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Abstract

We introduce and illustrate a speci�cation method combin�
ing rule�based inductive de�nitions� well�founded induc�
tion principles� �xed�point theory and abstract interpre�
tation for general use in computer science� Finite as well
as in�nite objects can be speci�ed� at various levels of de�
tails related by abstraction� General proof principles are
applicable to prove properties of the speci�ed objects�

The speci�cation method is illustrated by introducing

G�SOS� a structured operational semantics generalizing

Plotkin�s ��	
 structured operational semantics �SOS� so

as to describe the �nite� as well as the in�nite behav�

iors of programs in a uniform way and by constructively

deriving inductive presentations of the other �relational�

denotational� predicate transformers� � � � � semantics from

G�SOS by abstract interpretation�

� Inductive de�nitions

Inductive de�nitions which are widely used in math�
ematical logic to de�ne sets inductively generated by
closure conditions� have popularized in computer sci�
ence over the past few years� Classical or positive
inductive de�nitions� co�inductive� kernel or negative
de�nitions ��	 as well as bi�inductive de�nitions mixing
these two kinds of de�nitions are �rst captured by a
general de�nition of the notion of rule�based inductive
de�nition which is then generalized to systems of it�
erated inductive de�nitions so as to de�ne inductively
cartesian products of sets of �nite and in�nite objects
indexed by a well�founded ordering� Examples show
that many concepts related to programming come out
of such inductive de�nitions�
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��� Rule�based inductive de�nitions

Example � �Even numbers� Let the universe U be
the set N of natural numbers� The subset �N of even
numbers can be de�ned by the following axiom and
rule schema�

� � �N
n � �N

n� � � �N
���

Instead of considering a formal language for writing
such rules and axioms schemata� we reason upon a
set � of rules instances where axioms have empty
premises�

� �

�
�

�

�
�

�
fng

n� �

����n � N

�
���

The induced operator is�

��X� � f�g � fn� � j fng � Xg ���
Let the basis be � � � and the join be � which induces
the ordering �� The ��smallest set j�j greater than
� which satis�es the rules � is the least �xpoint of �

that is �N � �
�
� �n���

n
where �

�
� � � � and

�
n��

� ���
n
� � f�� �� � � � � �ng� The closure ordinal

of � is the �rst in�nite limit ordinal �� �
We now give a general set�theoretic de�nition of such
inductive de�nitions� We write ��S� for the powerset
of the set S and S �	 S� �respectively S �	 S�� for the
set of total �respectively partial� maps from S into the
set S��

De�nition � �Inductive de�nition� An induc�

tive de�nition 
 is a quadruple hU� �� �� ti such
that�
� The universe U is a set�
� � is a set of rules instances P

c
where P � U and

c � U �
� � � U is the basis�
� t � ����U�� �	 ��U� is the join and the induced

ordering is x v y
def
� xt y � y is a partial order on

��U��
�

De�nition � �Operator induced by an induc�
tive de�nition� The operator � induced by 
 �
hU� �� �� ti is � � ��U� �	 ��U� such that��

��X� � fc � U j �P � X �
P

c
� �g ���

�

� More generality can be obtained when replacing � by an
arbitrary relation�

�



De�nition 	 �Iteration of an operator� The iter�
ation of F � S �	 S for t � ��S� �	 S is the partial
operator F�t � S �	 S such that F�t �X� � F � where�

� F � � X�
� F� � F �

F
��� F

�� if � � � � Ord �
� F� � F � if � 	 
�

clo
t

X�F �
def
� 
 is called the closure ordinal of F for X�

�

A complete partial order L hv� �� ti �cpo for short�
is a set partially ordered by v such that all increasing
chains C have least upper bounds tC and � � L ��
is usually the in�mum of L�� It is a complete lattice

if and only if all subsets X have least upper bounds
tX and therefore greatest lower bounds uX �in which
case we usually write � � uL and � � tL�� F �

L �	 L is monotonic �written F � L
mo v
�	 L� if and

only if �x� y � L � x v y � F �x� v F �y�� It is

extensive �written F � L
exv
�	 L� if and only if �x �

L � x v F �x��� It is a complete t�morphism �written

F � L
cmt
�	 L� if for all families of sets Xi � L such

that tiXi exists in L� we have tiF �Xi� � F �tiXi��
The propositions below immediately follow from the

constructive proof of Tarski�s �xpoint theorem �
	�

Proposition 
 If S hv���ti is a cpo and F � S �	 S
is monotonic or extensive then F�t � pre�F � �	 S
where pre�F � � fx � S j x v F �x�g �so that F�t is
totally de�ned for pre��xpoints of F �� �

De�nition � �Well�formed inductive de�nition�
The inductive de�nition 
 � hU� �� �� ti is well�

formed if and only if �
�
t ��� exists in which case it is

the set j
j inductively de�ned by 
� �

De�nition � �Inductive de�nitions on a cpo or
a complete lattice� Let 
 � hU� �� �� ti be an
inductive de�nition� 
 is on a cpo �respectively on

a complete lattice� if and only if ��U� hv� �� ti is a
cpo �respectively ��U� hv� �� �� t� ui is a complete
lattice�� �

De�nition  �Monotonic and extensive induc�
tive de�nitions� The inductive de�nition 
 � hU�
�� �� ti is monotonic �respectively extensive� when�
ever � is monotonic and � v ���� �respectively � is
extensive�� �

Corollary � A monotonic or extensive inductive def�
inition on a cpo is well�formed� �

When it exists� we write lfp�x F for the least �xpoint
of F greater than or equal to x � F �lfp�x F � � lfp

�

x F �
x � lfp

�

x F and �y � �F �y� � y � x � y	 � �lfp�x F �
y	� The same way� gfp�x F is the greatest �xpoint of F
less than or equal to x�

Proposition �� If S hv� �� ti is a cpo and F �

S
mo v
�	 S then F�t � pre�F � �	 S is an upper clo�

sure operator� for all X � pre�F �� F�t �X� is the least
�xpoint lfpvX F of F greater than or equal to X� �

Corollary �� If 
 � hU� �� �� ti is a monotonic
inductive de�nition on a cpo then �

�
t is an upper

closure operator� �
�
t �X� is the least �xpoint lfp

v

X � of
� greater than or equal to X � pre��� for the ordering
v induced by t and j
j � �

�
t ��� � lfp

v

� �� �

De�nition �� �Rule satisfaction� The set S � U
is said to satisfy the rules � if and only if sat��S� �
�� v S� � ���S� v S� holds� �

Proposition �� If 
 � hU� �� �� ti is a monotonic
inductive de�nition on a complete lattice then j
j �
ufS � U j sat��S�g is the least set �for v� which
satis�es the rules� �

��� Positive inductive de�nitions

De�nition �	 �Positive inductive de�nition� A
positive inductive de�nition 
 � hU� �i is 
� � hU�
�� �� �i� �

Proposition �
 A positive inductive de�nition

� � hU� �i� is well�formed and j
�j � �

�
� ��� �

lfp � � �fS � U j sat���S�g is the least �for ��
closed set� that is which satis�es the rules� closed��S�
def
� sat���S� � ��

P
c
� � � �P � S�� �c � S�	� �

Example �� �Logic programs� Using the nota�
tions of ��	� let P be a logic program �containing at
least one constant�� BP be its Herbrand universe and
ground�P � be the set of all ground instances of clauses
in P � The inductive de�nition corresponding to P is

� � hBP � �i� where�

� � f B������Bn
A j A�B������Bn � ground�P �g ���

The operator � induced by 
� is the immediate conse�
quence operator TP � Then proposition ���� implies the
characterization theorem of van Emden and Kowalski
���	� A closed set I � BP �such that TP �I� � I� is a
model of P � the least model MP being the least �x�
point TP

�
� ��� of TP � Lassez and Maher ���	 observed

that TP
�
� is a closure operator� �

Example �� �Maximal �nite execution traces�
Following ���	� let T � hS� Act � f �

�	 j � � Actg� Initi
be a labelled transition system where S is a set of
states� Act is a set of actions� each �

�	� S � S is the
transition relation for action � � Act and Init � S
is the set of initial states� We write s �

�	 s� for
hs� s�i � �

�	� s �
�	� s� for hs� s�i �� �

�	� s 	 s� for
�� � Act � s �

�	 s� and s�	� for �� � Act � �s� � S �
s �
�	� s��

�



��� is the universe of �nite traces  � �
���������� �

� � � ���
��	��
������� � such that � � jj  � where jj is the

length of � � � jj � �� i � S for � � i � �� �j � Act

for � � j � � and  �������� � is the concatenation of 
and � through action �� also written  �

�	 � when
j	j��

�
�	 ��� �

� is the universe of in�nite traces 

� �
���������� � � � � n

��n������� n�� � � � such that jj � ��

n � S and �n � Act for n � �� �
�
def
� ��� � �� is

the universe of traces�

The set T�� of maximal �nite execution traces of
this transition system T is de�ned by the following
schemata �where free variables � � Act � s � S and 
� ��� are universally quanti�ed��

s�	�

s � T��

s �
�	 � �  � T��

s �
�	  � T��

���

which stands for the set � of rule instances�

�

s
� �
�

fg

s� �
�	 

� �
� ���

for all s � S such that s�	� and s� � S� � � Act and
 � ��� such that s� �

�	 �� The rules are deco�
rated by the � sign to indicate that � � � and t � �
followed by the universe U � ���� One or both indi�
cations can be left out when clear from the context�

The monotone operator � � ������
mo �
�	 ������

induced by this inductive de�nition is�

��X� � fs j s�	� g �
fs �

�	  j s �
�	 � �  � Xg

��

Let us de�ne T �a def
� � and the set Tna def

�
�
 � ����� jj � n � �i � jj  � � i

��i
�	 i�� � n���	�

�
of execution traces of T of length n 	 �� Observe�
by induction on n� that the iterates of the operator
� are �

n
� �ni��T

ia so that �
�
� �n��Tna � T���

Moreover �
���

� �
�
so that the closure ordinal of �

is �� Finally� we have de�ned �
�
� lfp

�

� � � T�� ��
 � ���

�� �i � jj � � i
��i
�	 i�� � jj���	�

�
� �

��� Negative or co�inductive de�ni�
tions

De�nition � �Negative co�inductive de�ni�
tion� A negative inductive de�nition 
 � hU� �i is

� � hU� �� U� �i� �

Proposition �� A negative inductive de�nition

� � hU� �i� is well�formed and j
�j � �

�
� �U� �

gfp � � �fS � U j sat���S�g is the greatest �for

�� dense set� i�e� satisfying the rules� dense��S�
def
�

sat���S� � ��c � S � �P � S � P
c
� �	� �

The de�nition of observation equivalence in ���	 and
of static typing in ���	 are examples of negative co�
inductive de�nitions�

Example �� �In�nite execution traces� The set
T� of in�nite execution traces of a transition system
T � hS� Act � f �

�	 j � � Actg� Initi is de�ned by the
following schema �where free variables � � Act � s � S
and  � �� are universally quanti�ed��

s �
�	 � �  � T�

s �
�	  � T�

� �
�

which stands for the set � of rule instances�
fg

s �
�	 

� �� ����

for all s � S� � � Act and  � �� such that s �
�	 ��

The monotone operator � � �����
mo �
�	 �����

induced by this inductive de�nition is�

��X� � fs �
�	  j s �

�	 � �  � Xg ����

Let us de�ne T �� def
� �� and the set Tn� def

�
�
 � ���� �i � n � i

��i
�	 i��

�
of in�nite traces starting with

n � � transitions� Observe� by induction on n� that
the iterates of the operator � are �

n
� �ni��T

i� so

that �
�
� �n��Tn� � T�� Moreover �

���
� �

�
so

that the closure ordinal of � is �� Finally� we have
de�ned �

�
� gfp

�

�� � � T� �
�
 � ��

�� �n � � �

n
��n
�	 n��

�
� �

Example �� �Maximal execution traces I� The

set T
�
def
� T�� � T� of execution traces of a transi�

tion system T � hS� Act � f �
�	 j � � Actg� Initi can

be characterized by a negative inductive de�nition 
�

� hU� ��� U � �i where U � �
� and �� is speci�ed
by the following rule schemata�

s�	�

s � T
�
�

s �
�	 � �  � T
�

s �
�	  � T
�

� ����

The monotone operator �� � ���
��
mo �
�	 ���
��

induced by this inductive de�nition is�

���X� � fs � S j s�	� g �
fs �

�	  j s �
�	 � �  � Xg

����

De�ne Tnm def
�
�
 � ���

�� jj � m 	 n � �i � n �

i
��i
�	 i��

�
to be the set of �nite traces of length m

starting with n transitions� Observe� by induction on
n� and using the notations of examples �� and �� that
the iterates of the operator �� are ��

n
� ��ni��T

ia�
� ��m
nT

nm� � ��ni��T
i��� For all m� n � �� if 

� Tma then  � ��
n
since either n � m and  �

Tma � ��
n
or n � m and  � Tnm � ��

n
� Also

 � T� implies  � T i� for all i � �� Reciprocally

 �� T
� has either n
��n
�	� n�� for some n such that

� � n � jj  �� in which case  �� ��
n��

or jj �

� and �s � S � ��� 	 s so that again  �� ��
���
�

It follows that� ��
�
� �n����

n
� �n�����ni��T

ia� �
��m
nT

nm� � ��ni��T
i��	 � ��n��T ia� � ��ni��T

i��

� T�� � T� � T
�� Moreover ��
���

� ��
�
so that

�



the closure ordinal of �� is �� Finally� we have de�ned
��

�
� gfp

�

���
�� � T
�� However this de�nition is

not quite satisfactory because of the term �m
nT
nm

in ��
n
which disappears when passing to the limit

��
�
�since �n���m
n T

nm � ��� A de�nition of T
�

such that ��
�
is a conservative extension of the ��

n

is proposed in example �� �

If F � B �	 B is an operator on a complete boolean
lattice B hv� �� �� t� u� �i� its dual is eF � B �	

B is de�ned by �x � B � eF �x� � �F ��x�� If F is

monotonic� so is eF � By duality� a negative inductive
de�nition can always be given an indirect equivalent
positive de�nition� However� as shown by the above
examples� most of the time� using a direct co�inductive
de�nition is much more clear�

Proposition �� �Duality of positive and nega�
tive inductive de�nitions� If 
 � hU� �i is an
inductive de�nition then sat���S� � sat����S�� j


�j

� lfp � � �gfp e�� j
�j � gfp � � �lfp e� and j
�j �
�j
�j� �

��� Bi�inductive de�nitions

Assume the universe U is covered by two subsets U�

and U�� that is U � U� � U�� For example U� may
be the set of �nite objects of U while U� is the set
of in�nite objects of U � To de�ne a subset j
j of U �
we could de�ne separately the �nite objects j
j � U�

using a positive inductive de�nition and the in�nite
objects j
j �U� using a negative inductive de�nition�
In practice� this must often be done simultaneously�
For example in denotational semantics the terminat�
ing and non�terminating behaviors of programs are de�
�ned at the same time using a single �xpoint opera�
tor� Since� for clarity� we insist upon using rule�based
inductive de�nitions �preferred to �xpoint de�nitions
��	�� we propose a method for combining inductive and
co�inductive de�nitions which allows for the simulta�
neous use of positive and negative axioms and induc�
tion rules� We then give equivalent �but maybe less
intuitive� �xpoint characterizations�

De�nition �� �Bi�inductive de�nition� A bi�in�

ductive de�nition 
 � hU� ��� ��� �i� where ��� ��

� ��U� �	 ��U� is 
� � hU�� ��� ��� ��� t�i
with� for all S� T � Si � U �

� U�
def
� ���U� � ���U��

� S �� T
def
� ����S� � ���T �	 � ����S� � ���T �	�

� ��
def
�
n

���P �
c�

��� Pc � � � c� � ���fcg�
o
�

� ��
def
�
n

���P �
c�

��� Pc � � � c� � ���fcg�
o
�

� ��
def
� �� � ���

� ��
def
� ���U� and

� t�i Si
def
�
S
i �

��Si� �
T
i �

��Si��

�

We often use bi�inductive de�nitions to simultaneously
de�ne subsets of the universe which are separated in
the following sense�

De�nition �	 �Separated bi�inductive de�ni�
tion� A bi�inductive de�nition 
 � hU� ��� ��� �i
is separated if and only if �� and �� are monotonic
for �� idempotent and satisfy the separation property �
�P � ���U� � �M � ���U� � ���P �M� � ���P �
and ���P �M� � ���M�� �

Proposition �
 Let 
 � hU� ��� ��� �i be a sepa�
rated bi�inductive de�nition� Let us de�ne� for all S�
T � Si � U �

� S v� T
def
� ����S� � ���T �	 � ����S� � ���T �	�

� ��
def
� ���U� and

� u�i Si
def
�
T
i �

��Si� �
S
i �

��Si��
Then�
�� ��U���� hv�� ��� ��� t�� u�i is a complete
lattice�

�� �� is monotonic for v��
�� 
� is well�formed�
�

Disjoined bi�inductive de�nitions are used to simulta�
neously de�ne subsets of disjoined universes�

De�nition �� �Disjoined bi�inductive de�ni�
tion� A disjoined bi�inductive de�nition 
 � hU��
U�� �i where U� � U� � � is 
� � hU� � U�� ���
��� �i with ���X� � X � U� and ���X� � X �
U�� �

Proposition �� A disjoined bi�inductive de�nition

� � hU�� U�� �i� is separated� hence well�formed

and such that �� is equality and j
�j � lfp
v� �� �

j
�j � j
�j � lfp
��� � gfp

���� �

Example � �Maximal execution traces II� The

set T
�
def
� T�� � T� of execution traces of a transi�

tion system T � hS� Act � f �
�	 j � � Actg� Initi can

be de�ned by a disjoined bi�inductive de�nition 
� �
hU�� U�� ��i� where U� � ��� is the set of �nite
traces� U� � �� is the set of in�nite traces over S and
Act and �� is speci�ed by the following rule schemata�

s�	�

s � T
�
�

s �
�	 � �  � T
�

s �
�	  � T
�

� ����

s �
�	 � �  � T
�

s �
�	  � T
�

� ����

For simplicity we write  � T
� instead of  �
���T
�� �that is  � T��� in positive rule schemata
and the same way T
� stands for ���T
�� that is T�

�



in the negative ones� For short� the rule schemata ����
and ���� can be written as follows�

s�	�

s � T
�
�

s �
�	 � �  � T
�

s �
�	  � T
�

� ����

The monotone operator �� � ���
��
mo v�

�	 ���
��
induced by this inductive de�nition is�

���X� � fs � S j s�	� g �
fs �

�	  j s �
�	 � �  � Xg

����

Observe� by induction on n� and using the notations of
examples �� and �� that the iterates of the operator
�� are ��

n
� ��ni��T

ia� � ��ni��T
i�� so that ��

�

� ��n��Tna� � ��n��Tn�� � T�� � T� � T
��

Moreover ��
���

� ��
�
so that the closure ordinal of

�� is �� Finally� we have de�ned ��
�
� lfp

v�

��
�� �

T
�� �

Our approach for de�ning program behaviors� and
more generally a subset of a space with �nite and in�
�nite computable objects� is characterized by the fol�
lowing remarks�

�� The �nite objects are constructed from their �nite
components using positive rules�

�� The in�nite objects are not obtained as limits of
�nite ones �this may be done once for all in the do�
main theoretical de�nition of the universe U� but
selected among all possible ones by successive in�
spections of �nite parts using negative rules�

�� By combining the two methods� one can de�ne
other �xpoints� in addition to the usual least �for
�� and greatest �xpoints�

The usefulness of such non�extremal �xpoints is illus�
trated by the example below�

Example �� �In�nitary languages� Let A � fa�
b� cg be an alphabet� U � U� � U� where U� � A

and U� � A� are respectively the sets of �nite and
in�nite words written on A� The in�nitary language
L � �a � b�c � b� is de�ned by the following axioms
and rule schemata �which are disjoined since U� �
U� � ���

c � L �
 � L

a � L
�

 � L

b � L
� ���

The operator associated with the instances of rules
schemata ��� is �� � fcg � fa j  � X � Ag �
fb j  � Xg� It is a monotone operator on ��U�hv��

��� ��� t�� u�i and lfpv
�
�� � �a � b�c � b� � L�

Observe however that L is neither the least �xpoint
�a � b�c nor the greatest �xpoint �a � b�c � �a � b��

of the context�free grammar X ��� c j aX j bX �these
�xpoints being extremal for ��� �

��	 Proof methods

It is interesting to notice that numerous mathematical
tools come of such inductive de�nitions� In particular�
methods for proving properties of �xpoints �such as
Park�s �xpoint induction� can be transcribed to prove
properties of inductively de�ned sets�

Proposition �� �Fixpoint induction� Let L hv�

�� ti be a cpo and F � L
mo v
�	 L� Then �lfpv� F v Y 	

� ��Z � L � � v Z � F �Z� v Z � Z v Y 	� If u is
well�de�ned then �X u lfp

v

� F v Y 	 � ��Z � L � � v
Z � F �Z� v Z � X u Z v Y 	 �

Corollary �� If 
 � hU� �� �� ti is a monotonic
inductive de�nition on a cpo then j
j v S if and only
if �S� � U � �S� v S� � sat��S

��� �

Moreover x � y
def
� ��� � � Ord � � � ��x � �

�
�y �

�
�
�

�
is a strict well�founded partial ordering so that

trans�nite induction can be used to prove the inverse
inequality�

De�nition �� �Well�foundedness� A relation
� on a class W is well�founded if and only if
WellFounded�W� �� � �E � W � �E ��� � � �y � E �
���z � E � z � y�	 holds� �

Proposition �� �Iteration induction� Let L hv�

�� ti be a cpo with in�mum � � t�� F � L
mo v
�	 L

and Q � L� We have� �Q v lfp F 	 � ��W � � � �
W �W �WellFounded�W� �� � �I � W �	 L � ��x �
W � I�x� v F �

F
x�� x I�x

���� � �Q v
F
x�W I�x��	 �

Another useful method for proving properties of �x�
points is computational induction� We let Ord be the
class of ordinals and Limit � f� � Ord j �� � � ��� �g
be the class of limit ordinals�

Proposition �	 �Computational induction� Let

L hv� �� ti be a cpo� F � L
mo v
�	 L and P � ��L��

We have� �lfpv� F � P � � ��I � Ord �	 L � �� � I���	
� ��� � Ord � �X � I��� � F �X� � I�� � ��	 �

��� � Limit � �X � �
mo 


�	 L � ��� � � � X��� � I���	

� �
F
���X��� � I���		 � ��X � Ord

mo 


�	 L � ��� �
Ord � X��� � I���� � �

F
��Ord X��� � P �	� �

An interesting particular case �which amounts to Scott
induction when the function is upper continuous and
the property is admissible� consists in choosing the
invariant I��� as P � but this is not a semantically
complete proof method�

Proposition �
 �Stepwise computational in�

duction� Let L hv� �� ti be a cpo� F � L
mo v
�	 L and

P � ��L�� We have� ��� � P 	 � ��X � P � F �X� � P 	

� ��� � Limit � �X � �
mo 


�	 L � ��� � � � X��� � P �
� �

F
���X��� � P �	� � �lfpv� F � P �� �





A last example is the inductive de�nitions of functions
f � j
j �	 D�

Proposition �� �Inductive function de�nition�
Let 
 � hU� ���� ti be a well�formed inductive de�ni�
tion� D be a set and �i � ��Pi�D� �	 D for all Pi

ci
� ��

There exists a unique total function f � j
j �	 D such
that for all Pi

ci
� � � f�ci� � �i�fhx� f�x�i j x � Pig��

�

When specialized to positive inductive de�nitions�
propositions ���� and ���� amount to �for short� simi�
lar corollaries holding for the other varieties of induc�
tive de�nitions are not stated��

Corollary �� �Fixpoint induction for positive
inductive de�nitions� Let 
� � hU� �i� be a posi�
tive inductive de�nition and R � U � Then �j
�j�Q �
R	 � ��I � U � Q �	 ftt �� g � ��P

c
� � � ��x � P �

I�x�	� I�c�� � ��x � Q � I�x�� x � R�	� �

Corollary � �Iteration induction for positive
inductive de�nitions� Let 
� � hU� �i� be a pos�
itive inductive de�nition and Q � U � We have� �Q �
j
�j	 � ��W � � � � W �W � WellFounded�W� ��
� �I � W �	 ��U� � ��u � Q � �x � W � u � I�x��	 �
��x � W � �c � I�x� � �P

c
� � � �c� � P � �x� � x �

c� � I�x��		� �

Example �� �Well�founded part of a relation�
Let S be a set of states and t � S�S be a relation on
S� We write s t

�	 s� for hs� s�i � t� The well�founded
part Wf �t� of t is the set of � � S such that there is
no in�nite sequence �

t
�	 �

t
�	 �

t
�	 � � � that is�

Wf �t� � fs � S j ��� � � �	 S �

s � � � �i � � � i
t
�	 i���g ��
�

The well�founded part Wf �t� of t is speci�ed by the
inductive de�nition 
� � hS� �i� where � consists
of the rules instances ��	�

fs� � S j s t
�	 s�g

s
����

for all s � S�
� To show that j
�j � Wf �t�� we use proposition ��
with I�x� � �x �Wf �t�	 so that ��x � S � I�x�� x �
Wf �t��	 is obvious� We must also show that �s � S �
��s� � S � s t

�	 s� � I�s��	 � I�s� which holds since
�I�s� � ��� � � �	 S � s � �� � �i � � � �i

t
�	 �i��	

implies ��s� � S � s t
�	 s� � �� � � �	 S � s� � � �

�i � � � i
t
�	 i���	 � ��s� � S � s t

�	 s� � �I�s��	 by
choosing s� � � � �� and i � �i�� for all i � ��
� To show that Wf �t� � j
�j� we use proposition �
with W � Wf �t� and s� � s � s t

�	 s� so that ob�
viously WellFounded�W� �� holds and I�x� � fxg so
that ��u � Wf �t� � �x � W � u � I�x��	 is true when
choosing x � u� Moreover s t

�	 s� implies s� � s
so that ��x � W � �c � I�x� � �P

c
� � � �c� � P �

�x� � x � c� � I�x��	 holds� �

Example 	� �Floyd�s partial correctness and
termination proof methods� Let T � hS� Act � f �

�	

j � � Actg� Initi be a labelled transition system spec�
i�ed by a program P � Let � � S � S �	 ftt � � g
be an input�output speci�cation of program P � P
is partially correct with respect to � if and only if
�s� s� � S � s 	

�	 s� � ��s� s�� �where 	
�	 is the re�ex�

ive transitive closure of 	�� According to proposition
��� the partial correctness proof can be done by dis�
covering an invariant I � U � S � S satisfying the
following veri�cation conditions �as given in ���	��

�s � S � hs� si � I ����

�s� s�� s�� � S � �� � Act �

�hs� s�i � I � s� �
�	 s��	 � hs� s��i � I ����

�s� s� � S � �hs� s�i � I	 � ��s� s�� ����

Let � � S �	 ftt � � g be a speci�cation of the initial
states of program P � Program P terminates if and
only if there is no in�nite execution trace � 	 � 	
� 	 � � � � such that ����� According to example �
�
we must show that� �s � S � ��s� � s � Wf �	��
By proposition � applied to the rule�based inductive
de�nition�

fs� � S j s	 s�g

s
�s � S ����

of Wf �	�� this can be done by �nding a well�founded
set hW� �i and an invariant I �W �	 ��S� satisfying
the following veri�cation conditions �as given in ���	��

�� �W � �s � I � �s� � S �

�s	 s�	 � ��� � � � s� � I�	 ����

�s � S � ��s� � ��� �W � s � I	 ����
�

��
 Well�founded system of inductive
de�nitions

To get more expressive power� we introduce systems
of inductive de�nitions in order to de�ne subsets of
a cartesian product

Q
i�	 U �i	 of sets U �i	� i �  �

We mix this notion with trans�nitely iterated de��
nitions by induction on a well�founded set hW� �i�
Such well�founded �also called iterated� inductive def�
initions were �rst introduced by G� Kreisel and then
further developped by S� Fefermann ���	�

De�nition 	� �Well�founded system of induc�
tive de�nitions� A well�founded system of inductive

de�nitions 
 is a tuple hW� ��  � U � �� �� ti such
that�
� � is a well�founded binary relation on the set W �
� The index  is such that for all w �W �  ��w		 is a
set�

� For all w � W and all i �  ��w		� the universe

U ��w		�i	 is a set�






� � is a set of rules instances P � �
c

w��
i� where w � W �

i �  ��w		� P �
Q

i�	

w�� ��U ��w		�i	�� �� � � fhw�� Si

j w��w � S �
Q

i�	

w��� ��U ��w
�		�i	�g and c �

U ��w		�i	�
� For all w � W � ���w		 �

Q
i�	

w�� ��U ��w		�i	� is the

basis�
� For all w � W � t��w		 � ��

Q
i�	

w�� ��U ��w		�i	�� �	Q

i�	

w�� ��U ��w		�i	� is the join�
�

De�nition 	� �Operator induced by a well�
founded system of inductive de�nitions� For
each w � W � the operator ���w		 induced by 
 � hW�
��  � U � �� �� ti is ���w		 �

Q
i�	

w�� ��U ��w		�i	� �	Q

i�	

w�� ��U ��w		�i	� such that�

���w		�X� �
Q

i�	

w��

�
c � U ��w		�i	

�� �P � X �

�� � fhw�� Si j w��w � S � j
j��w�		g �
�� � fhw�� Si j w��w � S �� j
j��w�		g �

P � �
c

w��
i� � �

�
where �i �  ��w�		 � j
j��w�		�i	

def
� ���w�		�t

w�������w

�		��i	�
�

De�nition 	� �Well�formed well�founded sys�
tem of inductive de�nitions� The well�founded
system of inductive de�nitions 
 � hW� ��  � U �
�� �� ti is well�formed if and only if ���w		�t

w������w		�
exists for all w � W � in which case it is the carte�

sian product j
j��w		 of rank w of sets j
j��w		�i	 of index
i �  ��w		 inductively de�ned by 
� �

If each ��U ��w		�i	�hv ��w		�i	� ���w		�i	� t��w		�i	i is a cpo
�or a complete lattice� then propositions 
� ��� �� and
the above proof methods are easily extended to well�
founded systems of inductive de�nitions by componen�
twise induction on the well�founded relation hW� �i�
When de�ning subsets of a cartesian product of sets�

the well�founded set hW� �i can be omitted since it
is reduced to a singleton� This would be the case for
example when understanding a context�free grammar
as a system of inductive de�nitions� The next example
is a well�founded inductive de�nition �the index set  
being omitted since it is reduced to a singleton��

Example 		 �Weak fairness� Let A be an alpha�
bet and X be a �nite subset of A� The set F ��X		 of
�nite words containing at least one occurrence of each
x � X is de�ned by�

y � A

y � F ���		
�

x � X

x � F ��fxg		
� ����

y � A � Y � X �  � F ��Y 		

y � F ��Y 		
� ���

x � X � Y � X �  � F ��Y 		

x � F ��Y � fxg		
� ��
�

The set I��X		 of in�nite words with in�nitely many
occurrences of each x � X is de�ned by�

 � F ��X		 � � � I��X		

� � I��X		
� ����

This is a very simple example with W � fF ��Y 		 j Y �
Xg � fI��X		g� F ��Y 		 � F ��Z		 when Y � Z � X and
F ��Y 		� I��X		 when Y � X� �

Negation can be used in the premises of the rules of
iterated de�nitions� a set X���		 can be inductively de�
�ned in terms of X���		 as well as X���		 and �X���		 for
���� In particular this generalizes J� Groote�s tran�
sition system speci�cations with negative premises ���	
without resorting to ��valued minimal model or stable
model approaches ��	 originating from logic program�
ming� for which the logical meaning is not always sim�
ple and clear ��
	�
Combining systems and well�founded inductive def�

initions� we get well�founded systems of inductive def�
initions as illustrated by the following example�

Example 	
 �Maximal execution traces III� Let
T � hS� Act � f �

�	 j � � Actg� Initi be a labelled
transition system�
The set T ���		 �T ����		 and T ����		�� � � �� of maxi�

mal execution traces of length � �respectively strictly
less than � and less than or equal to �� can be de�ned
as follows �s� s�� s�� � S� � � n � �� � � ���

s�	�

s � T �����		�s� s	
� ����

s �
�	 s� �  � T ���n�		�s�� s��	

s �
�	  � T ���n� ��		�s� s��	

� ����

s �
�	 s� �  � T ����		�s�	 � � � s�

s �
�	  � T ����		�s	

� ����

s � Init �  � T ���n�		�s� s�	

 � T ��n		
� ����

s � Init �  � T ����		�s	

 � T ���		
� ����

n � � �  � T ��n		

 � T ����		
� ����

 � T ����		

 � T ����		
�

 � T ���		

 � T ����		
� ����

The partial ordering � such that for all � � n � � �
�� �n� � �n� ��� �n� � n� �� � �� n � ��� � �
��� �� � ��� is well�founded� �

Such iterated inductive de�nitions are very powerful
since they have an expressive power greater than D�
Park�s ��calculus ���	 or E� Emerson�s CTL ���	�
These iterated inductive de�nitions are used in

G�SOS to de�ne the semantics of programming lan�
guages by induction on the syntax of programs� In this
case�W is the set of all program components while �
means !is a sub�component of"�


�



� Abstract interpretation of in�

ductive de�nitions

The quest for a unique general�purpose semantics for
programming languages has failed� A better approach
is to establish correspondences between various se�
mantics at di#erent levels of abstraction� As noticed
by E� Astesiano ��	 and G� Reggio ��
	� rule�based in�
ductive de�nitions should form a unifying framework
for expressing these semantics� A �rst step toward
this goal is to describe �nite and in�nite program be�
haviors in the same way� A second step consists in
adopting an abstract interpretation approach �	 ���	
in order to relate inductive de�nitions� Abstract in�
terpretation can be used� as follows� to justify and
even to formally construct abstract rules in terms of
a concrete ground �named static in �	 and renamed
collecting in ���	� semantics �which could involve e�g�
execution traces as it is the case in our examples��

De�nition 	� �Operator abstraction� � standing
either for � or v�� we write�

�S hv� �� ti� F 	 	�
�
�
�S� hv�� ��� t�i� F �	 ���

to mean that�
� S hv� �� ti is a cpo such that � � S�
� S� hv�� ��� t�i is a partial order such that �� � S��

� F � S
mo v
�	 S� F � � S�

mo v�

�	 S��
� � � S �	 S� and
� �� � clo

t

��F � � ��F
�� � F �� �iteration from F � �

� and F �� � ����
�

The above condition �� � clo
t

��F � � ��F
�� � F �� is

implied by the following ones�
� ���� � ���
� �� � clo

t

��F � � � �F �F
�� � F � ���F�� and

� for all limit ordinals � � Limit such that � �
clo

t

��F �� we have ��t���F
�� � t������F

���
and by the strongest ones�
� ���� � ���
� � �F � F � �� and
� ��t���x�� � t������x

�� for all increasing chains
fx� j � � clo

t

��F �g�
This last condition is implied by the fact that � is a
complete join morphism� which is the case when it is
the upper adjoint of a Galois connection�

De�nition 	� �Galois connection� We write

P h�i 	�
�

� Q h�i to mean that�
� P h�i and Q h�i are posets�
� � � P �	 Q�
� � � Q �	 P and
� �x � P � �y � Q � ���x� � y	 � �x � ��y�	�
�

In this case� we write �S hv� �� ti� F 	 ��
��
�

� �S� hv��

��� t�i� F �	�

Proposition 	 If �S hv� �� ti� F 	 	�
�
�
�S� hv�� ���

t�i� F �	 then ��lfpv� F � � lfp
v�

��
F � where � stands ei�

ther for � or v�� �

Abstractions are usually speci�ed by successive com�
positions�

Proposition 	� If �S hv� �� ti� F 	 	���
���S� hv�� ���

t�i� F �	 and �S� hv�� ��� t�i� F �	 	���
�� �S�� hv��� ����

t��i� F ��	 then �S hv� �� ti� F 	 	�� ����
���S�� hv��� ����
t��i� F ��	 where �� �respectively ��� stands either for
� �resp� �� or v� �resp� v���� �

De�nition 
� �Inductive de�nition abstrac�

tion� If 
 � hU� �� �� ti and 
� � hU �� �
�
� ���

t�i then we write 
 	�
�
�


� for ���U� hv� �� ti� �	

	�
�
�
���U �� hv�� ��� t�i� ��	 where v and v� are the

partial orderings respectively induced by t and t� and
� stands either for � or v��
If moreover ��U� hvi 	�

�

� ��U �� hv�i then we write


��
��
�

� 
�� �

Corollary 
� If 
 	�
�
�


� then ��j
j� � j
�j where
� stands either for � or v�� �

Example 
� �Disjoined bi�inductive de�nition�
A positive inductive de�nition 
� � hU�� ��i� and a
negative one 
� � hU�� ��i� such that U� � U� � �
can be combined into a system of inductive de�nitions

 � h � U � �� �� ti where  � f�� �g� U � U� �

U�� � �
n
hP� �i
c
��

��� Pc � ��
o
�
n
h�� P i
c
��

��� Pc � ��
o
� � �

h�� U�i and ti�ShXi� Yii � h�i�SXi� �i�SYii� They
can also be combined into a disjoined bi�inductive def�
inition 
� � hU�� U�� �� � ��i� The bijection
is established by ��hX� Y i� � X � Y and ��X� �
hX � U�� X � U�i� so that by propositions �� and
��� we have j
�j � j
�j � j
�j � ��j
j� �

A simple way to abstract inductive de�nitions is to
use an abstraction of subsets of the universe�

Proposition 
� Let 
 � hU� �� �� ti be a mono�
tonic inductive de�nition on a cpo ��U�hv� �� ti�
��U ��hv�� t�i be a partial order and � � ��U� �	

��U �� be a complete t�morphism �for all sets f�
�
j

� � �g� � � Ord� and a complete ��morphism such
that�

�P
c
� � � �X � U � ��P � � ��X��

�P
�

c�
� � � P � � X � ��fcg� � ��fc�g�

��
�

De�ne ��
def
�
n

��P �
c�

��� Pc � � � c� � ��fcg�
o
and ��

def
�

����� Then 
�
def
� h��U�� ��� ��� t�i is a well formed

inductive de�nition such that 
 	�
���


�� If moreover
��U�hv� �� �� t� ui is a complete lattice then 
��

����

�


� where � � ��U �� �	 ��U� is ��Y � � tfX � U j
��X� v� Y g� �


�



This notion of abstraction can be used to show the
equivalence of inductive de�nitions�

Example 
	 �Maximal execution traces IV� In
example �� we have characterized the execution traces
T
� of a transition system T � hS� Act � f �

�	 j � �
Actg� Initi by a negative inductive de�nition 
� �
h�
�� ��� �
�� �i where �� is speci�ed by schema
���� and ���
�� h�� �
�� �i is the induced cpo� In
example � we have characterized T
� by a disjoined
inductive de�nition 
� � h���� ��� ��i� where �� is
speci�ed by schemata ���� and ���� and ���
�� hv��
��� t�i is the induced cpo�
In order to relate them� we observe that they are

abstractions of a common ground semantics�

��
� � �� � �� hv� �� ti� �	 ����

such that hX� �i v hX �� ��i
def
� �X v� X �� � �� � ����

�
def
� h��� �i� tihXi� �ii

def
� ht�i Xi� max i�ii where

the set � of natural numbers is the supremum of the
set � � � � � � f�g and ��hX� �i� � h���X�� � � �i
with � � � � ��

We have ��
� � �� � �� hv� �� ti� �	 ��
�����

��

��
� hv�� ��� t�i� ��	 where ���hX� �i� � X and
���X� � hX� �i� By proposition �� it follows that

���lfpv� �� � lfp
v�

��
�� � j
�j�

We also have the correspondence ��
� � �� �

�� hv� �� ti� �	 	�����
��
� h�� �
�� �i� ��	 where

���hX� �i� �X���m
�T
�m� and �m
�T

�m has been
de�ned at example �� for � � � and is equal to � when
� � �� By proposition �� ���lfpv� �� � lfp

�

���
�� �

j
�j� �

Abstraction can also be used to relate de�nitions of the
semantics of languages described at di#erent levels of
details�

Example 

 �Erratic� demoniac and angelic re�
lational semantics of transition systems�
� The erratic relational semantics is obtained by ab�
straction of T
� as characterized by the disjoined in�
ductive de�nition 
� � h���� ��� ��i� of example
�� where �� is speci�ed by schemata ���� and ����
and ��U� hv�� ��� t�i �where U � �
�� is the in�
duced cpo� The �nite traces are approximated by the
pair of their initial and �nal states and the in�nite
ones by their initial state together with � denoting

non�termination� Let us de�ne U �� def
� S�S� U �� def

�

S � f�g where � �� S and U � def
� U �� � U ��� By

propositions ���� and ��� ��U �� hv�� ��� ��� t�� u�i
is a complete lattice� where�

����r�
def
� r � �S � S� ����

����r�
def
� r � �S � f�g� ����

t v� r
def
� �����t� � ����r�	 �

�����t� � ����r�	
����

�� def
� S � f�g ����

t�iri
def
� �i�

���ri� � �i�
���ri� ����

The approximation can be formalized by the erratic
abstraction �� � ��U� hv�i �	 ��U �� hv�i such that�

���X� � fh�� j	j��i j  � X � ���g
� fh�� �i j  � X � ��g

����

Let 
� � hU �� ��� ��� t�i be the inductive de�nition
such that the abstract rules instances �� are given
by the following schemata �where s� s� � S and x �
S � f�g��

s�	�

hs� si � T �
�

s �
�	 s� � hs�� xi � T �

hs� xi � T �
� ����

Then proposition �� implies 
� ��
�����

��

� since

�����i Xi� � ��i�
��Xi�� �

��t�i Xi� � t�i�
��Xi�� prop�

erty ��
� holds� ������ � �� and ���U� � U ��
� The angelic relational semantics is obtained by ab�
straction of �nite traces by the pair of their initial
and �nal states while in�nite ones are simply ignored�
This can be formalized by U � � S�S and the angelic
abstraction�

��U �� hv�i 	�
�

�
��U �� h�i ���

such that�

���X� � X � U � ��
�

���X� � X ����

Let 
� � hU �� ��� �� �i be the inductive de�nition
such that the abstract rules instances �� are given by
the following schemata �where s� s�� s�� � S��

s�	�

hs� si � T �
�

s �
�	 s� � hs�� s��i � T �

hs� s��i � T �
� ����

Then proposition �� implies 
� ��
����

�

� since � is a

complete ��morphism� property ��
� holds� ���U �� �
U � and ������ � �� � �� By proposition �
� we con�

clude 
� ��
�������

����

��

� The demoniac relational semantics is obtained by
abstraction of T
� as characterized by the negative
inductive de�nition 
� � h�
�� ��� �
�� �i of ex�
ample �� where �� is speci�ed by schema ���� and
���
�� h�� �
�� �i is the induced cpo� Finite traces
are approximated by the pair of their initial and ��
nal states and the in�nite ones by their initial state
together with � denoting non�termination as well as
any state so as to represent demoniac termination� Let
us de�ne the demoniac abstraction �� � ���
�� h�i
�	 ��U �� h�i where U � � S � �S � f�g� such that�

���X� � fh�� j	j��i j  � X � ���g �
fh�� xi j  � X � �� � x � S � f�gg

����


�



Let 
� � hU �� ��� U �� �i be the negative inductive
de�nition such that the abstract rules instances �� are
given by the following schemata �where s� s�� s�� � S
and x � S � f�g��

s�	�

hs� si � T �
�

s �
�	 s� � hs�� s��i � T �

hs� s��i � T �
� ����

s �
�	 s� � �y � S � f�g � hs�� yi � T �

hs� xi � T �
� ����

Then proposition �� implies 
� 	�
����


�� Then rule
schema ���� can be simpli�ed into�

s �
�	 s� � hs�� �i � T �

hs� xi � T �
� ����

since � � T � implies �y � S � f�g � y � T �� �

By further abstractions one can derive powerdomains
based state transformation semantics ��	�

� G�SOS

We now introduce G�SOS� a generalization of SOS
�G� Plotkin�s structured operational semantics ��	�
using the above rule�based systems of trans�nitely it�
erated inductive de�nitions� G�SOS enables us to
describe the �nite� as well as the in�nite executions
of programs� The nature of the �nitary or in�nitary
objects representing terminating and non�terminating
program executions is not �xed and depends upon the
considered language� For example we have de�ned the
G�SOS semantics of ��calculi ���	 using judgements
�  E � � �expression E evaluates to � in environ�
ment �� and �  E � � �evaluation of expression
E does not terminate in environment ��� K� Apt and
G� Plotkin�s nondeterministic language ��	 using maxi�
mal �nite and in�nite execution traces and R� Milner�s
CCS using in�nite synchronization trees ���	 and par�
tial orders ���	 with in�nite chains��

Example 
� �Trace semantics of while loops�
In order to de�ne the operational trace semantics of
an imperative language� let � � $ be an environment
�recording the values of identi�ers�� c � C be a com�
mand� s � S � �$�C��$ be a state written �  c or ��
U� � ��� be the set of �nite traces� U� � �� be the
set of in�nite traces and U � �
� � ��� ��� be the
set of traces over states S and actions C� For short as�
sume that the evaluation of a boolean expression b � B
in environment � always terminates without error and
yields a boolean value B��b		�� If  � �
� and c � C�
de�ne �� c by ��� c � �  c� ��  c��� c� � �  �c� c��
and � �

�	 ���� c � ��� c� �
�	 ���� c�� The trace

�These examples
 as others
 are omitted for lack of space�

semantics of the while loop w � while b do c is the set
T ��w		��	� �
� de�ned by the following rule schemata�
� Execution of the while loop w terminates immedi�
ately when the test b evaluates to false�

�B��b		�

�  w b
�	 � � T ��w		��	

� ����

� A terminating or non�terminating execution of the
while loop starts with a �rst step �  w b

�	 �  c�w
to evaluate the test b to true followed by an execution
�  c �

�	  ��
�	 �� of the loop body c �where control

states memorize the fact that further iterations of w
may be necessary� ��  c �

�	  ��
�	 ����� w� followed

by the remaining iterations ��  w ���
�	 ��

B��b		� � �  c �
�	  ��

�	 �� � T ��c		��	
� ��  w ���

�	 � � T ��w		���	

�  w b
�	 �  c�w �

�	 ��� w� ��
�	 ��  w ���

�	 �

� T ��w		��	

�

����
� Execution of the while loop may also not terminate
when the test b is true and execution of the body c
never terminates�

B��b		� � �  c �
�	  � T ��c		��	

�  w b
�	 �  c�w �

�	 ��� w� � T ��w		��	
� ���

Observe that we proceed by syntactic induction on
the well�founded ordering c � c� i# c is a syntactic
component of c�� For example in rule schema �����
c � w � while b do c� In the instances of rule
���� corresponding to �nite execution traces� we use
induction on the length of execution traces� execution
of w in environment �� takes strictly less steps than
its execution in environment �� This can also be un�
derstood as action induction ���	� an induction upon
the depth of the inference by which �  w b

�	 �  
c�w �

�	 ��� w� ��
�	 ��  w ���

�	 � is inferred� It is
a sound principle just because lengths of �nite execu�
tions ordered by � are well�founded� This argument is
no longer valid in the instance of rule ���� for in�nite
execution traces since non�terminating executions of
w in environments �� and � both take in�nitely many
steps� This shows that negative rules are useful to
provide a direct description of non�termination� �

Denotational semantics ���	 has several important ad�
vantages over traditional operational semantics�
��� The semantics of programs is given in terms of

mathematical models �domain theory ���	��
��� Denotations are de�ned by induction on the ab�

stract syntax of programs�
��� Finite and in�nite program behaviors are handled

in the same way �using �xpoints��
SOS copes with point ��� but not ���� One can de�ne
a big�steps SOS semantics where only error�free� ter�
minating behaviors of programs are described� Alter�
natively� one can de�ne a small�steps semantics where


�



non�terminating executions have to be described us�
ing another formalism such as execution traces �see
��	�� Both approaches are incomplete since the �rst
describes the !good" cases and leaves out the !bad"
ones while the second provides a microscopic view of
a macroscopic process� Using both approaches simul�
taneously implies a lot of work to relate them� and
this has to be done again and again for each language
��	� G�SOS can cope with terminating and non�
terminating executions whence the pre�x G� added
to SOS indicating the generalization to in�nite be�
haviors� The correct handling of non�termination is
necessary� for example to de�ne fair executions of par�
allel processes or to serve as a ground semantics for
the inference of liveness properties of programs by ab�
stract interpretation such as strictness analysis� This
abstraction process can also be used to de�ne more
abstract semantics as shown by the following�

Example 
� �Relational semantics of while
loops� To obtain the big�step semantics of commands�
we de�ne an abstraction � � ���
�� �	 ��$�$�� by

��fi j i �  g�
def
� f��i� j i �  g where $�

def
� $ �

f�g� � � �
� �	 $�$� is given by ���  c ��
�	  ���

�	

���
def
� h�� ��i for �nite traces and by ���  c ��

�	 �
def
� h�� �i for in�nite traces� The relational semantics

of c � C is then R��c		 � ��fT ��c		��	 j � � $g�� We
write �  c� �� for h�� ��i � R��c		� The natural se�
mantics ��	 of commands is R��c		���� since it only
deals with terminating executions� By proposition ��
applied to ����� ����� ���� it is de�ned for the while
loop w � while b do c by the following rule schemata�

�B��b		�

�  w � �
�

B��b		� �
�  c� �� � ��  w � ���

�  w � ���
� ��
�

Using G�SOS� non�termination can be expressed di�
rectly�

B��b		� �
�  c� �

�  w � �
�

B��b		� �
�  c� �� � ��  w � �

�  w � �
� ����

�

Example 
 �G�SOS semantics of the nonde�
terministic choice� To illustrate fairness� let us con�
sider the simple case of the nondeterministic choice
operator �c� c�	�
� With Plotkin�s erratic semantics� termination or
non�termination of �c� E c�	 is possible whenever that
of c� or c� is possible�

�  c� � ��

�  �c� E c�	� ��
�

�  c� � ���

�  �c� E c�	� ���
� ����

�  c� � �

�  �c� E c�	� �
�

�  c� � �

�  �c� E c�	� �
� ����

� With Hoare�s fair angelic semantics� termination is
possible when execution of c� or that of c� may termi�
nate whereas non�termination of �c� A c�	 requires that
both c� and c� cannot terminate�

�  c� � ��

�  �c� A c�	� ��
�

�  c� � ���

�  �c� A c�	� ���
� ����

�  c� � � � �  c� �� ��

� �  c� � � � �  c� �� ���

�  �c� A c�	� �
� ����

�As pointed out by M� Broy� if �  c� � �� �  c� � ��
�  c� � � and �  c� � � then �  �c� A c�	 � ��
�  �c� A c�	 � � but �  �c� A c�	 � � is not true�
a miracle since �c� A c�	 must be able to avoid non�
termination in the erratic behavior of both c� and c�%�
� With McCarthy�s fair parallel semantics� non�
termination is possible when both executions of c� and
c� may not terminate�

�  c� � ��

�  �c� P c�	� ��
�

�  c� � ���

�  �c� P c�	� ���
� ����

�  c� � � � �  c� � �

�  �c� P c�	� �
�

� With Smyth�s unfair demoniac semantics� termina�
tion of �c� D c�	 is possible only when both that of c�
and c� are guaranteed whereas non�termination is pos�
sible whenever that of c� or c� is possible�

�  c� � �� � �  c� �� � � �  c� �� �

�  �c� D c�	� ��
� ����

�  c� � ��� � �  c� �� � � �  c� �� �

�  �c� D c�	� ���
� ����

�  c� � �

�  �c� D c�	� �
�

�  c� � �

�  �c� D c�	� �
� ���

� With the unfair� &a la Prolog� left to right semantics�
termination of �c� lr c�	 is possible when that of c� is
possible or when c� cannot diverge and c� may ter�
minate� Non�termination of �c� lr c�	 is possible when
that of c� is possible or when c� cannot diverge but c�
can�

�  c� � ��

�  �c� lr c�	� ��
�

�  c� �� � � �  c� � ���

�  �c� lr c�	� ���
�

��
�
�  c� � �

�  �c� lr c�	� �
�

�  c� �� � � �  c� � �

�  �c� lr c�	� �
�

����
In rule schemata ���� to ����� the use of negations is
sound since c� � �c� c�	 and c� � �c� c�	� �

This last example illustrates the semantical composi�

tionality property� we can change the semantics of
the nondeterministic choice command without hav�
ing to change the semantics of other �while� if� � � � �


�



�sub�commands� In denotational semantics� one will
have to use Plotkin� Hoare� Smyth� � � �powerdomains
���	 to describe the behavior of the choice command�
By doing so one will have to change the ordering used
for computing �xpoints� hence potentially the seman�
tics of other commands �such as while loops or re�
cursion�� More generally� semantical compositionality
requires that the speci�cation of the whole should be
done without interfering with the speci�cation of the
components�
As a last abstraction� let us consider predicate trans�

formers�

Example 
� �Predicate transformers� The pred�
icate transformer of command c � C is wp��c		 �
��R��c		� where the abstraction � � ��$ � $�� �	
���$� �	 ��$�� is de�ned by ��R� � �P�f� j ���� �
P � h�� ��i � R� � ���� � h�� ��i � R � �� �
P � � �h�� �i �� R�g� Since R��c		 ��� �� proposition ��
applied to ��
� and ���� yields the following de�nition
of wp��w		 where w � while b do c�

B��b		� �
� � P

� � wp��w		�P �
�

B��b		� � � � wp��c		�Q�
� Q � wp��w		�P �

� � wp��w		�P �
� ����

�

Further abstractions would perfect the lattice of ab�
stract interpretations considered in ���	� Abstract in�
terpretation was �rst introduced using transition sys�
tems ��	 that is an operational semantics� Mycroft ���	�
followed by Nielson ���	� advocated using denotational
instead of operational base semantics� We think that
G�SOS is better suited for designing ground seman�
tics from which other� more abstract or approximate�
semantics can be derived� In particular denotational
semantics� which are abstract interpretations of oper�
ational behaviors� can be understood as intermediate
steps in the approximation process�
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