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Abstract
Proof, verification and analysis methods for termination all rely on two
induction principles: (1) a variant function or induction on data ensuring
progress towards the end and (2) some form of induction on the program
structure.

The abstract interpretation design principle is first illustrated for the
design of new forward and backward proof, verification and analysis
methods for safety. The safety collecting semantics defining the strongest
safety property of programs is first expressed in a constructive fixpoint
form. Safety proof and checking/verification methods then immediately
follow by fixpoint induction. Static analysis of abstract safety properties
such as invariance are constructively designed by fixpoint abstraction
(or approximation) to (automatically) infer safety properties. So far, no
such clear design principle did exist for termination so that the existing
approaches are scattered and largely not comparable with each other.

For (1), we show that this design principle applies equally well to po-
tential and definite termination. The trace-based termination collecting
semantics is given a fixpoint definition. Its abstraction yields a fixpoint
definition of the best variant function. By further abstraction of this best
variant function, we derive the Floyd/Turing termination proof method
as well as new static analysis methods to effectively compute approxima-
tions of this best variant function.

For (2), we introduce a generalization of the syntactic notion of struc-
tural induction (as found in Hoare logic) into a semantic structural induc-
tion based on the new semantic concept of inductive trace cover covering
execution traces by segments, a new basis for formulating program prop-
erties. Its abstractions allow for generalized recursive proof, verification
and static analysis methods by induction on both program structure, con-
trol, and data. Examples of particular instances include Floyd’s handling
of loop cut-points as well as nested loops, Burstall’s intermittent asser-
tion total correctness proof method, and Podelski-Rybalchenko transition
invariants.
Categories and Subject Descriptors D.2.4 [Software/Program
Verification]; D.3.1 [Formal Definitions and Theory]; F.3.1 [Spec-
ifying and Verifying and Reasoning about Programs].
General Terms Languages, Reliability, Security, Theory, Verifica-
tion.
Keywords Abstract Interpretation, Induction, Proof, Safety, Static
analysis, Variant function, Verification, Termination.

1. Introduction
Floyd/Turing program proof methods for invariance and termination
[24, 40, 59] have inspired most sound static analysis methods.

For static invariance analysis by abstract interpretation [19,
21], a key step is to express the strongest invariant as a fixpoint
and next to approximate this strongest invariant to automatically
infer an abstract inductive invariant using the constructive fixpoint
approximation methods.

For static termination analysis, the discovery of variant functions
is either decidable in limited cases [54] or else is based on the
Floyd/Turing idea of variant functions into well-founded sets
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obtained by observing quantities that strictly decrease within loops
while remaining lower-bounded, or dually. So most termination
analysis methods indirectly reduce to a relational invariance analysis
hence can reuse classical static analysis methods.

The abstract interpretation design principle is instantiated with
suitable abstractions for safety and termination analysis, proof,
and checking/verification (either potential termination or definite
termination for nondeterministic systems).

The first main idea for termination is that there exists a most
precise variant function that can be expressed in fixpoint form by
abstract interpretation of a termination collecting semantics itself
abstracting the program operational trace semantics. This yields new
static analysis methods automatically inferring abstractions of that
variant function by the constructive fixpoint approximation methods
of abstract interpretation.

The second main idea introduced in this paper both for safety
and termination is that of semantic structural induction, including
termination proofs, over trace segment covers and their abstractions.
Trace segments are more powerful than binary relations between
states which have been used traditionally in program termination
proofs (for example, the transition invariants used in [53] are binary
relation abstractions of the set of trace segments). Examples include
structural induction on the program syntax (including loop invariants
à la Floyd [40]), induction on data, à la Burstall [3], the covering
of the transition relation closure by well-founded relations, à la
Podelski-Rybalchenko [53], their combinations and generalizations.

2. Fixpoints, fixpoint induction, abstraction, and
approximation

We express semantics as fixpoints of maps f ∈ A 7→ A i.e. elements
x ∈ A such that x = f (x). We let lfpva f be the least fixpoint of
f ∈ A 7→ A on the poset 〈A, v〉 greater than or equal to a ∈ A, if
any. The dual notion is that of greatest fixpoint gfpva f . We write
lfpv f if a is the infimum of A, and lfp f if the partial order v is
clear from the context. By Tarski/Pataria’s fixpoint theorem [50, 58],
lfpva f =

d{P ∈ A | a v P ∧ f (P) v P} exists for f increasing1

on a complete lattice 〈A, v, a, >, t, u〉 2 or on a cpo 〈A, v, a,
t〉 3. The fixpoint iterates are f 0 , a, ∀n ∈ N : f n+1 = f ( f n),
f ω , ⊔

n∈N f n which is lfpva f when a v f (a) is a pre-fixpoint and f
is continuous4 ,5 ,6. If f is increasing but not continuous, transfinite
iterations may have to be used [22].

1 f ∈ A 7→ A is increasing (also monotone, isotone, ...) on a poset 〈A, v〉 if
and only if ∀x, y ∈ A : (x v y) =⇒ ( f (x) v f (y)) [36].
2 A complete lattice 〈A, v, ⊥, >, t, u〉 is a poset s. t. any subset has a least
upper bound (lub) t, hence a greatest lower bound (glb) u, ⊥ = t∅, > = u∅.
3 A complete partial order (cpo) 〈A, v, ⊥, t〉 is a poset 〈A, v〉 such that
any increasing chain C ⊆ A such that ∀x, y ∈ C : x v y ∨ y v x has a least
upper bound (lub) tC, hence has an infimum ⊥ = t∅ for the empty chain.
4 f ∈ A 7→ A is continuous on a poset 〈A, v, t〉 if and only if for all
increasing chains C ∈ ℘(A) such that its lub tC does exist then the lub
t f [C ] exists and is such that t f [C ] = f (tC).
5 ℘(X) or 2X is the powerset of X i.e. the set of all subsets of a set X.
6 The post-image (or image) of X ∈ ℘(A) by a map f ∈ A 7→ B is
f [X] , { f (x) | x ∈ X} ∈ ℘(B).
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Fixpoint induction follows immediately as a sound (⇐=) and
complete (=⇒) proof method since for all S ∈ A,

lfpva f v S ⇐⇒ ∃P ∈ A : a v P ∧ f (P) v P ∧ P v S .

S is called a specification or invariant and P is an inductive invariant.
The idea is that to prove an invariant S , one has to check (in
checking/verification methods), to guess (in proof methods) or to
compute (in analysis methods) a stronger inductive invariant P.

Following [19, 21], abstraction is formalized by Galois connec-
tions7 〈A, v〉 −−−→←−−−α

γ 〈B, �〉 between posets 〈A, v〉 and 〈B, �〉meaning
that α ∈ A 7→ B, γ ∈ B 7→ A and ∀x ∈ A : ∀y ∈ B : α(x) � y ⇐⇒
x v γ(y). We write 〈A, v〉 −−−→−→←−−−−α

γ 〈B, �〉 when the abstraction α is

surjective (hence the concretization γ is injective), 〈A, v〉 −−−−→←←−−−−α
γ 〈B,

�〉 when α is injective (hence γ is surjective), and 〈A, v〉 −−−→−→←←−−−−α
γ 〈B,

�〉 when α is bijective.
Given a concrete fixpoint characterization lfpva f of program

properties on complete lattices or cpos 〈A, v〉 with a v f (a) and
an abstraction 〈A, v〉 −−−→←−−−α

γ 〈B, �〉, the sufficient commutation

condition α ◦ f = f ◦ α (respectively semi-commutation condition
α ◦ f �̇ f ◦ α)8 implies the fixpoint abstraction α(lfpva f ) =

lfp�α(a) f (resp. fixpoint approximation α(lfpva f ) � lfp�α(a) f ) [21]. The
[semi-]commutation condition can be restricted to the iterates of
f from a or to the elements of A which are v-less that or equal to
lfpva f . The result also holds when α is continuous [13]. In absence
of existence of a best abstraction, similar results can be obtained
using only one of the abstraction or concretization functions [26].

3. Transition semantics
We consider a programming language with nondeterministic pro-
grams P. The set of all states of P is ΣJPK. The transition relation
τJPK ∈ ℘(ΣJPK × ΣJPK) describes the possible transitions between
a state and its immediate successor states during program execu-
tion [11, 21]. The program small-step operational semantics is the
transition system 〈ΣJPK, τJPK〉. When restricting to initial states
IJPK ∈ ℘(ΣJPK), we write 〈ΣJPK, IJPK, τJPK〉. The termination/block-
ing states are βτJPK , {

s ∈ ΣJPK | ∀s′ ∈ ΣJPK : 〈s, s′〉 < τJPK}. For
brevity we write X for XJPK e.g. 〈Σ, τ〉, 〈Σ, I, τ〉, or βτ.

4. Trace semantics
4.1 Traces
We let Σn (Σ0 , ∅), Σ+ =

⋃
n∈N Σn, Σ∗ , Σ+ ∪ {ε}, Σ∞, Σ+∞ ,

Σ+ ∪ Σ∞, and Σ∗∞ , Σ∗ ∪ Σ∞ be the set of all finite traces of length
n ∈ N , non-empty finite, finite, infinite, non-empty finite or infinite,
and finite or infinite traces over the states Σ where ε is the empty
trace.

We define the following operations on traces, writing |σ| for the
length of the trace σ ∈ Σ+∞, σ[n,m], 0 6 n 6 m for the subtrace
σn, σn+1, . . . , σmin(m,|σ|−1) of σ, and σσ′ for the concatenation of
σ,σ′ ∈ Σ∗∞ (with σε = εσ = σ and σσ′ = σ when σ ∈ Σ∞).

We define the following operations on sets of traces writing S
for the set of traces {σ ∈ Σ1 | σ0 ∈ S } made of one state of S ∈ ℘(Σ)
(for example, the termination states βτ , {s ∈ Σ | ∀s′ ∈ Σ : 〈s,
s′〉 < τ} can also be understood as traces of length one {σ ∈ Σ1 |
∀s ∈ Σ : 〈σ0, s〉 < τ}), t for the set of traces {σ ∈ Σ2 | 〈σ0,
σ1〉 ∈ t} made of two consecutive states of the relation t ∈ ℘(Σ × Σ),
T + , T ∩ Σ+ for the selection of the non-empty finite traces of
T ∈ ℘(Σ∗∞), T∞ , T ∩ Σ∞ for the selection of the infinite traces of

7 [21] also introduced formalizations of abstraction using closure operators,
ideals, congruences, etc. and showed all of them to be equivalent to Galois
connections.
8 v̇ is the pointwise extension of a partial order v to maps f v̇ g , ∀x :
f (x) v g(x).

T , TT ′ , {σσ′ | σ ∈ T ∧ σ′ ∈ T ′} for the concatenation of sets of
traces, and T # T ′ , {σsσ′ | s ∈ Σ ∧ σs ∈ T ∧ sσ′ ∈ T ′} for the
sequencing of sets of traces T,T ′ ∈ ℘(Σ∗∞).

4.2 Partial and complete /maximal trace semantics
The partial trace semantics Θ+∞JPK ∈ ℘(Σ+∞JPK) of a program P is
a set of non-empty execution traces. In particular, the partial trace
semantics generated by a transition system 〈Σ, τ〉 is τ+̈∞JPK such
that9

τ n̈JPK ,
{
σ ∈ Σn

∣∣∣ ∀i ∈ [0, n − 1) : 〈σi, σi+1〉 ∈ τJPK
}
, n > 0

τ∞JPK ,
{
σ ∈ Σ∞

∣∣∣ ∀i ∈ N : 〈σi, σi+1〉 ∈ τJPK
}

τ+̈JPK ,
⋃

n>0

τ n̈JPK, τ+̈∞JPK , τ+̈JPK ∪ τ∞JPK .

The complete or maximal trace semantics τnJPK , αM(τ n̈JPK),
τ+JPK = αM(τ+̈JPK) and τ+∞JPK , αM(τ+̈∞JPK) are obtained by

the abstraction 〈℘(Σ+∞), ⊆〉 −−−−→−→←−−−−−−
αM

γM

〈℘(Σ+∞), ⊆〉 where

αM(T ) ,
⋃

n∈N

{
σ ∈ T ∩ Σn

∣∣∣ σn−1 ∈ βτJPK
}
∪ T∞

eliminates those finite partial computations that are not terminated.

4.3 Fixpoint trace semantics
The partial trace semantics of a program P can be given in fixpoint
form [28].

τ+̈JPK = lfp⊆∅ φ
←− +̈

τ JPK = lfp⊆∅
−→
φ +̈

τ JPK, τ∞JPK = gfp⊆Σ∞ φ
←− ∞

τ JPK
τ+̈∞JPK = lfp⊆∅ φ

←− +̈
τ JPK ∪ gfp⊆Σ∞ φ

←− ∞
τ JPK = lfpvΣ∞ φ

←− +̈∞
τ JPK

φ
←− +̈

τ JPKT , Σ1 ∪ τJPK # T −→
φ +̈

τ JPKT , Σ1 ∪ T # τJPK
φ
←− ∞

τ JPKT , τJPK # T φ
←− +̈∞

τ JPKT , Σ1 t τJPK # T

where 〈℘(Σ∗∞), v, Σ∞, Σ∗, t, u〉 is a complete lattice for the
computational order (T1 v T2) , (T +

1 ⊆ T +
2 ) ∧ (T∞1 ⊇ T∞2 ) and

(T1 t T2) , (T +
1 ∪ T +

2 ) ∪ (T∞1 ∩ T∞2 ). The fixpoint complete trace
semantics of a program P is calculated by abstraction with αM .

τ+∞JPK = lfp⊆∅ φ
←− +

τ JPK ∪ gfp⊆Σ∞ φ
←− ∞

τ JPK = lfpvΣ∞ φ
←− +∞

τ JPK where

φ
←− +

τ JPKT , βτJPK ∪ τJPK # T, and φ
←− +∞

τ JPKT , βτJPK t τJPK # T .

5. Properties
Following [19, 21], properties are represented by the set of elements
which have these properties. So the properties of programs which
semantics are sets of traces in ℘(Σ+∞) are sets of sets of traces in
℘(℘(Σ+∞)).

The collecting semantics
{
Θ+∞JPK} ∈ ℘(℘(Σ+∞)) is the strongest

program property10 of a program with trace semantics Θ+∞JPK.
The trace property abstraction of program properties is 〈℘(℘(Σ+∞)),

⊆〉 −−−−→←−−−−αΘ

γΘ 〈℘(Σ+∞), ⊆〉 such that

αΘ(P) ,
⋃

P and γΘ(Q) , ℘(Q) .

The traditional safety/liveness program properties are relative
to the trace property abstraction of the collecting semantics
αΘ

({Θ+∞JPK}) = Θ+∞JPK ∈ ℘(Σ+∞).
Some program properties are not trace properties [5]. An exam-

ple is “all program executions are deterministic” which is
{{σ}

∣∣∣

9 [n,m] , {n, n + 1, . . . ,m} is the closed interval, ∅ when m < n, while [n,
m) , {n, n + 1, . . . ,m − 1} is left closed and right opened, ∅ when m 6 n.
10 strongest in that the collecting semantics implies all other program
properties (where logical implication A =⇒ B is interpreted as A ⊆ B).
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σ ∈ Σ+∞} ∈ ℘(℘(Σ+∞)) 11. The corresponding trace property abstrac-
tion is αΘ(

{{σ}
∣∣∣ σ ∈ Σ+∞}) = Σ+∞ ∈ ℘(Σ+∞) which would allow

any non-deterministic behavior so that determinism in the concrete
domain ℘(℘(Σ+∞)) is completely lost in the abstract domain ℘(Σ+∞).

For safety and termination and from now on, we only have to
consider trace properties, which form a complete Boolean lattice
〈℘(Σ+∞), ⊆, ∅, Σ+∞, ∪, ∩, ¬〉 where the partial order ⊆ is logical
implication and the complement is ¬X , Σ+∞ \ X 12.

6. Safety trace semantics
We now illustrate the classical abstract interpretation framework by
generalizing invariance verification and static analysis to arbitrary
safety properties. Safety properties are abstractions of program trace
properties (essentially forgetting about liveness properties).

6.1 Safety abstraction
The prefix abstraction of a set T of traces is the topological closure13

pf(σ) , {
σ′ ∈ Σ+∞ ∣∣∣ ∃σ′′ ∈ Σ∗∞ : σ = σ′σ′′

}

pf(T ) ,
⋃{

pf(σ)
∣∣∣ σ ∈ T

}
.

The prefix abstraction expresses the fact that program executions
can only be observed for a finite period of time (∀T : ε < pf(T )).

The limit abstraction of a set of traces is the topological closure

lm(T ) , T ∪ {
σ ∈ Σ∞ | ∀n ∈ N : σ[0, n] ∈ T

}
.

The limit abstraction expresses the fact that when observing program
executions for finite periods of time it is impossible to distinguish
between non-terminating and unbounded finite executions.

The safety abstraction of a set of traces is the topological closure
sf , lm ◦ pf = pf ◦ lm ◦ pf .

The safety abstraction provides the strongest program property
resulting from finite observations of program executions (excluding
the observation of infinite executions).

(Topological) closures ρ ∈ A 7→ A on a poset 〈A, 6〉 are abstrac-
tions14 〈A, 6〉 −−−−→−→←−−−−−

ρ

1A 〈ρ[A], 6〉.
6.2 Safety trace properties
The safety trace properties are

SF , sf[℘(Σ+∞)] =
{
sf(P) | P ∈℘(Σ+∞)

}
=

{
P ∈℘(Σ+∞) | sf(P) = P

}
.

We have the Galois isomorphism

〈SF, ⊆〉 −−−−→−→←←−−−−−
pf+

lm 〈pf+[℘(Σ+)], ⊆〉
where pf+(T ) = pf(T )+ and so safety trace properties can equiva-
lently be represented by their finite prefixes in Sect. 6.4 and 6.5.

6.3 Safety semantics
The safety semantics of a program P is its strongest safety property

τsfJPK , sf(τ+̈∞JPK) ' pf+ ◦ sf(τ+̈∞JPK) .

6.4 Fixpoint safety semantics
It follows, by fixpoint abstraction, that the safety semantics of a
program P with operational semantics 〈Σ, τ〉 is

11 Assuming inputs, if any, to be part of the states.
12 X \ Y , {x ∈ X | x < Y} is the set difference.
13 A topological closure on a poset 〈A, 6, ∨〉 with partial-order 6 and lub
∨, if any, is a map ρ ∈ A 7→ A which is extensive ∀x ∈ A : x 6 ρ(x),
idempotent ∀x ∈ A : ρ(ρ(x)) = ρ(x), and finite lub-preserving ∀x, y ∈ A :
ρ(x∨y) = ρ(x)∨ρ(y). This implies that ρ is increasing. A closure is extensive,
idempotent, and increasing.
14 1A is the identity map (respectively relation) on the set A mapping any
element x ∈ A to itself 1A(x) = x (resp. 1A , {〈x, x〉 | x ∈ A}).

τsfJPK = lfp⊆∅
−→
φ sf

τ JPK = lfp⊆∅ φ
←− sf

τ JPK where
−→
φ sf

τ JPKT , Σ1 ∪ T # τJPK forward trace transformer

φ
←− sf

τ JPKT , Σ1 ∪ τJPK # T backward trace transformer.

6.5 Proofs in the safety trace domain
By fixpoint induction, one immediately gets new forward and
backward sound and complete safety proof methods15 generalizing
invariance [37, 40, 48, 49]. For all safety specifications S ∈ SF,
τsfJPK ⊆ S ⇐⇒ ∃P ∈ SF : Σ1 ⊆ P ∧ τJPK # P ⊆ P ∧ P ⊆ S

⇐⇒ ∃P ∈ SF : Σ1 ⊆ P ∧ P # τJPK ⊆ P ∧ P ⊆ S .

Observe that forward and backward safety semantics and proof
methods are respectively equivalent. This property is preserved by
relational abstractions in next Sect. 7, but this is not the general
case (e.g. with abstractions of Sect. 7.6). [42] is an example of static
analysis in the safety trace domain.

7. Invariance / reachability semantics
Invariance/reachability is an abstraction of safety and so invariance
proof methods are abstractions of safety proof methods.

7.1 Relational abstraction

The relational abstraction 〈SF, ⊆〉 −−−−→−→←−−−−−
αR

γR

〈℘(Σ × Σ), ⊆〉 such that

αR(T ) , { 〈σ0, σn−1〉 | n > 0 ∧ σ ∈ Σn ∩ T
}

(1)
γR(R) , {

σ ∈ Σn | n > 0 ∧ 〈σ0, σn−1〉 ∈ R
}

abstracts traces by a relation between their initial and final states (so
that intermediate computations are lost in that abstraction).

7.2 Relational invariance / reachability abstraction
Applied to a safety semantics which is prefix-closed, the relational
abstraction provides a relation between initial and current states
(where, in particular, “initial” can be any state).

The abstraction αR ◦ sf is therefore equal to the relational

reachability abstraction 〈℘(Σ+∞), ⊆〉 −−−−−→−→←−−−−−−
αR∗

γR∗

〈℘(Σ × Σ), ⊆〉 such

that
αR∗ (T ) , { 〈σ0, σi〉 | ∃n : 0 6 i < n ∧ σ ∈ Σn ∩ T

}

γR∗ (R) , {
σ ∈ Σn | n > 0 ∧ ∀i ∈ [0, n) : 〈σ0, σi〉 ∈ R

}

abstract traces by a relation between their initial and current states.

7.3 Relational invariance / reachability semantics
The relational invariance/reachability semantics of a program P is
its strongest relational reachability property

τRJPK , αR(τ+∞JPK)

τR∗JPK , αR(τ+̈∞JPK) = αR∗ (τ+∞JPK) = αR(τsfJPK) = αR∗ (τsfJPK) .

7.4 Fixpoint relational invariance / reachability semantics
The commutation condition applied to the transformer of the safety
semantics τsfJPK yields the fixpoint characterization of the relational
reachability semantics of a program P with operational semantics
〈Σ, τ〉

τR∗JPK = lfp⊆∅
−→
φ R∗

τ JPK = lfp⊆∅ φ
←− R∗

τ JPK
where16

15 In case a temporal logic is used for expressing the inductive safety invariant,
this is relative completeness subject to an expressivity hypothesis of the
temporal logic ensuring P ∈ SF to be expressible in the logic, see e.g. [10].
16 The post-image (or right-image) of X ∈ ℘(A) by a relation r ∈ ℘(A × B) is
r[X] , {y | ∃x ∈ X : 〈x, y〉 ∈ r} also written post[r]X.
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−→
φ R∗

τ JPK(R) , 1Σ ∪ R ◦ τJPK forward transformer

φ
←− R∗

τ JPK(R) , 1Σ ∪ τJPK ◦ R backward transformer.

7.5 Relational invariance / reachability proof methods
Applying fixpoint induction to the fixpoint relational reachability
semantics, we get sound and complete forward and backward
proof methods for a specification S ∈ ℘(Σ × Σ) [23], respectively
generalizing [40, 49] and [37, 48].

τR∗JPK ⊆ S ⇐⇒ ∃R ∈ ℘(Σ × Σ) : 1Σ ⊆ R ∧ R ◦ τJPK ⊆ R ∧ R ⊆ S
⇐⇒ ∃R ∈ ℘(Σ × Σ) : 1Σ ⊆ R ∧ τJPK ◦ R ⊆ R ∧ R ⊆ S .

7.6 Variations on invariance / reachability proof methods
Further abstractions yield other classical proof methods. It is pos-
sible to restrict to the initial states I ∈ ℘(Σ), 〈℘(Σ × Σ), ⊆〉 −−−→−→←−−−−−

αI

γI

〈℘(Σ × Σ), ⊆〉 where
αI(R) , {〈s, s′〉 | s ∈ I ∧ 〈s, s′〉 ∈ R} (2)

and the final states F ∈ ℘(Σ), 〈℘(Σ × Σ), ⊆〉 −−−−→−→←−−−−−
αF

γF

〈℘(Σ × Σ), ⊆〉
where

αF(R) , {〈s, s′〉 | 〈s, s′〉 ∈ R ∧ s ∈ F} . (3)

It is also possible to use an invariant so as to restrict to the reachable

states 〈℘(Σ × Σ), ⊆〉 −−−−→−→←−−−−−
αr

γr

〈℘(Σ), ⊆〉 where

αr(R) , {s′ | 〈s, s′〉 ∈ R} . (4)
Combining (2) and (4) we get forward invariance [40, 49] while (3)
and the inverse of (4) yield backward invariance (called “subgoal
induction” in [48]).

Proofs by reductio ad absurdum [23, 35] are obtained by 〈℘(Σ ×
Σ), ⊆〉 −−−→−→←−−−−

α̃

γ̃ 〈℘(Σ × Σ), ⊇〉 where α̃(R) , ¬R.

8. Termination trace collecting semantics
Our objective is now to apply the abstract interpretation methodol-
ogy of Sect. 2, as illustrated in Sect. 6—7 for the safety properties
and their invariance abstractions, to termination.

Starting from a collecting trace semantics, we define termina-
tion properties by abstraction, derive fixpoint charaterizations by
fixpoint abstraction, conceive proof and verification methods by
fixpoint induction, and design static analysis methods by fixpoint
approximation using widening [19].

8.1 Termination property
The termination property states either that all executions in the trace
semantics Θ+∞JPK of a program P must always be finite

Θ+∞JPK ⊆ Σ+JPK definite termination

or that the trace semantics Θ+∞JPK may be finite (hence must not
always be infinite)

Θ+∞JPK ∩ Σ+JPK , ∅ potential termination.

The infinite extension abstraction

αω(T ) , T ∪ {σ1σ2 ∈ Σ∞ | σ1 ∈ Σ+ ∧ (∃σ′2 ∈ Σ∞ : σ1σ
′
2 ∈ T ∨

∀σ′2 ∈ Σ∗ : σ1σ
′
2 < T )}

is a topological closure and so 〈℘(Σ+∞), ⊆〉 −−−−→−→←−−−−−
αω

γω 〈αω[℘(Σ+∞)],
⊆〉 where γω is the identity. We have

τ+∞JPK ⊆ Σ+JPK ⇐⇒ αω(τ+∞JPK) ⊆ Σ+JPK,
τ+∞JPK ∩ Σ+JPK , ∅ ⇐⇒ αω(τ+∞JPK) ∩ Σ+JPK , ∅

and so, if necessary, we only need to consider semantics closed by
αω.

8.2 Termination trace abstraction
The termination trace abstraction eliminates the program execution
traces not starting by a state from which execution may/must
terminate.

Example 1. Consider the example of the non-
deterministic program b:[ l:loop [] e:skip ]
with states {b, l, e}, transitions {〈b, l〉, 〈b, e〉, 〈l, l〉}
and complete trace semantics {be, e, bllll . . . , llll . . .}.

e
lb

8.2.1 Potential termination trace abstraction
The potential termination or may-terminate trace semantics elimi-
nates infinite traces.

Example 2. The potential termination trace semantics of program
b:[ l:loop [] e:skip ] in Ex. 1 is {be, e} since an execution start-
ing in state b may terminate (by choosing a transition to state e).

The corresponding potential termination abstraction is 〈℘(Σ+∞),

⊆〉 −−−−−→−→←−−−−−−
αmt

γmt

〈℘(Σ+), ⊆〉 and 〈℘(Σ+∞), v〉 −−−−−→−→←−−−−−−
αmt

γ
′mt

〈℘(Σ+), ⊆〉 where

αmt(T ) , T ∩ Σ+, γmt(S ) , S ∪ Σ∞ and γ
′mt(S ) , S .

The abstraction forgets about non-terminating executions. This ab-
straction corresponds to Dijkstra’s weakest liberal/angelic precondi-
tion [37]. It is considered in [11] (together with backward reachabil-
ity) to automatically compute necessary conditions for termination
(in example 1, this analysis would yield the potential termination
states {b, e} proving definite non-termination in state l).

8.2.2 Definite termination trace abstraction
The definite termination or must-terminate trace semantics elimi-
nates all traces potentially branching, through local non-determinism,
to non-termination.

Example 3. The definite termination trace semantics of program
b:[ l:loop [] e:skip ] in Ex. 1 is {e} since in state b there is a
possibility of non-termination (by choosing a transition to state
l).

A trace is in the definite termination semantics if and only if it
is finite, independently of the potential non-deterministic choices
along that trace. The corresponding definite termination abstraction
is

αMt(T ) , {σ ∈ T + | pf(σ) ∩ pf(T∞) = ∅}
αMt ∈ 〈℘(Σ+∞), v〉 ↪→→ 〈℘(Σ+), ⊆〉 is a retract17 and onto but not
continuous18. However, on the following we consider only transition
closed semantics [35] i.e. generated by a transition system (see
counter example 5).

Example 4. If T = {ab, aba, ba, bb, baω} then αmt(T ) = {ab, aba,
ba, bb} and αMt(T ) = {ab, aba} since pf(σ) ∩ pf(baω) = ∅ for
σ = ab, aba.

This abstraction corresponds to Dijkstra’s weakest/demonic
precondition that is to the definite termination analysis we are mostly
interested in for transition systems.

8.3 Termination trace semantics
The potential termination collecting semantics of a program P is
therefore defined as

17 A retract r ∈ 〈A, v〉 ↪→ 〈B, 6〉 where B ⊆ A is increasing and idempotent.
We write r ∈ 〈A, v〉 ↪→→ 〈B, 6〉 when it is onto.
18 Consider the v-increasing chain Tn , {0} ∪ {0iω | i > n}, n > 0.
We have

⊔
n>0 α

Mt(Tn) = ∅ while
⋂

n>0{0iω | i > n} = ∅ so that
αMt(

⊔
n>0 Tn) = αMt({a}) = {a}.
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τmtJPK , αmt(τ+∞JPK) potential termination semantics

while the definite termination collecting semantics of a program P
is defined as

τMtJPK , αMt(τ+∞JPK) definite termination semantics.
8.4 Fixpoint termination trace semantics
By abstraction of the fixpoint trace semantics of Sect. 4.3, the
strongest termination property of a program P with operational
semantics 〈ΣJPK, τJPK〉 and termination states βτJPK is

τmtJPK = lfp⊆∅ φ
←− mt

τ JPK potential termination

φ
←− mt

τ JPKT , βτJPK ∪ τJPK # T

τMtJPK = lfp⊆∅ φ
←− Mt

τ JPK definite termination

φ
←− Mt

τ JPKT , βτJPK ∪ (τJPK # T ∩ ¬(τJPK # ¬T ))

where the term ¬(τJPK #¬T ) eliminates potential transitions towards
non-terminating executions.
8.5 Proofs in the termination trace domain
Fixpoint induction provides formal methods to check fixpoint
over-approximations, either τmtJPK ⊆ S or τMtJPK ⊆ S . Over-
approximations yield necessary but not sufficient termination con-
ditions which may introduce spurious infinite traces for which the
proof cannot be done. The proof method is therefore useful to prove
invariance under termination assumptions19 but not for may/must
termination.

On the contrary, termination proofs require fixpoint under-
approximations S ⊆ τmtJPK or S ⊆ τMtJPK. Under-approximations
yield sufficient but not necessary termination conditions and so may
eliminate some termination cases for which the termination proof
could have been done automatically. Fixpoint under-approximation
proof methods have been proposed e.g. by [15, Sect. 11] and would
yield the requested termination proof methods. More classically, we
will favor over-approximations for static analysis.

9. Termination domain
Programs may not always potentially/definitely terminate in all
states. So one problem is to determine for which states I ∈ ℘(Σ) do
executions starting from these states may/must terminate.
9.1 Termination domain abstraction
This potential/definite termination domain semantics is provided by

the weakest precondition abstraction 〈℘(Σ+∞), ⊆〉 −−−−→←−−−−
αw

γw

〈℘(Σ), ⊆〉
of the termination trace semantics, such that

αw(T ) , {σ0 | σ ∈ T } precondition abstraction.

9.2 Termination domain semantics
τwmtJPK , αw(τmtJPK) potential termination
τwMtJPK , αw(τMtJPK) definite termination.

Using Dijkstra’s notations [37], τwmtJPK = wlpJPKtrue and τwMtJPK =
wpJPKtrue.

9.3 Fixpoint termination domain semantics
By fixpoint abstraction of the termination trace semantics in Sect. 8.4
using transformer commutation, we get Dijkstra’s fixpoint weakest
(liberal) termination precondition semantics [38]20

19 e.g. for Ex. 1, {b, e, l} is invariant, {b, e} is invariant under potential
termination hypothesis, and {e} is invariant under definite termination
hypothesis.
20 The pre-image of Y ∈ ℘(A) by a relation r ∈ ℘(A × B) is r−1[Y] , {x |
∃y ∈ Y : 〈x, y〉 ∈ r} also written pre[r]Y while ¬r−1[¬Y] , {x | ∀y : y ∈
Y =⇒ 〈x, y〉 ∈ r} is p̃re[r]Y .

τwmtJPK = lfp⊆∅
−→
φ wmt

τ JPK weakest liberal termin. precond.
−→
φ wmt

τ JPK(R) , βτJPK ∪ τJPK−1[R]

τwMtJPK = lfp⊆∅
−→
φ wMt

τ JPK weakest termination precondition
−→
φ wMt

τ JPK(R) , βτJPK ∪ (τJPK−1[R] ∩ ¬τJPK−1[¬R]) .

9.4 Proof and static analysis in the termination domain
As was the case in Sect. 8.5, fixpoint induction is useful for over-
approximations, which can be automatically inferred by static analy-
sis [11, 12]. On the contrary, termination proofs require under-
approximations [15, Sect. 11] proof methods. Although static under-
approximation analysis is possible (e.g. [34]), this is not the termi-
nation proof technique which is used in practice [38].

10. Termination proofs for the trace semantics
generated by a transition system

In practice a termination proof is decomposed in two parts. First
a necessary termination condition is found by over-approximating
τwmtJPK or τwMtJPK. Then this necessary termination condition is
shown to be sufficient by Floyd/Turing variant function method
(e.g. [17]) or inversely (e.g. [8]). This corresponds to different
abstractions, specific to the trace semantics generated by a transition
system, that we now elaborate.

10.1 Transition-based termination proofs
A program which trace semantics is generated by a transition system
〈Σ, τ〉 definitely terminates if and only if the program transition
relation is well-founded21.

τ+∞JPK ⊆ Σ+JPK ⇐⇒ 〈Σ, τ〉 is well-founded.

In practice one considers traces starting from initial states I ∈ ℘(Σ),
e.g. I is the termination domain of Sect. 9. In that case a program
which trace semantics is generated by a transition system 〈Σ, τ〉
definitely terminates for traces starting from initial states I ∈ ℘(Σ)
if and only if the program transition relation restricted to reachable
states is well-founded.

αi(I)(τ+∞JPK) ⊆ Σ+JPK ⇐⇒ 〈αr(αi(I)(τ+∞JPK)), τ〉 is well-founded

where the initialization abstraction 〈℘(Σ+∞), ⊆〉 −−−−−→←−−−−−
αi(I)

γi(I) 〈℘(Σ+∞),

⊆〉 is
αi ∈ ℘(Σ) 7→ (Σ+∞ 7→ Σ+∞) initialization abstraction

αi(I)T , {
σ ∈ T | σ0 ∈ I

}

and the reachable states abstraction 〈℘(Σ+∞), ⊆〉 −−−−→←−−−−
αr

γr

〈℘(Σ), ⊆〉
is

αr(T ) , {
s | ∃σ ∈ Σ∗, σ′ ∈ Σ∗∞ : σsσ′ ∈ T

}
reachability
abstraction.

The transition-based termination proof method is sound and com-
plete. As noticed in Sect. 9, the precondition I can be inferred au-
tomatically by static analysis. Moreover, an over-approximation
R ⊇ αr(αi(I)(τ+∞JPK)) = τJPK∗[I] 22 of the reachable states can be
computed by classical abstract interpretation algorithms [19].

21 A relation ≺ ∈ ℘(W ×W) on a setW is well-founded if and only if there
is no strictly decreasing infinite chain x0 � x1 � . . . � xn � xn+1 � . . . of
elements x0, x1, . . . , xn, xn+1, . . . ofW. 〈W, ≺〉 is called a well-founded set.
A (total) well-order is well-founded (total) strict order relation ≺. The set of
all well-founded relations in ℘(W ×W) is writtenWf(W ×W).
22 t∗ is the reflexive transitive closure of a binary relation t.
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10.2 Transition abstraction
If the program semantics Θ+∞JPK is not generated by a transition
system we might consider the transition abstraction 〈Σ, −→α (Θ+∞JPK)〉
where the transition abstraction 〈℘(Σ+∞), ⊆〉 −−−→←−−−−→α

−→γ 〈℘(Σ × Σ), ⊆〉
is
−→α (T ) , {〈s, s′〉 | ∃σ,σ′ : σss′σ′ ∈ T } transition abstraction

but the following counter-example shows that the condition is
sufficient but not necessary.

Counter-example 5. Let T , {ab, ba} be a trace semantics. The
corresponding transition relation τ , −→α (T ) = {〈a, b〉, 〈b, a〉}
generates the infinite trace abababa . . . and so the transition relation
τ restricted to the reachable states {a, b} is not well-founded.

Another counter-example is fairness [35]. In the following, we
consider complete/maximal trace semantics T that are transition
closed (also generated by a transition system) that is −→α (T ) = T or
equivalently T is closed by elimination of strict prefixes, closed by
extension by fusion, and closed by limits [35, Th. 2.6.8].

11. Variant semantics
It remains to design verification and static analysis methods to show
that 〈R, τ〉 is well-founded where

R ⊇ αr(αi(I)(τ+∞JPK)) = τJPK∗[I ]

over-approximates the reachable states. There are two important
remarks.

1. If τ ⊆ r and 〈R, r〉 is well-founded then 〈R, τ〉 is well-founded.

2. 〈R, τ〉 is well-founded if and only if there exists a variant function
ν ∈ Σ 67→W 23 into a well-founded set 〈W, ≺〉 which domain is
R 24.

So for the traces generated by a transition system, termination can
be proved by mapping invariant states to a well-founded relation
which is the principle of Floyd/Turing variant function method.

11.1 Variant function
A variant function ν ∈ Σ 67→ W is a partial function from the
set of states into a well-founded set 〈W, ≺〉 where ≺ is a well-
founded relation on the setW (and 4 is its non-strict version). With
appropriate hypotheses on states and the transition relation, the co-
domain of the variant function can be fixed a priori and the variant
function can be found by constraint solving e.g. [17, 54]. However,
these methods are not as general as Floyd/Turing’s method.

In mathematics, the ordinals provide a standard well-founded
set thanks to ranking functions mapping each element of a well-
founded set to its ordinal rank. So, up to a ranking function, the
well-founded set 〈W, ≺〉 can always be chosen as the class 〈O, <〉
of ordinals. The intuition is that any execution σ starting in a state
σ0 ∈ dom(ν) must terminate in “at most” ν(σ0) execution steps
while an execution σ starting in a state σ0 < dom(ν) might not
terminate. We have τ ⊆ {〈s, s′〉 ∈ Σ2 | s ∈ dom(ν) ∧ ν(s) � ν(s′)}
and this relation is well-founded on states, proving termination.

11.2 Variant abstraction
A variant function is an abstraction of a set of finite traces. It is a
partial function which domain is the set of terminating states. Its

23 A 67→ B (resp. A 7→ B) is the set of partial (resp. total) maps from set A
into set B. We write dom( f ) for the domain of a partial function f ∈ A 67→ B
and codom( f ) for its co-domain. If f ∈ A 7→ B then dom( f ) = A.
24 For a proof, take 〈W, ≺〉 to be the ordinals 〈O, <〉 and ν to be the ordinal
rank of elements of R for the well-founded relation τ.

value is an upper bound of the remaining number of “steps” to
termination. It may be transfinite for unbounded non-determinism
with unbounded execution trace lengths. Let us define

αrk ∈ ℘(Σ × Σ) 7→ (Σ 67→ O) ranking abstraction
αrk(r)s , 0 when ∀s′ ∈ Σ : 〈s, s′〉 < r

αrk(r)s , sup
{
αrk(r)s′ + 1

∣∣∣ s′ ∈ dom(αrk(r)) ∧ 〈s, s′〉 ∈ r
}

25 .

αrk(r)s extracts the well-founded part of relation r and provides the
rank of the elements s of its domain. αv(T ) does the same for the
transition relation by abstracting the set T of finite traces

αv ∈ ℘(Σ+) 7→ (Σ 67→W) variant abstraction
αv(T ) , λ s .αrk(−→α (T ))s .

It follows that the abstraction 〈℘(Σ+∞), v〉 −−−−−−−−→−→←−−−−−−−−−
αv ◦αmt

γ
′mt ◦ γv

〈Σ 67→W, vv〉
holds for potential termination and 〈℘(Σ+∞), v〉 → 〈Σ 67→W, vv〉
for definite termination. These abstractions state, by def. of v, that
adding finite execution traces or suppressing infinite traces can only,
by def. of vv, augment the termination domain and, maybe, increase
execution times. It follows that the computational variant order is

ν vv ν′ , dom(ν) ⊆ dom(ν′) ∧ ∀x ∈ dom(ν) : ν(x) 4 ν′(x) .

11.3 Variant semantics
A variant function can always be found by abstraction of the
termination semantics into a variant semantics

τmvJPK , αv(τmtJPK) potential termination variant
τMvJPK , αv(τMtJPK) definite termination variant.

This yields new termination proof methods and static analysis
methods by abstraction of this fixpoint definition.

11.4 Fixpoint variant semantics
By fixpoint abstraction of the fixpoint termination trace semantics
of Sect. 8.4, we get the fixpoint characterization of the variant
semantics26 ,27

τmvJPK = lfpv
v

∅̇ φ
←− mv

τ JPK potential termination

φ
←− mv

τ JPK(ν)s , ( s ∈ βτJPK ? 0 : sup
{
ν(s′) + 1

∣∣∣

s′ ∈ dom(ν) ∧ 〈s, s′〉 ∈ τJPK
}
)

τMvJPK = lfpv
v

∅̇ φ
←− Mv

τ JPK definite termination

φ
←− Mv

τ JPK(ν)s , ( s ∈ βτJPK ? 0 : sup
{
ν(s′) + 1

∣∣∣
s′ ∈ dom(ν) ∧ 〈s, s′〉 ∈ τJPK ∧
∀s′′ : 〈s, s′′〉 ∈ τJPK =⇒ s′′ ∈ dom(ν)

}
) .

Example 6. Consider the trace semantics as rep-
resented on the right. We have represented below
the fixpoint iterates for the corresponding potential
and definite variant functions. Unlabelled states
are outside the variant function domain.
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Potential termination

25 This can be generalized from 〈O, <〉 to well-orders 〈W,≺〉 using succ(x) ,
{y ∈ W | x < y ∧ @z ∈ W : x < z < y} and sup is an upper-bound. For
ordinals succ(x) = {x + 1} is the successor ordinal and sup is the lub.
26 The partial map ∅̇ ∈ Σ 67→ O is totally undefined and has dom(∅̇) , ∅.
27 The conditional is ( true ? a : b ) , a and ( false ? a : b ) , b.
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Definite termination

The potential variant can be used as a run-time check of definite
non-termination (since beyond 4 execution steps termination is
inevitable). This general observation is not in contradiction with the
fact that termination is not checkable at runtime since here it relies
on a prior static analysis considering all possible executions.

Example 7. The definite termination variant semantics lfpv
v

∅̇ φ
←− Mv

τ JPK
of the following program P

int main () { int x; while (x > 0) { x = x - 2; }}

is the limit νω of the iterates νn, n ∈ N of φ
←− Mv

τ JPK from ∅̇.
Considering only one loop head control point so that the state can
be reduced to the value x of x, we have

φ
←− Mv

τ JPK(ν)x , ( x 6 0 ? 0 : sup { ν(x − 2) + 1 | x − 2 ∈ dom(ν)} ) .
The program being deterministic, the potential termination equation
ν = φ
←− mv

τ JPK(ν) is similar. The fixpoint iterates are28 ,29

ν0 = ∅̇
ν1 = λ x ∈ [−∞, 0] . 0
ν2 = λ x ∈ [−∞, 0] . 0 ∪̇ λ x ∈ [1, 2] . 1
ν3 = λ x ∈ [−∞, 0] . 0 ∪̇ λ x ∈ [1, 2] . 1 ∪̇ λ x ∈ [3, 4] . 2
. . .
νn = λ x ∈ [−∞, 0] . 0 ∪̇ λ x ∈ [1, 2 × (n − 1)] . (x + 1) ÷ 2
. . .
νω = λ x ∈ [−∞, 0] . 0 ∪̇ λ x ∈ [1,+∞] . (x + 1) ÷ 2 .

11.5 Termination proof method
The variant semantics is sound and complete to prove termination
of a program P for initial states I since

αi(I)(τ+∞JPK) ⊆ Σ+JPK ⇐⇒ I ⊆ dom(τMvJPK)

⇐⇒ ∃ν ∈ Σ 67→ O : lfpv
v

∅̇ φ
←− Mv

τ JPK vv ν ∧ I ⊆ dom(ν)

αi(I)(τ+∞JPK) ∩ Σ+JPK , ∅ ⇐⇒ I ⊆ dom(τmvJPK)

⇐⇒ ∃ν ∈ Σ 67→ O : lfpv
v

∅̇ φ
←− mv

τ JPK vv ν ∧ I ⊆ dom(ν)

Applying fixpoint induction to check for the least fixpoint over-
approximation, we get a termination proof method. We have

∃ν ∈ Σ 67→ O : τMvJPK vv ν

⇔∃ν : lfpv
v

∅̇ φ
←− Mv

τ JPK vv ν Hfixpoint semantics of Sect. 11.4I
⇔∃ν : ∃ν′ : ∅̇ vv ν′ ∧ φ

←− Mv
τ JPKν′ vv ν′ ∧ ν′ vv ν Hfixpoint ind.I

⇔∃ν′ : φ←− Mv
τ JPKν′ vv ν′ Hdef. vv and choosing ν = ν′I

⇔∃ν : λ s . ( s ∈ βτJPK ? 0 : sup{ν(s′) + 1 | ∃s′ : 〈s,
s′〉 ∈ τJPK ∧ s′ ∈ dom(ν) ∧ ∀s′ : 〈s, s′〉 ∈ τJPK =⇒ s′ ∈
dom(ν)} ) vv ν Hdef. φ←− Mv

τ JPKI
⇔∃ν : λ s . sup{ν(s′) + 1 | ∃s′ : 〈s, s′〉 ∈ τJPK∧ s′ ∈ dom(ν)∧∀s′ :
〈s, s′〉 ∈ τJPK =⇒ s′ ∈ dom(ν)} vv ν
Hsince ∀s : ν(s′) > 0 and ∃s′ : 〈s, s′〉 ∈ τJPK implies s < βτJPKI

⇔∃ν : dom(λ s . sup{ν(s′) + 1 | ∃s′ : 〈s, s′〉 ∈ τJPK ∧ s′ ∈
dom(ν) ∧ ∀s′ : 〈s, s′〉 ∈ τJPK =⇒ s′ ∈ dom(ν)}) ⊆
dom(ν)∧∀s ∈ dom(ν) : sup{ν(s′)+1 | ∃s′ : 〈s, s′〉 ∈ τJPK∧ s′ ∈
dom(ν) ∧ ∀s′ : 〈s, s′〉 ∈ τJPK =⇒ s′ ∈ dom(ν)} 6 ν(s)

28 ∪̇ joins partial functions with disjoint domains f1 ∪̇ f2(x) , f1(x) if
x ∈ dom( f1) and f1 ∪̇ f2(x) , f2(x) if x ∈ dom( f2) where dom( f1) ∩
dom( f2) = ∅.
29÷ is the integer division.

Hdef. vv for ordinalsI
⇔∃ν : ∀s ∈ dom(ν) :

(
∃s′ ∈ dom(ν) : 〈s, s′〉 ∈ τJPK

)
=⇒

(
∀s′ :

〈s, s′〉 ∈ τJPK =⇒ s′ ∈ dom(ν) ∧ ν(s′) < ν(s)
)

Hdef. supI
⇔∃〈W, ≺〉 : ∃ν ∈ Σ 67→ W : ∀s ∈ dom(ν) :

(
∃s′ ∈ dom(ν) : 〈s,

s′〉 ∈ τJPK
)

=⇒
(
∀s′ : 〈s, s′〉 ∈ τJPK =⇒ s′ ∈ dom(ν)∧ν(s′) ≺

ν(s)
)

Hsince an ordinal is the order type of a well-founded setI
⇔∃I ∈ ℘(Σ) : ∃〈W, ≺〉 : ∃ν ∈ Σ 67→ W : ∀s ∈ I :

(
∃s′ ∈ I : 〈s,

s′〉 ∈ τJPK
)

=⇒
(
∀s′ : 〈s, s′〉 ∈ τJPK =⇒ s′ ∈ I ∧ ν(s′) ≺ ν(s)

)

Hchoosing I = dom(ν).I
This calculational design yields the following definite termination
induction principle

αi(I)(τ+∞JPK) ⊆ Σ+JPK definite termination proof⇐⇒ ∃I ∈ ℘(Σ) : ∃〈W, ≺〉 : ∃ν ∈ Σ 67→W : I ⊆ dom(ν) ∧ ∀s ∈ I :(
∃s′ ∈ I : 〈s, s′〉 ∈ τJPK

)
=⇒

(
∀s′ : 〈s, s′〉 ∈ τJPK =⇒ s′ ∈ I ∧ ν(s′) ≺ ν(s)

)
.

A similar calculational design, yields the potential termination
induction principle

αi(I)(τ+∞JPK) ∩ Σ+JPK , ∅ potential termination proof⇐⇒ ∃I ∈ ℘(Σ) : ∃〈W, ≺〉 : ∃ν ∈ Σ 67→W : I ⊆ dom(ν) ∧ ∀s ∈ I :(∃s′ ∈ I : 〈s, s′〉 ∈ τJPK) =⇒(∃s′′ ∈ I : 〈s, s′′〉 ∈ τJPK ∧ s′′ ∈ I ∧ ν(s′′) ≺ ν(s)
)
.

Observe that the fixpoint variant semantics of Sect. 11.4 is calculated
backwards (the variant function increases on previous steps) but that
the termination induction principles proceed forward (the variant
function decreases on next steps).

Example 8. A similar induction principle is proposed in [35, Ch.
5.2.3] for relational inevitability proofs (a state must be reached
that relates to the initial state as given by a specification relation
Ψ). The following example is used in [35, Ch. 5.2.5] to show that,
the invariant and variant function must also be relational, that is
relate the current and initial state: Σ , {1, 2, 3}, I , {1, 2}, τ , {〈x,
x + 1〉 | x, x + 1 ∈ Σ}, Ψ , τ. We can prove termination with
assertions, no relational invariants being needed. For the above
example, choose I = Σ, 〈W, ≺〉 = 〈Σ, <〉, ν(1) = 2, ν(2) = 1,
ν(3) = 0. This example shows that termination proofs are simpler
than inevitability proofs.

Example 9. For the program of Ex. 7, the definite termination proof
for the simplified transition system

τJPK , {〈x, x′〉 | x > 0 ∧ x′ = x + 1}
requires guessing I = Z, 〈W, ≺〉 = 〈N, <〉, ν = λ x . ( x 6 0 ? 0 :
(x + 1) ÷ 2 ) and proving ∀x, x′ ∈ Z : (x > 0 ∧ x′ = x + 1) =⇒
(∀x′′ : x′′ = x + 1 =⇒ ν(x′′) < ν(x)).

Because Turing/Floyd method uses the reachability abstraction
αr of (4), it is not possible to directly relate states occurring at
different times during computations. This is why the program is
transformed by using auxiliary variables to relate the current values
of the variables to their past values. This induces a transformed
transition system, which under the reachability abstraction αr is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 10. Continuing Ex. 9, the program is transformed into

int main () { int x, x0;
while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system
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τ0JPK , {〈〈x0, x〉, 〈x′0, x′〉〉 | x′0 = x ∧ 〈x, x′〉 ∈ τJPK} .

This is an abstraction 〈℘(Σ×Σ), ⊆〉 −−−−→←−−−−
α0

γ0

〈℘(Σ2×Σ2), ⊆〉 such that

α0(τ) , {〈〈x0, x〉, 〈x′0, x′〉〉 | x′0 = x ∧ 〈x, x′〉 ∈ τ} .
The benefit is that a relational abstraction αR used with τ is equiva-
lent to a non-relational reachability abstraction αr for α0(τ). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces (see Sect. 15.3).

12. Variant abstraction analysis
We get a termination static analysis by abstracting the variant seman-
tics. We need an abstraction 〈Σ 67→ O, vv〉 −−−→←−−−α

γ 〈A, v〉 of functions.
Many abstractions of functions have been proposed e.g. [20, 30] that
can be reused for termination static analysis. As a simple example,
we consider a piecewise linear variant abstraction. The purpose of
this new abstract domain is to illustrate the abstraction of fixpoint de-
finitions of variant functions with widening, many more abstractions
being necessary to cover all practical cases.

12.1 Piecewise linear variant abstraction
Let us consider a program with integer variables X = x1, . . . , xn,
n > 0. We first apply an abstraction of states extracting the numerical
variables in the form of an environment αX ∈ Σ 7→ (X 7→ Z)
so that, by composition, we are left with an abstraction 〈(X 7→
Z) 67→ O, vv〉 −−−→←−−−α

γ 〈A, v〉. Encoding the partial map by a total
map (using “⊥” for “undefined/not in the domain” and abstracting
higher-order ordinals by “>” (“unknown/infinite”, e.g. in case of
non-termination or unbounded nondeterminism), we can choose
(X 7→ Z) 7→ N ∪ {⊥,>}. There is no loss of information for
bounded determinism and unbounded executions are still allowed
but disregarded by the abstraction. We can now further abstract by
piecewise linear functions.

The values xi of each variable xi ∈ X, i ∈ [1, n] are segmented
into `1

i = −∞ < · · · < ` ji
i < · · · < `mi

i = +∞. This provides a partition
of the space Zn of values x1, . . . , xn of the variables x1, . . . , xn. The
blocks of the partition are therefore [` ji

i , `
ji+1
i ), i ∈ [1, n], ji ∈ [1,mi).

In practice machine integers are bounded, in which case −∞ and
+∞ are the smallest and largest machine integers. The number of
blocks in the partitions can also be limited by widening thus favoring
efficiency of the abstract domain to the detriment of precision.

12.1.1 The abstract domain of piecewise linear variants
The positive value of the variant function for elements ~x = x1, . . . , xn

of each block [` ji
i , `

ji+1
i ) of the partition is a linear expression
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where the coefficients a
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k ∈ Q, k ∈ [1, n + 1] are rationals (or
⊥/>). For example, in two dimensions
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30 More rigorously, we should write the dot product ~a `
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The abstract domain is therefore (omitting the case of blocks with
⊥ for “not in the domain” and > for “unknown”)

A ,
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When the ` ji
i ∈ Q, i ∈ [1, n], ji ∈ [1,mi) are rationals, this abstrac-

tion essentially reuses the classical abstractions of intervals [18, 19],
linear inequalities [31] and segmentation [33]. An immediate gen-
eralization consists in using consecutive segments with symbolic
bounds as done in [33] for array content analysis. A further general-
ization consists in using decision trees [32] instead of a segmentation
of the domain of the abstract variant function.

12.1.2 Piecewise linear variant abstract transformers

The abstract transformer φ]
←− mv

τ JPK abstracting the concrete trans-
former φ

←− mv
τ JPK of Sect. 11.4 is applied blockwise by computing

the abstract pre-image of each block by assignments or tests. The
condition in tests may split the block into sub-blocks for which the
condition is true or false.

Example 11. Here is an example of first iteration of the backward
termination analysis of an exit preceded by a test. The initialization
of the fixpoint iterates by λ x ∈ [−∞,+∞] .⊥ indicates potential non-
termination. The exit enforces termination in 0 steps. The test splits
the block [−∞,+∞] into [−∞, 0] and [1,+∞].

/* λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ ) */
if (x <= 0) { /* λ x ∈ [−∞,+∞] . 0 */

exit; /* λ x ∈ [−∞,+∞] .⊥ */ }
else { /* λ x ∈ [−∞,+∞] .⊥ */ ... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those corresponding
to non-termination.

Example 12. Assuming −∞ − 2 = −∞ and +∞ + 2 = +∞, the
backward termination analysis of the following assignment is

/* λ x . ( x ∈ [−∞, 2] ? 1 : x ∈ [3,+∞] ? ⊥ ) */
x = x - 2;
/* λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ ) */

12.1.3 Piecewise linear variant abstract order
The abstract order vv

first unifies segments of the domain into a
common refined partition by segmentation of each variable (as in
[33, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assuming ⊥ is the infimum and > is
the supremum (so that the domain comparison of Sect. 9 is done
implicitly by the fact that the “undefined” ⊥ is used outside this
domain).

Example 13.
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Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by λ x . ( x ∈
[−∞,+∞] ? ⊥ ) indicates potential non-termination. The test splits
the block [−∞,+∞] into [−∞, 0] and [1,+∞].

/* λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ ) */
if (x <= 0) {

/* λ x . ( x ∈ [−∞,+∞] ? 0 ) */
exit;

/* λ x . ( x ∈ [−∞,+∞] ? ⊥ ) */
}
else

{ /* λ x . ( x ∈ [−∞,+∞] ? ⊥ ) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming −∞ − 2 = −∞ and +∞ + 2 =
+∞.)

/* λ x . ( x ∈ [−∞, 2] ? 1 : x ∈ [3,+∞] ? ⊥ ) */
x = x - 2;
/* λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ ) */

The abstract order �v
first unifies segments of the domain into

a common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assume ⊥ is the infimum and � is the
supremum (so that the domain comparison is done implicitly by the
fact that ⊥ is used outside this domain for undefined).

Similarly, the join P �̇v
Q first unifies blocks of the partitioned

domains of P and Q into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join �v is
defined for each block � j1

1 . . . �
ji
i . . . �

jn
n , i ∈ [1, n], ji ∈ [1,mi] of the

partition by

min
�
�a
��� ∀i ∈ [1, n] : xi ∈ [� ji

i , �
ji+1
i ) ∧ �a � j1

1 ...�
ji
i ...�

jn
n .�x � �a.�x �

For example

⇔∃ν : ∀s ∈ dom(ν) :
�
∃s� ∈ dom(ν) : �s, s�� ∈ τ�P�

�
=⇒

�
∀s� :

�s, s�� ∈ τ�P� =⇒ s� ∈ dom(ν) ∧ ν(s�) < ν(s)
�

�def. sup�
⇔∃�W, ≺� : ∃ν ∈ Σ ��→ W : ∀s ∈ dom(ν) :

�
∃s� ∈ dom(ν) : �s,

s�� ∈ τ�P�
�
=⇒

�
∀s� : �s, s�� ∈ τ�P� =⇒ s� ∈ dom(ν)∧ν(s�) ≺

ν(s)
�

�since an ordinal is the order type of a well-founded set�
⇔∃I ∈ ℘(Σ) : ∃�W, ≺� : ∃ν ∈ Σ ��→ W : ∀s ∈ I :

�
∃s� ∈ I : �s,

s�� ∈ τ�P�
�
=⇒

�
∀s� : �s, s�� ∈ τ�P� =⇒ s� ∈ I ∧ ν(s�) ≺ ν(s)

�

�choosing I = dom(ν).�
By calculational design, we get the definite termination induction
principle

αi(Θ+∞τ �P�)I ⊆ Σ+�P� definite termination proof⇐⇒ ∃I ∈ ℘(Σ) : ∃�W, ≺� : ∃ν ∈ Σ ��→ W : ∀s ∈ I :�
∃s� ∈ I : �s, s�� ∈ τ�P�

�
=⇒

�
∀s� : �s, s�� ∈ τ�P� =⇒ s� ∈ I ∧ ν(s�) ≺ ν(s)

�
.

A similar calculational design, yields the potential termination
induction principle

αi(Θ+∞τ �P�)I ∩ Σ+�P� � ∅ potential termination proof⇐⇒ ∃I ∈ ℘(Σ) : ∃�W, ≺� : ∃ν ∈ Σ ��→ W : ∀s ∈ I : ∃s� ∈ I :
�s, s�� ∈ τ�P� ∧ s� ∈ I ∧ ν(s�) ≺ ν(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

τ�P� � {�x, x�� | x > 0 ∧ x� = x + 1}
requires guessing I = Z, �W, ≺� = �N, <�, ν = λ x . ( x � 0 ? 0 :
(x + 1) ÷ 2 ) and proving ∀x, x� ∈ Z : (x > 0 ∧ x� = x + 1) =⇒
(∀x�� : x�� = x + 1 =⇒ ν(x��) < ν(x)).

Because Turing/Floyd method uses the reachability abstraction
αr of (2), it is not possible to directly relate states occurring at
different times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction αr is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;
while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

τ0�P� � {��x0, x�, �x�0, x��� | x�0 = x ∧ �x, x�� ∈ τ�P�} .

This is an abstraction �℘(Σ×Σ), ⊆� −−−−→←−−−−
α0

γ0

�℘(Σ2×Σ2), ⊆� such that

α0(τ) � {��x0, x�, �x�0, x��� | x�0 = x ∧ �x, x�� ∈ τ} .
The benefit is that a relational abstraction αR used with τ is equiva-
lent to a non-relational reachability abstraction αr for α0(τ). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction �Σ ��→ O, �v� −−−→←−−−α

γ �A, �� of functions.
Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
α ∈ Σ �→ ( �→ Z) so that, be composition, we are left
with an abstraction �( �→ Z) ��→ O, �v� −−−→←−−−α

γ �A, ��. By
encoding of partial map by a total map (using "⊥ for undefined
and abstracting higher-order ordinal but � (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
( �→ Z) �→ N∪{⊥,�}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi ∈ , i ∈ [1, n] are segmented
into �1i = −∞ < · · · < � ji

i < · · · < �mi
i = +∞. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [� ji

i , �
ji+1
i (, i ∈

[1, n], ji ∈ [1,mi(.
The positive value of the variant function for elements �x =
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k ∈ Q, k ∈ [1, n + 1] are rationals.
For example, in two dimensions
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When the � ji
i ∈ Q, i ∈ [1, n], ji ∈ [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order �v
first unifies segments of the domain into

a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ⊥ is the infimum and � is the
supremum (so that the domain comparison is done implicitly by
the fact that ⊥ is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise
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⇔∃ν : ∀s ∈ dom(ν) :
�
∃s� ∈ dom(ν) : �s, s�� ∈ τ�P�

�
=⇒

�
∀s� :

�s, s�� ∈ τ�P� =⇒ s� ∈ dom(ν) ∧ ν(s�) < ν(s)
�

�def. sup�
⇔∃�W, ≺� : ∃ν ∈ Σ ��→ W : ∀s ∈ dom(ν) :

�
∃s� ∈ dom(ν) : �s,

s�� ∈ τ�P�
�
=⇒

�
∀s� : �s, s�� ∈ τ�P� =⇒ s� ∈ dom(ν)∧ν(s�) ≺

ν(s)
�

�since an ordinal is the order type of a well-founded set�
⇔∃I ∈ ℘(Σ) : ∃�W, ≺� : ∃ν ∈ Σ ��→ W : ∀s ∈ I :

�
∃s� ∈ I : �s,
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�
=⇒

�
∀s� : �s, s�� ∈ τ�P� =⇒ s� ∈ I ∧ ν(s�) ≺ ν(s)

�

�choosing I = dom(ν).�
By calculational design, we get the definite termination induction
principle

αi(Θ+∞τ �P�)I ⊆ Σ+�P� definite termination proof⇐⇒ ∃I ∈ ℘(Σ) : ∃�W, ≺� : ∃ν ∈ Σ ��→ W : ∀s ∈ I :�
∃s� ∈ I : �s, s�� ∈ τ�P�

�
=⇒

�
∀s� : �s, s�� ∈ τ�P� =⇒ s� ∈ I ∧ ν(s�) ≺ ν(s)

�
.

A similar calculational design, yields the potential termination
induction principle

αi(Θ+∞τ �P�)I ∩ Σ+�P� � ∅ potential termination proof⇐⇒ ∃I ∈ ℘(Σ) : ∃�W, ≺� : ∃ν ∈ Σ ��→ W : ∀s ∈ I : ∃s� ∈ I :
�s, s�� ∈ τ�P� ∧ s� ∈ I ∧ ν(s�) ≺ ν(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

τ�P� � {�x, x�� | x > 0 ∧ x� = x + 1}
requires guessing I = Z, �W, ≺� = �N, <�, ν = λ x . ( x � 0 ? 0 :
(x + 1) ÷ 2 ) and proving ∀x, x� ∈ Z : (x > 0 ∧ x� = x + 1) =⇒
(∀x�� : x�� = x + 1 =⇒ ν(x��) < ν(x)).

Because Turing/Floyd method uses the reachability abstraction
αr of (2), it is not possible to directly relate states occurring at
different times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction αr is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;
while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

τ0�P� � {��x0, x�, �x�0, x��� | x�0 = x ∧ �x, x�� ∈ τ�P�} .

This is an abstraction �℘(Σ×Σ), ⊆� −−−−→←−−−−
α0

γ0

�℘(Σ2×Σ2), ⊆� such that

α0(τ) � {��x0, x�, �x�0, x��� | x�0 = x ∧ �x, x�� ∈ τ} .
The benefit is that a relational abstraction αR used with τ is equiva-
lent to a non-relational reachability abstraction αr for α0(τ). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction �Σ ��→ O, �v� −−−→←−−−α

γ �A, �� of functions.
Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
α ∈ Σ �→ ( �→ Z) so that, be composition, we are left
with an abstraction �( �→ Z) ��→ O, �v� −−−→←−−−α

γ �A, ��. By
encoding of partial map by a total map (using "⊥ for undefined
and abstracting higher-order ordinal but � (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
( �→ Z) �→ N∪{⊥,�}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi ∈ , i ∈ [1, n] are segmented
into �1i = −∞ < · · · < � ji

i < · · · < �mi
i = +∞. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [� ji

i , �
ji+1
i (, i ∈

[1, n], ji ∈ [1,mi(.
The positive value of the variant function for elements �x =

x1, . . . , xn of each block [� ji
i , �
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i ( of the partition is a linear ex-
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where the coefficients a
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k ∈ Q, k ∈ [1, n + 1] are rationals.
For example, in two dimensions
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The abstract domain is therefore
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ji ∈ [1,mi(

( � ji
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When the � ji
i ∈ Q, i ∈ [1, n], ji ∈ [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order �v
first unifies segments of the domain into

a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ⊥ is the infimum and � is the
supremum (so that the domain comparison is done implicitly by
the fact that ⊥ is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise
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A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence.

Finally, the widening P �̇
v

Q first unifies blocks of the parti-
tioned domains of P and Q into a common coarser partition. The
linear expression of each block of the coarser partition for P�̇

v
Q is

obtained by joining the sub-blocks of of P and Q it originates from.
Then the linear expressions of each block of P �̇

v
Q is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to �.

Example 11. We use two loop unrollings to stabilize iterations
before widening [38].

ν0
A = λ x . ( x ∈ [−∞,+∞] ? ⊥ )
ν1

A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ )
ν2

A = λ x ∈ [−∞, 0] . 0 ∪̇ λ x ∈ [1, 2] . 1 ∪̇ λ x ∈ [3,+∞] .⊥
ν�3A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1, 2] ? 1 : x ∈ [3, 4] ? 2

: x ∈ [5,+∞] ? ⊥ )
ν3

A = ν2
A �̇

v
ν�3A

ν�4A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1, 2] ? 1 : x ∈ [3, 4] ? 2

: x ∈ [5,+∞] ?
x
2
+ 1 )

ν4
A = ν3

A .

The over-approximation ν of in Ex. 6, by νA is as follows
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TODO:Why termination is proved: post-fixpoint for abstract or-
der

13. Relational variant semantics
Classical relational abstractions (e.g. octagons [32], polyhedra [21],
polynomials [33], exponentials [28], etc) offer a larger choice of
abstractions than the abstract variant functions considered in Sect.
11. To use relational abstractions for static termination analysis, we
further abstract variant functions into relations.

13.1 Relational variant abstraction
A variant function ν can be abstracted as the pair of an abstraction
of its domain dom(ν) by a set abstraction (such as e.g. intervals) and
an abstraction of its value by (a relational abstraction of) the down-
closed relation r which over-approximates the variant function on
its domain that is ∀s ∈ dom(ν),w ∈ Σ : �s, w� ∈ r =⇒ w � ν(s).
The abstraction is therefore (the first component is redundant but
useful for static analysis)

αrv(ν) � �dom(ν), α↓({�s, ν(s)� | s ∈ dom(ν)})�
where the down-closure of a relation r ∈ ℘(Σ ×W) is

α↓(r) � {�s, w�� | ∃w : w� � w ∧ �s, w� ∈ r} .
Observe that the effect of the down-closure is to replace equalities
by inequalities for which numerous abstract domains are available.
Moreover an over approximation of the first component is known
by Sect. 8 but for correction we either need an under-approximation
or prove termination for this over-approximation, which is the op-
tion we choose. For the second component, an over-approximation
is correct (this over-estimates the termination time). We have19

�Σ ��→ W, �v� −−−−→←−−−−
αv

γv

�℘(Σ) × α↓[℘(Σ ×W)], ⊆ × ⊆� .

Proof.

19 �×� is the componentwise partial order �x, y� � × � �x�, y�� ⇐⇒ x �
x� ∧ y � y�.
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12.1.4 Piecewise linear variant abstract join

Similarly, the join ν1 ṫ
v
ν2 first unifies blocks of the partitioned

domains of ν1 and ν2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join tv is
~a.~x defined for each block ` j1

1 . . . `
ji
i . . . `

jn
n , i ∈ [1, n], ji ∈ [1,mi] of

the partition such that ∀i ∈ [1, n], ∀xi ∈ [` ji
i , `

ji+1
i ], ∀~a ′ ∈ Qn+1,

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a.~x

• ~a `
j1
1 ...`

ji
i ...`

jn
n .~x 6 ~a ′.~x =⇒ ~a.~x 6 ~a ′.~x .

Example 14.

⇔∃ν : ∀s ∈ dom(ν) :
�
∃s� ∈ dom(ν) : �s, s�� ∈ τ�P�

�
=⇒

�
∀s� :

�s, s�� ∈ τ�P� =⇒ s� ∈ dom(ν) ∧ ν(s�) < ν(s)
�

�def. sup�
⇔∃�W, ≺� : ∃ν ∈ Σ ��→ W : ∀s ∈ dom(ν) :

�
∃s� ∈ dom(ν) : �s,

s�� ∈ τ�P�
�
=⇒

�
∀s� : �s, s�� ∈ τ�P� =⇒ s� ∈ dom(ν)∧ν(s�) ≺

ν(s)
�

�since an ordinal is the order type of a well-founded set�
⇔∃I ∈ ℘(Σ) : ∃�W, ≺� : ∃ν ∈ Σ ��→ W : ∀s ∈ I :

�
∃s� ∈ I : �s,

s�� ∈ τ�P�
�
=⇒

�
∀s� : �s, s�� ∈ τ�P� =⇒ s� ∈ I ∧ ν(s�) ≺ ν(s)

�

�choosing I = dom(ν).�
By calculational design, we get the definite termination induction
principle

αi(Θ+∞τ �P�)I ⊆ Σ+�P� definite termination proof⇐⇒ ∃I ∈ ℘(Σ) : ∃�W, ≺� : ∃ν ∈ Σ ��→ W : ∀s ∈ I :�
∃s� ∈ I : �s, s�� ∈ τ�P�

�
=⇒

�
∀s� : �s, s�� ∈ τ�P� =⇒ s� ∈ I ∧ ν(s�) ≺ ν(s)

�
.

A similar calculational design, yields the potential termination
induction principle

αi(Θ+∞τ �P�)I ∩ Σ+�P� � ∅ potential termination proof⇐⇒ ∃I ∈ ℘(Σ) : ∃�W, ≺� : ∃ν ∈ Σ ��→ W : ∀s ∈ I : ∃s� ∈ I :
�s, s�� ∈ τ�P� ∧ s� ∈ I ∧ ν(s�) ≺ ν(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

τ�P� � {�x, x�� | x > 0 ∧ x� = x + 1}
requires guessing I = Z, �W, ≺� = �N, <�, ν = λ x . ( x � 0 ? 0 :
(x + 1) ÷ 2 ) and proving ∀x, x� ∈ Z : (x > 0 ∧ x� = x + 1) =⇒
(∀x�� : x�� = x + 1 =⇒ ν(x��) < ν(x)).

Because Turing/Floyd method uses the reachability abstraction
αr of (2), it is not possible to directly relate states occurring at
different times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction αr is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;
while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

τ0�P� � {��x0, x�, �x�0, x��� | x�0 = x ∧ �x, x�� ∈ τ�P�} .

This is an abstraction �℘(Σ×Σ), ⊆� −−−−→←−−−−
α0

γ0

�℘(Σ2×Σ2), ⊆� such that

α0(τ) � {��x0, x�, �x�0, x��� | x�0 = x ∧ �x, x�� ∈ τ} .
The benefit is that a relational abstraction αR used with τ is equiva-
lent to a non-relational reachability abstraction αr for α0(τ). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction �Σ ��→ O, �v� −−−→←−−−α

γ �A, �� of functions.
Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
α ∈ Σ �→ ( �→ Z) so that, be composition, we are left
with an abstraction �( �→ Z) ��→ O, �v� −−−→←−−−α

γ �A, ��. By
encoding of partial map by a total map (using "⊥ for undefined
and abstracting higher-order ordinal but � (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
( �→ Z) �→ N∪{⊥,�}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi ∈ , i ∈ [1, n] are segmented
into �1i = −∞ < · · · < � ji

i < · · · < �mi
i = +∞. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [� ji

i , �
ji+1
i (, i ∈

[1, n], ji ∈ [1,mi(.
The positive value of the variant function for elements �x =

x1, . . . , xn of each block [� ji
i , �

ji+1
i ( of the partition is a linear ex-

pression �a �
j1
1 ...�

ji
i ...�

jn
n .�x of the form

a
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n
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where the coefficients a
�

j1
1 ...�
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i ...�
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n

k ∈ Q, k ∈ [1, n + 1] are rationals.
For example, in two dimensions

�11 = −∞ �21 �31 �
4
1 = +∞ m1 = 4

−∞ = �12
�22 a
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2
2

1 x1 + a
�21�

2
2

2 x2 + a
�21�

2
2
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�32
m2 = 4 +∞ = �42

The abstract domain is therefore

A �
�
λ �x ∈ Zn . �v

i ∈ [1, n],
ji ∈ [1,mi(

( � ji
i � xi < �

ji+1
i ? �a �

j1
1 ...�
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i ...�

jn
n

1 .�x : ⊥ )

���� ∀i ∈ [1, n] : �1i = −∞ < · · · < � ji
i < · · · < �mi

i = +∞∧
�a �

j1
1 ...�
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i ...�
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n ∈ Qn+1 ∧

∀ ji ∈ [1,mi(, xi ∈ [� ji
i , �
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i (: �a

�
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1 ...�
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i ...�

jn
n

1 .�x � 0
�

When the � ji
i ∈ Q, i ∈ [1, n], ji ∈ [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order �v
first unifies segments of the domain into

a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ⊥ is the infimum and � is the
supremum (so that the domain comparison is done implicitly by
the fact that ⊥ is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise
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⇔∃ν : ∀s ∈ dom(ν) :
�
∃s� ∈ dom(ν) : �s, s�� ∈ τ�P�

�
=⇒

�
∀s� :

�s, s�� ∈ τ�P� =⇒ s� ∈ dom(ν) ∧ ν(s�) < ν(s)
�

�def. sup�
⇔∃�W, ≺� : ∃ν ∈ Σ ��→ W : ∀s ∈ dom(ν) :

�
∃s� ∈ dom(ν) : �s,

s�� ∈ τ�P�
�
=⇒

�
∀s� : �s, s�� ∈ τ�P� =⇒ s� ∈ dom(ν)∧ν(s�) ≺

ν(s)
�

�since an ordinal is the order type of a well-founded set�
⇔∃I ∈ ℘(Σ) : ∃�W, ≺� : ∃ν ∈ Σ ��→ W : ∀s ∈ I :

�
∃s� ∈ I : �s,

s�� ∈ τ�P�
�
=⇒

�
∀s� : �s, s�� ∈ τ�P� =⇒ s� ∈ I ∧ ν(s�) ≺ ν(s)

�

�choosing I = dom(ν).�
By calculational design, we get the definite termination induction
principle

αi(Θ+∞τ �P�)I ⊆ Σ+�P� definite termination proof⇐⇒ ∃I ∈ ℘(Σ) : ∃�W, ≺� : ∃ν ∈ Σ ��→ W : ∀s ∈ I :�
∃s� ∈ I : �s, s�� ∈ τ�P�

�
=⇒

�
∀s� : �s, s�� ∈ τ�P� =⇒ s� ∈ I ∧ ν(s�) ≺ ν(s)

�
.

A similar calculational design, yields the potential termination
induction principle

αi(Θ+∞τ �P�)I ∩ Σ+�P� � ∅ potential termination proof⇐⇒ ∃I ∈ ℘(Σ) : ∃�W, ≺� : ∃ν ∈ Σ ��→ W : ∀s ∈ I : ∃s� ∈ I :
�s, s�� ∈ τ�P� ∧ s� ∈ I ∧ ν(s�) ≺ ν(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

τ�P� � {�x, x�� | x > 0 ∧ x� = x + 1}
requires guessing I = Z, �W, ≺� = �N, <�, ν = λ x . ( x � 0 ? 0 :
(x + 1) ÷ 2 ) and proving ∀x, x� ∈ Z : (x > 0 ∧ x� = x + 1) =⇒
(∀x�� : x�� = x + 1 =⇒ ν(x��) < ν(x)).

Because Turing/Floyd method uses the reachability abstraction
αr of (2), it is not possible to directly relate states occurring at
different times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction αr is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;
while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

τ0�P� � {��x0, x�, �x�0, x��� | x�0 = x ∧ �x, x�� ∈ τ�P�} .

This is an abstraction �℘(Σ×Σ), ⊆� −−−−→←−−−−
α0

γ0

�℘(Σ2×Σ2), ⊆� such that

α0(τ) � {��x0, x�, �x�0, x��� | x�0 = x ∧ �x, x�� ∈ τ} .
The benefit is that a relational abstraction αR used with τ is equiva-
lent to a non-relational reachability abstraction αr for α0(τ). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction �Σ ��→ O, �v� −−−→←−−−α

γ �A, �� of functions.
Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
α ∈ Σ �→ ( �→ Z) so that, be composition, we are left
with an abstraction �( �→ Z) ��→ O, �v� −−−→←−−−α

γ �A, ��. By
encoding of partial map by a total map (using "⊥ for undefined
and abstracting higher-order ordinal but � (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
( �→ Z) �→ N∪{⊥,�}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi ∈ , i ∈ [1, n] are segmented
into �1i = −∞ < · · · < � ji

i < · · · < �mi
i = +∞. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [� ji

i , �
ji+1
i (, i ∈

[1, n], ji ∈ [1,mi(.
The positive value of the variant function for elements �x =

x1, . . . , xn of each block [� ji
i , �
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i ( of the partition is a linear ex-

pression �a �
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1 ...�
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where the coefficients a
�

j1
1 ...�
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n

k ∈ Q, k ∈ [1, n + 1] are rationals.
For example, in two dimensions

�11 = −∞ �21 �31 �
4
1 = +∞ m1 = 4

−∞ = �12
�22 a
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1 x1 + a
�21�

2
2

2 x2 + a
�21�

2
2

3

�32
m2 = 4 +∞ = �42

The abstract domain is therefore

A �
�
λ �x ∈ Zn . �v

i ∈ [1, n],
ji ∈ [1,mi(

( � ji
i � xi < �
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i ? �a �
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1 .�x : ⊥ )

���� ∀i ∈ [1, n] : �1i = −∞ < · · · < � ji
i < · · · < �mi
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1 .�x � 0
�

When the � ji
i ∈ Q, i ∈ [1, n], ji ∈ [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order �v
first unifies segments of the domain into

a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ⊥ is the infimum and � is the
supremum (so that the domain comparison is done implicitly by
the fact that ⊥ is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise
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A coarser partition can also be used in the join (as in [33, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence.

12.1.5 Piecewise linear variant abstract widening

Finally, the widening ν1 Ȯ
v
ν2 follows the idea introduced in [20] of

widening functions by widening the domain of their parameters with
a domain widening Ȯ

v

d and then their results with a range widening
Ȯ

v

r . So the blocks of the partitioned domains of ν1 and ν2 are first
widened using e.g. interval widening Ȯ

v

d (possibly with thresholds)
of the blocks with respect to their neighbors in all directions.

Example 15. An interval widening for a two-dimensional domain
〈x, y〉 ∈ Z2 yields

 ⇣⇤ : ✏s � dom(⇤) :
⇥
⇣s⌦ � dom(⇤) : ⌫s, s⌦⇠ � ⌅⇤P⌅

⇤
=�

⇥
✏s⌦ :

⌫s, s⌦⇠ � ⌅⇤P⌅ =� s⌦ � dom(⇤) � ⇤(s⌦) < ⇤(s)
⇤

�def. sup⇥
 ⇣⌫W, ⌅⇠ : ⇣⇤ � ⇥ ��⌃ W : ✏s � dom(⇤) :

⇥
⇣s⌦ � dom(⇤) : ⌫s,

s⌦⇠ � ⌅⇤P⌅
⇤
=�

⇥
✏s⌦ : ⌫s, s⌦⇠ � ⌅⇤P⌅ =� s⌦ � dom(⇤)�⇤(s⌦) ⌅

⇤(s)
⇤

�since an ordinal is the order type of a well-founded set⇥
 ⇣I � ⌃(⇥) : ⇣⌫W, ⌅⇠ : ⇣⇤ � ⇥ ��⌃ W : ✏s � I :

⇥
⇣s⌦ � I : ⌫s,

s⌦⇠ � ⌅⇤P⌅
⇤
=�

⇥
✏s⌦ : ⌫s, s⌦⇠ � ⌅⇤P⌅ =� s⌦ � I � ⇤(s⌦) ⌅ ⇤(s)

⇤

�choosing I = dom(⇤).⇥
By calculational design, we get the definite termination induction
principle

�i(�+↵⌅ ⇤P⌅)I ⇤ ⇥+⇤P⌅ definite termination proof⌥� ⇣I � ⌃(⇥) : ⇣⌫W, ⌅⇠ : ⇣⇤ � ⇥ ��⌃ W : ✏s � I :⇥
⇣s⌦ � I : ⌫s, s⌦⇠ � ⌅⇤P⌅

⇤
=�

⇥
✏s⌦ : ⌫s, s⌦⇠ � ⌅⇤P⌅ =� s⌦ � I � ⇤(s⌦) ⌅ ⇤(s)

⇤
.

A similar calculational design, yields the potential termination
induction principle

�i(�+↵⌅ ⇤P⌅)I � ⇥+⇤P⌅ � ⌘ potential termination proof⌥� ⇣I � ⌃(⇥) : ⇣⌫W, ⌅⇠ : ⇣⇤ � ⇥ ��⌃ W : ✏s � I : ⇣s⌦ � I :
⌫s, s⌦⇠ � ⌅⇤P⌅ � s⌦ � I � ⇤(s⌦) ⌅ ⇤(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌅⇤P⌅ � {⌫x, x⌦⇠ | x > 0 � x⌦ = x + 1}
requires guessing I = Z, ⌫W, ⌅⇠ = ⌫N, <⇠, ⇤ = � x . ( x ⇥ 0 ? 0 :
(x + 1) ÷ 2 ) and proving ✏x, x⌦ � Z : (x > 0 � x⌦ = x + 1) =�
(✏x⌦⌦ : x⌦⌦ = x + 1 =� ⇤(x⌦⌦) < ⇤(x)).

Because Turing/Floyd method uses the reachability abstraction
�r of (2), it is not possible to directly relate states occurring at
di⇤erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction �r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;
while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌅0⇤P⌅ � {⌫⌫x0, x⇠, ⌫x⌦0, x⌦⇠⇠ | x⌦0 = x � ⌫x, x⌦⇠ � ⌅⇤P⌅} .

This is an abstraction ⌫⌃(⇥⇥⇥), ⇤⇠ ����⌃⇧����
�0

⇥0

⌫⌃(⇥2⇥⇥2), ⇤⇠ such that

�0(⌅) � {⌫⌫x0, x⇠, ⌫x⌦0, x⌦⇠⇠ | x⌦0 = x � ⌫x, x⌦⇠ � ⌅} .
The benefit is that a relational abstraction �R used with ⌅ is equiva-
lent to a non-relational reachability abstraction �r for �0(⌅). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction ⌫⇥ ��⌃ O, ⇡v⇠ ���⌃⇧����

⇥ ⌫A, ⇡⇠ of functions.
Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
� � ⇥ �⌃ ( �⌃ Z) so that, be composition, we are left
with an abstraction ⌫( �⌃ Z) ��⌃ O, ⇡v⇠ ���⌃⇧����

⇥ ⌫A, ⇡⇠. By
encoding of partial map by a total map (using "◆ for undefined
and abstracting higher-order ordinal but ✓ (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
( �⌃ Z) �⌃ N{◆,✓}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi � , i � [1, n] are segmented
into ⇧1i = �↵ < · · · < ⇧ ji

i < · · · < ⇧mi
i = +↵. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [⇧ ji

i , ⇧
ji+1
i (, i �

[1, n], ji � [1,mi(.
The positive value of the variant function for elements ⌥x =

x1, . . . , xn of each block [⇧ ji
i , ⇧

ji+1
i ( of the partition is a linear ex-

pression ⌥a ⇧
j1
1 ...⇧

ji
i ...⇧

jn
n .⌥x of the form

a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

1 x1 + . . . + a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

i xi + . . . + a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

n xn + a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

n+1

where the coe⌅cients a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

k � Q, k � [1, n + 1] are rationals.
For example, in two dimensions

⇧11 = �↵ ⇧21 ⇧31 ⇧
4
1 = +↵ m1 = 4

�↵ = ⇧12
⇧22 a

⇧21⇧
2
2

1 x1 + a
⇧21⇧

2
2

2 x2 + a
⇧21⇧

2
2

3

⇧32
m2 = 4 +↵ = ⇧42

The abstract domain is therefore

A �
⇧
� ⌥x � Zn . ⌅v

i � [1, n],
ji � [1,mi(

( ⇧ ji
i ⇥ xi < ⇧

ji+1
i ? ⌥a ⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

1 .⌥x : ◆ )

���� ✏i � [1, n] : ⇧1i = �↵ < · · · < ⇧ ji
i < · · · < ⇧mi

i = +↵�
⌥a ⇧

j1
1 ...⇧

ji
i ...⇧

jn
n � Qn+1 �

✏ ji � [1,mi(, xi � [⇧ ji
i , ⇧

ji+1
i (: ⌥a

⇧
j1
1 ...⇧

ji
i ...⇧

jn
n

1 .⌥x ⇤ 0
⌃

When the ⇧ ji
i � Q, i � [1, n], ji � [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order ⇡v
first unifies segments of the domain into

a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ◆ is the infimum and ✓ is the
supremum (so that the domain comparison is done implicitly by
the fact that ◆ is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise
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11.1.2 Piecewise linear variant abstract transformers

The abstract transformer ⇤⌅
⇥� mv
⇥ �P⇥ abstracting the concrete trans-

former ⇤⇥� mv
⇥ �P⇥ of Sect. 10.4 is applied blockwise by computing

the abstract pre-image of each block by assignments or tests. The
condition in tests may split the block into sub-blocks for which the
condition is true or false.

Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by � x . ( x ⌃
[�⇧,+⇧] ?  ) indicates potential non-termination. The test splits
the block [�⇧,+⇧] into [�⇧, 0] and [1,+⇧].

/* � x . ( x ⌃ [�⇧, 0] ? 0 : x ⌃ [1,+⇧] ?  ) */
if (x <= 0) {

/* � x . ( x ⌃ [�⇧,+⇧] ? 0 ) */
exit;

/* � x . ( x ⌃ [�⇧,+⇧] ?  ) */
}
else

{ /* � x . ( x ⌃ [�⇧,+⇧] ?  ) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming �⇧ � 2 = �⇧ and +⇧ + 2 =
+⇧.)

/* � x . ( x ⌃ [�⇧, 2] ? 1 : x ⌃ [3,+⇧] ?  ) */
x = x - 2;
/* � x . ( x ⌃ [�⇧, 0] ? 0 : x ⌃ [1,+⇧] ?  ) */

11.1.3 Piecewise linear variant abstract order
The abstract order �v

first unifies segments of the domain into a
common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assuming  is the infimum and � is
the supremum (so that the domain comparison is done implicitly
by the fact that  is used outside this domain for undefined).

Example 11.
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Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by � x . ( x ↵
[�⌦,+⌦] ? ⌘ ) indicates potential non-termination. The test splits
the block [�⌦,+⌦] into [�⌦, 0] and [1,+⌦].

/* � x . ( x ↵ [�⌦, 0] ? 0 : x ↵ [1,+⌦] ? ⌘ ) */
if (x <= 0) {

/* � x . ( x ↵ [�⌦,+⌦] ? 0 ) */
exit;

/* � x . ( x ↵ [�⌦,+⌦] ? ⌘ ) */
}
else

{ /* � x . ( x ↵ [�⌦,+⌦] ? ⌘ ) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming �⌦ � 2 = �⌦ and +⌦ + 2 =
+⌦.)

/* � x . ( x ↵ [�⌦, 2] ? 1 : x ↵ [3,+⌦] ? ⌘ ) */
x = x - 2;
/* � x . ( x ↵ [�⌦, 0] ? 0 : x ↵ [1,+⌦] ? ⌘ ) */

The abstract order ⌫v
first unifies segments of the domain into

a common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assume ⌘ is the infimum and ⇣ is the
supremum (so that the domain comparison is done implicitly by the
fact that ⌘ is used outside this domain for undefined).

Similarly, the join P �̇v
Q first unifies blocks of the partitioned

domains of P and Q into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join �v is
defined for each block ⌅ j1

1 . . . ⌅
ji
i . . . ⌅

jn
n , i ↵ [1, n], ji ↵ [1,mi] of the

partition by

min
�
⌃a
⇤⇤⇤ �i ↵ [1, n] : xi ↵ [⌅ ji

i , ⌅
ji+1
i ) ◆ ⌃a ⌅ j1

1 ...⌅
ji
i ...⌅

jn
n .⌃x ⇤ ⌃a.⌃x ⇥

For example

 ⇣⇤ : ✏s � dom(⇤) :
⇥
⇣s⌦ � dom(⇤) : ⌫s, s⌦⇠ � ⌅⇤P⌅

⇤
=�

⇥
✏s⌦ :

⌫s, s⌦⇠ � ⌅⇤P⌅ =� s⌦ � dom(⇤) � ⇤(s⌦) < ⇤(s)
⇤

�def. sup⇥
 ⇣⌫W, ⌅⇠ : ⇣⇤ � ⇥ ��⌃ W : ✏s � dom(⇤) :

⇥
⇣s⌦ � dom(⇤) : ⌫s,

s⌦⇠ � ⌅⇤P⌅
⇤
=�

⇥
✏s⌦ : ⌫s, s⌦⇠ � ⌅⇤P⌅ =� s⌦ � dom(⇤)�⇤(s⌦) ⌅

⇤(s)
⇤

�since an ordinal is the order type of a well-founded set⇥
 ⇣I � ⌃(⇥) : ⇣⌫W, ⌅⇠ : ⇣⇤ � ⇥ ��⌃ W : ✏s � I :

⇥
⇣s⌦ � I : ⌫s,

s⌦⇠ � ⌅⇤P⌅
⇤
=�

⇥
✏s⌦ : ⌫s, s⌦⇠ � ⌅⇤P⌅ =� s⌦ � I � ⇤(s⌦) ⌅ ⇤(s)

⇤

�choosing I = dom(⇤).⇥
By calculational design, we get the definite termination induction
principle

�i(�+↵⌅ ⇤P⌅)I ⇤ ⇥+⇤P⌅ definite termination proof⌥� ⇣I � ⌃(⇥) : ⇣⌫W, ⌅⇠ : ⇣⇤ � ⇥ ��⌃ W : ✏s � I :⇥
⇣s⌦ � I : ⌫s, s⌦⇠ � ⌅⇤P⌅

⇤
=�

⇥
✏s⌦ : ⌫s, s⌦⇠ � ⌅⇤P⌅ =� s⌦ � I � ⇤(s⌦) ⌅ ⇤(s)

⇤
.

A similar calculational design, yields the potential termination
induction principle

�i(�+↵⌅ ⇤P⌅)I � ⇥+⇤P⌅ � ⌘ potential termination proof⌥� ⇣I � ⌃(⇥) : ⇣⌫W, ⌅⇠ : ⇣⇤ � ⇥ ��⌃ W : ✏s � I : ⇣s⌦ � I :
⌫s, s⌦⇠ � ⌅⇤P⌅ � s⌦ � I � ⇤(s⌦) ⌅ ⇤(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌅⇤P⌅ � {⌫x, x⌦⇠ | x > 0 � x⌦ = x + 1}
requires guessing I = Z, ⌫W, ⌅⇠ = ⌫N, <⇠, ⇤ = � x . ( x ⇥ 0 ? 0 :
(x + 1) ÷ 2 ) and proving ✏x, x⌦ � Z : (x > 0 � x⌦ = x + 1) =�
(✏x⌦⌦ : x⌦⌦ = x + 1 =� ⇤(x⌦⌦) < ⇤(x)).

Because Turing/Floyd method uses the reachability abstraction
�r of (2), it is not possible to directly relate states occurring at
di⇤erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction �r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;
while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌅0⇤P⌅ � {⌫⌫x0, x⇠, ⌫x⌦0, x⌦⇠⇠ | x⌦0 = x � ⌫x, x⌦⇠ � ⌅⇤P⌅} .

This is an abstraction ⌫⌃(⇥⇥⇥), ⇤⇠ ����⌃⇧����
�0

⇥0

⌫⌃(⇥2⇥⇥2), ⇤⇠ such that

�0(⌅) � {⌫⌫x0, x⇠, ⌫x⌦0, x⌦⇠⇠ | x⌦0 = x � ⌫x, x⌦⇠ � ⌅} .
The benefit is that a relational abstraction �R used with ⌅ is equiva-
lent to a non-relational reachability abstraction �r for �0(⌅). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction ⌫⇥ ��⌃ O, ⇡v⇠ ���⌃⇧����

⇥ ⌫A, ⇡⇠ of functions.
Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
� � ⇥ �⌃ ( �⌃ Z) so that, be composition, we are left
with an abstraction ⌫( �⌃ Z) ��⌃ O, ⇡v⇠ ���⌃⇧����

⇥ ⌫A, ⇡⇠. By
encoding of partial map by a total map (using "◆ for undefined
and abstracting higher-order ordinal but ✓ (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
( �⌃ Z) �⌃ N{◆,✓}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi � , i � [1, n] are segmented
into ⇧1i = �↵ < · · · < ⇧ ji

i < · · · < ⇧mi
i = +↵. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [⇧ ji

i , ⇧
ji+1
i (, i �

[1, n], ji � [1,mi(.
The positive value of the variant function for elements ⌥x =

x1, . . . , xn of each block [⇧ ji
i , ⇧

ji+1
i ( of the partition is a linear ex-

pression ⌥a ⇧
j1
1 ...⇧

ji
i ...⇧

jn
n .⌥x of the form

a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

1 x1 + . . . + a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

i xi + . . . + a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

n xn + a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

n+1

where the coe⌅cients a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

k � Q, k � [1, n + 1] are rationals.
For example, in two dimensions

⇧11 = �↵ ⇧21 ⇧31 ⇧
4
1 = +↵ m1 = 4

�↵ = ⇧12
⇧22 a

⇧21⇧
2
2

1 x1 + a
⇧21⇧

2
2

2 x2 + a
⇧21⇧

2
2

3

⇧32
m2 = 4 +↵ = ⇧42

The abstract domain is therefore

A �
⇧
� ⌥x � Zn . ⌅v

i � [1, n],
ji � [1,mi(

( ⇧ ji
i ⇥ xi < ⇧

ji+1
i ? ⌥a ⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

1 .⌥x : ◆ )

���� ✏i � [1, n] : ⇧1i = �↵ < · · · < ⇧ ji
i < · · · < ⇧mi

i = +↵�
⌥a ⇧

j1
1 ...⇧

ji
i ...⇧

jn
n � Qn+1 �

✏ ji � [1,mi(, xi � [⇧ ji
i , ⇧

ji+1
i (: ⌥a

⇧
j1
1 ...⇧

ji
i ...⇧

jn
n

1 .⌥x ⇤ 0
⌃

When the ⇧ ji
i � Q, i � [1, n], ji � [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order ⇡v
first unifies segments of the domain into

a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ◆ is the infimum and ✓ is the
supremum (so that the domain comparison is done implicitly by
the fact that ◆ is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise
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 ⇣⇤ : ✏s � dom(⇤) :
⇥
⇣s⌦ � dom(⇤) : ⌫s, s⌦⇠ � ⌅⇤P⌅

⇤
=�

⇥
✏s⌦ :

⌫s, s⌦⇠ � ⌅⇤P⌅ =� s⌦ � dom(⇤) � ⇤(s⌦) < ⇤(s)
⇤

�def. sup⇥
 ⇣⌫W, ⌅⇠ : ⇣⇤ � ⇥ ��⌃ W : ✏s � dom(⇤) :

⇥
⇣s⌦ � dom(⇤) : ⌫s,

s⌦⇠ � ⌅⇤P⌅
⇤
=�

⇥
✏s⌦ : ⌫s, s⌦⇠ � ⌅⇤P⌅ =� s⌦ � dom(⇤)�⇤(s⌦) ⌅

⇤(s)
⇤

�since an ordinal is the order type of a well-founded set⇥
 ⇣I � ⌃(⇥) : ⇣⌫W, ⌅⇠ : ⇣⇤ � ⇥ ��⌃ W : ✏s � I :

⇥
⇣s⌦ � I : ⌫s,

s⌦⇠ � ⌅⇤P⌅
⇤
=�

⇥
✏s⌦ : ⌫s, s⌦⇠ � ⌅⇤P⌅ =� s⌦ � I � ⇤(s⌦) ⌅ ⇤(s)

⇤

�choosing I = dom(⇤).⇥
By calculational design, we get the definite termination induction
principle

�i(�+↵⌅ ⇤P⌅)I ⇤ ⇥+⇤P⌅ definite termination proof⌥� ⇣I � ⌃(⇥) : ⇣⌫W, ⌅⇠ : ⇣⇤ � ⇥ ��⌃ W : ✏s � I :⇥
⇣s⌦ � I : ⌫s, s⌦⇠ � ⌅⇤P⌅

⇤
=�

⇥
✏s⌦ : ⌫s, s⌦⇠ � ⌅⇤P⌅ =� s⌦ � I � ⇤(s⌦) ⌅ ⇤(s)

⇤
.

A similar calculational design, yields the potential termination
induction principle

�i(�+↵⌅ ⇤P⌅)I � ⇥+⇤P⌅ � ⌘ potential termination proof⌥� ⇣I � ⌃(⇥) : ⇣⌫W, ⌅⇠ : ⇣⇤ � ⇥ ��⌃ W : ✏s � I : ⇣s⌦ � I :
⌫s, s⌦⇠ � ⌅⇤P⌅ � s⌦ � I � ⇤(s⌦) ⌅ ⇤(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌅⇤P⌅ � {⌫x, x⌦⇠ | x > 0 � x⌦ = x + 1}
requires guessing I = Z, ⌫W, ⌅⇠ = ⌫N, <⇠, ⇤ = � x . ( x ⇥ 0 ? 0 :
(x + 1) ÷ 2 ) and proving ✏x, x⌦ � Z : (x > 0 � x⌦ = x + 1) =�
(✏x⌦⌦ : x⌦⌦ = x + 1 =� ⇤(x⌦⌦) < ⇤(x)).

Because Turing/Floyd method uses the reachability abstraction
�r of (2), it is not possible to directly relate states occurring at
di⇤erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction �r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;
while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌅0⇤P⌅ � {⌫⌫x0, x⇠, ⌫x⌦0, x⌦⇠⇠ | x⌦0 = x � ⌫x, x⌦⇠ � ⌅⇤P⌅} .

This is an abstraction ⌫⌃(⇥⇥⇥), ⇤⇠ ����⌃⇧����
�0

⇥0

⌫⌃(⇥2⇥⇥2), ⇤⇠ such that

�0(⌅) � {⌫⌫x0, x⇠, ⌫x⌦0, x⌦⇠⇠ | x⌦0 = x � ⌫x, x⌦⇠ � ⌅} .
The benefit is that a relational abstraction �R used with ⌅ is equiva-
lent to a non-relational reachability abstraction �r for �0(⌅). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction ⌫⇥ ��⌃ O, ⇡v⇠ ���⌃⇧����

⇥ ⌫A, ⇡⇠ of functions.
Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
� � ⇥ �⌃ ( �⌃ Z) so that, be composition, we are left
with an abstraction ⌫( �⌃ Z) ��⌃ O, ⇡v⇠ ���⌃⇧����

⇥ ⌫A, ⇡⇠. By
encoding of partial map by a total map (using "◆ for undefined
and abstracting higher-order ordinal but ✓ (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
( �⌃ Z) �⌃ N{◆,✓}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi � , i � [1, n] are segmented
into ⇧1i = �↵ < · · · < ⇧ ji

i < · · · < ⇧mi
i = +↵. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [⇧ ji

i , ⇧
ji+1
i (, i �

[1, n], ji � [1,mi(.
The positive value of the variant function for elements ⌥x =

x1, . . . , xn of each block [⇧ ji
i , ⇧

ji+1
i ( of the partition is a linear ex-

pression ⌥a ⇧
j1
1 ...⇧

ji
i ...⇧

jn
n .⌥x of the form

a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

1 x1 + . . . + a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

i xi + . . . + a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

n xn + a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

n+1

where the coe⌅cients a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

k � Q, k � [1, n + 1] are rationals.
For example, in two dimensions

⇧11 = �↵ ⇧21 ⇧31 ⇧
4
1 = +↵ m1 = 4

�↵ = ⇧12
⇧22 a

⇧21⇧
2
2

1 x1 + a
⇧21⇧

2
2

2 x2 + a
⇧21⇧

2
2

3

⇧32
m2 = 4 +↵ = ⇧42

The abstract domain is therefore

A �
⇧
� ⌥x � Zn . ⌅v

i � [1, n],
ji � [1,mi(

( ⇧ ji
i ⇥ xi < ⇧

ji+1
i ? ⌥a ⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

1 .⌥x : ◆ )

���� ✏i � [1, n] : ⇧1i = �↵ < · · · < ⇧ ji
i < · · · < ⇧mi

i = +↵�
⌥a ⇧

j1
1 ...⇧

ji
i ...⇧

jn
n � Qn+1 �

✏ ji � [1,mi(, xi � [⇧ ji
i , ⇧

ji+1
i (: ⌥a

⇧
j1
1 ...⇧

ji
i ...⇧

jn
n

1 .⌥x ⇤ 0
⌃

When the ⇧ ji
i � Q, i � [1, n], ji � [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order ⇡v
first unifies segments of the domain into

a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ◆ is the infimum and ✓ is the
supremum (so that the domain comparison is done implicitly by
the fact that ◆ is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise
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A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence.

Finally, the widening P ⌅̇
v

Q first unifies blocks of the parti-
tioned domains of P and Q into a common coarser partition. The
linear expression of each block of the coarser partition for P⌅̇

v
Q is

obtained by joining the sub-blocks of of P and Q it originates from.
Then the linear expressions of each block of P ⌅̇

v
Q is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to ⇣.

Example 11. We use two loop unrollings to stabilize iterations
before widening [38].

⇤0
A = � x . ( x ↵ [�⌦,+⌦] ? ⌘ )
⇤1

A = � x . ( x ↵ [�⌦, 0] ? 0 : x ↵ [1,+⌦] ? ⌘ )
⇤2

A = � x ↵ [�⌦, 0] . 0 ✓̇ � x ↵ [1, 2] . 1 ✓̇ � x ↵ [3,+⌦] .⌘
⇤ 3

A = � x . ( x ↵ [�⌦, 0] ? 0 : x ↵ [1, 2] ? 1 : x ↵ [3, 4] ? 2

: x ↵ [5,+⌦] ? ⌘ )

⇤3
A = ⇤2

A ⌅̇
v
⇤ 3

A

⇤ 4
A = � x . ( x ↵ [�⌦, 0] ? 0 : x ↵ [1, 2] ? 1 : x ↵ [3, 4] ? 2

: x ↵ [5,+⌦] ?
x
2
+ 1 )

⇤4
A = ⇤3

A .

The over-approximation ⇤ of in Ex. 6, by ⇤A is as follows

x

y
υA(x)

v(x)

[

[

[ )

[

[

)

)

)

)

x

y
υA(x)

v(x)

[

[

[ )

[

[

)

)

)

)

!"

!

.

TODO:Why termination is proved: post-fixpoint for abstract or-
der

13. Relational variant semantics
Classical relational abstractions (e.g. octagons [32], polyhedra [21],
polynomials [33], exponentials [28], etc) o⇥er a larger choice of
abstractions than the abstract variant functions considered in Sect.
11. To use relational abstractions for static termination analysis, we
further abstract variant functions into relations.

13.1 Relational variant abstraction
A variant function ⇤ can be abstracted as the pair of an abstraction
of its domain dom(⇤) by a set abstraction (such as e.g. intervals) and
an abstraction of its value by (a relational abstraction of) the down-
closed relation r which over-approximates the variant function on
its domain that is �s ↵ dom(⇤),w ↵ � : s, w� ↵ r =� w ⇥ ⇤(s).
The abstraction is therefore (the first component is redundant but
useful for static analysis)

�rv(⇤) � dom(⇤), �⌃({s, ⇤(s)� | s ↵ dom(⇤)})�
where the down-closure of a relation r ↵ ⇧(� ⇥W) is

�⌃(r) � {s, w � | ✏w : w ⇥ w ◆ s, w� ↵ r} .
Observe that the e⇥ect of the down-closure is to replace equalities
by inequalities for which numerous abstract domains are available.
Moreover an over approximation of the first component is known
by Sect. 8 but for correction we either need an under-approximation
or prove termination for this over-approximation, which is the op-
tion we choose. For the second component, an over-approximation
is correct (this over-estimates the termination time). We have19

� ��⇧ W, ⌫v� ����⇧⌅����
�v

⇥v

⇧(�) ⇥ �⌃[⇧(� ⇥W)], ⇤ ⇥ ⇤� .

Proof.

19 ⇤⇥⌫ is the componentwise partial order x, y� ⇤ ⇥ ⌫ x , y � ⌥� x ⇤
x ◆ y ⌫ y .
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11.1.4 Piecewise linear variant abstract join

Similarly, the join �1 ↵̇
v
�2 first unifies blocks of the partitioned

domains of �1 and �2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join ↵v is
⌃a.⌃x defined for each block ⇧ j1

1 . . . ⇧
ji
i . . . ⇧

jn
n , i ⌃ [1, n], ji ⌃ [1,mi] of

the partition such that ⌥i ⌃ [1, n], ⌥xi ⌃ [⇧ ji
i , ⇧

ji+1
i ), ⌥⌃a ⌅ ⌃ Qn+1,

• ⌃a ⇧ j1
1 ...⇧

ji
i ...⇧

jn
n .⌃x � ⌃a.⌃x

• ⌃a ⇧ j1
1 ...⇧

ji
i ...⇧

jn
n .⌃x � ⌃a ⌅.⌃x =⇤ ⌃a.⌃x � ⌃a ⌅.⌃x .

Example 12.

 ⇣⇤ : ✏s � dom(⇤) :
⇥
⇣s⌦ � dom(⇤) : ⌫s, s⌦⇠ � ⌅⇤P⌅

⇤
=�

⇥
✏s⌦ :

⌫s, s⌦⇠ � ⌅⇤P⌅ =� s⌦ � dom(⇤) � ⇤(s⌦) < ⇤(s)
⇤

�def. sup⇥
 ⇣⌫W, ⌅⇠ : ⇣⇤ � ⇥ ��⌃ W : ✏s � dom(⇤) :

⇥
⇣s⌦ � dom(⇤) : ⌫s,

s⌦⇠ � ⌅⇤P⌅
⇤
=�

⇥
✏s⌦ : ⌫s, s⌦⇠ � ⌅⇤P⌅ =� s⌦ � dom(⇤)�⇤(s⌦) ⌅

⇤(s)
⇤

�since an ordinal is the order type of a well-founded set⇥
 ⇣I � ⌃(⇥) : ⇣⌫W, ⌅⇠ : ⇣⇤ � ⇥ ��⌃ W : ✏s � I :

⇥
⇣s⌦ � I : ⌫s,

s⌦⇠ � ⌅⇤P⌅
⇤
=�

⇥
✏s⌦ : ⌫s, s⌦⇠ � ⌅⇤P⌅ =� s⌦ � I � ⇤(s⌦) ⌅ ⇤(s)

⇤

�choosing I = dom(⇤).⇥
By calculational design, we get the definite termination induction
principle

�i(�+↵⌅ ⇤P⌅)I ⇤ ⇥+⇤P⌅ definite termination proof⌥� ⇣I � ⌃(⇥) : ⇣⌫W, ⌅⇠ : ⇣⇤ � ⇥ ��⌃ W : ✏s � I :⇥
⇣s⌦ � I : ⌫s, s⌦⇠ � ⌅⇤P⌅

⇤
=�

⇥
✏s⌦ : ⌫s, s⌦⇠ � ⌅⇤P⌅ =� s⌦ � I � ⇤(s⌦) ⌅ ⇤(s)

⇤
.

A similar calculational design, yields the potential termination
induction principle

�i(�+↵⌅ ⇤P⌅)I � ⇥+⇤P⌅ � ⌘ potential termination proof⌥� ⇣I � ⌃(⇥) : ⇣⌫W, ⌅⇠ : ⇣⇤ � ⇥ ��⌃ W : ✏s � I : ⇣s⌦ � I :
⌫s, s⌦⇠ � ⌅⇤P⌅ � s⌦ � I � ⇤(s⌦) ⌅ ⇤(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌅⇤P⌅ � {⌫x, x⌦⇠ | x > 0 � x⌦ = x + 1}
requires guessing I = Z, ⌫W, ⌅⇠ = ⌫N, <⇠, ⇤ = � x . ( x ⇥ 0 ? 0 :
(x + 1) ÷ 2 ) and proving ✏x, x⌦ � Z : (x > 0 � x⌦ = x + 1) =�
(✏x⌦⌦ : x⌦⌦ = x + 1 =� ⇤(x⌦⌦) < ⇤(x)).

Because Turing/Floyd method uses the reachability abstraction
�r of (2), it is not possible to directly relate states occurring at
di⇤erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction �r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;
while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌅0⇤P⌅ � {⌫⌫x0, x⇠, ⌫x⌦0, x⌦⇠⇠ | x⌦0 = x � ⌫x, x⌦⇠ � ⌅⇤P⌅} .

This is an abstraction ⌫⌃(⇥⇥⇥), ⇤⇠ ����⌃⇧����
�0

⇥0

⌫⌃(⇥2⇥⇥2), ⇤⇠ such that

�0(⌅) � {⌫⌫x0, x⇠, ⌫x⌦0, x⌦⇠⇠ | x⌦0 = x � ⌫x, x⌦⇠ � ⌅} .
The benefit is that a relational abstraction �R used with ⌅ is equiva-
lent to a non-relational reachability abstraction �r for �0(⌅). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction ⌫⇥ ��⌃ O, ⇡v⇠ ���⌃⇧����

⇥ ⌫A, ⇡⇠ of functions.
Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
� � ⇥ �⌃ ( �⌃ Z) so that, be composition, we are left
with an abstraction ⌫( �⌃ Z) ��⌃ O, ⇡v⇠ ���⌃⇧����

⇥ ⌫A, ⇡⇠. By
encoding of partial map by a total map (using "◆ for undefined
and abstracting higher-order ordinal but ✓ (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
( �⌃ Z) �⌃ N{◆,✓}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi � , i � [1, n] are segmented
into ⇧1i = �↵ < · · · < ⇧ ji

i < · · · < ⇧mi
i = +↵. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [⇧ ji

i , ⇧
ji+1
i (, i �

[1, n], ji � [1,mi(.
The positive value of the variant function for elements ⌥x =

x1, . . . , xn of each block [⇧ ji
i , ⇧

ji+1
i ( of the partition is a linear ex-

pression ⌥a ⇧
j1
1 ...⇧

ji
i ...⇧

jn
n .⌥x of the form

a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

1 x1 + . . . + a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

i xi + . . . + a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

n xn + a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

n+1

where the coe⌅cients a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

k � Q, k � [1, n + 1] are rationals.
For example, in two dimensions

⇧11 = �↵ ⇧21 ⇧31 ⇧
4
1 = +↵ m1 = 4

�↵ = ⇧12
⇧22 a

⇧21⇧
2
2

1 x1 + a
⇧21⇧

2
2

2 x2 + a
⇧21⇧

2
2

3

⇧32
m2 = 4 +↵ = ⇧42

The abstract domain is therefore

A �
⇧
� ⌥x � Zn . ⌅v

i � [1, n],
ji � [1,mi(

( ⇧ ji
i ⇥ xi < ⇧

ji+1
i ? ⌥a ⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

1 .⌥x : ◆ )

���� ✏i � [1, n] : ⇧1i = �↵ < · · · < ⇧ ji
i < · · · < ⇧mi

i = +↵�
⌥a ⇧

j1
1 ...⇧

ji
i ...⇧

jn
n � Qn+1 �

✏ ji � [1,mi(, xi � [⇧ ji
i , ⇧

ji+1
i (: ⌥a

⇧
j1
1 ...⇧

ji
i ...⇧

jn
n

1 .⌥x ⇤ 0
⌃

When the ⇧ ji
i � Q, i � [1, n], ji � [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order ⇡v
first unifies segments of the domain into

a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ◆ is the infimum and ✓ is the
supremum (so that the domain comparison is done implicitly by
the fact that ◆ is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise
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 ⇣⇤ : ✏s � dom(⇤) :
⇥
⇣s⌦ � dom(⇤) : ⌫s, s⌦⇠ � ⌅⇤P⌅

⇤
=�

⇥
✏s⌦ :

⌫s, s⌦⇠ � ⌅⇤P⌅ =� s⌦ � dom(⇤) � ⇤(s⌦) < ⇤(s)
⇤

�def. sup⇥
 ⇣⌫W, ⌅⇠ : ⇣⇤ � ⇥ ��⌃ W : ✏s � dom(⇤) :

⇥
⇣s⌦ � dom(⇤) : ⌫s,

s⌦⇠ � ⌅⇤P⌅
⇤
=�

⇥
✏s⌦ : ⌫s, s⌦⇠ � ⌅⇤P⌅ =� s⌦ � dom(⇤)�⇤(s⌦) ⌅

⇤(s)
⇤

�since an ordinal is the order type of a well-founded set⇥
 ⇣I � ⌃(⇥) : ⇣⌫W, ⌅⇠ : ⇣⇤ � ⇥ ��⌃ W : ✏s � I :

⇥
⇣s⌦ � I : ⌫s,

s⌦⇠ � ⌅⇤P⌅
⇤
=�

⇥
✏s⌦ : ⌫s, s⌦⇠ � ⌅⇤P⌅ =� s⌦ � I � ⇤(s⌦) ⌅ ⇤(s)

⇤

�choosing I = dom(⇤).⇥
By calculational design, we get the definite termination induction
principle

�i(�+↵⌅ ⇤P⌅)I ⇤ ⇥+⇤P⌅ definite termination proof⌥� ⇣I � ⌃(⇥) : ⇣⌫W, ⌅⇠ : ⇣⇤ � ⇥ ��⌃ W : ✏s � I :⇥
⇣s⌦ � I : ⌫s, s⌦⇠ � ⌅⇤P⌅

⇤
=�

⇥
✏s⌦ : ⌫s, s⌦⇠ � ⌅⇤P⌅ =� s⌦ � I � ⇤(s⌦) ⌅ ⇤(s)

⇤
.

A similar calculational design, yields the potential termination
induction principle

�i(�+↵⌅ ⇤P⌅)I � ⇥+⇤P⌅ � ⌘ potential termination proof⌥� ⇣I � ⌃(⇥) : ⇣⌫W, ⌅⇠ : ⇣⇤ � ⇥ ��⌃ W : ✏s � I : ⇣s⌦ � I :
⌫s, s⌦⇠ � ⌅⇤P⌅ � s⌦ � I � ⇤(s⌦) ⌅ ⇤(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

⌅⇤P⌅ � {⌫x, x⌦⇠ | x > 0 � x⌦ = x + 1}
requires guessing I = Z, ⌫W, ⌅⇠ = ⌫N, <⇠, ⇤ = � x . ( x ⇥ 0 ? 0 :
(x + 1) ÷ 2 ) and proving ✏x, x⌦ � Z : (x > 0 � x⌦ = x + 1) =�
(✏x⌦⌦ : x⌦⌦ = x + 1 =� ⇤(x⌦⌦) < ⇤(x)).

Because Turing/Floyd method uses the reachability abstraction
�r of (2), it is not possible to directly relate states occurring at
di⇤erent times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction �r is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;
while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

⌅0⇤P⌅ � {⌫⌫x0, x⇠, ⌫x⌦0, x⌦⇠⇠ | x⌦0 = x � ⌫x, x⌦⇠ � ⌅⇤P⌅} .

This is an abstraction ⌫⌃(⇥⇥⇥), ⇤⇠ ����⌃⇧����
�0

⇥0

⌫⌃(⇥2⇥⇥2), ⇤⇠ such that

�0(⌅) � {⌫⌫x0, x⇠, ⌫x⌦0, x⌦⇠⇠ | x⌦0 = x � ⌫x, x⌦⇠ � ⌅} .
The benefit is that a relational abstraction �R used with ⌅ is equiva-
lent to a non-relational reachability abstraction �r for �0(⌅). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction ⌫⇥ ��⌃ O, ⇡v⇠ ���⌃⇧����

⇥ ⌫A, ⇡⇠ of functions.
Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
� � ⇥ �⌃ ( �⌃ Z) so that, be composition, we are left
with an abstraction ⌫( �⌃ Z) ��⌃ O, ⇡v⇠ ���⌃⇧����

⇥ ⌫A, ⇡⇠. By
encoding of partial map by a total map (using "◆ for undefined
and abstracting higher-order ordinal but ✓ (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
( �⌃ Z) �⌃ N{◆,✓}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi � , i � [1, n] are segmented
into ⇧1i = �↵ < · · · < ⇧ ji

i < · · · < ⇧mi
i = +↵. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [⇧ ji

i , ⇧
ji+1
i (, i �

[1, n], ji � [1,mi(.
The positive value of the variant function for elements ⌥x =

x1, . . . , xn of each block [⇧ ji
i , ⇧

ji+1
i ( of the partition is a linear ex-

pression ⌥a ⇧
j1
1 ...⇧

ji
i ...⇧

jn
n .⌥x of the form

a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

1 x1 + . . . + a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

i xi + . . . + a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

n xn + a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

n+1

where the coe⌅cients a
⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

k � Q, k � [1, n + 1] are rationals.
For example, in two dimensions

⇧11 = �↵ ⇧21 ⇧31 ⇧
4
1 = +↵ m1 = 4

�↵ = ⇧12
⇧22 a

⇧21⇧
2
2

1 x1 + a
⇧21⇧

2
2

2 x2 + a
⇧21⇧

2
2

3

⇧32
m2 = 4 +↵ = ⇧42

The abstract domain is therefore

A �
⇧
� ⌥x � Zn . ⌅v

i � [1, n],
ji � [1,mi(

( ⇧ ji
i ⇥ xi < ⇧

ji+1
i ? ⌥a ⇧

j1
1 ...⇧

ji
i ...⇧

jn
n

1 .⌥x : ◆ )

���� ✏i � [1, n] : ⇧1i = �↵ < · · · < ⇧ ji
i < · · · < ⇧mi

i = +↵�
⌥a ⇧

j1
1 ...⇧

ji
i ...⇧

jn
n � Qn+1 �

✏ ji � [1,mi(, xi � [⇧ ji
i , ⇧

ji+1
i (: ⌥a

⇧
j1
1 ...⇧

ji
i ...⇧

jn
n

1 .⌥x ⇤ 0
⌃

When the ⇧ ji
i � Q, i � [1, n], ji � [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order ⇡v
first unifies segments of the domain into

a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ◆ is the infimum and ✓ is the
supremum (so that the domain comparison is done implicitly by
the fact that ◆ is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise
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A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence. The number of blocks in the partitions can also be
limited to favor e⇥ciency to the detriment of precison.

11.1.5 Piecewise linear variant abstract widening

Finally, the widening �1 ⇥̇
v
�2 first widens the blocks of the parti-

tioned domains of �1 and �2 using e.g. interval widening (possibly
with thresholds).

Finally, the widening P ⇥̇
v

Q first unifies blocks of the parti-
tioned domains of �1 and �2 into a common coarser partition. The
linear expression of each block of the coarser partition for �1⇥̇

v
�2 is

obtained by joining the sub-blocks of of �1 and �2 it originates from.
Then the linear expressions of each block of �1 ⇥̇

v
�2 is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to �.

Example 13. We use two loop unrollings to stabilize iterations
before widening [38].

�0
A = � x . ( x ⌃ [�⇧,+⇧] ?  )
�1

A = � x . ( x ⌃ [�⇧, 0] ? 0 : x ⌃ [1,+⇧] ?  )
�2

A = � x ⌃ [�⇧, 0] . 0 ⌦̇ � x ⌃ [1, 2] . 1 ⌦̇ � x ⌃ [3,+⇧] . 
�⌅3A = � x . ( x ⌃ [�⇧, 0] ? 0 : x ⌃ [1, 2] ? 1 : x ⌃ [3, 4] ? 2

: x ⌃ [5,+⇧] ?  )
�3

A = �2
A ⇥̇

v
�⌅3A

�⌅4A = � x . ( x ⌃ [�⇧, 0] ? 0 : x ⌃ [1, 2] ? 1 : x ⌃ [3, 4] ? 2

: x ⌃ [5,+⇧] ?
x
2
+ 1 )

�4
A = �3

A .

The over-approximation � of in Ex. 6, by �A is as follows

x

y
νA(x)

ν(x)

[

[

[ )

[

[

)

)

)

)
! "

"

x

y
νA(x)

ν(x)

[

[

[ )

[

[

)

)

)

)
"!

"

.

TODO:Why termination is proved: post-fixpoint for abstract or-
der

12. Relational variant semantics
Classical relational abstractions (e.g. octagons [32], polyhedra [21],
polynomials [33], exponentials [28], etc) o�er a larger choice of
abstractions than the abstract variant functions considered in Sect.
11. To use relational abstractions for static termination analysis, we
further abstract variant functions into relations.
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x

y

d
...

Then the range-widening Ȯ
v

r increases the gradient (i.e. slope in two
dimensions) of the variant function of each block in the directions of
its domain-widened neighbors to over-approximate their respective
variants functions (extended to the widened domains).

Example 16.

⇔∃ν : ∀s ∈ dom(ν) :
�
∃s� ∈ dom(ν) : �s, s�� ∈ τ�P�

�
=⇒

�
∀s� :

�s, s�� ∈ τ�P� =⇒ s� ∈ dom(ν) ∧ ν(s�) < ν(s)
�

�def. sup�
⇔∃�W, ≺� : ∃ν ∈ Σ ��→ W : ∀s ∈ dom(ν) :

�
∃s� ∈ dom(ν) : �s,

s�� ∈ τ�P�
�
=⇒

�
∀s� : �s, s�� ∈ τ�P� =⇒ s� ∈ dom(ν)∧ν(s�) ≺

ν(s)
�

�since an ordinal is the order type of a well-founded set�
⇔∃I ∈ ℘(Σ) : ∃�W, ≺� : ∃ν ∈ Σ ��→ W : ∀s ∈ I :

�
∃s� ∈ I : �s,

s�� ∈ τ�P�
�
=⇒

�
∀s� : �s, s�� ∈ τ�P� =⇒ s� ∈ I ∧ ν(s�) ≺ ν(s)

�

�choosing I = dom(ν).�
By calculational design, we get the definite termination induction
principle

αi(Θ+∞τ �P�)I ⊆ Σ+�P� definite termination proof⇐⇒ ∃I ∈ ℘(Σ) : ∃�W, ≺� : ∃ν ∈ Σ ��→ W : ∀s ∈ I :�
∃s� ∈ I : �s, s�� ∈ τ�P�

�
=⇒

�
∀s� : �s, s�� ∈ τ�P� =⇒ s� ∈ I ∧ ν(s�) ≺ ν(s)

�
.

A similar calculational design, yields the potential termination
induction principle

αi(Θ+∞τ �P�)I ∩ Σ+�P� � ∅ potential termination proof⇐⇒ ∃I ∈ ℘(Σ) : ∃�W, ≺� : ∃ν ∈ Σ ��→ W : ∀s ∈ I : ∃s� ∈ I :
�s, s�� ∈ τ�P� ∧ s� ∈ I ∧ ν(s�) ≺ ν(s) .

Example 7. For the program of Ex. 6, the definite termination
proof for the simplified transition system

τ�P� � {�x, x�� | x > 0 ∧ x� = x + 1}
requires guessing I = Z, �W, ≺� = �N, <�, ν = λ x . ( x � 0 ? 0 :
(x + 1) ÷ 2 ) and proving ∀x, x� ∈ Z : (x > 0 ∧ x� = x + 1) =⇒
(∀x�� : x�� = x + 1 =⇒ ν(x��) < ν(x)).

Because Turing/Floyd method uses the reachability abstraction
αr of (2), it is not possible to directly relate states occurring at
different times during computations. This is why the program is
transformed by using auxiliary variables to relate the current value
of the variables to their past value. This induces a transformed
transition system, which under the reachability abstraction αr is
equivalent to the relational abstraction of the original transition
system by the relational abstraction (1).

Example 8. Continuing Ex. 7, the program is transformed into

int main () { int x;
while (x > 0) { x0 = x; x = x - 2; }}

which consists in reasoning on the transformed transition system

τ0�P� � {��x0, x�, �x�0, x��� | x�0 = x ∧ �x, x�� ∈ τ�P�} .

This is an abstraction �℘(Σ×Σ), ⊆� −−−−→←−−−−
α0

γ0

�℘(Σ2×Σ2), ⊆� such that

α0(τ) � {��x0, x�, �x�0, x��� | x�0 = x ∧ �x, x�� ∈ τ} .
The benefit is that a relational abstraction αR used with τ is equiva-
lent to a non-relational reachability abstraction αr for α0(τ). How-
ever, in both cases, a limitation is that, for a given control point, it
is only possible to refer to one past instant of time when control is
at that program point, which is a limitation when compared to the
more flexible reasoning by induction on traces.

TODO:Je me pose la question: incompletude si on ne refere
pas a l’etat initial

11. Variant abstraction analysis
We get a termination analysis by abstraction of the variant seman-
tics. We need an abstraction �Σ ��→ O, �v� −−−→←−−−α

γ �A, �� of functions.
Many abstractions of functions have been proposed e.g. [14, 20]
that can be reused for termination static analysis.

Example 9. Let us consider a program with integer variables
= x1, . . . , xn, n > 0. We first apply an abstraction of states

extracting the numerical variables in the form of an environment
α ∈ Σ �→ ( �→ Z) so that, be composition, we are left
with an abstraction �( �→ Z) ��→ O, �v� −−−→←−−−α

γ �A, ��. By
encoding of partial map by a total map (using "⊥ for undefined
and abstracting higher-order ordinal but � (unknown, e.g. in case
of non-termination or unbounded nondeterminism), we can choose
( �→ Z) �→ N∪{⊥,�}. There is no loss of information for bounded
determinism. We can now further abstracted by piecewise linear
functions.

The values xi of each variable xi ∈ , i ∈ [1, n] are segmented
into �1i = −∞ < · · · < � ji

i < · · · < �mi
i = +∞. This provides

a partition of the space Zn of values x1, . . . , xn of the variables
x1, . . . , xn. The blocks of the partition are therefore [� ji

i , �
ji+1
i (, i ∈

[1, n], ji ∈ [1,mi(.
The positive value of the variant function for elements �x =

x1, . . . , xn of each block [� ji
i , �

ji+1
i ( of the partition is a linear ex-

pression �a �
j1
1 ...�

ji
i ...�

jn
n .�x of the form

a
�

j1
1 ...�

ji
i ...�

jn
n

1 x1 + . . . + a
�

j1
1 ...�

ji
i ...�

jn
n

i xi + . . . + a
�

j1
1 ...�

ji
i ...�

jn
n

n xn + a
�

j1
1 ...�

ji
i ...�

jn
n

n+1

where the coefficients a
�

j1
1 ...�

ji
i ...�

jn
n

k ∈ Q, k ∈ [1, n + 1] are rationals.
For example, in two dimensions

�11 = −∞ �21 �31 �
4
1 = +∞ m1 = 4

−∞ = �12
�22 a

�21�
2
2

1 x1 + a
�21�

2
2

2 x2 + a
�21�

2
2

3

�32
m2 = 4 +∞ = �42

The abstract domain is therefore

A �
�
λ �x ∈ Zn . �v

i ∈ [1, n],
ji ∈ [1,mi(

( � ji
i � xi < �

ji+1
i ? �a �

j1
1 ...�

ji
i ...�

jn
n

1 .�x : ⊥ )

���� ∀i ∈ [1, n] : �1i = −∞ < · · · < � ji
i < · · · < �mi

i = +∞∧
�a �

j1
1 ...�

ji
i ...�

jn
n ∈ Qn+1 ∧

∀ ji ∈ [1,mi(, xi ∈ [� ji
i , �

ji+1
i (: �a

�
j1
1 ...�

ji
i ...�

jn
n

1 .�x � 0
�

When the � ji
i ∈ Q, i ∈ [1, n], ji ∈ [1,mi] are rationals, this ab-

straction essentially reuses the classical abstractions of intervals
[12, 13], linear inequalities [21] and segmentation [23]. An imme-
diate generalization consists in using consecutive segments with
symbolic bounds as done in [23] for array content analysis. A fur-
ther generalization consists in using decision trees [22] instead of a
segmentation of the domain of the abstract variant function.

The abstract order �v
first unifies segments of the domain into

a common refined partition by segmentation of each variable (see
[23, 11.4: Segmentation unification]) and then compares the linear
expressions blockwise, assume ⊥ is the infimum and � is the
supremum (so that the domain comparison is done implicitly by
the fact that ⊥ is used for undefined).

Similarly, the join first unifies segments of the domain into a
common refined partition. However a coarser partition can also be
used (see [23, 11.4: Segmentation unification]) which is less precise
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11.1.2 Piecewise linear variant abstract transformers

The abstract transformer φ�
←− mv
τ �P� abstracting the concrete trans-

former φ←− mv
τ �P� of Sect. 10.4 is applied blockwise by computing

the abstract pre-image of each block by assignments or tests. The
condition in tests may split the block into sub-blocks for which the
condition is true or false.

Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by λ x . ( x ∈
[−∞,+∞] ? ⊥ ) indicates potential non-termination. The test splits
the block [−∞,+∞] into [−∞, 0] and [1,+∞].

/* λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ ) */
if (x <= 0) {

/* λ x . ( x ∈ [−∞,+∞] ? 0 ) */
exit;

/* λ x . ( x ∈ [−∞,+∞] ? ⊥ ) */
}
else

{ /* λ x . ( x ∈ [−∞,+∞] ? ⊥ ) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming −∞ − 2 = −∞ and +∞ + 2 =
+∞.)

/* λ x . ( x ∈ [−∞, 2] ? 1 : x ∈ [3,+∞] ? ⊥ ) */
x = x - 2;
/* λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ ) */

11.1.3 Piecewise linear variant abstract order
The abstract order �v

first unifies segments of the domain into a
common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assuming ⊥ is the infimum and � is
the supremum (so that the domain comparison is done implicitly
by the fact that ⊥ is used outside this domain for undefined).

Example 11.

11.1.4 Piecewise linear variant abstract join

Similarly, the join ν1 �̇
v
ν2 first unifies blocks of the partitioned

domains of ν1 and ν2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join �v is
�a.�x defined for each block � j1

1 . . . �
ji
i . . . �

jn
n , i ∈ [1, n], ji ∈ [1,mi] of

the partition such that ∀i ∈ [1, n], ∀xi ∈ [� ji
i , �

ji+1
i ), ∀�a � ∈ Qn+1,

• �a � j1
1 ...�

ji
i ...�

jn
n .�x � �a.�x

• �a � j1
1 ...�

ji
i ...�

jn
n .�x � �a �.�x =⇒ �a.�x � �a �.�x .

Example 12.

A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence. The number of blocks in the partitions can also be
limited to favor efficiency to the detriment of precison.

11.1.5 Piecewise linear variant abstract widening

Finally, the widening ν1 �̇
v
ν2 first widens the blocks of the parti-

tioned domains of ν1 and ν2 using e.g. interval widening (possibly
with thresholds).

Finally, the widening P �̇
v

Q first unifies blocks of the parti-
tioned domains of ν1 and ν2 into a common coarser partition. The
linear expression of each block of the coarser partition for ν1�̇

v
ν2 is

obtained by joining the sub-blocks of of ν1 and ν2 it originates from.
Then the linear expressions of each block of ν1 �̇

v
ν2 is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to �.

Example 13. We use two loop unrollings to stabilize iterations
before widening [38].

ν0
A = λ x . ( x ∈ [−∞,+∞] ? ⊥ )
ν1

A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ )
ν2

A = λ x ∈ [−∞, 0] . 0 ∪̇ λ x ∈ [1, 2] . 1 ∪̇ λ x ∈ [3,+∞] .⊥
ν�3A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1, 2] ? 1 : x ∈ [3, 4] ? 2

: x ∈ [5,+∞] ? ⊥ )
ν3

A = ν2
A �̇

v
ν�3A

ν�4A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1, 2] ? 1 : x ∈ [3, 4] ? 2

: x ∈ [5,+∞] ?
x
2
+ 1 )

ν4
A = ν3

A .

The over-approximation ν of in Ex. 6, by νA is as follows

.

TODO:Why termination is proved: post-fixpoint for abstract or-
der

12. Relational variant semantics
Classical relational abstractions (e.g. octagons [32], polyhedra [21],
polynomials [33], exponentials [28], etc) offer a larger choice of
abstractions than the abstract variant functions considered in Sect.
11. To use relational abstractions for static termination analysis, we
further abstract variant functions into relations.
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11.1.2 Piecewise linear variant abstract transformers

The abstract transformer φ�
←− mv
τ �P� abstracting the concrete trans-

former φ←− mv
τ �P� of Sect. 10.4 is applied blockwise by computing

the abstract pre-image of each block by assignments or tests. The
condition in tests may split the block into sub-blocks for which the
condition is true or false.

Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by λ x . ( x ∈
[−∞,+∞] ? ⊥ ) indicates potential non-termination. The test splits
the block [−∞,+∞] into [−∞, 0] and [1,+∞].

/* λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ ) */
if (x <= 0) {

/* λ x . ( x ∈ [−∞,+∞] ? 0 ) */
exit;

/* λ x . ( x ∈ [−∞,+∞] ? ⊥ ) */
}
else

{ /* λ x . ( x ∈ [−∞,+∞] ? ⊥ ) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming −∞ − 2 = −∞ and +∞ + 2 =
+∞.)

/* λ x . ( x ∈ [−∞, 2] ? 1 : x ∈ [3,+∞] ? ⊥ ) */
x = x - 2;
/* λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ ) */

11.1.3 Piecewise linear variant abstract order
The abstract order �v

first unifies segments of the domain into a
common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assuming ⊥ is the infimum and � is
the supremum (so that the domain comparison is done implicitly
by the fact that ⊥ is used outside this domain for undefined).

Example 11.

11.1.4 Piecewise linear variant abstract join

Similarly, the join ν1 �̇
v
ν2 first unifies blocks of the partitioned

domains of ν1 and ν2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join �v is
�a.�x defined for each block � j1

1 . . . �
ji
i . . . �

jn
n , i ∈ [1, n], ji ∈ [1,mi] of

the partition such that ∀i ∈ [1, n], ∀xi ∈ [� ji
i , �

ji+1
i ), ∀�a � ∈ Qn+1,

• �a � j1
1 ...�

ji
i ...�

jn
n .�x � �a.�x

• �a � j1
1 ...�

ji
i ...�

jn
n .�x � �a �.�x =⇒ �a.�x � �a �.�x .

Example 12.

A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence.

11.1.5 Piecewise linear variant abstract widening

Finally, the widening ν1 �̇
v
ν2 follows the idea introduced by [14]

of widening functions by widening the domain of their parameters
with a domain widening �̇

v

d and then their results with a range
widening �̇

v

r . So the blocks of the partitioned domains of ν1 and
ν2 are first widened using e.g. interval widening �̇

v

d (possibly with
thresholds) of the blocks with respect to their neiborghs.

Example 13. An interval widening for a two-dimensions domain
�x, y� ∈ Z2 yields

Then the range-widening �̇
v

r

Example 14.

Finally, the widening P �̇
v

Q first unifies blocks of the parti-
tioned domains of ν1 and ν2 into a common coarser partition. The
linear expression of each block of the coarser partition for ν1�̇

v
ν2 is

obtained by joining the sub-blocks of of ν1 and ν2 it originates from.
Then the linear expressions of each block of ν1 �̇

v
ν2 is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to �.

Example 15. We use two loop unrollings to stabilize iterations
before widening [38].

ν0
A = λ x . ( x ∈ [−∞,+∞] ? ⊥ )
ν1

A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ )
ν2

A = λ x ∈ [−∞, 0] . 0 ∪̇ λ x ∈ [1, 2] . 1 ∪̇ λ x ∈ [3,+∞] .⊥
ν�3A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1, 2] ? 1 : x ∈ [3, 4] ? 2

: x ∈ [5,+∞] ? ⊥ )
ν3

A = ν2
A �̇

v
ν�3A

ν�4A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1, 2] ? 1 : x ∈ [3, 4] ? 2

: x ∈ [5,+∞] ?
x
2
+ 1 )

ν4
A = ν3

A .

The over-approximation ν of in Ex. 6, by νA is as follows
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11.1.2 Piecewise linear variant abstract transformers

The abstract transformer φ�
←− mv
τ �P� abstracting the concrete trans-

former φ←− mv
τ �P� of Sect. 10.4 is applied blockwise by computing

the abstract pre-image of each block by assignments or tests. The
condition in tests may split the block into sub-blocks for which the
condition is true or false.

Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by λ x . ( x ∈
[−∞,+∞] ? ⊥ ) indicates potential non-termination. The test splits
the block [−∞,+∞] into [−∞, 0] and [1,+∞].

/* λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ ) */
if (x <= 0) {

/* λ x . ( x ∈ [−∞,+∞] ? 0 ) */
exit;

/* λ x . ( x ∈ [−∞,+∞] ? ⊥ ) */
}

else

{ /* λ x . ( x ∈ [−∞,+∞] ? ⊥ ) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming −∞ − 2 = −∞ and +∞ + 2 =
+∞.)

/* λ x . ( x ∈ [−∞, 2] ? 1 : x ∈ [3,+∞] ? ⊥ ) */
x = x - 2;
/* λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ ) */

11.1.3 Piecewise linear variant abstract order
The abstract order �v

first unifies segments of the domain into a
common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assuming ⊥ is the infimum and � is
the supremum (so that the domain comparison is done implicitly
by the fact that ⊥ is used outside this domain for undefined).

Example 11.

11.1.4 Piecewise linear variant abstract join

Similarly, the join ν1 �̇
v
ν2 first unifies blocks of the partitioned

domains of ν1 and ν2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join �v is
�a.�x defined for each block � j1

1 . . . �
ji
i . . . �

jn
n , i ∈ [1, n], ji ∈ [1,mi] of

the partition such that ∀i ∈ [1, n], ∀xi ∈ [� ji
i , �

ji+1
i ), ∀�a � ∈ Qn+1,

• �a � j1
1 ...�

ji
i ...�

jn
n .�x � �a.�x

• �a � j1
1 ...�

ji
i ...�

jn
n .�x � �a �.�x =⇒ �a.�x � �a �.�x .

Example 12.

A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence.

11.1.5 Piecewise linear variant abstract widening

Finally, the widening ν1 �̇
v
ν2 follows the idea introduced by [14]

of widening functions by widening the domain of their parameters
with a domain widening �̇

v

d and then their results with a range
widening �̇

v

r . So the blocks of the partitioned domains of ν1 and
ν2 are first widened using e.g. interval widening �̇

v

d (possibly with
thresholds) of the blocks with respect to their neiborghs.

Example 13. An interval widening for a two-dimensions domain
�x, y� ∈ Z2 yields

Then the range-widening �̇
v

r

Example 14.

Finally, the widening P �̇
v

Q first unifies blocks of the parti-
tioned domains of ν1 and ν2 into a common coarser partition. The
linear expression of each block of the coarser partition for ν1�̇

v
ν2 is

obtained by joining the sub-blocks of of ν1 and ν2 it originates from.
Then the linear expressions of each block of ν1 �̇

v
ν2 is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to �.

Example 15. We use two loop unrollings to stabilize iterations
before widening [38].

ν0
A = λ x . ( x ∈ [−∞,+∞] ? ⊥ )
ν1

A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ )
ν2

A = λ x ∈ [−∞, 0] . 0 ∪̇ λ x ∈ [1, 2] . 1 ∪̇ λ x ∈ [3,+∞] .⊥
ν�3A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1, 2] ? 1 : x ∈ [3, 4] ? 2

: x ∈ [5,+∞] ? ⊥ )
ν3

A = ν2
A �̇

v
ν�3A

ν�4A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1, 2] ? 1 : x ∈ [3, 4] ? 2

: x ∈ [5,+∞] ?
x
2
+ 1 )

ν4
A = ν3

A .

The over-approximation ν of in Ex. 6, by νA is as follows
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11.1.2 Piecewise linear variant abstract transformers

The abstract transformer φ�
←− mv
τ �P� abstracting the concrete trans-

former φ←− mv
τ �P� of Sect. 10.4 is applied blockwise by computing

the abstract pre-image of each block by assignments or tests. The
condition in tests may split the block into sub-blocks for which the
condition is true or false.

Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by λ x . ( x ∈
[−∞,+∞] ? ⊥ ) indicates potential non-termination. The test splits
the block [−∞,+∞] into [−∞, 0] and [1,+∞].

/* λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ ) */
if (x <= 0) {

/* λ x . ( x ∈ [−∞,+∞] ? 0 ) */
exit;

/* λ x . ( x ∈ [−∞,+∞] ? ⊥ ) */
}
else

{ /* λ x . ( x ∈ [−∞,+∞] ? ⊥ ) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming −∞ − 2 = −∞ and +∞ + 2 =
+∞.)

/* λ x . ( x ∈ [−∞, 2] ? 1 : x ∈ [3,+∞] ? ⊥ ) */
x = x - 2;
/* λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ ) */

11.1.3 Piecewise linear variant abstract order
The abstract order �v

first unifies segments of the domain into a
common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assuming ⊥ is the infimum and � is
the supremum (so that the domain comparison is done implicitly
by the fact that ⊥ is used outside this domain for undefined).

Example 11.

11.1.4 Piecewise linear variant abstract join

Similarly, the join ν1 �̇
v
ν2 first unifies blocks of the partitioned

domains of ν1 and ν2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join �v is
�a.�x defined for each block � j1

1 . . . �
ji
i . . . �

jn
n , i ∈ [1, n], ji ∈ [1,mi] of

the partition such that ∀i ∈ [1, n], ∀xi ∈ [� ji
i , �

ji+1
i ), ∀�a � ∈ Qn+1,

• �a � j1
1 ...�

ji
i ...�

jn
n .�x � �a.�x

• �a � j1
1 ...�

ji
i ...�

jn
n .�x � �a �.�x =⇒ �a.�x � �a �.�x .

Example 12.

A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence. The number of blocks in the partitions can also be
limited to favor efficiency to the detriment of precison.

11.1.5 Piecewise linear variant abstract widening

Finally, the widening ν1 �̇
v
ν2 first widens the blocks of the parti-

tioned domains of ν1 and ν2 using e.g. interval widening (possibly
with thresholds).

Finally, the widening P �̇
v

Q first unifies blocks of the parti-
tioned domains of ν1 and ν2 into a common coarser partition. The
linear expression of each block of the coarser partition for ν1�̇

v
ν2 is

obtained by joining the sub-blocks of of ν1 and ν2 it originates from.
Then the linear expressions of each block of ν1 �̇

v
ν2 is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to �.

Example 13. We use two loop unrollings to stabilize iterations
before widening [38].

ν0
A = λ x . ( x ∈ [−∞,+∞] ? ⊥ )
ν1

A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ )
ν2

A = λ x ∈ [−∞, 0] . 0 ∪̇ λ x ∈ [1, 2] . 1 ∪̇ λ x ∈ [3,+∞] .⊥
ν�3A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1, 2] ? 1 : x ∈ [3, 4] ? 2

: x ∈ [5,+∞] ? ⊥ )
ν3

A = ν2
A �̇

v
ν�3A

ν�4A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1, 2] ? 1 : x ∈ [3, 4] ? 2

: x ∈ [5,+∞] ?
x
2
+ 1 )

ν4
A = ν3

A .

The over-approximation ν of in Ex. 6, by νA is as follows

.

TODO:Why termination is proved: post-fixpoint for abstract or-
der

12. Relational variant semantics
Classical relational abstractions (e.g. octagons [32], polyhedra [21],
polynomials [33], exponentials [28], etc) offer a larger choice of
abstractions than the abstract variant functions considered in Sect.
11. To use relational abstractions for static termination analysis, we
further abstract variant functions into relations.
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11.1.2 Piecewise linear variant abstract transformers

The abstract transformer φ�
←− mv
τ �P� abstracting the concrete trans-

former φ←− mv
τ �P� of Sect. 10.4 is applied blockwise by computing

the abstract pre-image of each block by assignments or tests. The
condition in tests may split the block into sub-blocks for which the
condition is true or false.

Example 9. Here is an example of the backward termination analy-
sis of an exit preceded by a test. The exit enforces termination
in 0 steps. The initialization of the fixpoint iterates by λ x . ( x ∈
[−∞,+∞] ? ⊥ ) indicates potential non-termination. The test splits
the block [−∞,+∞] into [−∞, 0] and [1,+∞].

/* λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ ) */
if (x <= 0) {

/* λ x . ( x ∈ [−∞,+∞] ? 0 ) */
exit;

/* λ x . ( x ∈ [−∞,+∞] ? ⊥ ) */
}

else

{ /* λ x . ( x ∈ [−∞,+∞] ? ⊥ ) */
... }

An assignment backward propagates the linear variant functions by
blocks which are incremented by 1 step, but for those correspond-
ing to non-termination.

Example 10. Here is an example of the backward termination
analysis of an assignment (assuming −∞ − 2 = −∞ and +∞ + 2 =
+∞.)

/* λ x . ( x ∈ [−∞, 2] ? 1 : x ∈ [3,+∞] ? ⊥ ) */
x = x - 2;
/* λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ ) */

11.1.3 Piecewise linear variant abstract order
The abstract order �v

first unifies segments of the domain into a
common refined partition by segmentation of each variable (see
[23, Sect. 11.4: Segmentation unification]) and then compares the
linear expressions blockwise, assuming ⊥ is the infimum and � is
the supremum (so that the domain comparison is done implicitly
by the fact that ⊥ is used outside this domain for undefined).

Example 11.

11.1.4 Piecewise linear variant abstract join

Similarly, the join ν1 �̇
v
ν2 first unifies blocks of the partitioned

domains of ν1 and ν2 into a common refined partition. Then the
linear expressions are joined blockwise. This blockwise join �v is
�a.�x defined for each block � j1

1 . . . �
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i . . . �
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n , i ∈ [1, n], ji ∈ [1,mi] of

the partition such that ∀i ∈ [1, n], ∀xi ∈ [� ji
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i ), ∀�a � ∈ Qn+1,
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1 ...�
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1 ...�
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i ...�
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n .�x � �a �.�x =⇒ �a.�x � �a �.�x .

Example 12.

A coarser partition can also be used in the join (see [23, Sect. 11.4:
Segmentation unification]) which is less precise but enforces faster
convergence. The number of blocks in the partitions can also be
limited to favor efficiency to the detriment of precison.

11.1.5 Piecewise linear variant abstract widening

Finally, the widening ν1 �̇
v
ν2 first widens the blocks of the parti-

tioned domains of ν1 and ν2 using e.g. interval widening (possibly
with thresholds).

Finally, the widening P �̇
v

Q first unifies blocks of the parti-
tioned domains of ν1 and ν2 into a common coarser partition. The
linear expression of each block of the coarser partition for ν1�̇

v
ν2 is

obtained by joining the sub-blocks of of ν1 and ν2 it originates from.
Then the linear expressions of each block of ν1 �̇

v
ν2 is repeatedly

widened with respect to the blocks of its immediate neighborhood.
TODO: To enforce convergence, the widening skips to finitely

many given thresholds for slopes before abandoning the constraint
to �.

Example 13. We use two loop unrollings to stabilize iterations
before widening [38].

ν0
A = λ x . ( x ∈ [−∞,+∞] ? ⊥ )
ν1

A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ )
ν2

A = λ x ∈ [−∞, 0] . 0 ∪̇ λ x ∈ [1, 2] . 1 ∪̇ λ x ∈ [3,+∞] .⊥
ν�3A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1, 2] ? 1 : x ∈ [3, 4] ? 2

: x ∈ [5,+∞] ? ⊥ )
ν3

A = ν2
A �̇

v
ν�3A

ν�4A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1, 2] ? 1 : x ∈ [3, 4] ? 2

: x ∈ [5,+∞] ?
x
2
+ 1 )

ν4
A = ν3

A .

The over-approximation ν of in Ex. 6, by νA is as follows

.

TODO:Why termination is proved: post-fixpoint for abstract or-
der

12. Relational variant semantics
Classical relational abstractions (e.g. octagons [32], polyhedra [21],
polynomials [33], exponentials [28], etc) offer a larger choice of
abstractions than the abstract variant functions considered in Sect.
11. To use relational abstractions for static termination analysis, we
further abstract variant functions into relations.
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d

To enforce convergence, the widening may have to skip to finitely
many given thresholds of gradients before abandoning the constraint
to >.

Example 17. We use two loop unrollings to stabilize iterations
before widening [56].

ν0
A = λ x ∈ [−∞,+∞] .⊥
ν1

A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1,+∞] ? ⊥ )
ν2

A = λ x ∈ [−∞, 0] . 0 ∪̇ λ x ∈ [1, 2] . 1 ∪̇ λ x ∈ [3,+∞] .⊥
ν′3A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1, 2] ? 1 : x ∈ [3, 4] ? 2

: x ∈ [5,+∞] ? ⊥ )
ν3

A = ν2
A Ȯ

v
ν′3A

ν′4A = λ x . ( x ∈ [−∞, 0] ? 0 : x ∈ [1, 2] ? 1 : x ∈ [3,+∞] ? x
2

+ 1 )

ν4
A = ν3

A .

The over-approximation of ν in Ex. 7, by νA is as follows
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Notice that the domain of termination is widened which is an over-
approximation which might include non-termination cases. However,
the iterates with widening stop at a post-fixpoint νA

φ]
←− mv

τ JPK(νA) vv
νA

which, by definition of the abstract partial order vv
ensures that

νA is decreasing on blocks for which it is defined. Termination is
therefore proven for blocks with either 0 or a strictly decreasing
variant. By undecidability, there might be blocks which variant value
is > indicating insufficient precision to conclude.

12.2 Non-linear variant abstraction
Besides classical linear relational abstractions (e.g. octagons [46],
polyhedra [31], etc.) which can be used pointwise as in Sect. 12.1,
the variant function in each block of the partition can also be non-
linear (e.g. polynomials [47], exponentials [39], etc.).

13. Relational variant semantics
To use relational abstractions for static termination analysis, we can
further abstract variant functions into relations.

13.1 Relational variant abstraction
A variant function ν can be abstracted as the pair of an abstraction
of its domain dom(ν) by a set abstraction (such as e.g. intervals) and
an abstraction of its value by (a relational abstraction of) the down-
closed relation r which over-approximates the variant function on
its domain that is ∀s ∈ dom(ν),w ∈ Σ : 〈s, w〉 ∈ r =⇒ w 4 ν(s).
The abstraction is therefore (the first component is redundant but
useful for static analysis)

αrv(ν) , 〈dom(ν), α↓({〈s, ν(s)〉 | s ∈ dom(ν)})〉
where the down-closure of a relation r ∈ ℘(Σ ×W) is

α↓(r) , {〈s, w′〉 | ∃w : w′ 4 w ∧ 〈s, w〉 ∈ r} .
Observe that the effect of the down-closure is to replace equalities
by inequalities for which numerous abstract domains are available.
Moreover, an over-approximation of the first component is known
by Sect. 9 but for correction we either need an under-approximation
or prove termination for this over-approximation, which is the usual
option. For the second component, an over-approximation is correct
(this over-estimates the termination time). We have31

〈Σ 67→W, vv〉 −−−−→←−−−−
αv

γv

〈℘(Σ) × α↓[℘(Σ ×W)], ⊆ × ⊆〉 .

13.2 Relational variant semantics
The relational variant semantics of a program P is

τmrvJPK , αrv(τmvJPK) potential termination relational variant
τMrvJPK , αrv(τMtJPK) definite termination relational variant.

31 6×v is the componentwise partial order 〈x, y〉 6 × v 〈x′, y′〉 ⇐⇒ x 6
x′ ∧ y v y′.
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13.3 Fixpoint relational variant semantics
By fixpoint abstraction of the fixpoint variant semantics of Sect. 11.4,
we get, by calculational design, the fixpoint definite and potential
relational variant semantics32.

τmrvJPK = lfp⊆×⊆∅̇ φ
←− mrv

τ JPK potential termination

φ
←− mrv

τ JPK〈D, r〉 , let D′ = D ∪ βτJPK ∪ τJPK−1[D] in
〈D′, {〈s, 0〉 | s ∈ βτJPK} ∪ α↓({ 〈s, ρ + 1〉 |

∧ ∃s′ : 〈s, s′〉 ∈ τJPK ∧ s′ ∈ D ∧ 〈s′, ρ〉 ∈ r })〉
τMrvJPK = lfp⊆×⊆∅̇ φ

←− Mrv
τ JPK definite termination

φ
←− Mrv

τ JPK(〈D, r〉)s , let D′ = D ∪ βτJPK ∪ (τJPK−1[D] ∩ τJPK−̃1[D])
in 〈D′, {〈s, 0〉 | s ∈ βτJPK} ∪ { 〈s, ρ + 1〉 |
∧ ∃s′ : 〈s, s′〉 ∈ τJPK ∧ s′ ∈ D ∧ 〈s′, ρ〉 ∈ r
∧ ∀s′ : 〈s, s′〉 ∈ τJPK =⇒ s′ ∈ D ∧ ∃ρ′ : 〈s′, ρ′〉 ∈ r}〉 .

The over-approximation of D is classical in static analysis [19, 21]
so we concentrate on the over-approximation of the relational variant
r.

14. Transition-based termination analysis
We consider the case when states s ∈ Σ consist of a pair 〈ξ, µ〉 of a
control state ξ (used for state or trace partitioning) and a memory
state µ. The memory state maps variables x ∈ X to numerical values
µ(x) ∈ Z (for simplicity all other types are ignored in the examples).
We consider a relational abstraction 〈α↓[℘(Σ×W)], ⊆〉 −−−→←−−−α

γ 〈A, v〉
of the fixpoint relational variant semantics of Sect. 13.2. In practice,
we choose W = N and adjoint an extra variable # to contain the
value of ρ.

We can use octagons [46], polyhedra [31], polynomials [47],
exponentials [39], their numerous variants, possibly partitioned on
states [12], traces [56], or conditions of decision trees [32].

Example 18. Consider the program of Ex. 7, where a forward
interval analysis has determined the invariants given as comments.
int main () { int x;

/* x:[-2147483648, 2147483647] */
while (x > 0) {
/* x:[1, 2147483647] */
x = x - 2;
/* x:[-1, 2147483645] */

}
/* x:[-2147483648, 0] */

}

The abstraction of the fixpoint equations of Sect. 13.3 is given below
in logical form (representing a set by its characteristic predicate)
with restriction to the reachable states over-approximated by the
interval analysis.

r(x, #) ⇐= (−2147483648 6 x 6 # = 0) ∨ (∃x′, #′ :
x ∈ [1, 2147483647] ∧ x′ = x − 2 ∧ # 6 #′ + 1 ∧ r(x′, #′)) .

Inverting the assignment yields the classical simplification

r(x, #) ⇐= (−2147483648 6 x 6 # = 0) ∨ (∃#′ :
x ∈ [1, 2147483647] ∧ # 6 #′ + 1 ∧ r(x − 2, #′)) .

Partitioning into r1(x, #) = r(x, #)∧x 6 0 and r2(x, #) = r(x, #)∧x >
0, the iterates for r1(x, #) immediately converge while the iterates
for r2(x, #) abstracted with octagons [46] are

32 The dual pre-image of Y ∈ ℘(A) by a relation r ∈ ℘(A × B) is r−̃1[Y] ,
¬r−1[¬Y] also written p̃re[r]Y .

r0
2(x, #) = false

r1
2(x, #) = ∃#′ : x ∈ [1, 2147483647] ∧ # 6 #′ + 1 ∧ r1(x − 2, #′)

= x = 1 ∧ # 6 1
r2

2(x, #) = ∃#′ : x ∈ [1, 2147483647] ∧ # 6 #′ + 1 ∧
(r1(x − 2, #′) ∨ r1

2(x − 2, #′))
= (x = 1 ∧ # 6 1) ∨ (x = 3 ∧ # 6 2)
= 1 6 x 6 # 6 2 octagon abstraction of ∨

r3
2(x, #) = ∃#′ : x ∈ [1, 2147483647] ∧ # 6 #′ + 1 ∧

(r1(x − 2, #′) ∨ r2
2(x − 2, #′))

= (x = 1 ∧ # 6 1) ∨ (2 6 x 6 # + 1 ∧ # 6 3)
= 1 6 x 6 # 6 3 octagon abstraction of ∨
= 1 6 x 6 # ∧ x 6 2147483647 widening with r2

2(x, #)
r4

2(x, #) = r3
2(x, #)

proving termination since # strictly decreases around the loop and
remains positive. Of course direct resolution methods [17, 54] would
find the same result. However tests are excluded within loops in
[54] while the presence of tests is not impairing the above octagon
abstraction or the piecewise linear variant abstraction of Sect. 12.1.
For example, the loop body if (odd (x)) { x = x - 1; } else
{ x = x - 2 } with state partitioning on the conditional branches
yields the same results.

15. Semantic structural induction
Semantic structural induction is by induction on the structure of
computations as opposed to transitional verification based on an
induction on the program steps as in Floyd/Turing method [40, 59].
This point of view generalizes syntactic structural induction on
program syntax as in Hoare logic [43], replacing the syntactic by
a semantic point of view using the concept of structural inductive
cover. We start by the simple case of structuring states in next Sect.
15.1 before generalizing to the more concrete trace computations in
Sect. 15.3 and their abstractions in Sect. 16.

15.1 Inductive state cover
Many inductive formal definitions and verification methods can be
formalized in a language-independent way by an inductive cover of
the set Σ of states (examples are given in next Sect. 15.2).

Definition 1. An inductive state cover of a non-empty set χ ∈ ℘(Σ)
of states is tree encoded as a set C ∈ C(χ) of (finite) sequences S of
non-empty members B ∈ ℘(χ) \ {∅} such that

1. if S S ′ ∈ C then S ∈ C (prefix-closure)
2. if S ∈ C then ∃S ′ : S = χS ′ (root)
3. if S BB′ ∈ C then B ⊃ B′ (well-foundedness)
4. if S BB′ ∈ C then B ⊆

⋃

S BB′∈C
B′ (cover).

By the prefix-closure condition Def. 1.1, the inductive cover is a
tree (so that proofs based on the cover C are by case analysis on the
tree width and induction on the tree depth). By the root condition
Def. 1.2, the tree is rooted at χ (which ensures that inductive proofs
based on the cover C are valid for χ). By the strictly-decreasing
condition Def. 1.3, the sequences S are necessarily finite so the
immediate component relation between a node of the tree and its
sons is well-founded. It follows that proofs on states can be done
by induction on this well-founded relation. And, by the covering
condition Def. 1.4, the states in a node are covered by the join of the
states in its sons (which ensures that proofs based on the cover C do
not forget any possible case). Inductive state covers are abstractions
of inductive trace covers introduced in forthcoming Sect. 15.3 but
are introduced first for simplicity. An example is [45].
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15.2 Examples of semantic structural induction
15.2.1 Loop invariants and variants
In Floyd’s total correctness proof method,
one typically provides a loop invariant and
a loop variant function for termination. It
is not necessary for the variant function
to strictly decrease at each program step
but only once around each loop iterate.
This corresponds to a cover of the states
of the loop according to their control
component which induces a decomposition
of executions into trace segments for the
loop containing trace segments for the
loop body considered as one step in the
inductive reasoning on loop iterations.
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mercredi 22 juin 2011Moreover a different variant function is used for each loop so that

this decomposition is applied recursively for nested loops.

15.2.2 Hoare logic
Inductive definition/verification in the form of structural induction
on the program syntax originates from axiomatic semantics [43],
denotational semantics [57], and operational semantics [51].

Hoare logic for a structured imperative language [43], and
its extension to total correctness [44], can be understood as the
inductive state cover based on the control states of a command
(ignoring its memory states). For example, a while loop can be
covered by the states which control is in the condition and the states
which control is in the loop body. The states of the loop body can
themselves be covered recursively, by structural induction on the
program syntax. This structural induction on the program syntax
can be understood as induction on a state cover which itself induces
a cover of the execution traces by segments which states are in a
block of the state cover. A termination proof by structural induction
on the program syntax [44] has the advantage, a.o., to be able to
handle unbounded non-determinism without requiring transfinite
ordinals (equivalent to a lexicographic ordering on nested loops).
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{ P, PF, PL, PLE, PLD,
PLDB, PLDC }

15.2.3 Burstall intermittent assertion proof method
Burstall’s total correctness proof method [3, 29] can be understood
as an inductive reasoning by recurrence on data (as well as control
as in Floyd/Turing and Hoare’s methods). Although Burstall’s proof
method [3] is equivalent in power to Floyd/Turing’s method [25],
it is much easier to use in practice. The formalization of Burstall’s
total correctness proof method [3] in [25] can be understood as
a tree cover on both control and data. The example below shows
how hand-simulation/symbolic execution (HS ) and lemmas (L1, L2)
apply to a particular execution trace.

HS!
HS" HS#

L!
0

!L"

!-1
L"

L"
0

P

HS! HS" HS#

λ-1L!

L!
0

η-1
L"

L"
0

P

L!
λ

L"
η

L!
!

!-1L!

The inductive cover contains the pro-
gram P, the hand-simulation/symbol-
ic execution blocks P HS 1, P HS 2,
P HS 3, and two lemmas with re-
spective blocks P Lλ1 , P Lλ1 Lλ−1

1 , . . . .
P Lλ1 Lλ−1

1 · · · L0
1 and P Lη2, P Lη2 Lη−1

2 ,
. . . , P Lη2 Lη−1

2 · · · L0
2 corresponding to

proofs by recurrence on the data with
respective ranks λ and η.
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L"
0

P
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λ η

Observe that the termination analysis method of [9] can be seen as
implicitly relying on Burstall’s proof method.

15.3 Trace-based semantic structural induction
The previous examples of Sect. 15.2 show the need to go beyond
purely syntactic, language-dependent induction and that induction
on states can be generalized to induction on trace segments. Con-
sequently, we introduce a general form of inductive reasoning on
the semantic structure of computations, first starting by induction
on blocks of trace segments and then their abstractions in Sect. 16.

15.3.1 Trace segment abstraction
We first observe that considering segments of traces is an abstraction.

The segment abstraction 〈℘(Σ+∞), ⊆〉 −−−−→←−−−−
α+

γ+

〈℘(Σ+∞), ⊆〉
α+(T ) , {σ ∈ Σ+∞ | ∃σ′ ∈ Σ∗, σ′′ ∈ Σ∗∞ : σ′σσ′′ ∈ T }

is the set of segments of traces of T . If T,T ′ ∈ ℘(Σ+∞), we define
T F T ′ , T ⊆ α+(T ′) = ∀σ ∈ T : ∃σ′, σ′′ : σ′σσ′′ ∈ T ′

to mean that all traces of T are segments of the traces of T ′. We
define the join⊎

i ∈∆

Ti , γ+
(⋃

i ∈∆

Ti

)
= {σi1 . . . σin | ∀k ∈ [1, n] : σik ∈ Tik }

to be the set of all the traces made out of segments in the Ti, i ∈ ∆.

15.3.2 Inductive trace segment cover
Definition 2. An inductive trace segment cover of a non-empty set
χ ∈ ℘(Σ+∞) of traces is a set C ∈ C(χ) of sequences S of members
B of ℘(α+(χ)) such that

1. if S S ′ ∈ C then S ∈ C (prefix-closure)
2. if S ∈ C then ∃S ′ : S = χS ′ (root)
3. if S BB′ ∈ C then B E B′ (well-foundedness)
4. if S BB′ ∈ C then B ⊆

⊎

S BB′∈C
B′ (cover).

Example 19. An example of inductive trace segment cover is trace
partitioning [56].

Example 20. A variant function ν ∈ Σ 67→ N defines a trivial
inductive trace cover. Each value v ∈ codom(ν) defines segments
starting with states σ such that ν(σ) = v of length at most v.

The following definitions are classical for trees C ∈ C(χ).
root(C) , χ

leaves(C) , {B ∈ ℘(χ) | ∃S : S B ∈ C ∧ ∀S ′ : S BS ′ < C}
inner(C) , {B ∈ ℘(χ) | ∃S , B′, S ′ : S BB′S ′ ∈ C}

nodes(C) , leaves(C) ∪ inner(C)

sonsC(B) , {B′ ∈ nodes(C) | ∃S , S ′ : S BB′S ′ ∈ C} .

255



The immediate component relation B′ YC B , B′ ∈ sonsC(B) =
∃S : S BB′ ∈ C is well-founded, so that proofs on segments can be
done by induction on this well-founded relation. The component
relation Y∗C is its reflexive transitive closure. The blocks of a cover
C are nodes(C) , {B ∈ ℘(Σ) | B Y∗C Σ}.
15.4 State cover induced by an inductive trace cover
Given an inductive trace cover C ∈ C(χ), χ ∈ ℘(Σ+∞) of Def. 2,
define the abstractions

αts(C) , {αts(S ) | S ∈ C} C ∈ ℘((℘(α+(χ)))+)
αts(S S ′) , αts(S )αts(S ′) S , S ′ ∈ (℘(α+(χ)))+

αts(B) , {αts(σ) | σ ∈ B} B ∈ ℘(α+(χ))
αts(σ) , {σi | i ∈ [0, |σ| − 1]} σ ∈ α+(χ) .

Then αts(C) is an inductive state cover in the sense of Def. 1.

15.5 Trace cover induced by a inductive state cover
Inversely, given an inductive state cover C ∈ C(χ), χ ∈ ℘(Σ) of
Def. 1, define

γst(C) , {γst(S ) | S ∈ C} C ∈ ℘((℘(χ))+)
γst(S S ′) , γst(S )γst(S ′) S , S ′ ∈ (℘(χ))+

γst(B) , B+ B ∈ ℘(χ)

We have 〈℘((℘(Σ+))+), ⊆〉 −−−−→←−−−−
αts

γst

〈℘((℘(Σ))+), ⊆〉 and γts(C) is an

inductive trace cover of χ+.

15.6 Syntactic trace cover
Similarly one can define the inductive state cover induced by the
syntax of commands of a programming language by considering the
states which control is in a given command. This in turns induces
a trace cover which is the basis for e.g. Hoare logic or structural
static analysis by induction on program commands, as opposed to
induction on program transitions as in dataflow analysis.

15.6.1 Inductive proof method
We have a sound and complete inductive proof method of a semantic
property Θ+∞JPK ∩ χ ∈ P for an inductive trace cover C ∈ C(χ)

Θ+∞JPK ∩ B ∈ P, B ∈ leaves(C) basis

∀B′ ∈ sonsC(B) : Θ+∞JPK ∩ B′ ∈ P
Θ+∞JPK ∩ B ∈ P , B ∈ inner(C) induction

In particular, for termination τ+∞JPK ⊆ Σ+JPK with a trace cover
C ∈ C(Σ+∞JPK), we get

Θ+∞JPK ⊆ B ⊆ Σ+, B ∈ leaves(C) basis

∀B′ ∈ sonsC(B) : Θ+∞JPK ⊆ B′ ⊆ Σ+

Θ+∞JPK ⊆ B ⊆ Σ+
, B ∈ inner(C) induction

Example 21. Another form of decomposition of reasonings on
termination is proposed by the transition invariants proof method of
Podelski-Rybalchenko [53] based on a relational semantics [15].

The transition invariants proof method of [53] can be seen as
the αR abstraction of the above inductive proof method based on an
inductive trace cover of height 1 with root Σ+JPK and sons α+(T1),
. . . , α+(Tn) where T1, . . . ,Tn ∈ ℘(Σ+JPK) such that

Θ+∞JPK ⊆ Σ+JPK ⇐⇒ ∀i ∈ [1, n] : Θ+∞JPK ∩ Ti ⊆ Σ+ .

The generalization by inductive trace covers is both on the use
of trace segments (instead of their relational abstraction of Sect.
7.1), and the possibility of recursive application of the method by
induction, including on data, à la Burstall [3].

16. Abstract semantic structural induction
Assume that we can prove a program trace property in the concrete
using an inductive trace cover. Can we prove an abstract program
property using the abstraction of the inductive trace cover? We
have seen an example in Sect. 15.5. The question is whether this
observation is general.

16.1 Abstract inductive cover
Definition 3. An inductive abstract cover of a trace semantics
χ ∈ ℘(Σ+∞) is an element C ∈ AC of an abstract domain AC such
that 〈℘((℘(Σ+))+), ⊆〉 −−−−→←−−−−

αta

γat

〈AC , vC〉
and γts(C) is an inductive trace cover of χ.

A standard way to define such inductive abstract covers is to
follow the example of Sect. 15.5 generalized to a block abstrac-

tion 〈℘(Σ+), ⊆〉 −−−−→←−−−−
αta

γat

〈AB, vB〉. We get the cover abstraction

〈℘((℘(Σ+))+), ⊆〉 −−−−→←−−−−
αta

γat

〈℘((AB)+), ⊆〉 by generalizing αta to se-

quences of abstract blocks and sets of such abstract sequences as
follows

γat(S S ′) , γat(S )γat(S ′) S , S ′ ∈ (AB)+

γat(C) , {γat(S ) | S ∈ C} C ∈ ℘((AB)+) .

Then AC is chosen to be the set of elements C ∈ ℘((AB)+) of
sequences S of members B of AB such that

1. if S S ′ ∈ C then S ∈ C (prefix-closure)

2. if S ∈ C then ∃S ′ : S = αat(χ)S ′ (root)

3. if S BB′ ∈ C then γat(B) E γat(B′) (well-foundedness)

4. if S BB′ ∈ C then γat(B) ⊆
⊎

S BB′∈C
γat(B′) (cover).

It follows that any C ∈ AC is an inductive abstract cover of the trace
semantics χ ∈ ℘(Σ+∞) in the sense of Def. 3.

Example 22. The transition invariant proof method of [53] follows

from the relational abstraction 〈℘(Σ+), ⊆〉 −−−−→←−−−−
αta

γat

〈℘(Σ × Σ), ⊆〉 [15]

where αta(B) , {〈σ0, σn − 1〉 | n > 0∧σ ∈ B∩ Σn} is limited to the
trace covers of the form given in Ex. 21.

16.2 Abstract inductive proof
The inductive proof method of Sect. 15.6.1 can be abstracted as
follows.
αat(Θ+∞JPK) vC B, B ∈ leaves(C) basis

∀B′ ∈ sonsC(B) : αat(Θ+∞JPK) vC B′

αat(Θ+∞JPK) vC B+
, B ∈ inner(C) induction

The proofs αat(Θ+∞JPK) vC B can be done in the abstract by fixpoint
induction using a fixpoint abstraction of the fixpoint definition of
the trace semantics Θ+∞JPK.

17. Related work
Most directly relevant work has been cited in the text. For programs
with unbounded executions, any finite homomorphic abstraction
must introduce a loop so that finite model-checking [4] or bounded
model-checking [2] are unapplicable (or unsound) to prove termina-
tion (or non-termination). Nevertheless, predicate abstraction [41]
remains applicable since it is a finite encoding of an infinite ab-
stract interpretation [16]. With predicate abstraction the end-user
is left with the hard problem of providing candidate variant func-
tions [14], as in [1]. Moreover [27] shows that infinitary abstractions
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with widening/narrowing, as considered in this paper, are definitely
strictly more powerful than finite abstractions. The computation
of variant functions by abstraction is new, and different from the
counter-example guided ways to find disjunctive ranking functions,
used in tools like Terminator [7] and derivatives.

18. Conclusion
Abstract interpretation has established constructive principles for
reasoning about semantics. A semantics is a fixpoint so proving a
semantic property at some level of abstraction consists in verifying
properties of abstract fixpoints which have to be checked (in
checking/verification methods), guessed (in proof methods), or
automatically inferred or approximated (in static analysis methods).

This principle was mainly applied in the past to invariance and
indirectly to termination by reduction to invariance. We have shown
that the abstract interpretation principle directly applies to both
safety (generalizing invariance) and termination.

Moreover we have generalized the classical syntactic structural
induction into the language-independent semantic concept of seman-
tic structural induction based on (abstractions of) inductive trace
covers which includes induction on syntax, control states, mem-
ory states, and execution trace segments and thus generalizes all
verification and static analysis methods.

This methodology allowed us to establish new principles for
proving termination by abstract interpretation of a termination
semantics. It remains to design a suitable collection of abstract
domains beyond the examples proposed in this paper and the
corresponding implementations.

The present abstract interpretation termination framework has to
be extended to liveness [6, 53] and more generally to inevitability
under fairness hypotheses [35, 52, 55].
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