
Modular Static Program Analysis �

Patrick Cousot1 and Radhia Cousot2

1 École normale supérieure, Département d’informatique,
45 rue d’Ulm, 75230 Paris cedex 05, France

Patrick.Cousot@ens.fr www.di.ens.fr/ cousot/

2 CNRS & École polytechnique, Laboratoire d’informatique,
91128 Palaiseau cedex, France

Radhia.Cousot@polytechnique.fr lix.polytechnique.fr/ rcousot

Abstract. The purpose of this paper is to present four basic methods for
compositional separate modular static analysis of programs by abstract
interpretation:
– simplification-based separate analysis;
– worst-case separate analysis;
– separate analysis with (user-provided) interfaces;
– symbolic relational separate analysis;

as well as a fifth category which is essentially obtained by composition of
the above separate local analyses together with global analysis methods.

1 Introduction

Static program analysis is the automatic compile-time determination of run-time
properties of programs. This is used in many applications from optimizing com-
pilers, to abstract debuggers and semantics based program manipulation tools
(such as partial evaluators, error detection and program understanding tools).
This problem is undecidable so that program analyzers involve some safe approx-
imations formalized by abstract interpretation of the programming language se-
mantics. In practice, these approximations are chosen to offer the best trade-off
between the precision of the information extracted from the program and the
efficiency of the algorithms to compute this information from the program text.

Abstract interpretation based static program analysis is now in an industri-
alization phase and several companies have developed static analyzers for the
analysis of software or hardware either for their internal use or to provide new
software analysis tools to end-users, in particular for the compile-time detec-
tion of run-time errors in embedded applications (which should be used before
the application is launched). Important characteristics of these analyzers is that
all possible run-time errors are considered at compilation time, without code
instrumentation nor user interaction (as opposed to debugging for example).
Because of foundational undecidability problems, not all errors can be statically
� This work was supported in part by the RTD project IST-1999-20527 daedalus of
the european IST FP5 programme.

2 P. Cousot & P. Cousot

classified as certain or impossible and a small percentage remains as potential
errors for which the analysis is inconclusive. In most commercial software, with
low correctness requirements, the analysis will reveal many previously uncaught
certain errors so that the percentage of potential errors for which the analysis
is inconclusive is not a practical problem as long as all certain errors have been
corrected and these corrections do not introduce new certain errors . However,
for safety critical software, it is usually not acceptable to remain inconclusive
on these few remaining potential errors 1. One solution is therefore to improve
the precision of the analysis. This is always theoretically possible, but usually
at the expense of the time and memory cost of the program analyses, which can
become prohibitive for very large programs.

The central idea is therefore that of compositional separate static analysis
of program parts where very large programs are analyzed by analyzing parts
(such as components, modules, classes, functions, procedures, methods, libraries,
etc. . .) separately and then by composing the analyses of these program parts to
get the required information on the whole program. Components can be analyzed
with a high precision whenever they are chosen to be small enough. Since these
separate analyzes are done on parts and not on the whole program, total memory
consumption may be reduced, even with more precise analyzes of the parts. Since
these separate analyzes can be performed in parallel on independent computers,
the global program analysis time may also reduced.

2 Global Static Program Analysis

The formulation of global static program analysis in the abstract interpretation
framework [11, 16, 17, 21] consists in computing an approximation of a program
semantics expressing the properties of interest of the program P to be analyzed.
The semantics can often be expressed as a least fixpoint S�P � = lfp

�
F �P � that

is as the least solution to a monotonic system of equations X = F �P �(X) com-
puted on a poset 〈D, �〉 where the semantic domain D is a set equipped with
a partial ordering � with infimum ⊥ and the endomorphism F �P � ∈ D m�−−→ D
is monotonic. The approximation is formalized through a Galois connection 〈D,

�〉 −−−→←−−−
α

γ
〈D̄, �̄〉 where a concrete program property p ∈ D is approximated by

any abstract program property p̄ ∈ D̄ such that p � γ(p̄) and has a best/more
precise abstraction α(p) ∈ D̄ (Other formalizations through closure operators,
ideals, etc. are equivalent [11, 21]. The best abstraction hypothesis can also be
relaxed [24]). Then global static program analysis consists in computing an ab-

stract least fixpoint S̄�P � = lfp
�̄
F̄ �P � which is a sound approximation of the

concrete semantics in that lfp
�
F �P � � γ(lfp

�̄
F̄ �P �). This fixpoint soundness

condition can be ensured by stronger local/functional soundness conditions such
as F̄ �P � is monotonic and either α ◦ F �P � �̄ F̄ �P � ◦ α, α ◦ F �P � ◦ γ �̄ F̄ �P �
or equivalently F �P � ◦ γ � γ ◦ F̄ �P � (see [21]). The least fixpoint is computed
1 The number of residual potential errors, even if it is a low percentage of the possible
errors (typically 5%), may be unacceptably large for very large programs.

Modular Static Program Analysis 3

as the limit of the iterates F 0 = ⊥̄, . . . , Fn+1 = F̄ �P �(Fn), . . . where ⊥̄ is the
infimum of the abstract domain D̄. Convergence of the iterates can always be
enforced using widening/narrowing techniques [17]. The result is correct but less
precise than the limit S̄�P � =

⊔̄
n≥0

Fn where
̄ is the least upper bound (which

does exist if the abstract domain D̄ is a cpo, complete lattice, etc.) [17, 24].
For example, the reachability analysis of the following program with the

interval abstract domain [17]:

0: x := 1;

1: while (x < 1000) do

2: x := (x + 1)

3: od

4:

consists in solving the following system of fixpoint equations 〈X0, X1, X2, X3,
X4〉 = F̄ �P �(〈X0, X1, X2, X3, X4〉) [28] where Xi is the abstract environment
associated to program point i = 0, . . . , 4, each environment Xi maps program
variables (here x) to a description of their possible values at run-time (here an
interval), U is the union of abstract environments and _O_ denotes the singleton
consisting of the undefined initial value:

X0 = init(x, _O_)

X1 = assign[|x, 1|](X0) U X3

X2 = assert[|x < 1000|](X1)

X3 = assign[|x, (x + 1)|](X2)

X4 = assert[|x >= 1000|](X1)

The least solution to this system of equations is then approximated iteratively
using widening/narrowing iterative convergence acceleration methods [17] as fol-
lows:

X0 = { x:_O_ }

X1 = { x:[1,1000] }

X2 = { x:[1,999] }

X3 = { x:[2,1000] }

X4 = { x:[1000,1000] }

Some static program analysis methods (such as typing [14] or set based-analysis
[27]) consist in solving constraints (also called verification conditions, etc.), but
this is equivalent to iterative fixpoint computation [26], maybe with widening
[27] (since the least solution to the constraints F �P �(X) � X is the same as the
least solution lfp

�
F �P � of the equations X = F �P �(X)).

Such fixpoint computations constitute the basic steps of program analysis
(e.g. for forward reachability analysis, backward ancestry analysis, etc.). More
complex analyzes are obtained by combining these basic fixpoint computations
(see e.g. [11], [23] or [29, 61] for abstract testing of temporal properties of pro-
gram).

4 P. Cousot & P. Cousot

The type of static whole-program analysis methods that we have briefly de-
scribed above is global in that the whole program text is needed to establish the
system of equations and this system of equations is solved iteratively at once.

In practice, chaotic iteration strategies [5, 18] can be used to iterate succes-
sively on components of the system of equations (as determined by a topological
ordering of the dependency graph of the system of equations). However, in the
worst case, the chaotic iteration may remain global, on all equations, which may
be both memory consuming (since the program hence the system of equations
can be very large) and time consuming (in particular when convergence of the
iterates is slow).

This problem can be solved by using less precise analyzes but this may simply
lead to analyzes which are both imprecise and quite costly. Moreover, the whole
program must be reanalyzed even if a small part only is modified. Hence the
necessity to look for local methods for the static analysis of programs piecewise.

3 Separate Modular Static Program Analysis

3.1 Formalization of Separate Modular Static Program Analysis in
the Abstract Interpretation Framework

In general programs P [P1, . . . , Pn] are made up from parts P1, . . . , Pn such as
functions, procedures, modules, classes, components, libraries, etc. so that the
semantics S�P � of the whole program P is obtained compositionally from the
semantics of its parts lfp

�i
F �Pi�, i = 1, . . . , n as follows:

S�P � = lfp
�
F �P �[lfp

�1
F �P1�, . . . , lfp

�n
F �Pn�]

where F �Pi� ∈ Di
m�−−→ Di, i = 1, . . . , n and F �P � ∈ (D1× . . .×Dn) m�−−→ (D m�−−→

D) are (componentwise) monotonic (see e.g. [20]).
The compositional separate modular static analysis of the program P [P1,

. . . , Pn] is based on separate abstractions 〈Di, �i〉 −−−→←−−−
αi

γi 〈D̄i, �̄i〉, for each part
Pi, i = 1, . . . , n. The analysis of the parts then consists in computing separately
an abstract information �Ai �̄i lfp

�̄i
F̄i�Pi�, i = 1, . . . , n on each part Pi so that

lfp
�i

F �Pi� �i γi(�Ai). Since the components Pi, i = 1, . . . , n are generally small,
they can be analyzed with a high precision by choosing very precise abstractions
〈Di,�i〉 −−−→←−−−

αi

γi 〈D̄i, �̄i〉, (see examples of precise abstract domains in e.g. [16]). A
typical example is the replacement of numerical interval analysis (using intervals
[a, b] where a and b are numerical constants) by a more precise symbolic interval
analysis (using intervals [L, H] where L and H are mathematical variables, which
can be implemented through the octagonal abstract domain of [63]).

The global analysis of the program consists in composing the analyses �Ai, i =
1, . . . , n of these program parts Pi, i = 1, . . . , n to get the required information
on the whole program by computing lfp

�̄
F̄ �P �[�A1, . . . , �An].

Modular Static Program Analysis 5

Since these separate analyzes are done on parts and not on the whole pro-
gram, total memory consumption may be reduced, even with more precise an-
alyzes of the parts. Since the separate analyzes of the program parts can be
performed in parallel on independent computers, the global program analysis
time may also reduced. The global abstraction is composed from the abstrac-
tions of the program parts and has the form:

〈D[D1, . . . , Dn], �〉 −−−−−−−−−→←−−−−−−−−−
α[α1,...,αn]

γ[γ1,...,γn]
〈D̄[D̄1, . . . , D̄n], �̄〉 .

The local/functional soundness condition is:

α[α1, . . . , αn](F �P �[γ1(X1), . . . , γn(Xn)]) �̄
F̄ �P �[X1, . . . , Xn]

which implies that:

lfp
�
F �P �[lfp

�1
F �P1�, . . . , lfp

�n
F �Pn�] �

γ[γ1, . . . , γn](lfp
�̄
F̄ �P �[�A1, . . . , �An]) .

3.2 Difficulty of Separate Static Program Analysis: Interference

The theoretical situation that we have sketched above in Sec. 3.1 is ideal and
sometimes very difficult to put into practice. This is because the parts P1, . . . , Pn

of the program P are not completely independent so that the separate analyses
of the parts Pi are not independent of those of the other parts P1, . . . , Pi−1,
Pi+1, . . . , Pn and of that of the program P .

For example in an imperative program à la C, a function may call other
functions in the program and use and/or modify global variables. In Pascal, a
program may modify variables on the program execution stack at a program
point where these variables are even not visible (see [13]).

A very simple formalization consists in considering that the semantics of the
program can be specified in the following equational form:

⎧⎨
⎩

�Y = F �P [P1, . . . , Pn]�〈�Y , �X1, . . ., �Xn〉
�Xi = F �Pi�〈�Y , �X1, . . ., �Xn〉
i = 1, . . . , n

where �Y represents the global information on the program while �Xi represents
that on the program part Pi, i = 1, . . . , n. In general, the least solution is pre-
ferred for a componentwise ordering �×�1×. . .×�n where 〈D, �〉 and the 〈D1,
�1〉, . . . , 〈Dn, �n〉 are the concrete domains (usually cpos, complete lattices,
etc.) respectively expressing the properties of the program P [P1, . . . , Pn] and its
parts Pi, i = 1, . . . , n.

In general the local properties �Xi of the part Pi depend upon the knowledge
of the local properties �Xj of the other program parts Pj , j �= i and of the global

6 P. Cousot & P. Cousot

properties �Y of the program P [P1, . . . , Pn]. The properties �Y of the program
P [P1, . . . , Pn] are also defined in fixpoint form so depend on themselves as well
as on the local properties �Xi of the part Pi, i = 1, . . . , n. Usually, the abstraction
yields to an abstract system of equations of the same form:

⎧⎨
⎩

�Y = F̄ �P [P1, . . . , Pn]�〈�Y , �X1, . . ., �Xn〉
�Xi = F̄ �Pi�〈�Y , �X1, . . ., �Xn〉
i = 1, . . . , n

on the abstract domains 〈D̄, �̄〉 and the 〈D̄1, �̄1〉, . . . , 〈D̄n, �̄n〉 with Galois
connections 〈D, �〉 −−−→←−−−

α

γ
〈D̄, �̄〉 and 〈Di, �i〉 −−−→←−−−

αi

γi 〈D̄i, �̄i〉, for all i = 1, . . . , n.
Ideally, the separate analysis of program part Pi consists in computing a

fixpoint:

lfp
�̄i

λ �Xi · F̄ �Pi�〈�Y , �X1, . . ., �Xi, . . ., �Xn〉

where the �Y , �X1, . . . , �Xi−1, �Xi+1, . . . , �Xn denote the abstract properties which
are assumed/guaranteed on the objects of the program P [P1, . . . , Pn] and its
parts Pj , j = 1, . . . , i − 1, i + 1, . . . , n which are external references within that
part Pi (such as global variables of a procedure, external functions called within
a module, etc.). The whole problem is to determine �Y , �X1, . . . , �Xi−1, �Xi+1, . . . ,
�Xn while analyzing program part Pi.

3.3 Dependence Graph

A classical technique (also used in separate compilation) consists in computing
a dependence graph where a part Pi depends upon another part Pj , i �= j if and
only if the analysis of Pi uses some information which is computed by the analysis
of part Pj (formally Pi depends upon part Pj if and only if ∃ �Xj , �X ′

j : F �Pi�〈�Y , �X1,

. . ., �Xj , . . ., �Xn〉 �= F �Pi�〈�Y , �X1, . . ., �X ′
j , . . ., �Xn〉). It is often the case that this

dependency graph is built before the analysis and parts are analyzed in sequence
by their topological order (see e.g. [8, 57]). As in most incremental compilation
systems, circular dependency may not be considered (i.e. all circularly dependent
parts are grouped into a single part since an iterative analysis is necessary). At
the limit, the analysis will degenerate into a global analysis as considered in Sec.
2, the dependence graph then corresponding to a particular chaotic iteration
strategy [11, 5, 20]. Otherwise, the circularities must be broken using one of the
compositional separate modular static program analysis methods considered in
this paper:

– simplification-based separate analysis;
– worst-case separate analysis;
– separate analysis with (user-provided) interfaces;
– symbolic relational separate analysis;

or by a combined method which is essentially obtained by composition of the
previous local ones together with global analysis.

Modular Static Program Analysis 7

4 Simplification-Based Separate Analysis

To start with, we consider ideas based upon the simplification of the equations
to be solved. We do not consider here local simplifications of the equations
(that is simplification of one equation independently of the others such as e.g.
[39]) but global simplifications, where the simplification of one equation requires
the examination of other equations. Since these systems of equations can be
considered as functional programs, many program static analysis, transformation
and optimization techniques are directly applicable to do so such as algebraic
simplification, constant propagation, partial evaluation [54], compilation, etc.

For each program part, the fixpoint transformer F̄ �Pi� (often expressed as a
system of equations X = F̄ �Pi�(X) or equivalently as constraints F̄ �Pi�(X) �i

X , [26]) is simplified into F̄s�Pi�. The global analysis of the program then consists

in computing lfp
�̄
F̄ �P �[lfp

�̄1
F̄s�P1�, . . . , lfp

�̄n
F̄s�Pn�] so that the fixpoints for

the parts are computed in a completely known context or environment.
Very often, F̄s is obtained by abstract interpretation of F̄ (see [30] for a

formalization of such transformations as abstract interpretations). A frequently
used variant of this idea consists in first using a preliminary global analysis of
the whole program P [P1, . . . , Pn] with a rough imprecise abstraction to collect
some global information on the program in order to help in the simplification of
the F̄ �Pi�, designed with a more precise abstraction, into F̄s�Pi�.

Examples of application of this simplification idea can be found in the analysis
of procedures of [17, Sec. 4.2], in the componential set-based analysis of [38], in
the variable substitution transformation of [66] and in the summary optimization
of [67]. Another example is abstract compilation where the equations and fixpoint
computation are compiled (often in the same language as the one to be analyzed
so that program analysis amounts to the execution of an abstract compilation
of program), see e.g. [1, 4, 9, 34, 60].

Since the local analysis phases of the program parts Pi, which consist in
computing the fixpoints lfp

�̄i
F̄ �Pi� are delayed until the global analysis phase,

which consists in computing lfp
�̄
F̄ �P �[lfp

�̄1
F̄s�P1�, . . . , lfp

�̄n
F̄s�Pn�], not much

time and memory resources are saved in this computation, even though the
simplified fixpoint operators F̄s�Pi� are used in place of the original ones F̄ �Pi�.
The main reason is that the simplification often saves only a linear factor 2,
which may be a negligible benefit when compared to the cost of the iterative
fixpoint computation. In our opinion, this explains why this approach does not
scale up for very large programs [36].

5 Worst-Case Separate Analysis

We have seen that the problem of separate analysis of a program part Pi consists
in determining the properties �Y , �X1, . . . , �Xi−1, �Xi+1, . . . , �Xn of the external
objects referenced in the program part Pi while computing the local fixpoint:
2 Sometimes the simplification can save an exponential factor, see e.g. [39].

8 P. Cousot & P. Cousot

lfp
�̄i

λ �Xi · F �Pi�〈�Y , �X1, . . ., �Xi, . . ., �Xn〉

The worst-case separate analysis consists in considering that absolutely no
information is known on the interfaces �Y , �X1, . . . , �Xi−1, �Xi+1, . . . , �Xn. Tradi-
tionally in program analysis by abstract interpretation the top symbol �̄ is used
to represent such an absence of information (�̄ is the supremum of the complete
lattice D̄i representing the abstract program properties ordered by the approxi-
mation ordering �̄i corresponding to the abstraction of the logical implication).
The worst-case separate analysis therefore consists in first separately computing
or effectively approximating the local abstract fixpoints:

�Ai �i lfp
�̄i

λ �Xi ·F �Pi�〈�̄, �̄, . . ., �Xi, . . ., �̄〉

for all program parts Pi. Then the global program analysis is:

lfp
�̄
λ �Y · F̄ �P �[�Y , �A1, . . . , �An] .

The main advantage of this approach is that all analyzes of the parts Pi,
i = 1, . . . , n can be done in parallel. Moreover the modification of a program part
requires only the analysis of that part to be redone before the global program
analysis. This explains why the worst-case separate analysis is very efficient.
However, because nothing is known about the interfaces of the parts with the
program and with the other parts, this worst-case analysis is often too imprecise.

An example is the procedure analysis of [20, Sec. 4.2.1 & 4.2.2] where the
effect of procedures (in particular the values of result/output parameters) are
computed by a local analysis of the procedure assuming that the properties of
value/input parameters is unknown in the main call (and a widening is used in
recursive calls both to cope with possible non-termination of calls with identical
parameters and with the possibility of having infinitely many calls with different
parameters).

Another example is the escape analysis of higher-order functions by [2]. Es-
cape analysis aims at determining which local objects of a procedure do not
escape out of the call (so that they can be allocated on the stack, the escap-
ing object have to be allocated on the heap since their lifetime is longer than
that of the procedure call). In this analysis, the higher-order functions which are
passed as parameter to a procedure are assumed to be unknown, so that e.g. any
call to such an unknown external higher-order function may have any possible
side-effect.

Yet another example is the worst-case separate analysis of library modules
in the points-to and side-effect analyses of [67].

A last example is the abstract interpretation-based analysis for automatically
detecting all potential interactions between the agents of a part of a mobile
system interacting with an unknown context [37].

As considered in Sec. 4, an improvement consists in using a preliminary global
analysis of the whole program P [P1, . . . , Pn] with a rough imprecise abstraction

Modular Static Program Analysis 9

to collect some global information on the program in order to get information
on the interface �Y , �X1, . . . , �Xi−1, �Xi+1, . . . , �Xn more precise than the unknown
�̄. An example is the preliminary inexpensive whole-program points-to analysis
made by [68] before their modular/fragment analysis.

6 Separate Analysis with (User-Provided) Interfaces

The idea of interface-based separate program analysis is to ask the user to provide
information about the properties �Y , �X1, . . . , �Xi−1, �Xi+1, . . . , �Xn of the external
objects referenced in the program part Pi while computing the local abstract
fixpoints:

lfp
�̄i

λ �Xi ·F �Pi�〈�Y , �X1, . . ., �Xi, . . ., �Xn〉 .

i = 1, . . . , n as well as the global abstract fixpoint:

lfp
�̄
λ �Y · F �P [P1, . . . , Pn]�〈�Y , �X1, . . ., �Xn〉 .

The information provided on the interface of the program part with the
external world takes the form of:

– the assumptions �J on the program and �I1, . . . , �Ii−1, �Ii+1, . . . , �In on the
other program parts Pj , i �= j that can be made in the local analysis of the
program part Pi. These assumptions will have to be guaranteed by the local
analyzes of the other parts and the global analysis of the program when using
this part Pi. These assumptions make possible the analysis of the program
part Pi independently of the context in which that program part Pi is used
(or more generally several possible contexts may be considered);

– the guarantee �Ii on the program part Pi that must be established by the
local analysis of that part Pi. The global program analysis and that of the
other program parts will rely upon this guarantee when using that part Pi

(considering only the possible behaviors of that part Pi which are relevant
to its context of use).

Typically, the interface should be precise enough so that the assumptions (or
preconditions) �J on the program and �I1, . . . , �Ii−1, �Ii+1, . . . , �In are the weakest
possible so that the analysis of a part Pi only requires the source code of that
part Pi while the guarantee (or postcondition) �Ii should be the strongest possible
so that analyzes using that part Pi never need to access the source code of that
part Pi.

Formally, the separate analysis with interfaces �J , �I1, . . . , �In consists in com-
puting or approximating the local abstract fixpoints:

�Ai �̄i lfp
�̄i

λ �Xi ·F �Pi�〈 �J, �I1, . . ., �Xi, . . ., �In〉 .

One must also check that one can rely upon the assumptions �J , �I1, . . . , �Ii−1,
�Ii+1, . . . , �In made during the analysis on the program part Pi by verifying that
it is guaranteed by the analysis of the other parts Pj , j �= i in that:

10 P. Cousot & P. Cousot

∀i = 1, . . . n : �Ai �̄i
�Ii

as well as for the global assumption �J on the program that should be guaranteed
by the global program analysis:

�A �̄ lfp
�̄
λ �Y ·F �P [P1, . . . , Pn]�〈�Y , �I1, . . ., �Ii, . . ., �In〉,

in that:

�A �̄ �J .

This technique is classical in program typing (e.g. user specified number,
passing mode and type of parameters of procedures which are assumed in the
type checking of the procedure body and must be guaranteed at each procedure
call) and in program verification (see e.g. the rely/guarantee specifications of
[10]). Examples of user-provided interfaces in static program analysis are the
control-flow analysis of [71], the notion of summary information of [48, 67] and
the role analysis of [55].

A particular case is when no assumption is made on the interface of each
program part with its external environment so that the automatic generation
of the properties guaranteed by the program part essentially amounts to the
worst-case analysis of Sec. 5 or its variants.

Instead of asking the user to provide the interface, this interface can some-
times be generated automatically. For example, a backward analysis of absence
of run-time errors or exceptions (such as the backward analysis using greatest
fixpoints introduced in [12]) or any other ancestry analysis (e.g. to compute nec-
essary termination conditions [12] or success conditions for logic programs [42])
can be used to automatically determine conditions on the interface which have
to be assumed to ensure that the program part Pi is correctly used in the whole
program P [P1, . . . , Pn]. A forward reachability analysis will provide information
on what can be guaranteed on the interface of the program part Pi with its
environment, that is the other parts Pj , j �= i and the program P . A refinement
is to combine the forward and backward analyses [23, 29, 61].

As considered in Sec. 4 and Sec. 5, an improvement consists in using a pre-
liminary fast global analysis of the whole program P [P1, . . . , Pn] with a rough
imprecise abstraction to collect some global information on the program in order
to get information on what is guaranteed on the interfaces �J , �I1, . . . , �In.

Moreover simplification techniques, as considered in Sec. 4 can be applied to
simplify the automatically synthesized or user-provided interface.

7 Symbolic Relational Separate Analysis

To start with, we consider a powerful but not well-known compositional sepa-
rate modular static program analysis method that we first introduced in [20].

Modular Static Program Analysis 11

Symbolic relational separate analysis is based on the use of relational abstract
domains and a relational semantics of the program parts (see e.g. [22, 25]). The
idea is to analyze a program part Pi separately by giving symbolic names to
all external objects used or modified in that part Pi. The analysis of the part
consists in relating symbolically the local information within the part Pi to the
external objects through these names. External actions have to be handled in a
lazy way and their possible effects on internal objects must be delayed3 (unless
the effect of these actions is already known thanks to a previous static analysis,
see Sec. 3.3). When the part is used, the information about the part is obtained
by binding the external names to the actual values or objects that they denote
and evaluating the delayed effects. The concrete semantics can be understood
either as a relational semantics or as a program symbolic execution [11, Ch.
3.4.5] which is abstracted without loosing information about the relationships
between the internal and external objects of the program part thanks to the use
of a relational domain.

An example is the pointer analysis using collections [19] of [20, Sec. 4.2.2].
There pointer variables are organized in equivalence classes where variables in
different classes cannot point, even indirectly, to the same position on the heap.
This analysis is relational and can be started by giving names to actual para-
meters which are in the same class as the formal parameters (as well as their
potential aliases, as specified in the assumption interface). A similar example is
the interprocedural pointer analysis of [59] using parameterized points-to graphs.

Another example, illustrated below, uses the polyhedral abstract domain
[31] so that functions (or procedures in the case of imperative programs) can
be approximated by relations. These relations can be further approximated by
linear inequalities between values of variables [31]. Let us illustrate this method
using a Pascal example taken from [46]:

procedure Hanoi (n : integer; var a, b, c : integer;
var Ta, Tb, Tc : Tower);

begin
{ n = n0 ∧ a = a0 ∧ b = b0 ∧ c = c0 }
if n = 1 then begin

b := b + 1; Tb[b] := Ta[a]; Ta[a] := 0;
a := a − 1;

{ n = n0 = 1 ∧ a = a0 − 1 ∧ b = b0 + 1
∧ c = c0 }

end else begin
{ n = n0 ∧ a = a0 ∧ b = b0 ∧ c = c0 }
Hanoi(n − 1, a, c, b, Ta, Tc, Tb);
{ n = n0 > 1 ∧ a = a0 − n + 1 ∧ b = b0

∧ c = c0 + n − 1 }
b := b + 1; Tb[b] := Ta[a]; Ta[a] := 0;
a := a − 1;

3 [47] is another example of lazy static program analysis used in the context of demand-
driven analysis.

12 P. Cousot & P. Cousot

{ n = n0 > 1 ∧ a = a0 − n ∧ b = b0 + 1
∧ c = c0 + n − 1 }

Hanoi(n − 1, c, b, a, Tc, Tb, Ta);
{ n = n0 > 1 ∧ a = a0 − n ∧ b = b0 + n

∧ c = c0 }
end;
{ n = n0 ≥ 1 ∧ a = a0 − n0 ∧ b = b0 + n0

∧ c = c0 }
end;

The result of analyzing this procedure, which is given above between brackets
{. . . } is independent of the values of the actual parameters provided in calls. This
is obtained by giving formal names n0, a0, b0 and c0 to the values of the actual
parameters corresponding to the initial values of the formal parameters n, a, b
and c (array parameters Ta, Tb and Tc are simply ignored, which corresponds
to a worst-case analysis) and by establishing a relation with the final value
of these formal parameters. The result is a precise description of the effect of
the procedure in the form of a relation between initial and final values of its
parameters:

φ(n0, a0, b0, c0, n, a, b, c) = (n = n0 ≥ 1 ∧
a = a0 − n0 ∧ b = b0 + n0 ∧ c = c0)

Observe that it is automatically shown that n0 ≥ 1, which is a necessary condi-
tion for termination.

In a function call, n0, a0, b0 and c0 are set equal to the values of the actual
parameters in φ and eliminated by existential quantification. For example:

a := n; b := 0; c := 0;
{ n = a ∧ b = 0 ∧ c = 0 }
Hanoi(n, a, b, c, Ta, Tb, Tc);
{ ∃n0, a0, b0, c0 : n0 = a0 ∧ b0 = 0 ∧ c0 = 0 ∧
n = n0 ≥ 1 ∧ a = a0 − n0 ∧ b = b0 + n0 ∧ c = c0 }

This last post-condition can be simplified by projection as:

{ a = 0 ∧ n = b ≥ 1 ∧ c = 0 }

In recursive calls, successive approximations of the relation φ must be used,
starting from the empty one. A widening (followed by a narrowing) [17, 20] can
be used to ensure convergence.

Such relational analyzes are also very useful in the more classical context
where functions are analyzed in the order of the dependence graph (see Sec.
3.3) since, as shown above, the relational analysis of the function determines a
relationship between the inputs and the outputs of the function. This allows the
function to be analyzed independently of its call sites and therefore the analysis
becomes “context-sensitive” which improves the precision (and may decrease the
cost if the function/procedure may be analyzed only once, not for all different
possible contexts).

An example of such a symbolic relational separate analysis is the notion of
summary transfer function of [6, 7] in the context of points-to analysis for C++.

Modular Static Program Analysis 13

A summary transfer function for a method expresses the effects of the method
invocation on the points-to solution parameterized by unknown symbolic initial
values and conditions on these values.

Another example of symbolic relational separate analysis is the strictness
analysis of higher-order functions [62] using a symbolic representation of boolean
higher order functions called Typed Decision Graphs (TDGs), a refinement of
Binary Decision Diagrams (BDDs).

A last example the backward escape analysis of first-order functions in [2]
since the escape information for each parameter is computed as a function of
the escape information for the result. For JavaTM, it is not a function but a
relation between the various escape information available on the parameters and
the result [3].

This symbolic relational separate analysis may degenerate in the simplifica-
tion case of Sec. 4 if no local iteration is possible. However this situation is rare
since it is quite uncommon that all program parts circularly depend upon one
another.

8 Combination of Separate Analysis Methods

The last category of methods essentially consists in combining the previous local
separate analysis methods and/or some form of global analysis. We provide a
few examples below.

8.1 Preliminary Global Analysis and Simplification

We have already indicated that a preliminary rough global program analysis can
always be performed to improve the information available before performing a
local analysis. A classical example is pointer analysis [35, 41, 50–53, 56, 58, 59, 64,
67, 72], see an overview in [69]. A preliminary pointer analysis is often mandatory
since making conservative assumptions regarding pointer accesses can adversely
affect the precision and efficiency of the analysis of the program parts requiring
this information. Such pointer alias analysis attempts to determine when two
pointer expressions refer to the same storage location and is useful to detect
potential side-effects through assignment and parameter passing.

Also the simplification algorithms considered in Sec. 4 are applicable in all
cases.

8.2 Iterated Separate Program Static Analysis

Starting with a worst case assumption �Y 0 = �̄, �X0
1 = �̄, . . . , �X0

n = �̄ a separate
analysis with interfaces as considered in Sec. 6 can be iterated by successively
computing:

�Xk+1
i = lfp

�̄i
λ �Xi · F̄ �Pi�〈�Y k, �Xk

1 , . . ., �Xi, . . ., �Xk
n〉

i = 1, . . . , n (1)

�Y k+1 = lfp
�̄
λ �Y · F̄ �P [P1, . . . , Pn]�〈�Y , �Xk

1 , . . ., �Xk
n〉

14 P. Cousot & P. Cousot

Note that this decreasing iteration is similar to the iterative reduction idea of
[15, Sec. 11.2] and different from and less precise than a chaotic iteration for
the global analysis (which would start with �Y 0 = ⊥̄, �X0

1 = ⊥̄, . . . , �X0
n = ⊥̄).

However the advantage is that one can stop the analysis at any step k > 0, the
successive analyzes being more precise as k increases (a narrowing operation [17]
may have to be used in order to ensure the convergence when k → +∞).

A variant consists in starting with the user provided interfaces �Y 0 = �J ,
�X0

1 = �I1, . . . , �X0
n = �In. Then the validity of the final result �Y k, �Xk

1 , . . . , �Xk
n

must be checked as indicated in Sec. 6.
A particular case is when some program parts are missing so that their initial

interfaces are initially �̄ and are refined by a new iteration (1) as soon as they
become available. Again after each iteration k, the static program analysis of
the partial program is correct.

Yet another variant consists in successively refining the abstract domains 〈D,
�〉, 〈D1, �1〉, . . . , 〈Dn, �n〉 between the successive iterations k. The choice of
this refinement can be guided by interaction with the user. Sometimes, it can
also be automated [43–45].

8.3 Creating Parts Through Cutpoints

x

Most often the parts P1, . . . , Pn of a program P [P1, . . . , Pn] are determined
on syntactic criteria (such as components, modules, classes, functions, proce-
dures, methods, libraries, etc.). A preliminary static analysis can also be used
to determine the parts on semantic grounds.

For example in Sec. 2 on global static analysis, we have considered chaotic
iteration strategies [5, 18] that can be used to iterate successively on components
of the system of equations (as determined by a topological ordering of the depen-
dency graph of the system of equations). Such dependences can also be refined
on semantic grounds (such as definition-use chains [49]). These dependences can
be used as a basis to split the whole program into parts by introducing interfaces
as considered in Sec. 6. For example, with a dependence graph of the form:

C2C1

the iteration will be ((C1)�; (C2)�)� where (Ci)� denotes the local iteration within
the connected component Ci, i = 1, 2, “;” is the sequential composition and the
external iteration (. . .)� handles the external loop. By designing interfaces at the
two cutpoints:

Modular Static Program Analysis 15

C2C1

G12 A12

A21 G21

one can have a parallel treatment of the two components as ((C1)� ‖ (C2)�)�.
Moreover a preliminary dependency analysis of the variables can partition the
variables into the global ones and those which scope is restricted to one connected
component only, so as to reduce the memory size needed to separately analyze
the parts. If we have G12 ⇒ A12 and G21 ⇒ A21 then G12 and G21 are invariants
in the sense of Floyd [40] so that no global iteration is needed. Otherwise the
external iteration can be used to strengthen the interface until a fixpoint is
reached, as done in Sec. 8.2. The limit of this approach is close to classical proof
methods with user-provided invariants at cutpoints of all loops [13].

8.4 Refinement of the Abstract Domain into a Symbolic Relational
Domain

Separate non-relational static program analyzes (such as sign analysis, interval
analysis, etc.) expressing properties of individual objects of programs (such as
ranges of values of numerical variables) but no relationships between objects ma-
nipulated by the program (such as the equality of the values of program variables
at some program point) cannot be successfully used for the relational separate
analysis considered in Sec. 7 which, in absence of user-provided information,
amounts to the worst-case separate analysis of Sec. 5. In this case, and whenever
the symbolic relational separate analysis considered in Sec. 7 is not applicable, it
is always possible to refine the non-relational abstract domain into a relational
one for which the separate analysis method is applicable. This can be feasible
in practice if the considered program parts are small enough to be analyzed at
low cost using such precise abstract domains. A classical example consists in
analyzing locally program parts (e.g. procedures) with the polyhedral domain
of linear inequalities [31] and the global program with the much less precise ab-
stract domain of intervals [17]. If the polyhedral domain is too expensive, the
less precise domain of difference bound matrices [63] can also be used for the
local relational analyzes of program parts. This is essentially the technique used
by [73].

8.5 Unknown Dependence Graph

Separate static program analysis is very difficult when the dependence graph
is not known in a modular way (which is the case with higher-order functions
in functional languages or with virtual methods in object-oriented languages).
When the dependence graph is fully known and can be decomposed modularly,
the symbolic relational separate analysis technique of Sec. 7 is very effective. If

16 P. Cousot & P. Cousot

the graph is not modular and parts can hardly be created through cutpoints as
suggested in Sec. 8.3 or the dependence graph is partly unknown, the difficulty
in the lazy symbolic representation of the unknown part of Sec. 7 is when the
effect of this unknown part must later be iterated. In the worst case, the delaying
technique of Sec. 7 then amounts to a mere simplification as considered in Sec. 4.
As already suggested, computational costs can then only cut down through of the
worst-case separate analysis of Sec. 5 or by an over-estimation of the dependence
graph (such as the 0-CFA control-flow analysis in functional languages [70] or
the class hierarchy analysis in object-oriented languages [33]).

9 Conclusion

The wide range of program static analysis techniques that have been developed
over the past two decades allows to analyze very large programs (over 1.4 million
lines of code) in a few seconds or minutes but with a very low precision [32] up
to precise relational analyses which are able to analyze large programs (over 120
thousands lines of code) in a few hours or days [65] and to very detailed and
precise analyzes that do not scale up for programs over a few hundred lines of
code.

If such static program analyses are to scale up to precise analysis of huge
programs (some of them now reaching 30 to 40 millions of lines), compositional
separate modular methods are mandatory. In this approach very precise analyzes
(in the style of Sec. 7) can be applied locally to small program parts. This local
analysis phase can be fast if all these preliminary analyzes are performed inde-
pendently in parallel. Then a cheap global program analysis can be performed
using the results of the previous analyzes, using maybe less precise analyzes
which have a low cost. The idea can obviously be repeatedly applied in stages
to larger and larger parts of the program with less and less refined abstract
domains.

Moreover the design of specification and programming languages including
user-specified of program parts interfaces can considerably facilitate such com-
positional separate modular static analysis of programs.

Acknowledgements We thank Bruno Blanchet, Jerôme Feret, Charles Hy-

mans, Francesco Logozzo, Laurent Mauborgne, Antoine Miné and Barbara G. Ry-
der for their comments on a preliminary version of this work presented at SSGRR,
aug. 2001.

References

1. G. Amato and F. Spoto. Abstract compilation for sharing analysis. In H. Kuchen
and K. Ueda (eds), Proc. FLOPS 2001 Conf., LNCS 2024, 311–325. Springer, 2001.

2. B. Blanchet. Escape analysis: Correctness proof, implementation and experimental
results. In 25th POPL, 25–37, San Diego, 1998. ACM Press.

Modular Static Program Analysis 17

3. B. Blanchet. Escape analysis for object-oriented languages: Application to Java.
In Proc. ACM SIGPLAN Conf. OOPSLA ’99. ACM SIGPLAN Not. 34(10), 1999.

4. D. Boucher and M. Feeley. Abstract compilation: A new implementation paradigm
for static analysis. In T. Gyimothy (ed), Proc. 6th Int. Conf. CC ’96, LNCS 1060,
192–207. Springer, 1996.

5. F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In D. Bjørner,
M. Broy, and I.V. Pottosin (eds), Proc. FMPA, LNCS 735, 128–141. Springer, 1993.

6. R. Chatterjee, B.G. Ryder, and W. Landi. Relevant context inference. In 26th

POPL, 133–146, San Antonio, 1999. ACM Press.
7. R. Chatterjee, B.G. Ryder, and W. Landi. Relevant context inference. Tech.

rep. DCS-TR-360, Rutgers University, 1999. ftp://athos.rutgers.edu/pub/
technical-reports/dcs-tr-360.ps.Z.

8. M. Codish, S. Debray, and R. Giacobazzi. Compositional analysis of modular logic
programs. In 20th POPL, 451–464, Charleston, 1993. ACM Press.

9. M. Codish and B. Demoen. Deriving polymorphic type dependencies for logic
programs using multiple incarnations of Prop. In B. Le Charlier (ed), Proc. 1st

Int. Symp. SAS ’94, LNCS 864, 281–296. Springer, 1994.
10. P. Colette and C.B. Jones. Enhancing the tractability of rely/guarantee specifi-

cations in the development of interfering operations. In G. Plotkin, C. Stirling,
and M. Tofte (eds), Proof, Language and Interaction, ch. 10, 277–307. MIT Press,
2000.

11. P. Cousot. Méthodes itératives de construction et d’approximation de points fixes
d’opérateurs monotones sur un treillis, analyse sémantique de programmes. Thèse
d’État ès sciences mathématiques, Université scientifique et médicale de Grenoble,
21 Mar. 1978.

12. P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick and N.D.
Jones (eds), Program Flow Analysis: Theory and Applications, ch. 10, 303–342.
Prentice-Hall, 1981.

13. P. Cousot. Methods and logics for proving programs. In J. van Leeuwen (ed),
Formal Models and Semantics, vol. B of Handbook of Theoretical Computer Science,
ch. 15, 843–993. Elsevier, 1990.

14. P. Cousot. Types as abstract interpretations, invited paper. In 24th POPL, 316–
331, Paris, 1997. ACM Press.

15. P. Cousot. The calculational design of a generic abstract interpreter. In M. Broy
and R. Steinbrüggen (eds), Calculational System Design, vol. 173, 421–505. NATO
Science Series, Series F: Computer and Systems Sciences. IOS Press, 1999.

16. P. Cousot. Abstract interpretation based formal methods and future challenges,
invited paper. In R. Wilhelm (ed), « Informatics — 10 Years Back, 10 Years
Ahead », LNCS 2000, 138–156. Springer, 2000.

17. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th POPL,
238–252, Los Angeles, 1977. ACM Press.

18. P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions:
mathematical foundations. In ACM Symposium on Artificial Intelligence & Pro-
gramming Languages, ACM SIGPLAN Not. 12(8):1–12, 1977.

19. P. Cousot and R. Cousot. Static determination of dynamic properties of generalized
type unions. In ACM Symposium on Language Design for Reliable Software, ACM
SIGPLAN Not. 12(3):77–94, 1977.

20. P. Cousot and R. Cousot. Static determination of dynamic properties of recursive
procedures. In E.J. Neuhold (ed), IFIP Conf. on Formal Description of Program-
ming Concepts, St-Andrews, CA, 237–277. North-Holland, 1977.

18 P. Cousot & P. Cousot

21. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
6th POPL, 269–282, San Antonio, 1979. ACM Press.

22. P. Cousot and R. Cousot. Relational abstract interpretation of higher-order func-
tional programs. Actes JTASPEFL ’91, Bordeaux, FR. BIGRE, 74:33–36, 1991.

23. P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams. J. Logic Programming, 13(2–3):103–179, 1992. (The editor of J. Logic
Programming has mistakenly published the unreadable galley proof. For a correct
version of this paper, see http://www.di.ens.fr/~cousot.).

24. P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Logic and Comp.,
2(4):511–547, Aug. 1992.

25. P. Cousot and R. Cousot. Galois connection based abstract interpretations for
strictness analysis, invited paper. In D. Bjørner, M. Broy, and I.V. Pottosin (eds),
Proc. FMPA, LNCS 735, 98–127. Springer, 1993.

26. P. Cousot and R. Cousot. Compositional and inductive semantic definitions in
fixpoint, equational, constraint, closure-condition, rule-based and game-theoretic
form, invited paper. In P. Wolper (ed), Proc. 7th Int. Conf. CAV ’95, LNCS 939,
293–308. Springer, 1995.

27. P. Cousot and R. Cousot. Formal language, grammar and set-constraint-based
program analysis by abstract interpretation. In Proc. 7th FPCA, 170–181, La
Jolla, 1995. ACM Press.

28. P. Cousot and R. Cousot. Introduction to abstract interpretation. Course notes
for the “NATO Int. Summer School 1998 on Calculational System Design”, Mark-
toberdorff, 1998.

29. P. Cousot and R. Cousot. Abstract interpretation based program testing, invited
paper. In Proc. SSGRR 2000 Computer & eBusiness International Conference,
Compact disk paper 248 and electronic proceedings http://www.ssgrr.it/en/
ssgrr2000/proceedings.htm, 2000. Scuola Superiore G. Reiss Romoli.

30. P. Cousot and R. Cousot. Systematic Design of Program Transformation Frame-
works by Abstract Interpretation. In 29th POPL, 178–190, Portland, 2002. ACM
Press.

31. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In 5th POPL, 84–97, Tucson, 1978. ACM Press.

32. M. Das, B. Liblit, M. Fähndrich, and J. Rehof. Estimating the impact of scalable
pointer analysis on optimization. In P. Cousot (ed), Proc. 8th Int. Symp. SAS ’01,
LNCS 2126, 259–277. Springer, 2001.

33. J. Dean, Grove D., and G. Chambers. Optimization of object-oriented programs
using static class hierarchy analysis. In W.G. Olthoff (ed), Proc. 9th Euro. Conf.
ECOOP ’95, LNCS 952, 77–101. Springer, 1995.

34. S.K. Debray and D.S. Warren. Automatic mode inference for logic programs. J.
Logic Programming, 5(3):207–229, 1988.

35. M. Emami, R. Ghiya, and L.J. Hendren. Context-sensitive interprocedural points-
to analysis in the presence of function pointers. In Proc. ACM SIGPLAN ’93 Conf.
PLDI. ACM SIGPLAN Not. 28(6), 242–256, 1994. ACM Press.

36. M. Felleisen. Program analyses: A consumer’s perspective and experiences, invited
talk. In J. Palsberg (ed), Proc. 7th Int. Symp. SAS ’2000, LNCS 1824. Springer,
2000. Presentation available at URL http://www.cs.rice.edu:80/~matthias/
Presentations/SAS.ppt.

37. J. Feret. Confidentiality analysis of mobile systems. In J. Palsberg (ed), Proc. 7th

Int. Symp. SAS ’2000, LNCS 1824, 135–154. Springer, 2000.
38. C. Flanagan and M. Felleisen. Componential set-based analysis. TOPLAS,

21(2):370–416, Feb. 1999.

Modular Static Program Analysis 19

39. C. Flanagan and J.B. Saxe. Avoiding exponential explosion: generating compact
verification conditions. In 28th POPL, 193–205, London, Jan. 2001. ACM Press.

40. R.W. Floyd. Assigning meaning to programs. In J.T. Schwartz (ed), Proc. Sym-
posium in Applied Mathematics, vol. 19, 19–32. AMS, 1967.

41. R. Ghiya and L.J. Hendren. Putting pointer analysis to work. In 25th POPL,
121–133, San Diego, Jan. 1998. ACM Press.

42. R. Giacobazzi. Abductive analysis of modular logic programs. In M. Bruynooghe
(ed), Proc. Int. Symp. ILPS ’1994, Ithaca, 377–391. MIT Press, 1994.

43. R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples and refine-
ments in abstract model-checking. In P. Cousot (ed), Proc. 8th Int. Symp. SAS ’01,
LNCS 2126, 356–373. Springer, 2001.

44. R. Giacobazzi and F. Ranzato. Refining and compressing abstract domains. In P.
Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proc. 24th Int. Coll.
ICALP ’97, LNCS 1256, 771–781. Springer, 1997.

45. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations com-
plete. J. ACM, 47(2):361–416, 2000.

46. N. Halbwachs. Détermination automatique de relations linéaires vérifiées par les
variables d’un programme. Thèse de 3ème cycle d’informatique, Université scienti-
fique et médicale de Grenoble, Grenoble, 12 Mar. 1979.

47. C. Hankin and D. Le Métayer. Lazy type inference and program analysis. Sci.
Comput. Programming, 25(2–3):219–249, 1995.

48. M.J. Harrold, D. Liang, and S. Sinha. An approach to analyzing and testing
component-based systems. In Proc. 1st Int. ICSE Workshop on Testing Distributed
Component-Based Systems. Los Angeles, 1999.

49. M.J. Harrold and M.L. Soffa. Efficient computation of interprocedural definition-
use chains. TOPLAS, 16(2):175–204, Mar. 1994.

50. M. Hind, M. Burke, P. Carini, and J.-D. Choi. Interprocedural pointer alias analy-
sis. TOPLAS, 21(4):848–894, Jul. 1999.

51. M. Hind and A. Pioli. Assessing the effects of flow-sensitivity on pointer alias analy-
ses. In G. Levi (ed), Proc. 5th Int. Symp. SAS ’98, LNCS 1503, 57–81. Springer,
1998.

52. S. Horwitz. Precise flow-insensitive may-alias analysis is NP-hard. TOPLAS,
19(1):1–6, Jan. 1997.

53. S. Jagannathan, P. Thiemann, S. Weeks, and A.K. Wright. Single and loving it:
Must-alias analysis for higher-order languages. In 25th POPL, 329–341, San Diego,
Jan. 1998. ACM Press.

54. N. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Int. Series in Computer Science. Prentice-Hall, June 1993.

55. V. Kuncak, P. Lam, and M. Rinard. Role analysis. In 29th POPL, 17–32, Portland,
Jan. 2002. ACM Press.

56. W.A. Landi. Undecidability of static analysis. ACM Lett. Prog. Lang. Syst.,
1(4):323–337, Dec. 1992.

57. O. Lee and K. Yi. A proof method for the correctness of modularized kCFAs.
Technical Memorandum ROPAS-2000-9, Research On Program Analysis System,
Korea Advanced Institute of Science and Technology, Nov. 2000. http://ropas.
kaist.ac.kr/~cookcu/paper/tr2000b.ps.gz.

58. D. Liang and M.J. Harrold. Efficient points-to analysis for whole-program analysis.
In O. Nierstrasz and M. Lemoine (eds), Software Engineering - ESEC/FSE’99, 7th
European Software Engineering Conference, LNCS 1687, 199–215, 1999.

20 P. Cousot & P. Cousot

59. D. Liang and M.J. Harrold. Efficient computation of parameterized pointer in-
formation for interprocedural analyses. In P. Cousot (ed), Proc. 8th Int. Symp.
SAS ’01, LNCS 2126, 279–298. Springer, 2001.

60. F. Malésieux, O. Ridoux, and P. Boizumault. Abstract compilation of Lambda-
Prolog. In J. Jaffar (ed), JICSLP ’98, Manchester, 130–144. MIT Press, 1992.

61. D. Massé. Combining forward and backward analyzes of temporal properties. In 0.
Danvy and A. Filinski (eds), Proc. 2nd Symp. PADO ’2001, LNCS 2053, 155–172.
Springer, 2001.

62. L. Mauborgne. Abstract interpretation using typed decision graphs. Sci. Comput.
Programming, 31(1):91–112, May 1998.

63. A. Miné. A new numerical abstract domain based on difference-bound matrices. In
0. Danvy and A. Filinski (eds), Proc. 2nd Symp. PADO ’2001, LNCS 2053, 155–172.
Springer, 2001.

64. G. Ramalingam. The undecidability of aliasing. TOPLAS, 16(5):1467–1471, Sep.
1994.

65. F. Randimbivololona, J. Souyris, and A. Deutsch. Improving avionics software
verification cost-effectiveness: Abstract interpretation based technology contribu-
tion. In Proceedings DASIA 2000 – DAta Systems In Aerospace, Montreal. ESA
Publications, May 2000.

66. A. Rountev and S. Chandra. Off-line variable substitution for scaling points-to
analysis. In Proc. ACM SIGPLAN ’00 Conf. PLDI. ACM SIGPLAN Not. 35(5),
47–56, Vancouver, June 2000.

67. A. Rountev and B. Ryder. Points-to and side-effect analyses for programs built
with precompiled libraries. In R. Wilhelm (ed), Proc. 10th Int. Conf. CC ’2001,
LNCS 2027, 20–36. Springer, 2001.

68. A. Rountev, B.G. Ryder, and W. Landi. Data-flow analysis of program fragments.
In O. Nierstrasz and M. Lemoine (eds), Software Engineering - ESEC/FSE’99, 7th
European Software Engineering Conference, LNCS 1687, 235–252. Springer, 1999.

69. B.G. Ryder, W. Landi, P.A. Stocks, S. Zhang, and R. Altucher. A schema for
interprocedural side effect analysis with pointer aliasing. TOPLAS, 2002. To
appear.

70. O. Shivers. The semantics of scheme control-flow analysis. In P. Hudak and N.D.
Jones (eds), Proc. PEPM ’91, ACM SIGPLAN Not. 26(9), 190–198. ACM Press,
Sep. 1991.

71. Y.M. Tang and P. Jouvelot. Separate abstract interpretation for control-flow analy-
sis. In M. Hagiya and J.C. Mitchell (eds), Proc. Int. Conf. TACS ’95, LNCS 789,
224–243. Springer, 1994.

72. A. Venet. Automatic analysis of pointer aliasing for untyped programs. Sci. Com-
put. Programming, Special Issue on SAS’96, 35(1):223–248, Sep. 1999.

73. Z. Xu, T. Reps, and B.P. Miller. Typestate checking of machine code. In D. Sands
(ed), Proc. 10th ESOP ’2001, LNCS 2028, 335–351. Springer, 2001.

In Proceedings of the Eleventh International Conference on Compiler Construction
(CC 2002), R.N. Horspool (Ed.), Grenoble, France, April 6—14, 2002. Lecture Notes
in Computer Science 2304, c© Springer, Berlin, 2002, pp. 159–178.

