+oo]; f:[1,+oo] }

n := (n - 1)

5: { n:[0,+oo-1]; f:[1,+oo] }

od

6: { n:[0,0]; f:[1,+oo] }

The analysis automatically discovers the condition ně 0 which should be checked
at program point 1 (as indicated by :!:), since otherwise a runtime error or
nontermination is inevitable. Then the computed invariants will always hold.
For example the final value of n is 0 whereas f ě 1.

8 Precise Fixpoint Checking in the Presence of

Approximations

All approximate formal methods considered in Sec. 7 involve fixpoint approxi-
mations. These approximations, such as widenings [5], can be simply ignored in
model-checking of finite-state transition systems. However, in the presence of ap-
proximations, fixpoint approximation check can be made more precise than the
fixpoint computations involved in traditional abstract model-checking [16,17].

8.1 Fixpoint Approximation Check

A first illustration is for the fixpoint approximation check lfp
Ď

F Ď Q where xL,

Ď, K, J, Ď, Ěy is a complete lattice, F P L monÞ´́ Ñ́ L is monotonic and lfp
Ď

F is
the Ď-least fixpoint of F . An example is reachability analysis of Sec. 3.

In (abstract) model-checking, one computes iteratively lfp
Ď

F and then checks

that lfp
Ď

F Ď Q (or uses a strictly equivalent check, see [27, p. 73] and Sec. 10
below).

In abstract testing, one computes iteratively an upper-approximation J of

lfp
Ď

λX ¨Q[FpXq with acceleration of the convergence of the iterates by widen-
ing/narrowing [5,6]. The convergence criterion is:

pQ[FpJqq Ď J . (2)

Then the invariance check has the form:

FpJq Ď Q . (3)

This is sound, by the following theorem:

46 Patrick Cousot and Radhia Cousot

Theorem 3. If xL, Ď, K, J, Ď, Ěy is a complete lattice, F P L monÞ´́ Ñ́ L is
monotonic and Q, J P L, then:

pQ[FpJqq Ď J ^ FpJq Ď Q ùñ lfp
Ď

F Ď Q

Proof. We have FpJq = FpJq[FpJq Ď Q[FpJq [by (3)] Ď J [by (2)] proving

FpJq Ď J by transitivity whence lfp
Ď

F Ď J by Tarski’s fixpoint theorem. By

definition of fixpoints and monotony, it follows that lfp
Ď

F = Fplfp
Ď

Fq Ď FpJq

Ď Q [by (3)]. By transitivity, we conclude lfp
Ď

F Ď Q as required. l

The reason why abstract testing uses more involved computations is that
in the context of infinite state systems, and for a given abstraction, the ap-
proximation of the more complex expression is in general more precise than the
abstraction of the trivial expression. Consider for example interval analysis [5] of
the simple loop accessing sequentially an array Ar1s, . . . , Ar100s. The result of
the analysis [26] is too approximate to statically check that the index i is within
the array bounds 1 and 100 :

Reachability from initial states; 0: { i:_O_ }

i := 0; i := 0;

while (i <> 100) do 1: { i:[0,+oo] }

i := (i + 1); while (i <> 100) do

skip % array access % 2: { i:[0,+oo] }

od;; i := (i + 1);

3: { i:[1,+oo] }

skip

4: { i:[1,+oo] }

od

5: { i:[100,100] }

However by explicit conjunction with the array access invariant 0 ă i ď 100 (the
evaluation of the runtime check always B has the effect of blocking the program
execution when the assertion B does not hold), the static analysis now proves
that the array out of bound error is impossible:

Reachability from initial states; 0: { i:_O_ }

i:=0; i := 0;

while i <> 100 do 1: { i:[0,100] }

i := i + 1; while (i <> 100) do

always ((0 < i) & (i <= 100)) 2: { i:[0,99] }

od;; i := (i + 1);

3: { i:[1,100] }

always ((0 < i) & (i <= 100))

4: { i:[1,100] }

od

5: { i:[100,100] }

Experimentally, acceleration of the convergence may even lead to a faster con-
vergence of the more precise analysis.

On Abstraction in Software Verification 47

8.2 Fixpoint Meet Approximation

A second illustration of the possible refinement of fixpoint computation algo-
rithms in the presence of abstraction is the upper-approximation of the descen-
dants of the initial states which are ancestors of the final states. An (abstract)
model-checking algorithm (such as [28]) computes a conjunction of forward and
backward fixpoints. The forward and backward analyses of the factorial program,
respectively yield:

Reachability from initial states; Ancestors of final states;

0: { n:_O_; f:_O_ } 0: { n:[-oo,+oo]?; f:[-oo,+oo]? }

n := ?; n := ?;

1: { n:[-oo,+oo]; f:_O_ } 1: { n:[0,+oo]; f:[-oo,+oo]? }

f := 1; f := 1;

2: { n:[-oo,+oo]; f:[-oo,+oo] } 2: { n:[0,+oo]; f:[-oo,+oo]? }

while (n <> 0) do while (n <> 0) do

3: { n:[-oo,+oo]; f:[-oo,+oo] } 3: { n:[1,+oo]; f:[-oo,+oo] }

f := (f * n); f := (f * n);

4: { n:[-oo,+oo]; f:[-oo,+oo] } 4: { n:[1,+oo]; f:[-oo,+oo]? }

n := (n - 1) n := (n - 1)

5: { n:[-oo,+oo-1]; f:[-oo,+oo] } 5: { n:[0,+oo]; f:[-oo,+oo]? }

od od

6: { n:[0,0]; f:[-oo,+oo] } 6: { n:[-oo,+oo]?; f:[-oo,+oo]? }

The intersection is therefore:

0: { n:_O_; f:_O_ }

n := ?;

1: { n:[-oo,+oo]; f:_O_ }

f := 1;

2: { n:[0,+oo]; f:[-oo,+oo]? }

while (n <> 0) do

3: { n:[1,+oo]; f:[-oo,+oo] }

f := (f * n);

4: { n:[1,+oo]; f:[-oo,+oo] }

n := (n - 1)

5: { n:[0,+oo-1]; f:[-oo,+oo] }

od

6: { n:[0,0]; f:[-oo,+oo] }

Abstract testing iterates an alternation between forward and backward fixpoints
[3,29]. For the factorial program, the analysis is more precise (since it can now
derive that f is positive):

Reachability/ancestry analysis for initial/final states;

0: { n:_O_; f:_O_ }

n := ?;

1:!: { n:[0,+oo]; f:_O_ }

f := 1;

2: { n:[0,+oo]; f:[1,+oo] }

while (n <> 0) do

48 Patrick Cousot and Radhia Cousot

3: { n:[1,+oo]; f:[1,+oo] }

f := (f * n);

4: { n:[1,+oo]; f:[1,+oo] }

n := (n - 1)

5: { n:[0,+oo-1]; f:[1,+oo] }

od

6: { n:[0,0]; f:[1,+oo] }

Now F and B can be approximated by their abstract interpretations F 7 Ě α ˝

F ˝ γ of F and B7 Ě α ˝ B ˝ γ of B. A better approximation than lfp
Ď

7

F 7 [7

lfp
Ď

7

B7 was suggested in [3]. It is calculated as the limit of the alternating fixpoint
computation:

9X0 “ lfp
Ď

7

F
7 or lfp

Ď
7

B
7 (4)

9X2n`1 “ lfp
Ď

7

λ X ¨ p 9X2n [7
B

7pXqq, n P N (5)

9X2n`2 “ lfp
Ď

7

λ X ¨ p 9X2n`1 [7
F

7pXqq, n P N (6)

For soundness, we assume:

lfp
Ď

F [lfp
Ď

B “ lfp
Ď

λ X ¨ plfp
Ď

F [BpXqq (7)

“ lfp
Ď

λ X ¨ plfp
Ď

B [FpXqq (8)

“ lfp
Ď

λ X ¨ plfp
Ď

F [lfp
Ď

B [BpXqq (9)

“ lfp
Ď

λ X ¨ plfp
Ď

F [lfp
Ď

B [FpXqq (10)

so that there is no improvement when applying the alternating fixpoint compu-
tation to F and B (such as the exact forward postrt‹s I and backward prert‹sF
collecting semantics). However, when considering approximations F 7 of F and B7

of B, not all information can be collected in one pass. So the idea is to propagate
the initial assertion forward so as to get a final assertion. This final assertion is
then propagated backward to get stronger necessary conditions to be satisfied by
the initial states for possible termination. This restricts the possible reachable
states as indicated by the next forward pass. Going on this way, the available
information on the descendant states of the initial states which are ascendant
states of the final states can be improved on each successive pass, until conver-
gence. A specific instance of this computation scheme was used independently
by [30] to infer types in flowchart programs.

The correctness of the alternating fixpoint computation follows from the
following [3]:

Theorem 4 (Alternating fixpoint approximation). If xL, Ď, K, J, \,

[y and xL7, Ď7, K7, J7, \7, [7y are complete lattices, xL, Ďy ´́ Ñ́Ð́´́
α

γ
xL7, Ď7y is

a Galois connection, F P L monÞ´́ Ñ́ L and B P L monÞ´́ Ñ́ L satisfy the hypotheses
(9) and (10), F 7 P L7 monÞ´́ Ñ́ L7, B7 P L7 monÞ´́ Ñ́ L7, α ˝ F ˝ γ Ď7 F 7, α ˝

B ˝ γ Ď7 B7 and the sequence x 9Xn, n P Ny is defined by (4), (5) and (6) then

@k P N : αplfp
Ď

F X lfp
Ď

Bq Ď7 9Xk`1 Ď7 9Xk.

On Abstraction in Software Verification 49

Proof. Observe that by the fixpoint property, 9X2n`1 “ 9X2n [7 B7p 9X2n`1q and
9X2n`2 “ 9X2n`1 [7 F 7p 9X2n`2q, hence 9X2n Ď7 9X2n`1 Ď7 9X2n`2 since [7 is the

greatest lower bound for Ď7 so that 9Xk, k P N is a decreasing chain.

We have αplfp
Ď

F [lfp
Ď

Bq Ď7 αplfp
Ď

Fq since α is monotone and αplfp
Ď

Fq

Ď7 lfp
Ď

7

F 7 by Th. 2, thus proving the proposition for k “ 0.
Let us observe that α ˝ F ˝ γ Ď7 F 7 implies F ˝ γ Ď γ ˝ F 7 by definition

of Galois connections so that in particular for an argument of the form αpXq,
F ˝ γ ˝ α Ď γ ˝ F 7 ˝ α. In a Galois connection, γ ˝ α is extensive so that by
monotony and transitivity F Ď γ ˝ F 7 ˝ α.

Assume now by induction hypothesis that αplfp
Ď

F [lfp
Ď

Bq Ď7 9X2n, or

equivalently, by definition of Galois connections, that lfp
Ď

F[lfp
Ď

B Ď γp 9X2nq.

Since F Ď γ ˝ F 7 ˝ α, it follows that λ X ¨ lfp
Ď

F[lfp
Ď

B[FpXqĎ λX ¨ γp 9X2nq[
γ ˝ F 7 ˝ αpXq = λ X ¨ γp 9X2n [F 7 ˝ αpXqq since, in a Galois connection, γ is

a complete meet morphism. Now by hypothesis (9), we have lfp
Ď

F [lfp
Ď

B

= lfp λ X ¨ plfp
Ď

F [lfp
Ď

B [FpXqq Ď7 lfp λ X ¨ γp 9X2n [F 7 ˝ αpXqq by Th. 2.
Let G be λX ¨ 9X2n [F 7pXq. In a Galois connection, α ˝ γ is reductive so that
by monotony G ˝ α ˝ γ Ď7 G and α ˝ γ ˝ G ˝ α ˝ γ Ď7 G ˝ α ˝ γ, whence,
by transitivity, α ˝ γ ˝ G ˝ α ˝ γ Ď7 G. By Th. 1, we have αplfp γ ˝ G ˝ αq Ď7

lfp α ˝ γ ˝ G ˝ α ˝ γ Ď7 lfp G by Th. 2. Hence, lfp λX ¨ γp 9X2n [F 7 ˝ αpXqq Ď

γplfp λ X ¨ 9X2n [F 7pXqq so that by transitivity we conclude that αplfp
Ď

F [

lfp
Ď

Bq Ď7 9X2n`1.

The proof that αplfp
Ď

F [lfp
Ď

Bq Ď7 9X2n`2 is similar, using hypothesis (9)
and by exchanging the rôles of F and B. l

It is interesting to note that the computed sequence (4), (5) and (6) is optimal
(see [3]). A similar result holds when replacing one least fixpoint by a greatest
fixpoint [31].

If the abstract lattice does not satisfy the descending chain condition then
[3] also suggests to use a narrowing operator 4 [5] to enforce convergence of the
downward iteration 9Xk, k P N. The same way a widening/narrowing approach
can be used to enforce convergence of the iterates for λX ¨ 9X2n [F 7pXq and
λ X ¨ 9X2n`1 [B7pXq.

8.3 Local Iterations

A third illustration that the precision of static abstract software checking al-
gorithms can be enhanced by taking explicitly into account the abstractions is
the local iterations [32] to handle tests, backward assignments, etc. Below is an
example of program static analysis, without local iterations:

Reachability from initial states;

0: { x:_O_; y:_O_; z:_O_ }

x := 0;

1: { x:[0,0]; y:_O_; z:_O_ }

y := ?;

50 Patrick Cousot and Radhia Cousot

2: { x:[0,0]; y:[-oo,+oo]; z:_O_ }

z := ?;

3: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }

if (((x = y) & (y = z)) & ((z + 1) = x)) then

4: { x:[0,0]; y:[0,0]; z:[-1,-1] }

skip

5: { x:[0,0]; y:[0,0]; z:[-1,-1] }

else

6: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }

skip

7: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }

fi

8: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }

The precision of the same program with the same abstract domain is greatly
enhanced with local iterations:

Forward reductive analysis from initial states;

0: { x:_O_; y:_O_; z:_O_ }

x := 0;

1: { x:[0,0]; y:_O_; z:_O_ }

y := ?;

2: { x:[0,0]; y:[-oo,+oo]; z:_O_ }

z := ?;

3: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }

if (((x = y) & (y = z)) & ((z + 1) = x)) then

4: { x:_|_; y:_|_; z:_|_ }

skip

5: { x:_|_; y:_|_; z:_|_ }

else

6: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }

skip

7: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }

fi

8: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }

When applied to tests without side-effects, the idea of the local iterations is
to iterate the abstract evaluation of the test. From { x:[0,0]; y:[-oo,+oo];

z:[-oo,+oo] }, the abstract interpretation of the test (x = y) yields y:[0,0],
the test (y = z) provides no information on y and z while ((z + 1) = x) yields
z:[-1,-1]. Iterating once more, the tests (x = y) and ((z + 1) = x) provide
no new information while (y = z) is false and so is the conjunction (((x = y) &

(y = z)) & ((z + 1) = x)). It follows that program point 4 is not reachable.

9 Counter-examples to Erroneous Designs

Another important element of comparison between model-checking and abstract
testing concerns the conclusions that can be drawn in case of failure of the
automatic verification process. The model checking algorithms usually provide

On Abstraction in Software Verification 51

a counter-example [12]. This is not directly possible in the abstract since the
necessary over-approximation leads to the consideration of inexisting program
executions which should not be proposed as counter-examples. Nevertheless, in
abstract model checking, counterexamples can be found in the concrete [33,34],
provided concrete program transformers can be effectively computed (e.g. when
the concrete transition system is finite). Because of the uncomputability of the
programming language semantics, this is not always possible with abstract test-
ing (e.g. for non-termination).

However, abstract testing can provide necessary conditions for the specifi-
cation to be (un-)satisfied. These automatically calculated conditions can serve
to abstract program slicing as a guideline to discover the errors. They can also
be checked at run-time to start the debugging mode before the error actually
happens. For example the analysis of the following factorial program with a
termination requirement leads to the necessary pre-condition n ě 0:

Ancestors of final states; 0: { n:[-oo,+oo]?; f:[-oo,+oo]? }

n := ?; n := ?;

f := 1; 1: { n:[0,+oo]; f:[-oo,+oo]? }

while (n <> 0) do f := 1;

f := (f * n); 2: { n:[0,+oo]; f:[-oo,+oo]? }

n := (n - 1) while (n <> 0) do

od;; 3: { n:[1,+oo]; f:[-oo,+oo] }

f := (f * n);

4: { n:[1,+oo]; f:[-oo,+oo]? }

n := (n - 1)

5: { n:[0,+oo]; f:[-oo,+oo]? }

od

6: { n:[-oo,+oo]?; f:[-oo,+oo]? }

Indeed when this condition is not satisfied, i.e. when initially n ă 0, the program
execution may not terminate or may terminate with a run-time error (arithmetic
overflow in the above example). The following static analysis with this erroneous
initial condition n ă 0 shows that the program execution never terminates prop-
erly so that the only remaining possible case is an incorrect termination with a
run-time error (K, typed _|_, is the false invariant hence denotes unreachability
in forward analysis and impossibility to reach the goal in backward analysis):

Reachability from initial states; 0: { n:_|_; f:_|_ }

initial n < 0; initial (n < 0);

f := 1; 1: { n:[-oo,-1]; f:_O_ }

while (n <> 0) do f := 1;

f := (f * n); 2: { n:[-oo,-1]; f:[-oo,1] }

n := (n - 1) while (n <> 0) do

od;; 3: { n:[-oo,-1]; f:[-oo,1] }

f := (f * n);

4: { n:[-oo,-1]; f:[-oo,0] }

n := (n - 1)

5: { n:[-oo,-2]; f:[-oo,0] }

od

52 Patrick Cousot and Radhia Cousot

6: { n:_|_; f:_|_ }

Otherwise stated, infinitely many counter-examples are simultaneously provided
by this counter-analysis. Except in the case of bounded cyclicity, concrete nonter-
mination counterexamples would be hard to exhibit for infinite state transition
systems.

10 Contrapositive Reasoning

For the last element of comparison between concrete and abstract software ver-
ification, observe that in model-checking, using a set of states or its comple-
ment is equivalent as far as the precision of the result is concerned (but may
be not its efficiency). For example, as observed in [27, p. 73], the Galois con-

nection x℘pSq, Ďy ´́´́ ´́ Ñ́Ð́´́ ´́ ´́
postrrs

Ąprerrs
x℘pSq, Ďy (where r Ď S ˆ S and ĂprerrsX

def

“

ts | @s1 : xs, s1y P r ùñ s1 P Xu) implies that the invariance specification
check postrt‹sE Ď Q is equivalent to Ăprert‹s Q Ď E (or prert‹s Q Ď E for
total deterministic transition systems [6]). Otherwise stated a forward positive
proof is equivalent to a backward contrapositive proof, as observed in [8]. So
the difference between the abstract testing algorithm of [4,5,6] and the model-
checking algorithm of [9,10,11] is that abstract testing checks postrt‹s I Ď Q

while model-checking verifies Ăprert‹s Q Ď I , which is equivalent for finite
transition systems as considered in [9,10,11].

However, when considering infinite state systems the negation may be ap-
proximate in the abstract domain. For example the complement of an interval
as considered in [5] is not an interval in general. So the backward contrapositive
checking may not yield the same conclusion as the forward positive checking.
For example when looking for a pre-condition of an out of bounds error for the
following program:

Ancestors of final states;

i:=0;

while i <> 100 do

i := i + 1;

if (0 < i) & (i <= 100) then

skip % array access %

else

final (i <= 0) | (100 < i) % out of bounds error %

fi

od;;

the predicate (i <= 0) | (100 < i) cannot be precisely approximated with
intervals, so the analysis is inconclusive:

0: { i:[-oo,+oo]? }

i := 0;

1: { i:[-oo,+oo-1] }

while (i <> 100) do

On Abstraction in Software Verification 53

2: { i:[-oo,+oo-1] }

i := (i + 1);

3: { i:[-oo,+oo] }

if ((0 < i) & (i <= 100)) then

4: { i:[-oo,+oo-1] }

skip

5: { i:[-oo,+oo-1] }

else {((i <= 0) | (100 < i))}

6: { i:[-oo,+oo] }

final ((i <= 0) | (100 < i))

7: { i:[-oo,+oo-1] }

fi

8: { i:[-oo,+oo-1] }

od

9: { i:_|_ }

However both the forward positive and backward contrapositive checking may
be conclusive. This is the case if we check for the lower bound only:

Ancestors of final states;

i:=0;

while i <> 100 do

i := i + 1;

if (0 < i) then

skip % array access %

else

final (i <= 0) % out of lower bound error %

fi

od;;

This is shown below since the initial invariant is false so the out of lower bound
error is unreachable and similarly for the upper bound:

0: { i:_|_ } 0: { i:_|_ }

i := 0; i := 0;

1: { i:[-oo,-1] } 1: { i:[101,+oo-1] }

while (i <> 100) do while (i <> 100) do

2: { i:[-oo,-1] } 2: { i:[100,+oo-1] }

i := (i + 1); i := (i + 1);

3: { i:[-oo,0] } 3: { i:[101,+oo] }

if (0 < i) then if (i <= 100) then

4: { i:[-oo,-1] } 4: { i:[101,+oo-1] }

skip skip

5: { i:[-oo,-1] } 5: { i:[101,+oo-1] }

else {(i <= 0)} else {(100 < i)}

6: { i:[-oo,0] } 6: { i:[101,+oo] }

final (i <= 0) final (100 < i)

7: { i:[-oo,-1] } 7: { i:[101,+oo-1] }

fi fi

8: { i:[-oo,-1] } 8: { i:[101,+oo-1] }

od od

54 Patrick Cousot and Radhia Cousot

9: { i:_|_ } 9: { i:_|_ }

Both analyzes could be done simultaneously by considering both intervals and
their dual, or more generally finite disjunctions of intervals. More generally,
completeness may always be achieved by enriching the abstract domain [22].
To start with, the abstract domain might be enriched with complements, but
this might not be sufficient and indeed the abstract domain might have to be
enriched for each primitive operation, thus leading to an abstract algebra which
might be quite difficult to implement if not totally inefficient. Moreover limit
abstract values in the abstract domains require infinite iterations so that the
exact abstract domain refinement may not be computable (see Sec. 7.3).

11 Conclusion

As an alternative to program debugging, formal methods have been developed
to prove that a semantics or a model of the program satisfies a given specifi-
cation. Abstraction was first considered in contexts in which false alarms are
quite acceptable (e.g. static program analysis in compilation [5], overestimation
of worst-case execution time [35], etc) to applications in which false alarms are
unsatisfactory (e.g. software verification). For example in compile-time bound-
edness checking, a selectivity of 90% will lead to significant performance im-
provements in execution times whereas such a selectivity rate is not acceptable
to prove that no unexpected interrupts can be raised in large embedded critical
real-time software. By concentrating on models of programs rather than on their
semantics, these formal methods have had more successes for finding bugs than
for actual correctness proofs of full programs. Beyond the design and mainte-
nance cost of models of complex programs and their unreliability, the basic idea
of complete program verification underlying the deductive and model checking
methods has been abandoned in favor of debugging. Because of theoretical and
practical limitations, these approaches will be hard to scale up for complex pro-
grams as considered in the Daedalus project (over 250 000 lines of C) e.g. for
boundedness checking or liveness analysis.

Abstract interpretation based methods offer techniques which, in the presence
of approximation, can be viable and powerful alternatives to both the exhaus-
tive search of model-checking and the partial exploration methods of classical
debugging. There are essentially two approaches:

– General-purpose static analyzers automatically provide a program model by
an approximation of its semantics chosen to offer a good average cost/preci-
sion compromize. Such analyzers are reusable and so their development cost
can be shared among many users;

– Specializable static analyzers provide the user with the capability to tune
the abstractions to achieve high-precision by chosing among a predefined set
of wide-spectrum parameterized approximations. The refinement is on the
local choice of abstract domains which automatically induces a more precise
abstract semantics. This should ensure the soundness of the abstraction,

http://www.di.ens.fr/~cousot/projects/DAEDALUS/index.shtml

On Abstraction in Software Verification 55

and at least for specific classes of programs lead to very precise and efficient
analyzes going much beyond examples modelled by hand.

References

1. Cousot, P., Cousot, R.: Temporal abstract interpretation. In: 27th POPL, Boston,
USA, ACM Press (2000) 12–25

2. Schmidt, D.: From trace sets to modal-transition systems by stepwise abstract
interpretation. Submitted for publication (2001)

3. Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes
d’opérateurs monotones sur un treillis, analyse sémantique de programmes. Thèse
d’État ès sciences mathématiques, Université scientifique et médicale de Grenoble,
Grenoble, France (1978)

4. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6th

POPL, San Antonio, USA, ACM Press (1979) 269–282
5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: 4th POPL,
Los Angeles, USA, ACM Press (1977) 238–252

6. Cousot, P.: Semantic foundations of program analysis. In Muchnick, S., Jones,
N., eds.: Program Flow Analysis: Theory and Applications. Prentice-Hall (1981)
303–342

7. Bourdoncle, F.: Abstract debugging of higher-order imperative languages. In:
Proc. ACM SIGPLAN ’93 Conf. PLDI. ACM SIGPLAN Not. 28(6), Albuquerque,
USA, ACM Press (1993) 46–55

8. Cousot, P., Cousot, R.: Induction principles for proving invariance properties of
programs. In Néel, D., ed.: Tools & Notions for Program Construction. Cambridge
U. Press (1982) 43–119

9. Clarke, E., Emerson, E.: Synthesis of synchronization skeletons for branching time
temporal logic. In: IBM Workshop on Logics of Programs. Yorktown Heights, USA,
LNCS 131, Springer-Verlag (1981)

10. Clarke, E., Emerson, E., Sistla, A.: Automatic verification of finite-state concurrent
systems using temporal logic specifications. TOPLAS 8 (1986) 244–263

11. Queille, J.P., Sifakis, J.: Verification of concurrent systems in Cesar. In: Proc.
Int. Symp. on Programming. LNCS 137. Springer-Verlag (1982) 337–351

12. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic model checking:
10

20 states and beyond. Inform. and Comput. 98 (1992) 142–170
13. Biere, A., Cimatti, A., Clarke, E., Fujita, M., Zhu, Y.: Symbolic model checking

using SAT procedures instead of BDDs. In: Proc. 36th Conf. DAC ’99. New Orleans,
USA. ACM Press (21–25 June 1999) 317–320

14. Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing
approaches to abstract interpretation, invited paper. In Bruynooghe, M., Wirsing,
M., eds.: Proc. 4th Int. Symp. PLILP ’92. Leuven, Belgium, 26–28 Aug. 1992, LNCS
631, Springer-Verlag (1992) 269–295

15. Cousot, P.: Partial completeness of abstract fixpoint checking, invited paper. In
Choueiry, B., Walsh, T., eds.: Proc. 4th Int. Symp. SARA ’2000. Horseshoe Bay,
USA, LNAI 1864. Springer-Verlag (2000) 1–25

16. Clarke, E., Grumberg, O., Long, D.: Model checking and abstraction. TOPLAS
16 (1994) 1512–1542

56 Patrick Cousot and Radhia Cousot

17. Cleaveland, R., Iyer, P., Yankelevitch, D.: Optimality in abstractions of model
checking. In Mycroft, A., ed.: Proc. 2nd Int. Symp. SAS ’95. Glasgow, UK, 25–27
Sep. 1995, LNCS 983. Springer-Verlag (1995) 51–63

18. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: 5th POPL, Tucson, USA, ACM Press (1978) 84–97

19. Halbwachs, N.: About synchronous programming and abstract interpretation. Sci.
Comput. Programming 31 (1998) 75–89

20. Graf, S., Loiseaux, C.: A tool for symbolic program verification and abstraction.
In Courcoubetis, C., ed.: Proc. 5th Int. Conf. CAV ’93. Elounda, Grece, LNCS 697,
Springer-Verlag (1993) 71–84

21. Ball, T., Podelski, A., Rajamani, S.K.: Relative Completeness of Abstraction Re-
finement for Software Model Checking. In Katoen, J.P., Stevens, P., eds.: Proc. 8th

Int. Conf. TACAS ’2002. Grenoble, France, LNCS 2280, Springer-Verlag (2002)
22. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations com-

plete. J. ACM 47 (2000) 361–416
23. Karr, M.: Affine relationships among variables of a program. Acta Informat. 6

(1976) 133–151
24. Cousot, P., Cousot, R.: Systematic design of program transformation frameworks.

In: 29th POPL, Portland, USA, ACM Press (2002) 178–190
25. Cousot, P.: The Marktoberdorf’98 generic abstract interpreter.

http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml (1998)
26. Cousot, P.: Calculational design of semantics and static analyzers by abstract

interpretation. NATO Int. Summer School 1998 on Calculational System Design.
Marktoberdorf, DE. Organized by F.L. Bauer, M. Broy, E.W. Dijkstra, D. Gries
and C.A.R. Hoare. (1998)

27. Cousot, P., Cousot, R.: Refining model checking by abstract interpretation. Aut .
Soft . Eng. 6 (1999) 69–95

28. Berezin, S., Clarke, E., Jha, S., Marrero, W.: Model checking algorithms for the
µ-calculus. Tech. rep. tr-cmu-cs-96-180, Carnegie Mellon University, USA, (1996)

29. Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
J. Logic Programming 13 (1992) 103–179 (The editor of J. Logic Programming
has mistakenly published the unreadable galley proof. For a correct version of this
paper, see http://www.di.ens.fr/~cousot .).

30. Kaplan, M., Ullman, J.: A general scheme for the automatic inference of variable
types. J. ACM 27 (1980) 128–145

31. Massé, D.: Combining forward and backward analyzes of temporal properties. In
Danvy, ., Filinski, A., eds.: Proc. 2nd Symp. PADO ’2001. Århus, Danmark, 21–23
May 2001, LNCS 2053, Springer-Verlag (2001) 155–172

32. Granger, P.: Improving the results of static analyses of programs by local decreasing
iterations. In Shyamasundar, R., ed.: Proc. 12th FST & TCS. New Delhi, India,
18–20 Dec. 1992, LNCS 652, Springer-Verlag (1992) 68–79

33. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In Emerson, E., Sistla, A., eds.: Proc. 12th Int. Conf.
CAV ’00. Chicago, USA, LNCS 1855, SPRINGER (2000) 154–169

34. Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples and refinements
in abstract model-checking. In Cousot, P., ed.: Proc. 8th Int. Symp. SAS ’01. Paris,
France, LNCS 2126, Springer-Verlag (2001) 356–373

35. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling,
H., Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a
real-life processor. In Henzinger, T., Kirsch, C., eds.: Proc. 1st Int. Workshop
ESOP ’2001. Volume 2211 of LNCS. Springer-Verlag (2001) 469Ñ–485

http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml
http://www.di.ens.fr/~cousot

