
A Galois Connection Calculus for Abstract Interpretation⇤

Patrick Cousot
CIMS⇤⇤, NYU, USA c its uc euo .m y@ .s un dp o

Radhia Cousot
CNRS Emeritus, ENS, France s s@ .co nt eo rfr u

Abstract We introduce a Galois connection calculus for language independent
specification of abstract interpretations used in programming language semantics,
formal verification, and static analysis. This Galois connection calculus and its type
system are typed by abstract interpretation.

Categories and Subject Descriptors D.2.4 [Software/Program Verification]
General Terms Algorithms, Languages, Reliability, Security, Theory, Verification.
Keywords Abstract Interpretation, Galois connection, Static Analysis, Verification.

1. Galois connections in Abstract Interpretation In Abstract
interpretation [3, 4, 6, 7] concrete properties (for example (e.g.)
of computations) are related to abstract properties (e.g. types). The
abstract properties are always sound approximations of the con-
crete properties (abstract proofs/static analyzes are always correct
in the concrete) and are sometimes complete (proofs/analyzes of
abstract properties can all be done in the abstract only). E.g. types
are sound but incomplete [2] while abstract semantics are usually
complete [9]. The concrete domain hC, vi and abstract domain
hA, 4i of properties are posets (partial orders being interpreted as
implication). When concrete properties all have a 4-most precise
abstraction, the correspondence is a Galois connection (GC) hC,
vi ��! ��

↵

� hA, 4i with abstraction ↵ 2 C 7! A and concretiza-
tion � 2 A 7! C satisfying 8P 2 C : 8Q 2 A : ↵(x) 4 y ,
x v �(y) () expresses soundness and(best abstraction). Each
adjoint ↵/� uniquely determines the other �/↵. A Galois retrac-
tion (or insertion) has ↵ onto, so � is one-to-one, and ↵ � � is the
identity. E.g. the interval abstraction [3, 4] of the power set }(C)

of complete -totally ordered sets C [{�1,1} is SJI[hC,
i,�1,1]K , h}(C),✓i ���!�! ����

↵

I

�

I

hI(C[{�1,1},), Fiwith

↵I
(X) , [min X, max X], min ; ,1, max ; , �1, �I

([a, b])
, {x 2 C | a x b}, intervals SJI(C [{�1,1},)K ,
{[a, b] | a 2 C [{�1}^ b 2 C [{1}^ a b}[{[1,�1]},
and inclusion [a, b] F [c, d] , c a ^ b d. A Galois isomor-
phism hC,✓i ��!�! ���

↵

� hA, 4i has both ↵ and � bijective. E.g. global
and local invariants are isomorphic by the right image abstraction
SJy[L,M]K , h}(L⇥M),✓i ����!�! �����

↵

y
�

y
hL 7! }(M), ˙✓iwith

↵y
(P) , � ` . {m | h`, mi 2 P}, �y

(Q) , {h`, mi | m 2
Q(`)}, and ˙✓ is the pointwise extension of inclusion ✓.
2. Equivalent formalizations of GC-based Abstract Interpre-
tation GCs hC, vi ��! ��

↵

� hA, 4i are Galois retracts of/Galois iso-
morphic to numerous equivalent mathematical structures [6] such
as join-preserving maps (↵), meet-preserving maps (�), upper-
closures (� � ↵), Moore families ({�(Q) | Q 2 A}), Sierpiński
topologies [5] ({¬�(Q) | Q 2 A} where ¬ is unique complemen-
tation in the concrete domain C, if any), principal downset families
({#v�(Q) | Q 2 A} where #vx , {y 2 C | y v x}), maximal
convex congruences ({{P 2 C | ↵(P) = ↵(�(Q))} | Q 2 A},
soundness relations (also called abstraction relation, logical rela-
tion, or tensor product, ↵ # 4 = {hP, Qi | ↵(P) 4 Q} = {hP,
Qi | P v �(Q)} = v # ��1 where f ⌘ {hx, f(x)i | x 2
dom(f)}, r # r0 = {hx, zi | 9y : hx, yi 2 r ^ hy, zi 2 r0}),
and, for powersets C = }(C), A = }(A), polarities of rela-
tions (�(Q) = {x 2 C | 8y 2 Q : R(x, y)} where R = {hx,
yi | x 2 �({y})}).
⇤ See the auxiliary materials. ⇤⇤ Work supported in part by the CMACS NSF award 0926166.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact the owner/author(s).
POPL ’14, January 22–24, 2014, San Diego, CA, USA. Copyright is held by the owner/author(s).
ACM 978-1-4503-2544-8/14/01. http://dx.doi.org/10.1145/2535838.2537850

3. Basic GC semantics Basic GCs are primitive abstractions of
properties. Classical examples are the identity abstraction SJ1[hC,

vi]K , hC, vi ������!�! �������
�P

.
P

�Q

.
Q hC, vi, the top abstraction SJ>[hC,

vi,>]K , hC, vi ������! ������
�P

.>
�Q

.> hC, vi, the join abstraction SJ[[C]K
, h}(}(C)),✓i ���! ���

↵

}

�

}

h}(C),✓iwith ↵}
(P) , SP , �}

(Q) ,
}(Q), the complement abstraction SJ¬[C]K , h}(C), ✓i ��! ��¬

¬

h}(C), ◆i, the finite/infinite sequence abstraction SJ1[C]K ,
h}(C1), ✓i ����! ����

↵

1

�

1

h}(C), ✓iwith ↵1(P) , {�
i

| � 2 P ^i 2
dom(�)} and �1(Q) , {� 2 C1 | 8i 2 dom(�) : �

i

2 Q}, the
transformer abstraction SJ [C1, C2]K , h}(C1⇥C2),✓i����! ����

↵

�

h}(C1)
[�! }(C2), ˙✓i mapping relations to join-preserving

transformers with ↵ (R) , �X . {y | 9x 2 X : hx, yi 2 R},
� (g) , {hx, yi | y 2 g({x})}, the function abstraction
SJ7![C1, C2]K , h}(C1 7! C2), ✓i ����! ����

↵

7!

�

7!

h}(C1) 7! }(C2),

˙✓i with ↵ 7!(P) , �X . {f(x) | f 2 P ^ x 2 X}, � 7!(g) ,
{f 2 C1 7! C2 | 8X 2 }(C1) : 8x 2 X : f(x) 2 g(X)},

the cartesian abstraction SJ⇥[I, C]K , h}(I 7! C), ✓i ���! ���
↵

⇥

�

⇥

hI 7! }(C), ˙✓i with ↵⇥(X) , � i 2 I . {x 2 C | 9f 2 I 7!
C : f [i x] 2 X}, �⇥(Y) , {f | 8i 2 I : f(i) 2 Y (i)}, and
the pointwise extension ˙✓ of ✓ to I , etc.

4. Galois connector semantics Galois connectors build a GC
from GCs provided as parameters. Unary Galois connectors in-
clude the reduction connector SJR[hC, vi ��! ��

↵

� hA, 4i]K ,
hC, vi ��!�! ���

↵

� h{↵(P) | P 2 C}, 4i and the pointwise connec-

tor SJX _ hC, vi ��! ��
↵

� hA, 4iK , hX 7! C, ˙vi �������! �������
� ⇢

.
↵

�
⇢

� ⇢

.
�

�
⇢

hX 7! A, ˙4i for the pointwise orderings ˙v and ˙4. Binary Ga-
lois connectors include the composition connector SJhC,✓i ���! ���

↵1

�1

hA1, bi#hA2, vi ���! ���
↵2

�2 hA3, 4iK , (hA1, bi = hA2, vi ? hC,

✓i �����! �����
↵2�↵1

�1��2 hA3, 4i : ⌦) (where ⌦ is a static error), the prod-

uct connector SJhC1, ✓i ���! ���
↵1

�1 hA1, vi * hC2, bi ���! ���
↵2

�2 hA2,

4iK , hC1 ⇥ C2, ✓ ⇥ bi ������! ������
↵1⇥↵2

�1⇥�2 hA1 ⇥ A2, v ⇥ 4i (gen-
eralizing to tuples), the higher-order functional connector SJhC1,
✓i ���! ���

↵1

�1 hA1, vi Z=) hC2, 4i ���! ���
↵2

�2 hA2, 6iK , hC1
1�! C2,

˙4i ����������! ����������
� f

.
↵2�f��1

� g

.
�2�g�↵1 hA1

1�! A2, ˙6i for increasing maps and

pointwise orderings ˙v and ˙6.

5. Galois connection calculus The GC calculus G (to specify
verifiers/analyzers compositionally) is x, . . . 2 X for program
variables, `, . . . 2 L for labels, e 2 E for elements e ::= true |
1 | 1 | x | ` | �e | . . ., s 2 S for sets s ::= B | Z | X | L |
{e} | [e, e] | I(s, o) | s1 | s [s | s 7! s | s ⇥ s | }(s) | . . .,
o 2 O for partial orders o ::=) | , | | ✓ | F | = |
o�1 | o1 ⇥ o2 | ȯ | ö | . . ., p 2 P for posets p ::= hs, oi, and
g 2 G for GCs g ::= 1[p] | >[p, e] | I[p, e, e] | y[s, s] | [[s] |
¬[s] | 1[s] | [s, s] | 7![s, s] | ⇥[s, s] | . . . | R[g] | s _ g |

g # g | g * g | g Z=) g | The semantics of interval sets is
SJI(C, 4)K , (4 ✓ C ⇥C ? {[a, b]4 | a, b 2 C} : !) where !
is a dynamic error (maybe not detectable by typing).

http://cmacs.cs.cmu.edu/
http://www.nsf.gov/

6. Abstraction Papers in semantics, verification, and static
analysis can be understood by extracting the semantic domain
and GC which are used. For the interval example [3, 4, p. 247],
the semantic domain S , }(⌃

1
) is that of (nonempty) sets of

nonempty finite or infinite sequences of states in ⌃ , L ⇥M
made of a control state in L and a memory state in M , X 7! V
mapping variables X to a complete total order hV, i (e.g. hZ,
6i or h[minint, maxint], 6i). The static (or collecting) seman-
tics is the reachability abstraction of program properties in }(S)

that is G⇤ , [[⌃

1
] # 1[⌃] # y[L,M] with abstract domain

hL 7! }(M), ˙✓i. The reduced interval cartesian reachabil-
ity abstraction is G=

⇤ , R[G⇤ # (L _ (⇥[X,V] # (X _
I[hV, i,�1,1])))] that is the abstraction h}(}((L ⇥ (X 7!
V))

1
)), ✓i ��! ��

↵

� hL 7! X 7! I(V [{�1,1}), ¨Fi where
↵(P) , � ` . smash(� x .↵I

(↵⇥((↵y
(↵1(↵}

(P))))(`))(x)))
and smash(� x2X .

[a
x

, b
x

]) reduces to � x2X .
[1,�1] when

some [a
x

, b
x

] is the empty interval [1,�1] else to� x2X .
[a

x

, b
x

].
7. Typing As usual with syntactic definitions, GC expression
semantics may be undefined (i.e. ⌦ or !). This can be fixed for ⌦

by a type system that is an Abstract Interpretation of the properties
}(Gc) of the semantics SJgK 2 Gc of expressions g 2 G belong-
ing to the class Gc , {hC, vi ��! ��

↵

� hA, 4i | C,A are sets ^v 2
}(C ⇥ C) ^ 4 2 }(A ⇥ A)} [{⌦, !}. Typing is formalized

by a GC [2] h}(Gc), ✓i ���! ���
↵

T

�

T

hT
/⇠= , Pi where the preorder

on types is T P T0 , �T
(T) ✓ �T

(T0) so that types T
/⇠= are

considered up to the equivalence ⇠
=

for this preorder P (⇠
=

is =

when �T is injective). In absence of a P-most precise i.e. principal
type, hence of a best abstraction ↵T, as e.g. in [15] for the poly-
hedral abstraction, only one of ↵ or � is used [7]. A GC expres-
sion g 2 G has sound types T 2 T such that {SJgK} ✓ �T

(T)

i.e. SJgK 2 �T
(T) or ⇢Gc

(SJgK, TJgK) for the soundness rela-
tion ⇢Gc

(S, T) , S 2 �T
(T). For GCs, this is equivalent to

↵T
({SJgK}) P T, where {SJgK} is the strongest property (col-

lecting semantics) of g and ↵T
({SJgK}) is the best abstraction of

g. The type soundness proof is by induction on the structure of the
GC expressions as in [2] (instead of operational subject reduction
i.e. induction on program computation steps).
8. Types For elements E 2 E, E ::= var | lab | bool | int |
err with �E

(int) , Z[{�1,1}, �E
(err) , S(E)[{⌦, !}.

For sets S 2 S, S ::= P E | P S | seq S | S ⇤! S |
S ⇤ S | err with �S

(P E) , }(�E
(E)), �S

(P S) , }(�S
(S)),

�S
(seq S) , {X1 | X 2 �S

(S)}, �S
(S1 ⇤! S2) , {X 7! Y |

X 2 �S
(S1) ^ Y 2 �S

(S2)}, �S
(S1 ⇤ S2) , {X ⇥ Y | X 2

�S
(S1) ^ Y 2 �S

(S2)}, �S
(err) , S(S) [{⌦, !}.

For partial orders O 2 O, O ::=) | , | | ✓ | = | O�1 |
O?O | ˙O | . . . | err with �O

(O) , {O}, O 2 {),,,,✓, =},
) , {hfalse, falsei, htrue, truei}, etc.

For posets P 2 P, P ::= S ~ O | err with componentwise
concretization �P

(S ~ O) , �S
(S)⇥ �O

(O).
For GCs, T 2 T, T ::= P �! � P | S ⇤_ T | err with

�T
(P �! � P0) , {P ��! ��

↵

�

P 0 | P 2 �P
(P) ^ P 0 2 �P

(P0)}
and �T

(S ⇤_ T) , {hX 7! C, ˙vi ���! ���
↵

0

�

0

hX 7! A, ˙4i | X 2
�S

(S) ^ hC, vi ��! ��
↵

� hA, 4i 2 �T
(T)}.

9. Type inference The type inference algorithm is EJtrueK ,
bool, . . . , EJ�eK , (EJeK = bool_ EJeK = int ? EJeK : err).

For sets SJBK,P bool, . . . , SJ{e}K,(EJeK 6= err ? P EJeK :
err), . . . , SJs1 [s2K, (err 6= SJs1K ⇠= SJs2K 6= err ? SJs1K :
err) (note the approximation that s1 and s2 must have equivalent

types as for alternatives of conditionals in functional languages).

Ignoring error propagation, SJs1K , seq SJsK, SJs1 7! s2K ,
SJs1K ⇤! SJs2K , SJs1 ⇥ s2K , SJs1K ⇤SJs2K, SJ}(s)K , P SJsK.

For orders and posets, OJoK , o, o 2 {),,,,✓, =},
OJFK , ✓, . . . , OJöK , ˙

(

˙

(OJoK)), and PJhs, oiK , SJsK ~ OJoK.
For GCs, TJ1[p]K , PJpK�! �PJpK, TJy[sL, sM]K , P(SJsLK⇤

SJsMK) ~✓�! �SJsLK ⇤! PSJsMK ~ ˙✓, TJ[[s]K , P (P SJsK) ~
✓ �! � P SJsK ~ ✓, TJ¬[s]K , P SJsK ~ ✓ �! � P SJsK ~ ✓�1,
TJ1[s]K , P (seq SJsK) ~ ✓ �! � P SJsK ~ ✓, TJ [s1, s2]K ,
P (SJs1K ⇤ SJs2K)~✓�! �P SJs1K ⇤! P SJs2K~ ˙✓, TJ7![s1, s2]K ,
P (SJs1K ⇤! SJs2K)~✓�! �P SJs1K ⇤! P SJs2K~ ˙✓, TJ⇥[s1, s2]K
, P (SJs1K ⇤! SJs2K) ~ ✓�! �SJs1K ⇤! P SJs2K ~ ˙✓, TJR[g]K ,
TJgK, TJs _ gK , SJsK ⇤_ TJgK, . . .

Examples of type errors are TJ>[p, e]K , (EJeK 6= err^ 9S 2
S, O 2 O : PJpK = S ~ O ^ EJeK › S ? PJpK�! �PJpK : err) or
TJI[hs, oi, b, t]K , (err 6= EJbK › SJsK 6= err ^ err 6= EJtK ›
SJsK ? (P SJsK ~ ✓)

�! �
(P SJsK ~ ✓) : err) where › abstracts

set membership 2 of top/botton elements to the abstracted set.
This functional presentation is equivalent to a rule-based sys-

tem e.g. g1 ` P1 �! � P2, g2 ` P3 �! � P4, P2⇠=P3

g1#g2 ` P1 �! � P4
(where err is not deriv-

able), g1 ` S1 ~ O1 �! � S2 ~ O2, g2 ` S3 ~ O3 �! � S4 ~ O4

g1 Z=)g2 ` S1⇤!S3 ~ Ȯ3 �! � S2⇤!S4 ~ Ȯ4
, Id. for *.

For example TJG=⇤K = P (P (seq(P lab ⇤ (P var ⇤! P int))))
~ ✓�! � (P lab ⇤! P var ⇤! P P int ~ ¨✓) i.e. sets of sets of se-
quences of states are abstracted to a map of labels to variables to
sets of integers (which includes intervals), ordered pointwise.
10. Type soundness Typable expressions g 2 G (for which
TJgK 6= err) cannot go wrong since then SJgK 2 �T

(TJgK)[{!}
and ⌦ 62 �T

(TJgK). However, dynamic errors (SJgK = !) cannot
be excluded (e.g. int does not prevent overflows).
11. Principal type Arbitrary concrete properties in }(Gc) may
have no best abstraction (e.g. ; so we add the empty type ?). Yet,
by considering only semantic properties P = {SJg

i

K | i 2 �} of
GC expressions, the principal type is ↵T

(;) , ?, ↵T
(P) , [T]⇠=

when 8i 2 � 6= ; : TJg
i

K ⇠
=

T else ↵T
(P) , err so

h}({SJgK | g 2 G}), ✓i ���!�! ����
↵

T

�

T

h(T [{?})
/⇠= , Pi (↵T onto).

12. Types of types Types T ,{E, S, O, P, T} have properties
P , }(

S T) can be abstracted to types of types T::=? |E |S |O |
P |T |err by ↵T

(P) , (P = ; ?? | P ✓ T, T 2 T ? T : err).
13. Static analyzers In static analyzers [1, 12, 14] GCs specify
abstract domains modules and Galois connectors their combina-
tions by functors. For scalability, rapid convergence acceleration of
infinite fixpoint computations by widening/narrowing abstracting
induction and/or their duals for co-induction [3–5] is effective and
more precise than finite abstractions [8].
Acknowledgments We warmly thank the ACM SIGPLAN Awards Committee for awarding us the
2013 Programming Languages Achievement Award and the programming languages community for
its support.
References
[1] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A static analyzer

for large safety-critical software. PLDI’03, 196–207.
[2] P. Cousot. Types as abstract interpretations. POPL’97, 316–331.
[3] P. Cousot and R. Cousot. Static determination of dynamic properties of programs. Proc. 2nd Int. Symp. on

Programming, 106–130, Paris, 1976. Dunod.
[4] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by

construction or approximation of fixpoints. POPL’77, 238–252.
[5] P. Cousot and R. Cousot. Static determination of dynamic properties of recursive procedures. IFIP Conf. on Formal

Description of Programming Concepts, St-Andrews, N.B., CN, 237–277. North-Holland Pub. Co., 1977.
[6] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. POPL’79, 269–282.
[7] P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Logic and Comp., 2(4):511–547, 1992.
[8] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing approaches to abstract

interpretation. PLILP’92, LNCS 631, 269–295.
[9] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpretation. POPL’92, 83–94.

[10] P. Cousot and R. Cousot. Temporal abstract interpretation. POPL’00, 12–25.
[11] P. Cousot and R. Cousot. Systematic design of program transformation frameworks by abstract interpretation.

POPL’02, 178–190.
[12] P. Cousot and R. Cousot. An abstract interpretation-based framework for software watermarking. POPL’04,

173–185.
[13] P. Cousot and R. Cousot. An abstract interpretation framework for termination. POPL’12, 245–258.
[14] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully automatic and scalable array

content analysis. POPL’11, 105–118.
[15] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. POPL’78,

84–96.

