
Abstract Testing
versus

(Abstract) Model-Checking

Notes prepared for the initial panel of the Schloß Ringberg Semi
nar on Model Checking and Program Analysis organized by Andreas
Podelski, Bernhard Steffen, Moshe Vardi on February 20-23,
2000.

Patrick Cousot

Département d’informatique
École normale supérieure

45 rue d’Ulm
75230 Paris cedex 05, France

Patrick.Cousot@ens.fr

and Radhia Cousot

Laboratoire d’informatique
École polytechnique

91128 Palaiseau cedex, France
rcousot@lix.polytechnique.fr

February 19, 2000

1 Introduction
The panelists serving on the initial panel of the Schloß Ringberg Seminar on
Model Checking and Program Analysis are asked to answer and discuss questions
prepared by the organizers (Andreas Podelski, Bernhard Steffen, Moshe
Vardi). Before answering these questions in Sec. 4 , certainly with the contro
versial bias of a program analysis perspective, we compare automatic formal
methods for verifying that a program satisfies a specification. In order to re
strict the scope of an already large debate, we consider abstract testing and
model-checking only (excluding manual or computer-assisted proof methods as
e.g. [75 , 115 , 114, 116, 127] , including their combination with abstract inter
pretation and model-checking [93 , 113, 112, 125, 128, 87 , 122, 25]) 1,2.

1 As noted by Amir Pnueli , the organizers possibly wanted the debate to be restricted
to “Model Checking vs. Program Analysis”, and intended to exclude “Deductive Verification”
from the confrontation.

2 For short, the references are necessarily partial.

1

Patrick.Cousot@ens.fr
rcousot@lix.polytechnique.fr

P. Cousot & R. Cousot 2

2 Abstract testing
Abstract testing is the verification that the abstract semantics of a program
satisfies an abstract specification. The origin is the abstract interpretation
based static checking of safety properties [36 , 37] such as array bound checking
and the absence of run-time errors which was extended to liveness properties
such as termination [29 , 30].

Let 〈S, t, I, F, E〉 be a transition system [97] with set of states S , transition
relation t ⊆ (S × S) , initial states I ⊆ S , erroneous states E ⊆ S , and final
states F ⊆ S. The transition system is assumed to be generated by a small
step operational semantics [117]. Let t−1 be the inverse of relation t. Let t�

be the reflexive transitive closure of the binary relation t. Let post[t]X be the
post-image of X by t , that is the set of states which are reachable from a state
of X by a transition t: post[t]X def= {s′ ∈ S | ∃s ∈ X : 〈s, s′〉 ∈ t} [37 , 30].
Inversely, let pre[t]X def= pre[t−1]X be the pre-image of X by t that is the set
of states from which there exists a possible transition t to a state of X . The
specifications considered in [29] are of the form post[t�] I =⇒ (¬E)∧pre[t�]F .
Informally such a specification states that the descendants of the initial states
are never erroneous and can potentially lead to final states.

Consider for example, the factorial program (the random assignment ? is
equivalent to a read or the passing of an unknown but initialized parameter
value):

ITlra.analysis ();;
Reachability/ancestry analysis for initial/final states;
Type the program to analyze...
n := ?;
f := 1;
while (n <> 0) do

f := (f * n);
n := (n - 1)

od;;

The automatic analysis [34 , 33] below shows that the condition n ≥ 0 should
be checked at program point 1 (as indicated by :!: , since otherwise a runtime
error or nontermination is inevitable). Then the computed invariants will always
hold, for example the final value of n is 0 whereas f ≥ 1 (, typed _O_ , denotes
the uninitialized value while +oo is the greatest machine integer):

0: { n:_O_; f:_O_ }
n := ?;

1:!: { n:[0,+oo]; f:_O_ }
f := 1;

2: { n:[0,+oo]; f:[1,+oo] }
while ((n < 0) | (0 < n)) do

3: { n:[1,+oo]; f:[1,+oo] }
f := (f * n);

4: { n:[1,+oo]; f:[1,+oo] }

P. Cousot & R. Cousot 3

n := (n - 1)
5: { n:[0,1073741822]; f:[1,+oo] }

od {(n = 0)}
6: { n:[0,0]; f:[1,+oo] }

By choosing different user specified invariant assertions Iv for (¬E) and inter
mittent assertions It for F , these forms of specification were slightly extended
by [11] to post[t�] I =⇒ Iv ∧ pre[t�] It under the name “Abstract debugging”.
If the states 〈p, m〉 ∈ S consist of a program point p ∈ P and a memory state
m ∈ M then the user can specify local invariant assertions Ivp attached to
program points p ∈ Pv ⊆ P and local intermittent assertions Itp attached to
program points p ∈ Pt so that Iv = {〈p, m〉 | p ∈ Pv =⇒ Ivp(m)} and It = {〈p,
m〉 | p ∈ Pt ∧ Ivp(m)}. Otherwise stated, the descendants of the initial states
always satisfy all local invariant assertions and can potentially lead to states
satisfying some local intermittent assertion.

A program static analyzer can therefore be used for abstract testing which
is similar to testing/debugging, with some essential differences such as the con
sideration of an abstract semantics instead of a concrete one, the ability to
consider several (reversed) executions at a time (as specified by user initial
and final state specifications), the use of forward and backward reasonings, the
formal specification of what has to be tested, etc.

3 Differences between abstract model-checking
and abstract testing

At first sight, abstract testing is model-checking [19 , 121] of the temporal for
mula ✷(

∧
p∈Pv atp =⇒ Ivp) ∧✸(

∨
p∈Pt atp ∧Itp) for a small-step operational

semantics 〈S, t, I〉 of the program, or more precisely, abstract model-checking
[20 , 23 , 96] since abstract interpretation is involved.

Indeed model-checking and abstract testing are formal verification tech
niques which enjoy remarkable common advantages, the most important ones
being that they are both fully automatic and both involve reasoning close to
tracing program execution whence are easily understandable by programmers.
However abstract testing is quite different from (abstract) model-checking for
at least six technical reasons explained below.

3.1 Scope of application
3.1.1 Scope of abstract testing

First, the abstract interpreters are developed for programming languages that
is infinitely many programs, with modular and recursive control and data in
finitary structures which are difficult to abstract and are most often ignored in
model-checking (with peculiar exceptions involving complete abstractions, such
as e.g. [7]).

P. Cousot & R. Cousot 4

In order to apply abstract testing to a great variety of programming lan
guages, abstract interpreter generators have been developed (see e.g. [60]).

The (generated) abstract interpreters are generic [35 , 60 , 101, 102, 120] ,
that is parameterized by an abstract domain specifying the considered approx
imated properties.

The price to be paid for this generality is that there can be no fine tuning of
the abstract interpreter for a particular specification and a particular program
(abstract compilation, see e.g. [8] , improving mainly the performance rather
than the precision of the analyses).

3.1.2 Scope of (abstract) model checking

(Abstract) “model checking is a technique for verifying finite-state concurrent
systems such as sequential circuit design and communication protocols" [21].
Indeed many model checking publications refer to the case study of a particular
concurrent system which is often debugged and sometimes verified by using an
existing model checker on an abstract model of the concurrent system. The
particular, often implicit, abstraction which is used to design the model can be
specifically developed for the considered concurrent system, see e.g. [84 , 85 , 86 ,
88 , 89].

In a sense this approach should always succeed since tuning the abstraction
for a particular specification of a particular transition system is always complete
(see [42]). However, the proper abstraction may be quite difficult to find in
practice [73 , 104].

3.2 Abstract semantics
Second, the only abstractions considered in abstract model checking [110, 126]
are state based abstractions ℘(S) �→ ℘(S�) of the form α(X) = {α(s) | s ∈ X}
for a given state abstraction α ∈ S �→ S� , see [45 , sec. 14, p. 23]. This restric
tion follows from the requirement in abstract model-checking to model-check the
abstract semantics which, in order to be able to reuse existing model-checkers,
must have the form of a transition system on (abstract) states.

Contrary to a common believe not all abstractions are of that form. So
some abstract semantics (using e.g. the interval abstraction [36 , 37] or the
polyhedral abstraction [47]) are beyond the scope of abstract model checking.
Some model checking publications use these abstractions or similar ones which
are not state based, e.g. [14 , 59, 78, 79 , 80 , 82 , 83 , 90 , 92]. But then they
use abstract interpretation based techniques such as fixpoint approximation,
widening/narrowing, etc. to check safety (mainly reachability) properties as
considered in Sec. 2.

3.3 The need for infinite abstract domains
Third, infinite abstract domains are definitely needed in program analysis for
precision (and sometimes efficiency or ease of programming). The argument

P. Cousot & R. Cousot 5

given in [42] uses reachability analysis with the attribute-independent interval
domain [36 , 37] for the family of programs of the form:

x := 0;
while (x < n) do

x := (x + 1)
od;;

where n is a given integer constant. For example, for n = 100, we get:

0: { x:_O_ }
x := 0;

1: { x:[0,100] }
while (x < 100) do

2: { x:[0,99] }
x := (x + 1)

3: { x:[1,100] }
od {((100 < x) | (x = 100))}

4: { x:[100,100] }

It is easy to prove that for any n > 0 , the analyzer will discover:

0: { x:_O_ }
x := 0;

1: { x:[0,n] }
while (x < n) do

2: { x:[0,n - 1] }
x := (x + 1)

3: { x:[1,n] }
od {((n < x) | (x = n))}

4: { x:[n,n] }

The argument is then as follows:

1. for any given n it is possible to find an abstract domain (here {	 , [0, n] ,
[0, n− 1] , [1, n] , [n, n]}) and to redesign a corresponding program analyzer
(and its correctness proof) so that the above result can be computed by
this specific analyzer for the specific abstract domain corresponding to
this particular n.

More generally, once a reachability proof has been done (e.g. by hand!),
the abstract finite domain is the set of predicates involved in this proof and
the abstract interpreter is nothing but the finite encoding of Floyd-Naur-
Hoare verification conditions restricted to this peculiar finite domain. In
general it is impossible to discover this best-fit abstract domain by simple
inspection of the program text 3.

3Just as the invariants in Floyd-Naur-Hoare proof method are not trivial to discover.
From a practical point of view, compare the empiric approach of [77] based on heuristics for
discovering invariants from the program test which leads to worse results than [36] , as shown
in [41].

P. Cousot & R. Cousot 6

2. Any single program analyzer being able to analyze the entire infinite fam
ily of programs must use an abstract domain containing the ⊆-strictly
increasing chain [1, n] , n > 0 , hence an infinite abstract domain, as well
as a widening, to cope with:

0: { x:_O_ }
x := 0;

1: { x:[0,+oo] }
while (0 < 1) do

2: { x:[0,+oo] }
x := (x + 1)

3: { x:[1,+oo] }
od {((1 < 0) | (0 = 1))}

4: { x:_|_ }

The per-example redesign of the program analyzer has been proposed in model-
checking, including with a proof-check of its correctness [73 , 104 , 125, 74] , but
is hardly conceivable for program analysis (but maybe for large very popu
lar programs on which a huge human investment is conceivable, such as MS
Word [54]). Note that this is different from using abstract interpretation or
model-checking to help a prover/proof checker to infer invariants [93 , 113, 112,
118, 123, 125, 128, 87 , 122] or to guide the automatic prover in its proof search
[65].

3.4 Precise checking in the presence of approximations
Fourth, and more importantly, the algorithms involved in abstract testing are
more precise than model-checking ones in the presence of approximations. These
approximations, such as widenings [36 , 37] , can be simply ignored in model-
checking of finite-state transition systems.

3.4.1 Fixpoint approximation check

A first illustration of this fourth point consists in considering a fixpoint ap
proximation check lfp

�
F � I where 〈L, �, ⊥, �, �, �〉 is a complete lattice,

F ∈ L mon�−−−→ L is monotonic and lfp
�

F is the �-least fixpoint of F .
For example an invariance check (such as array bound checking)✷ I consists

in verifying that lfp
�

F � I where lfp
�

F characterizes the set of descendants of
the entry states and I is the invariant to be checked (asserting for example that
array indexes are within the declared bounds). In this example, L is 〈℘(S), ⊆,

∅, S, ⊆, ⊇〉 , F = λX ·E ∪ post[t]X so that lfp
�

F = post[t�]E.
In (abstract) model-checking, one computes iteratively lfp

�
F and then checks

that lfp
�

F � I (or uses a strictly equivalent check, see [44, p. 73] and Sec. 3.6
below).

In abstract testing, one computes iteratively an upper-approximation J of
lfp

�
λX · I�F (X) with acceleration of the convergence of the iterates by widen

P. Cousot & R. Cousot 7

ing/narrowing [30 , 36 , 37]. The convergence criterion is:

(I � F (J)) � J . (1)

Then the invariance check has the form:

F (J) � I . (2)

This is sound, by the following theorem:

Theorem 1 If 〈L, �, ⊥, �, �, �〉 is a complete lattice, F ∈ L mon�−−−→ L is
monotonic and I, J ∈ L , then:

(I � F (J)) � J ∧ F (J) � I =⇒ lfp
�

F � I

Proof We have F (J) = F (J)� F (J) � I � F (J) [by (2)] � J [by (1)] proving
F (J) � J by transitivity whence lfp

�
F � J by Tarski’s fixpoint theorem [131,

38]. By definition of fixpoints and monotony, it follows that lfp
�

F = F (lfp
�

F)
� F (J) � I [by (2)]. By transitivity, we conclude lfp

�
F � I as required. �

The reason why abstract testing uses more involved computations is that
in the context of infinite state systems, and for a given abstraction, the ap
proximation of the more complex expression is in general more precise than
the abstraction of the trivial expression. Consider for example interval analysis
[36 , 37] of the simple loop accessing sequentially an array A[1] , …, A[100]:

IT.analysis ();;
Forward analysis from initial states;
Type the program to analyze...
i := 0;
while (i <> 100) do

i := (i + 1);
skip % array access %

od;;

The result of the analysis [33] is too approximate to statically check that the
index i is within the array bounds 1 and 100 :

0: { i:_O_ }
i := 0;

1: { i:[0,+oo] }
while ((i < 100) | (100 < i)) do

2: { i:[0,+oo] }
i := (i + 1);

3: { i:[1,+oo] }
skip

4: { i:[1,+oo] }
od {(i = 100)}

5: { i:[100,100] }

P. Cousot & R. Cousot 8

However by explicit conjunction with the array access invariant 0 < i < 100
(the evaluation of the runtime check always B has the effect of blocking the
program execution when the assertion B does not hold):

IT.analysis ();;
Forward analysis from initial states;
Type the program to analyze...
i:=0;
while i <> 100 do
i := i + 1;
always (0 < i) & (i <= 100)

od;;

the static analysis now proves that the array out of bound error is impossible:

0: { i:_O_ }
i := 0;

1: { i:[0,100] }
while ((i < 100) | (100 < i)) do

2: { i:[0,99] }
i := (i + 1);

3: { i:[1,100] }
always ((0 < i) & ((i < 100) | (i = 100)))

4: { i:[1,100] }
od {(i = 100)}

5: { i:[100,100] }

Experimentally, acceleration of the convergence may even lead to a faster con
vergence of the more precise analysis.

3.4.2 Fixpoint meet approximation

A second illustration of the difference between model-checking and abstract
testing algorithms is the upper-approximation of the descendants of the initial
states which are ancestors of the final states. A model-checking algorithm (such
as [3]) computes a conjunction of forward and backward fixpoints. The forward
analysis of the factorial program:

IT.analysis ();;
Forward analysis from initial states;
Type the program to analyze...
n := ?;
f := 1;
while (n <> 0) do

f := (f * n);
n := (n - 1)

od;;

yields:

P. Cousot & R. Cousot 9

0: { n:_O_; f:_O_ }
n := ?;

1: { n:[-oo,+oo]; f:_O_ }
f := 1;

2: { n:[-oo,+oo]; f:[-oo,+oo] }
while ((n < 0) | (0 < n)) do

3: { n:[-oo,+oo]; f:[-oo,+oo] }
f := (f * n);

4: { n:[-oo,+oo]; f:[-oo,+oo] }
n := (n - 1)

5: { n:[-oo,1073741822]; f:[-oo,+oo] }
od {(n = 0)}

6: { n:[0,0]; f:[-oo,+oo] }

The backward analysis of the factorial program:

IT_1.analysis ();;
Backward analysis from final states;
Type the program to analyze...
n := ?;
f := 1;
while (n <> 0) do

f := (f * n);
n := (n - 1)

od;;

yields:

0: { n:[-oo,+oo]?; f:[-oo,+oo]? }
n := ?;

1: { n:[0,+oo]; f:[-oo,+oo]? }
f := 1;

2: { n:[0,+oo]; f:[-oo,+oo]? }
while ((n < 0) | (0 < n)) do

3: { n:[1,+oo]; f:[-oo,+oo] }
f := (f * n);

4: { n:[1,+oo]; f:[-oo,+oo]? }
n := (n - 1)

5: { n:[0,+oo]; f:[-oo,+oo]? }
od {(n = 0)}

6: { n:[-oo,+oo]?; f:[-oo,+oo]? }

The intersection is therefore:

0: { n:_O_; f:_O_ }
n := ?;

1: { n:[-oo,+oo]; f:_O_ }
f := 1;

2: { n:[0,+oo]; f:[-oo,+oo]? }
while ((n < 0) | (0 < n)) do

3: { n:[1,+oo]; f:[-oo,+oo] }
f := (f * n);

P. Cousot & R. Cousot 10

4: { n:[1,+oo]; f:[-oo,+oo] }
n := (n - 1)

5: { n:[0,1073741822]; f:[-oo,+oo] }
od {(n = 0)}

6: { n:[0,0]; f:[-oo,+oo] }

Abstract testing iterates an alternation between forward and backward fixpoints
[29 , 41]. For the factorial program:

ITlra.analysis ();;
Reachability/ancestry analysis for initial/final states;
Type the program to analyze...
n := ?;
f := 1;
while (n <> 0) do

f := (f * n);
n := (n - 1)

od;;

the analysis is more precise (since it can now derive that f is positive):

0: { n:_O_; f:_O_ }
n := ?;

1:!: { n:[0,+oo]; f:_O_ }
f := 1;

2: { n:[0,+oo]; f:[1,+oo] }
while ((n < 0) | (0 < n)) do

3: { n:[1,+oo]; f:[1,+oo] }
f := (f * n);

4: { n:[1,+oo]; f:[1,+oo] }
n := (n - 1)

5: { n:[0,1073741822]; f:[1,+oo] }
od {(n = 0)}

6: { n:[0,0]; f:[1,+oo] }

Assume that we must approximate lfp
�

F � lfp
�

B from above using an abstrac
tion defined by the Galois connection 〈L, �〉 −−−→←−−−α

γ
〈L�, ��〉 that is abstract

interpretations F � � α ◦ F ◦ γ of F and B� � α ◦ B ◦ γ of B. A better

approximation than lfp
��

F � �� lfp
��

B� was suggested in [29]. It is calculated
as the limit of the alternating fixpoint computation:

Ẋ0 = lfp
��

F � or lfp
��

B� (3)

Ẋ2n+1 = lfp
��

λX · (Ẋ2n �� B�(X)), n ∈ N (4)

Ẋ2n+2 = lfp
��

λX · (Ẋ2n+1 �� F �(X)), n ∈ N (5)

For soundness, we assume:

lfp
�

F � lfp
�

B = lfp
�

λX · (lfp
�

F � B(X)) (6)
= lfp

�
λX · (lfp

�
B � F (X)) (7)

P. Cousot & R. Cousot 11

= lfp
�

λX · (lfp
�

F � lfp
�

B � B(X)) (8)
= lfp

�
λX · (lfp

�
F � lfp

�
B � F (X)) (9)

so that there is no improvement when applying the alternating fixpoint com
putation to F and B (such as the exact collecting semantics). However, when
considering approximations F � of F and B� of B , not all information can be
collected in one pass. So the idea is to propagate the initial assertion forward so
as to get a final assertion. This final assertion is then propagated backward/up
to get stronger necessary conditions to be satisfied by the initial states for pos
sible termination. This restricts the possible reachable states as indicated by
the next forward pass. Going on this way, the available information on the
descendant states of the initial states which are ascendant states of the final
states can be improved on each successive pass, until convergence. A specific
instance of this computation scheme was used independently by [95] to infer
types in flowchart programs.

Let us recall the following classical results in abstract interpretation [37 , 39]:

Theorem 2 (Fixpoint abstraction) If 〈L, �, ⊥, �, �, �〉 and 〈L�, ��, ⊥�,

��, ��, ��〉 are complete lattices, 〈L, �〉 −−−→←−−−α

γ
〈L�, ��〉 is a Galois connection,

and F ∈ L mon�−−−→ L , then α(lfp
�

F) � lfp
��

α ◦ F ◦ γ. ✷

Proof In a Galois connection, α and γ are monotonic, so by Tarski’s fixpoint

theorem [131] , the least fixpoints exist. So let P �
def= lfp

��

α ◦ F ◦ γ. We have
α ◦ F ◦ γ(P �) = P � whence F ◦ γ(P �) � γ(P �) by definition of Galois connec
tions. It follows that γ(P �) is a postfixpoint of F whence lfp

�
F � γ(P �) by

Tarski’s fixpoint theorem or equivalently α(lfp
�

F) �� P � = lfp
��

α ◦ F ◦ γ. �

Theorem 3 (Fixpoint approximation) If 〈L�, ��, ⊥�, ��, ��, ��〉 is a com

plete lattice, F � , F̄ � ∈ L� mon�−−−→ L� , and F � �� F̄ � pointwise, then lfp
��

F � ��

lfp
��

F̄ �. ✷

Proof We have F �(lfp
��

F̄ �) �� F̄ �(lfp
��

F̄ �) = lfp
��

F̄ � whence lfp
��

F � ��

lfp
��

F̄ � since lfp
��

F � =
�

�{X | F �(X) �� X} by Tarski’s fixpoint theorem
[131]. �

The correctness of the alternating fixpoint computation follows from the follow
ing:

Theorem 4 (Alternating fixpoint approximation) If 〈L, �, ⊥, �, �, �〉
and 〈L�, ��, ⊥�, ��, ��, ��〉 are complete lattices, 〈L, �〉 −−−→←−−−α

γ
〈L�, ��〉 is a

Galois connection, F ∈ L mon�−−−→ L and B ∈ L mon�−−−→ L satisfy the hypotheses (8)
and (9), F � ∈ L� mon�−−−→ L� , B� ∈ L� mon�−−−→ L� , α ◦ F ◦ γ �� F � , α ◦ B ◦ γ �� B�

and the sequence 〈Ẋn, n ∈ N〉 is defined by (3), (4) and (5) then ∀k ∈ N :
α(lfp

⊆
F ∩ lfp

⊆
B) �� Ẋk+1 �� Ẋk. ✷

P. Cousot & R. Cousot 12

Proof Observe that by the fixpoint property, Ẋ2n+1 = Ẋ2n�� B�(Ẋ2n+1) and
Ẋ2n+2 = Ẋ2n+1 �� F �(Ẋ2n+2) , hence Ẋ2n �� Ẋ2n+1 �� Ẋ2n+2 since �� is the
greatest lower bound for �� so that Ẋk , k ∈ N is a decreasing chain.

We have α(lfp
�

F � lfp
�

B) �� α(lfp
�

F) since α is monotone and α(lfp
�

F)

�� lfp
��

F � by 3, thus proving the proposition for k = 0.
Let us observe that α ◦ F ◦ γ �� F � implies F ◦ γ � γ ◦ F � by definition

of Galois connections so that in particular for an argument of the form α(X) ,
F ◦ γ ◦ α � γ ◦ F � ◦ α. In a Galois connection, γ ◦ α is extensive so that by
monotony and transitivity F � γ ◦ F � ◦ α.

Assume now by induction hypothesis that α(lfp
�

F � lfp
�

B) �� Ẋ2n , or
equivalently, by definition of Galois connections, that lfp

�
F � lfp

�
B � γ(Ẋ2n).

Since F � γ ◦ F � ◦ α , it follows that λ X · lfp
�

F�lfp
�

B�F (X)� λX · γ(Ẋ2n)�
γ ◦ F � ◦ α(X) = λ X · γ(Ẋ2n � F � ◦ α(X)) since, in a Galois connection, γ is
a complete meet morphism. Now by hypothesis (8), we have lfp

�
F � lfp

�
B

= lfpλ X · (lfp
�

F � lfp
�

B � F (X)) �� lfpλ X · γ(Ẋ2n � F � ◦ α(X)) by Th. 3.
Let G be λ X · Ẋ2n � F �(X). In a Galois connection, α ◦ γ is reductive so that
by monotony G ◦ α ◦ γ �� G and α ◦ γ ◦ G ◦ α ◦ γ �� G ◦ α ◦ γ , whence,
by transitivity, α ◦ γ ◦ G ◦ α ◦ γ �� G. By Th. 2 , we have α(lfpγ ◦ G ◦ α)
�� lfpα ◦ γ ◦ G ◦ α ◦ γ �� lfpG by Th. 3. Hence, lfpλX · γ(Ẋ2n � F � ◦ α(X))
� γ(lfpλ X · Ẋ2n � F �(X)) so that by transitivity we conclude that α(lfp

�
F �

lfp
�

B) �� Ẋ2n+1.
The proof that α(lfp

�
F � lfp

�
B) �� Ẋ2n+2 is similar, using hypothesis (8)

and by exchanging the r™les of F and B. �

It is interesting to note that the computed sequence (3), (5) and (8) is optimal
(see [38]).

A similar result holds when replacing one least fixpoint by a greatest fix
point4.

If the abstract lattice does not satisfy the descending chain condition then
[29] also suggests to use a narrowing operator

�
[36 , 37] to enforce convergence

of the downward iteration Ẋk, k ∈ N. The same way a widening/narrowing
approach can be used to enforce convergence of the iterates for λ X · Ẋ2n �
F �(X) and λX · Ẋ2n+1 � B�(X).

3.4.3 Fixpoint meet approximation

A third illustration of the difference between model-checking and abstract test
ing algorithms is the local iterations to handle tests, backward assignments,
etc. For example, without local iterations:

IT.analysis ();;
Forward analysis from initial states;
0: { x:_O_; y:_O_; z:_O_ }

4Damien Massé, private communication.

P. Cousot & R. Cousot 13

x := 0;
1: { x:[0,0]; y:_O_; z:_O_ }
y := ?;

2: { x:[0,0]; y:[-oo,+oo]; z:_O_ }
z := ?;

3: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }
if (((x = y) & (y = z)) & ((z + 1) = x)) then

4: { x:[0,0]; y:[0,0]; z:[-1,-1] }
skip

5: { x:[0,0]; y:[0,0]; z:[-1,-1] }
else {((((x < y) | (y < x)) | ((y < z) | (z < y))) | (((z + 1) < x) | (x < (z + 1))))}

6: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }
skip

7: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }
fi

8: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }

while the precision is greatly enhanced with local iterations:

IT’.analysis ();;
Forward reductive analysis from initial states;
0: { x:_O_; y:_O_; z:_O_ }
x := 0;

1: { x:[0,0]; y:_O_; z:_O_ }
y := ?;

2: { x:[0,0]; y:[-oo,+oo]; z:_O_ }
z := ?;

3: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }
if (((x = y) & (y = z)) & ((z + 1) = x)) then

4: { x:_|_; y:_|_; z:_|_ }
skip

5: { x:_|_; y:_|_; z:_|_ }
else {((((x < y) | (y < x)) | ((y < z) | (z < y))) | (((z + 1) < x) | (x < (z + 1))))}

6: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }
skip

7: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }
fi

8: { x:[0,0]; y:[-oo,+oo]; z:[-oo,+oo] }

3.4.4 Fixpoint meet approximation check

The abstract testing strategy to check post[t�] I =⇒ Iv ∧ pre[t�] It and more
generally lfp

�
F � I � lfp

�
B combines the results of Sec. 3.4.1 and Sec. 3.4.3.

3.5 Counter-examples to erroneous designs
The fifth element of comparison between model-checking and abstract testing
concerns the conclusions that can be drawn in case of failure of the auto
matic verification process. The model checking algorithms usually provide a
counter-example [15]. This is not always possible with abstract testing (e.g.

P. Cousot & R. Cousot 14

for non-termination?) since the necessary over-approximation leads to the con
sideration of inexisting program executions which should not be proposed as
counter-examples. This is the price to pay for undecidability.

However, abstract testing can provide necessary conditions for the specifica
tion to be (un-)satisfied. These automatically calculated conditions can serve
as a guideline to discover the errors. They can also be checked at run-time to
start the debugging mode before the error actually happens. For example the
analysis of the following factorial program with a termination requirement:

IT_1.analysis ();;
Backward analysis from final states;
Type the program to analyze...
n := ?;
f := 1;
while (n <> 0) do

f := (f * n);
n := (n - 1)

od;;

leads to the necessary pre-condition n ≥ 0:

0: { n:[-oo,+oo]?; f:[-oo,+oo]? }
n := ?;

1: { n:[0,+oo]; f:[-oo,+oo]? }
f := 1;

2: { n:[0,+oo]; f:[-oo,+oo]? }
while ((n < 0) | (0 < n)) do

3: { n:[1,+oo]; f:[-oo,+oo] }
f := (f * n);

4: { n:[1,+oo]; f:[-oo,+oo]? }
n := (n - 1)

5: { n:[0,+oo]; f:[-oo,+oo]? }
od {(n = 0)}

6: { n:[-oo,+oo]?; f:[-oo,+oo]? }

Indeed when this condition is not satisfied, i.e. when initially n < 0 , the program
execution may not terminate or may terminate with a run-time error (arithmetic
overflow in the above example). The following static analysis with this erroneous
initial condition n < 0:

IT.analysis ();;
Forward analysis from initial states;
Type the program to analyze...
initial n < 0;
f := 1;
while (n <> 0) do

f := (f * n);
n := (n - 1)

od;;

P. Cousot & R. Cousot 15

shows that the program execution never terminates properly so that the only
remaining possible case is an incorrect termination with a run-ime error (⊥ ,
typed _|_ , is the false invariant hence denotes irreachability in forward analysis
and impossibility to reach the goal in backward analysis):

0: { n:_|_; f:_|_ }
initial (n < 0);

1: { n:[-oo,-1]; f:_O_ }
f := 1;

2: { n:[-oo,-1]; f:[-oo,1] }
while ((n < 0) | (0 < n)) do

3: { n:[-oo,-1]; f:[-oo,1] }
f := (f * n);

4: { n:[-oo,-1]; f:[-oo,0] }
n := (n - 1)

5: { n:[-oo,-2]; f:[-oo,0] }
od {(n = 0)}

6: { n:_|_; f:_|_ }

Otherwise stated, infinitely many counter-examples are simultaneously provided
by this counter-analysis.

3.6 Contrapositive reasoning
For the sixth element of comparison between abstract testing and model-checking,
observe that in model-checking, using a set of states or its complement is equiv
alent as far as the precision of the result is concerned (but may be not its effi
ciency). For example, as observed in [44 , p. 73] , the Galois connection 〈℘(S),
⊆〉 −−−−−−→←−−−−−−

post[r]

p̃re[r]
〈℘(S), ⊆〉 (where r ⊆ S × S and p̃re[r]X def= {s | ∀s′ : 〈s, s′〉 ∈

r =⇒ s′ ∈ X}) implies that the invariance specification check post[t�]E ⊆ I
is equivalent to p̃re[t�]¬I ⊆ ¬E (or pre[t�]¬I ⊆ ¬E for total deterministic
transition systems [30]). Otherwise stated a forward positive proof is equiva
lent to a backward contrapositive proof, as observed in [40]. So the difference
between the abstract testing algorithm of [37, 39 , 30] and the model-checking
algorithm of [17 , 18 , 121] is that abstract testing checks post[t�]E ⊆ I while
model-checking verifies p̃re[t�]¬I ⊆ ¬E , which is equivalent for finite transition
systems as considered in [17 , 18 , 121].

However, when considering infinite state systems the negation may be ap
proximate in the abstract domain. For example the complement of an interval
as considered in [36 , 37] is not an interval in general. So the backward con
trapositive checking may not yield the same conclusion as the forward positive
checking. For example when looking for a pre-condition of an out of bounds
error for the following program:

IT_1.analysis ();;
Backward analysis from final states;
Type the program to analyze...
i:=0;

P. Cousot & R. Cousot 16

while i <> 100 do
i := i + 1;
if (0 < i) & (i <= 100) then

skip % array access %
else

final (i <= 0) | (100 < i) % out of bounds error %
fi

od;;

The predicate (i <= 0) | (100 < i) cannot be precisely approximated with in
tervals, so the analysis is inconclusive:

0: { i:[-oo,+oo]? }
i := 0;

1: { i:[-oo,1073741822] }
while ((i < 100) | (100 < i)) do

2: { i:[-oo,1073741822] }
i := (i + 1);

3: { i:[-oo,+oo] }
if ((0 < i) & ((i < 100) | (i = 100))) then

4: { i:[-oo,1073741822] }
skip

5: { i:[-oo,1073741822] }
else {(((i < 0) | (0 = i)) | (100 < i))}

6: { i:[-oo,+oo] }
final (((i < 0) | (i = 0)) | (100 < i))

7: { i:[-oo,1073741822] }
fi

8: { i:[-oo,1073741822] }
od {(i = 100)}

9: { i:_|_ }

However both the forward positive and backward contrapositive checking may
be conclusive. This is the case if we check for the lower bound only:

IT_1.analysis ();;
Backward analysis from final states;
Type the program to analyze...
i:=0;
while i <> 100 do
i := i + 1;
if (0 < i) then

skip % array access %
else

final (i <= 0) % out of lower bound error %
fi

od;;

This is shown below since the initial invariant is false so the out of lower bound
error is unreachable:

P. Cousot & R. Cousot 17

0: { i:_|_ }
i := 0;

1: { i:[-oo,-1] }
while ((i < 100) | (100 < i)) do

2: { i:[-oo,-1] }
i := (i + 1);

3: { i:[-oo,0] }
if (0 < i) then

4: { i:[-oo,-1] }
skip

5: { i:[-oo,-1] }
else {((i < 0) | (0 = i))}

6: { i:[-oo,0] }
final ((i < 0) | (i = 0))

7: { i:[-oo,-1] }
fi

8: { i:[-oo,-1] }
od {(i = 100)}

9: { i:_|_ }

Similarly for the upper bound:

0: { i:_|_ }
i := 0;

1: { i:[101,1073741822] }
while ((i < 100) | (100 < i)) do

2: { i:[100,1073741822] }
i := (i + 1);

3: { i:[101,+oo] }
if ((i < 100) | (i = 100)) then

4: { i:[101,1073741822] }
skip

5: { i:[101,1073741822] }
else {(100 < i)}

6: { i:[101,+oo] }
final (100 < i)

7: { i:[101,1073741822] }
fi

8: { i:[101,1073741822] }
od {(i = 100)}

9: { i:_|_ }

Both analyzes could be done simultaneously by considering both intervals and
their dual, or more generally finite disjunctions of intervals. More generally,
completeness may always be achieved by enriching the abstract domain [63].
To start with, the abstract domain might be enriched with complements [62] ,
but this might not be sufficient and indeed the abstract domain might have
to be enriched for each primitive operation [64] , thus leading to an abstract
algebra which might be quite difficult to implement if not totally inefficient.

P. Cousot & R. Cousot 18

4 Tentative and controversial answers to the ques
tions to the panelists

Question 1:
Describe your view of the strength and weakness of the two communities (model
checking and program analysis). Try in particular to reveal, from your point of
view, similarities & distinctions in

• philosophy,

• technique;

The model-checking community is much larger and well-organized than the
program analysis community. This does not completely explain why there are
many more available tools and publications in model-checking than in program
analyzsis in the academic community (e.g. compare the tool sections of the CAV
[22, 99 , 119, 28, 58 , 136, 2 , 76 , 91 , 81] and TACAS [13, 105, 12, 129, 129, 26]
proceedings with those of the SAS proceedings [5 , 6 , 46 , 100, 111, 48 , 133,
103, 27]).

The techniques used in model-checking, such as fixpoint approximation, are
often close to, if not directly borrowed, from program analysis. So one may
wonder why they are immediately applied with success in model-checking while
there are less direct applications in program analysis and a number of such
analyzes simply fail.

One reason might be that it is easier (e.g. for a few PhD students) to design
and implement a model-checker for e.g. linear hybrid systems which can be
tested on impressive but limited examples, rather than a program analyzer for
e.g. a full language such as ADA, C or Java [132] which have to be tested on very
large programs (presently 100 000 [98] to 1 400 000 lines [54] not speaking of
larger programs such as the 30 000 000 of MS Windows 2000 and its anticipated
63 000 bugs).

On the other hand and as noted in Sec. 3.1.1 , program analyzers are often
automatically generated, generic or for large languages so are more difficult to
design and implement. However, it is very easy to exhibit the deficiencies of
such program analysers. To check a program analyzer, say for C, you have
thousands of public-domain programs available, no specification is needed and
you are not allowed to change them for the purpose of the analysis (just may
be to adapt the analyzer to the specificities of the C-dialect which is used).

It is much more very difficult to evaluate a model checker. You have to find
an example, built a model, write a specification and then get out of memory
(that’s the easy part). Then you are told than your model is not the proper one
and you go on (Klaus coined the term "Havelund’s sledge-hammer").

Finally the scope of the abstraction techniques is rather wide (from pro
gram analysis, to typing [32] and hierarchies of semantics [31 , 61]), researchers

P. Cousot & R. Cousot 19

in program analysis might be too often tempted to increase their scientific pro
ductivity or publication rate by forgetting about long-term practical and usable
implementations and turning to more theoretical subjects.

Question 2.a:
(Where) do you see a bridge between the respective fields?

A trivial answer is for program analysisto consider more properties (but is
there anything useful beyonds reachability, invariance and ancestry analysis?)
and for model-checking to consider really large, complex and parameterized
systems which models are already existing or difficult to design (e.g. C programs
over 100 000 lines versus boilers or water-tanks).

One way wonder whether model-checking techniques do scale up for such
systems programmed in C. Do they ave a reasonable specification in tempo
ral logic? including data? including interaction with the environment? Model
checking would have to consider rich models of program semantics (much richer
than e.g. only (finite) automata) in order to bridge the gap between the respec
tive fields.

Since approximation is the only possibility in program analysis and thus idea
is not (yet) well accepted by the model-checking community, cross-fertilization
in the other direction is (still) unfruitful.

Question 2.b:
(What) are the obstacle to building such bridges? Try to give an example where
you are convinced that the other community’s method will fail to capture appro
priately.

The main obstacle seem to be the difference of nature of the considered
models. For example, partial order reduction [130] has hardly (can hardly?)
be used in program analysis. Nevertheless geometric models, may be bet
ter adapted to describe true concurrency, although much more complex, have
proved equally useful and efficient in the analysis of parallel functional programs
[53 , 49 , 51 , 50 , 52 , 72, 66 , 68, 67 , 69 , 71 , 70].

The necessity imposed by model checkers to map the language semantic
model to a (finite) transition system may be a the cause of a considerable loss
of precision as discussed in Sec. 3.3. See for another example the difference in
precision between [24] and [134, 135] for the π-calculus. Other model-checkers
for approximation of the infinite space of reachable states are mainly reuses
or adaptation of classical abstract interpretation techniques, see Sec. 3.2 , and
compare for example [14] and [94].

Question 2.c:
(what) are your general worries and hopes concerning possible synergy?

P. Cousot & R. Cousot 20

One concern is the impossibility or difficulty to generalize the results of
model-checking to program analysis. There is a gap between finite and infinite
systems.

One aspect is sociological. After so much insistance on “sound and complete
computer aided verification by formal methods”, it is difficult to accept the
idea of “sound and incomplete automatic partial checking by approximation
methods”.

Another aspect is technical. We have illustrated in Sec. 3.4.3 and 3.4.1
the problems with fixpoint approximation for infinite systems. We have also
illustrated similar problems with negation in Sec. 3.6. For another example,
consider the ∃ modalities which are trivial to handle in the finite case but more
difficult in the infinite case. Many present solutions e.g. consists only in trying
to execute a few examples (i.e. bread first testing), see e.g. [14]. More generally,
the approximation of fixpoints from below is difficult (and mainly consist up to
now in considering a few runs or reasoning variant functions trivially inferred
from the program text (e.g. data types)).

Question 2.d:
What do you expect from this meeting?

A lot of contraversial discussions on these questions.

Question 3:
Is model checking mainly theory (the theory of temporal logics), whereas data
flow analysis is “hands on”?

For the model-checking papers published in LICS certainly. Many complex
ity results in model-checking are also of poor help in practice. In the worst case
everything is proportional to the input transition system and so will go out of
memory for any reasonable program. The only way is therefore the interactive
exploration of a few paths, that is program testing.

If data flow analysis is “hands on”, is applied model-checking something
more than boolean data flow analysis? or program testing?

A similar question is “Is abstract interpretation mainly theory (the theory
of semantic approximation), whereas data flow analysis is ‘hands on’?”.

Question 4:
What has become applicable to other than toy examples just by coincidence is
only due to the event of BDDs and fast computers and has nothing to do with
the theory behind model checking (‘all’ practical success stories (errors found)
are based on reachability, and not on sophisticated temporal properties).

Model-checking has always been a success even before the advent of BDDs.
Indeed it is very difficult to find a failure story in the CAV [22, 99 , 119, 28 ,

P. Cousot & R. Cousot 21

58, 136, 2 , 76 , 91 , 81] or TACAS [13, 105, 12 , 129, 129, 26] proceedings.
So BDDs and now SAT [4] are part of the progress, since the theory behind
model checking does not change too much. Indeed one may wonder, in the
case of infinite systems, if there are model-checking success stories including a
full verification of a full system. Is finding errors really significant? Program
testing would be a great collection success stories if finding errors in programs
were considered an achievement.

For program analysis, the situation is more difficult since the verification is
partial. However their are success stories with error found, invariants verified
and very few uncertainty cases left out [57 , 98]. However one program is not
enough, since the analyzer must work rather well on all writenable programs.

Question 5:
Are the techniques, heuristics and algorithms developed for model checking just
on eliminating the redundancy inherent to the interleaving semantics of concur
rent systems? And hence, not applicable to ‘functional’ software systems, where
concurrency is mostly deferred to the operating system?

Not all concurrency is mostly deferred to the operating system. For exam
ple in real-time critinal systems (in avionics, automotive, healthcare, etc.), it
is important to check timing constraints. Can the numerous model checking
methods which have been developped for timed systems be applied to analyze
a real-time program writen in C running on a pipelined processor with caches?
Then this could then be compared with what is done and commercialized in
program analysis [1].

Question 6:
Does it make sense to view a software system like MS Word as a transition
system, which is the only thing that model checking can be applied to?

It is remarkable that both abstract interpretation [29 , 39] and then model-checking
[17 , 121] used transition systems (originating from [97] to model the systems to
be analyzed. For program analysis, they work very well for languages such as
Prolog (whence may the large use of abstract interpretation in Prolog [56 , 55])
and C. MS Word is certainly a transition system, even a procedural flow chart.
We do not know on any attempt to model-check it. To get a temporal specifi
cation of what happens when one types command would be great (and may be
more costly to develop and maintain than MS Word itself). However, MS Word
is definitely within the scope of automatic point-to analysis, see [54].

Question 7:
Should it not be viewed as a functional program? If yes, can model checking meth
ods be reasonably transferred to functional programs? Can control flow analysis

P. Cousot & R. Cousot 22

methods be used to enhance model checking methods (traditionally applied to
transition systems)?

The limits of transitions sytems do not really appear in model checking,
since the systems to be checked (e.g. a protocol) do not involve higher-order re
cursion (as in functional programs for which, e.g. to handle strictness analysis,
the theory of abstract interpretation has to use both an approximation and a
computational ordering [43]). Note that MSWord is (certainly) not higher-order
and the handling of first-order procedures is rather well-understood and can be
very precise, see among many others [9 , 10]. It is clear also that the simple mod
elisation of operations on heap-allocated recursive data structures as transition
systems or abstract machines are not well suited for program analysis [124]. So
model checking methods can hardly be reasonably transferred to higher-order
functional programs with say denotational or SOS semantics (as needed in e.g.
strictness analysis).

Reciprocally, in order to enhance model checking by program analysis meth
ods for higher-order control and data recursion, it seems that the specifica
tion methods used by model checking such as temporal logic are not very
well-adapted to describe such control and data structures. Moreover program
ming languages have also specific problems not appearing in model-checking
such as naming (recall [16]), etc. So temporal specification languages//logics,
which are well-adapted to programs and scale-up for large ones have to be
found.

Question 8:
Are BDDs useful for software, or is viewing software as a finite-state system a
“looser right from the start”?

We have no hope in viewing software as a finite-state system and neither in
model-checking software with success stories different from successful tests. The
same question could have been asked for the automata theoretic approach to
model-checking for which we know no report of failure by immediate size explo
sion in the model-checking literature, which seems nevertheless quite frequent
in program analysis.

BDDs have already shown useful for software, e.g. for strictness analysis
(after proper encoding of higher-order boolean functions), see [106, 107]. Must
be exploitable in case of explosion (widening). However the generalization be
yond trivial boolean properties so as to include also, e.g. tree automata in an
expressive (e.g. fairness) and efficient way turned out to be a non-trivial task
[108, 109].

References
[1] M. Alt, Ferdinand C. , F. Martin, and R. Wilhelm. Cache behavior prediction

by abstract interpretation. In R. Cousot and D.A. Schmidt, editors, Proceedings

P. Cousot & R. Cousot 23

of the Third International Symposium on Static Analysis, SAS ’96 , Aachen,
Germany, 20–22 september 1996, Lecture Notes in Computer Science 1145, pages
52–66. Springer-Verlag, Berlin, Germany, 1996. 21

[2] R. Alur and T.A. Henzinger, editors. Proceedings of the Eight International
Conference on Computer Aided Verification, CAV ’96 , New Brunswick, New
Jersey, United States, Lecture Notes in Computer Science 1102. Springer-Verlag,
Berlin, Germany, 31 July – 3 August 1996. 18, 21

[3] S. Berezin, E. Clarke, S. Jha, and W. Marrero. Model checking algorithms for
the µ-calculus. Technical report tr-cmu-cs-96-180, Carnegie Mellon University,
september 1996. 8

[4] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking with
out BDDs. In W.R. Cleaveland, editor, Proceedings of the Fifth International
Conference on Tools and Algorithms for the Construction and Analysis of Sys
tems, TACAS ’99 , Amsterdam, Netherlands, 22-25 March 1999, Lecture Notes
in Computer Science 1579. Springer-Verlag, Berlin, Germany, 1999. 21

[5] M. Billaud, P. Castéran, M.-M. Corsini, K. Musumbu, and A. Rauzy, editors.
Actes JTASPEFL ’91, LaBRI, Bordeaux, France , volume 74 of BIGRE. IRISA,
Campus de Beaulieu, Rennes, France, October 1991. 18

[6] M. Billaud, P. Castéran, M.-M. Corsini, K. Musumbu, and A. Rauzy, edi
tors. Proceedings of the Second International Workshop on Static Analysis,
WSA ’92, LaBRI, Bordeaux, France , volume 81–82 of BIGRE. IRISA, Cam
pus de Beaulieu, Rennes, France, 23–25 september 1992. 18

[7] B. Boigelot and P. Godefroid. Symbolic verification of communication protocols
with infinite state spaces using QDDs (extended abstract). In R. Alur and
T.A. Henzinger, editors, Proceedings of the Eight International Conference on
Computer Aided Verification, CAV ’96 , New Brunswick, New Jersey, United
States, Lecture Notes in Computer Science 1102, pages 1–12. Springer-Verlag,
Berlin, Germany, 31 July –3 August 1996. 3

[8] D. Boucher and M. Feeley. Abstract compilation: A new implementation
paradigm for static analysis. In T. Gyimothy, editor, Proceedings of the Sixth
International Conference on Compiler Construction, CC ’96 , Linköping, Swe
den, Lecture Notes in Computer Science 1060, pages 192–207. Springer-Verlag,
Berlin, Germany, 24–26 April 1996. 4

[9] F. Bourdoncle. Interprocedural abstract interpretation of block structured lan
guages with nested procedures, aliasing and recursivity. In P. Deransart and J.
Małuszyński, editors, Proceedings of the International Workshop Programming
Language Implementation and Logic Programming, PLILP ’90 , Linköping, Swe
den, Lecture Notes in Computer Science 456, pages 307–323. Springer-Verlag,
Berlin, Germany, 20–22 August 1990. 22

[10] F. Bourdoncle. Abstract interpretation by dynamic partitioning. Journal of
Functional Programming , 2(4):407–435, 1992. 22

[11] F. Bourdoncle. Abstract debugging of higher-order imperative languages. In Pro
ceedings of the ACM-SIGPLAN Conference on Programming Language Design
and Implementation, pages 46–55. ACM Press, New York, New York, United
States, 1993. 3

P. Cousot & R. Cousot 24

[12] E. Brinksma, editor. Proceedings of the Third International Workshop on Tools
and Algorithms for the Construction and Analysis of Systems, TACAS ’97 , En
schede, Netherlands, Lecture Notes in Computer Science 1217. Springer-Verlag,
Berlin, Germany, 2–4 April 1997. 18 , 21

[13] E. Brinksma, R. Cleaveland, K.G. Larsen, , T. Margaria, and B. Steffen, editors.
Proceedings of the First International Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS ’95 , Aarhus, Denmark, Lecture
Notes in Computer Science 1019. Springer-Verlag, Berlin, Germany, 19–20 May
1995. 18, 21

[14] T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of infinite
state systems using presburger arithmetic. In O. Grumberg, editor, Proceed
ings of the Ninth International Conference on Computer Aided Verification,
CAV ’97 , Haifa, Israel,Lecture Notes in Computer Science 1254, pages 400–411.
Springer-Verlag, Berlin, Germany, 22–25 July 1997. 4 , 19 , 20

[15] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym
bolic model checking: 1020 states and beyond. Information and Computation,
98(2):142–170, 1992. 13

[16] E.M. Clarke. Programming language constructs for which it is impossible to ob
tain “good” hoare-like axiom systems. In Conference Record of the Fourth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 10–20. ACM Press, New York, New York, United States, January 1977.
22

[17] E.M. Clarke and E.A. Emerson. Synthesis of synchronization skeletons for
branching time temporal logic. In IBM Workshop on Logics of Programs, Lec
ture Notes in Computer Science 131. Springer-Verlag, Berlin, Germany, May
1981. 15, 21

[18] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite
state concurrent systems using temporal logic specifications: A practical ap
proach. In Conference Record of the Tenth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 117–126. ACM
Press, New York, New York, United States, January 1983. 15

[19] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of fi
nite-state concurrent systems using temporal logic specifications. ACM Trans
actions on Programming Languages and Systems, 8(2):244–263, January 1986.
3

[20] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction.
ACM Transactions on Programming Languages and Systems , 16(5):1512–1542,
september 1994. 3

[21] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, Cam
bridge, Massachusetts, United States, 1999. 4

[22] E.M. Clarke and R.P. Kurshan, editors. on Computer Aided Verification,
CAV ’90 , number 3 in New Brunswick, New Jersey, United States, DIMACS Vol
ume Series. American Mathematical Society, Providence, Rhode Island, United
States, June 1990. 18 , 21

[23] R. Cleaveland, P. Iyer, and D. Yankelevitch. Optimality in abstractions of model
checking. In A. Mycroft, editor, Proceedings of the Second International Sympo
sium on Static Analysis, SAS ’95 , Glasgow, United Kindom, 25–27 september

P. Cousot & R. Cousot 25

1995, Lecture Notes in Computer Science 983, pages 51–63. Springer-Verlag,
Berlin, Germany, 1995. 3

[24] W.R. Cleaveland, editor. Finite State Verification for the Asynchronous
π-Calculus , Amsterdam, Netherlands, Lecture Notes in Computer Science 1579.
Springer-Verlag, Berlin, Germany, 22–28 March 1999. 19

[25] W.R. Cleaveland, editor. On Proving Safety Properties by Integrating Static
Analysis, Theorem Proving and Abstraction , Amsterdam, Netherlands, Lecture
Notes in Computer Science 1579. Springer-Verlag, Berlin, Germany, 22–28 March
1999. 1

[26] W.R. Cleaveland, editor. Proceedings of the Fifth International Confer
ence on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS ’99 , Amsterdam, Netherlands, Lecture Notes in Computer Science 1579.
Springer-Verlag, Berlin, Germany, 22–28 March 1999. 18, 21

[27] A. Cortesi and G. Filé, editors. Proceedings of the Sixth International Symposium
on Static Analysis, SAS ’99 , Venice, Italy, 22–24 september 1999, Lecture Notes
in Computer Science 1694. Springer-Verlag, Berlin, Germany, 22–24 september
1999. 18

[28] C. Courcoubetis, editor. Proceedings of the Fifth International Conference on
Computer Aided Verification, CAV ’93 , Elounda, Greece, Lecture Notes in Com
puter Science 697. Springer-Verlag, Berlin, Germany, 28 June – 1 July 1993.
18 , 21

[29] P. Cousot. Méthodes itératives de construction et d’approximation de points fi-
xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences mathématiques, Université scientifique et médicale de
Grenoble, Grenoble, France, 21 March 1978. 2 , 10 , 12 , 21

[30] P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick and N.D.
Jones, editors, Program Flow Analysis: Theory and Applications , chapter 10,
pages 303–342. Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, United States,
1981. 2 , 7 , 15

[31] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Electronic Notes in Theoretical Computer Science , 6,
1997. URL: http://www.elsevier.nl/locate/entcs/volume6.html , 25 pages.
18

[32] P. Cousot. Types as abstract interpretations, invited paper. In Conference
Record of the Twentyfourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages , pages 316–331, Paris, France, January
1997. ACM Press, New York, New York, United States. 18

[33] P. Cousot. Calculational design of semantics and static analyzers by abstract
interpretation. NATO International Summer School 1998 on Calculational Sys
tem Design. Marktoberdorf, Germany. Organized by F.L. Bauer, M. Broy, E.W.
Dijkstra, D. Gries and C.A.R. Hoare., 28 July – 9 August 1998. 2 , 7

[34] P. Cousot. The Marktoberdorf’98 generic abstract interpreter.
http://www.di.ens.fr/˜cousot/Marktoberdorf98.shtml , November 1998. 2

[35] P. Cousot. The calculational design of a generic abstract interpreter. In M. Broy
and R. Steinbrüggen, editors, Calculational System Design , volume 173, pages
421–505. NATO Science Series, Series F: Computer and Systems Sciences. IOS
Press, Amsterdam, The Netherlands, 1999. 4

http://www.elsevier.nl/locate/entcs/volume6.html
http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml

P. Cousot & R. Cousot 26

[36] P. Cousot and R. Cousot. Static determination of dynamic properties of pro
grams. In Proceedings of the Second International Symposium on Programming,
pages 106–130. Dunod, Paris, France, 1976. 2 , 4 , 5 , 6 , 7 , 12 , 15

[37] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 238–252, Los Angeles, Califor
nia, 1977. ACM Press, New York, New York, United States. 2 , 4 , 5 , 6 , 7 , 11 ,
12 , 15

[38] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
Pacific Journal of Mathematics , 82(1):43–57, 1979. 7 , 12

[39] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages , pages 269–282, San Antonio, Texas,
1979. ACM Press, New York, New York, United States. 11 , 15 , 21

[40] P. Cousot and R. Cousot. Induction principles for proving invariance properties
of programs. In D. Néel, editor, Tools & Notions for Program Construction ,
pages 43–119. Cambridge University Press, Cambridge, United Kindom, 1982.
15

[41] P. Cousot and R. Cousot. Abstract interpretation and application to logic pro
grams. Journal of Logic Programming, 13(2–3):103–179, 1992. (The editor of
Journal of Logic Programming has mistakenly published the unreadable galley proof.
For a correct version of this paper, see http://www.dmi.ens.fr/˜cousot .). 5 , 10

[42] P. Cousot and R. Cousot. Comparing the Galois connection and widen
ing/narrowing approaches to abstract interpretation, invited paper. In M.
Bruynooghe and M. Wirsing, editors, Proceedings of the International Workshop
Programming Language Implementation and Logic Programming, PLILP ’92 ,
Leuven, Belgium, 13–17 August 1992, Lecture Notes in Computer Science 631,
pages 269–295. Springer-Verlag, Berlin, Germany, 1992. 4 , 5

[43] P. Cousot and R. Cousot. Higher-order abstract interpretation (and applica
tion to comportment analysis generalizing strictness, termination, projection
and PER analysis of functional languages), invited paper. In Proceedings of the
1994 International Conference on Computer Languages, pages 95–112, Toulouse,
France, 16–19 May 1994. IEEE Computer Society Press, Los Alamitos, Califor
nia, United States. 22

[44] P. Cousot and R. Cousot. Refining model checking by abstract interpretation.
Automated Software Engineering , 6:69–95, 1999. 6 , 15

[45] P. Cousot and R. Cousot. Temporal abstract interpretation. In Conference
Record of the Twentyseventh Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 12–25, Boston, Massachusetts, Jan
uary 2000. ACM Press, New York, New York, United States. 4

[46] P. Cousot, M. Falaschi, G. Filé , and A. Rauzy, editors. Proceedings of the
Third International Workshop on Static Analysis, WSA ’93 , Padova, Italy, Lec
ture Notes in Computer Science 724. Springer-Verlag, Berlin, Germany, 22–24
september 1993. 18

http://www.dmi.ens.fr/~cousot

P. Cousot & R. Cousot 27

[47] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conference Record of the Fifth Annual ACM SIG
PLAN-SIGACT Symposium on Principles of Programming Languages, pages
84–97, Tucson, Arizona, 1978. ACM Press, New York, New York, United States.
4

[48] R. Cousot and D.A. Schmidt, editors. Proceedings of the Third International
Symposium on Static Analysis, SAS ’96 , Aachen, Germany Lecture Notes in
Computer Science 1145. Springer-Verlag, Berlin, Germany, 24–26 september
1996. 18

[49] R. Cridlig. Semantic analysis of shared-memory concurrent languages using
abstract model-checking. In Proceedings of the ACM Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, PEPM ’95 , La Jolla,
California, 21–23 June 1995. ACM Press, New York, New York, United States.
19

[50] R. Cridlig. Implementing a static analyzer of concurrent programs: Problems
and perspectives. In M. Dam, editor, Analysis and Verification of Multiple-Agent
Languages, 5th LOMAPS Workshop, Stockhlom, Sweden, 24–26 June 1996, Lec
ture Notes in Computer Science 1192, pages 244–259. Springer-Verlag, Berlin,
Germany, 1996. 19

[51] R. Cridlig. Semantic analysis of Concurrent ML by abstract model-checking. In
B. Steffen and T. Margaria, editors, Proceedings of the International Workshop
on Verification of Infinite State Systems. vol. MIP-9614, Universität Passau,
Germany, August 1996. To be published in Electronic Notes on Theoretical
Computer Science, 1997. 19

[52] R. Cridlig. Semantic analysis of Concurrent ML by abstract model-checking.
Electronic Notes in Theoretical Computer Science, 5, 1996. URL:
http://www.elsevier.nl/locate/entcs/volume5.html , nn pages. 19

[53] R. Cridlig and É. Goubault. Semantics and analysis of Linda-based languages. In
P. Cousot, M. Falaschi, G. Filé , and A. Rauzy, editors, Proceedings of the Third
International Workshop on Static Analysis, WSA ’93 , Padova, Italy, Lecture
Notes in Computer Science 724, pages 72–86. Springer-Verlag, Berlin, Germany,
22–24 september 1993. 19

[54] M. Das. Static analysis of large programs: Some experiences (invited talk). In
Proceedings of the ACM Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, PEPM ’00 , page 1, Boston, Massachusetts, United
States, 22–23 January 2000. ACM Press, New York, New York, United States.
6 , 18 , 21

[55] S.K. Debray. Formal bases for dataflow analysis of logic programs. In G. Levi,
editor, Advances in Logic Programming Theory, International Schools for Com
puter Scientists, section 3, pages 115–182. Clarendon Press, Oxford, United
Kindom, 1994. 21

[56] S. Debray, editor. Special issue on abstract interpretation. Journal of Logic
Programming , 13(2–3), 1992. 21

[57] A. Deutsch, G. Gonthier, and M. Turin. La vérification des programmes d’ariane.
Pour la Science , 243:21–22, January 1998. (in French). 21

P. Cousot & R. Cousot 28

[58] D.L. Dill, editor. Proceedings of the Sixth International Conference on Computer
Aided Verification, CAV ’94 , Stanford, California, United States, Lecture Notes
in Computer Science 818. Springer-Verlag, Berlin, Germany, 21–23 June 1994.
18 , 21

[59] D.L. Dill and H. Wong-Toi. Verification of real-time systems by successive over
and under approximation. In P. Wolper, editor, Proceedings of the Seventh Inter
national Conference on Computer Aided Verification, CAV ’95 , Liège, Belgium,
Lecture Notes in Computer Science 939, pages 409–422. Springer-Verlag, Berlin,
Germany, 3–5 July 1995. 4

[60] C. Ferdinand. Generating Program Analyzers. Verfasser – Pirrot Verlag, Saar-
brücken, Germany, 1999. 4

[61] R. Giacobazzi. “optimal” collecting semantics for analysis in a hierarchy of
logic program semantics. In C. Puech and R. Reischuk, editors, Proceedings
of the STACS ’96 , Lecture Notes in Computer Science 1046, pages 503–514.
Springer-Verlag, Berlin, Germany, 1996. 18

[62] R. Giacobazzi, C. Palamidessi, and F. Ranzato. Weak relative
pseudo-complements of closure operators. Algebra Universalis, 36(3):405–412,
1996. 17

[63] R. Giacobazzi and F. Ranzato. Completeness in abstract interpretation: A do
main perspective. In M. Johnson, editor, Proc. of the Sixth International Confer
ence on Algebraic Methodology and Software Technology (AMAST’97) , volume
1349 of Lecture Notes in Computer Science, pages 231–245. Springer-Verlag,
Berlin, Germany, 1997. 17

[64] R. Giacobazzi, F. Ranzato, and F. Scozzari. Complete abstract interpretations
made constructive. In L. Brim, J. Gruska, and J. Zlatuska, editors, Proceed
ings of the Twentythird International Symposium on Mathematical Foundations
of Computer Science, MFCS’98 , volume 1450 of Lecture Notes in Computer
Science, pages 366–377. Springer-Verlag, Berlin, Germany, 1998. 17

[65] F. Giunchiglia and A. Villafiorita. ABSFOL: A proof checker with abstraction. In
M.A. McRobbie and J.K. Slaney, editors, Proceedings of the Thirteenth Interna
tional Conference on Automated Deduction, CADE ’962 , New Brunswick, New
Jersey, United States, Lecture Notes in Computer Science 1104, pages 136–140.
Springer-Verlag, Berlin, Germany, 30 July – 3 August 1996. 6

[66] É. Goubault. Domains of higher-dimensional automata. In E. Best, editor,
CONCUR ’93, Proceedings of the Fourth International Conference on Concur
rency Theory, Hildesheim, Germany, August 1993, Lecture Notes in Computer
Science 715, pages 293–307. Springer-Verlag, Berlin, Germany, August 1993. 19

[67] É. Goubault. Geometry of Concurrency. Thèse de doctorat de l’École Polytech-
nique en informatique, École polytechnique, Palaiseau, France, 13 November
1995. 19

[68] É. Goubault. Schedulers as abstract interpretations of higher-dimensional au
tomata. In Proceedings of the ACM Symposium on Partial Evaluation and Se
mantics-Based Program Manipulation, PEPM ’95 , La Jolla, California, pages
134–145. ACM Press, New York, New York, United States, 21–23 June 1995.
19

P. Cousot & R. Cousot 29

[69] É. Goubault. Duration for truly-concurrent transitions. In H. Riis Nielson, edi
tor, Proceedings of the Sixth European Symposium on Programming, ESOP ’96 ,
Lecture Notes in Computer Science 105, pages 173–187, Linköping, Sweden,
22–26 April 1996. Springer-Verlag, Berlin, Germany. 19

[70] É. Goubault. Optimal implementation of wait-free binary relations. In Proceed
ings of the Twentysecond on Trees in Algebra and Programming, CAAP , Lecture
Notes in Computer Science. Springer-Verlag, Berlin, Germany, 1997. 19

[71] É. Goubault. A semantic view on distributed computability and complexity. In
Proceedings of the Third Theory and Formal Methods Section Workshop. Impe
rial College Press, London, United Kindom, 1997. 19

[72] É. Goubault and T.P. Jensen. Homology of higher dimensional automata. In
W.R. Cleaveland, editor, CONCUR ’92, Proceedings of the Third International
Conference on Concurrency Theory , Stony Brook, , New York, August 1992,
Lecture Notes in Computer Science 630, pages 254–268. Springer-Verlag, Berlin,
Germany, August 1992. 19

[73] S. Graf and C. Loiseaux. A tool for symbolic program verification and abstrac
tion. In C. Courcoubetis, editor, Proceedings of the Fifth International Confer
ence on Computer Aided Verification, CAV ’93 , Elounda, Greece, Lecture Notes
in Computer Science 697, pages 71–84. SPRINGER, 28 June –1 July 1993. 4 ,
6

[74] S. Graf and H. Saï di. Construction of abstract state graphs with PVS. In O.
Grumberg, editor, Proceedings of the Ninth International Conference on Com
puter Aided Verification, CAV ’97 , Haifa, Israel,Lecture Notes in Computer Sci
ence 1254, pages 72–83. Springer-Verlag, Berlin, Germany, 22–25 July 1997. 6

[75] E.P. Gribomont and D. Rossetto. CAVEAT: Technique and tool for com
puter aided verification and transformation. In P. Wolper, editor, Proceed
ings of the Seventh International Conference on Computer Aided Verification,
CAV ’95 , Liège, Belgium, Lecture Notes in Computer Science 939, pages 70–83.
Springer-Verlag, Berlin, Germany, 3–5 July 1995. 1

[76] O. Grumberg, editor. Proceedings of the Ninth International Conference on
Computer Aided Verification, CAV ’97 , Haifa, Israel,Lecture Notes in Computer
Science 1254. Springer-Verlag, Berlin, Germany, 22–25 July 1997. 18 , 21

[77] R. Gupta. A fresh look at optimizing array bound checking. In ACM-SIGPLAN
Conference on Programming Language Design and Implementation ’90 , pages
272–282, June 1990. 5

[78] N. Halbwachs. Delays analysis in synchronous programs. In C. Courcoubatis,
editor, Proceedings of the Fifth International Conference on Computer Aided
Verification, CAV ’93 , Elounda, Greece, Lecture Notes in Computer Science
697, pages 333–346. Springer-Verlag, Berlin, Germany, 28 June –1 July 1993. 4

[79] N. Halbwachs. About synchronous programming and abstract interpretation.
In B. Le Charlier, editor, Proceedings of the First International Symposium
on Static Analysis, SAS ’94 , Namur, Belgium, 20–22 september 1994, Lecture
Notes in Computer Science 864, pages 179–192. Springer-Verlag, Berlin, Ger
many, 1994. 4

[80] N. Halbwachs. About synchronous programming and abstract interpretation.
Science of Computer Programming , 31(1):75–89, May 1998. 4

P. Cousot & R. Cousot 30

[81] N. Halbwachs and D. Peled, editors. Proceedings of the Eleventh International
Conference on Computer Aided Verification, CAV ’99 , Trento, Italy, Lecture
Notes in Computer Science 1633. Springer-Verlag, Berlin, Germany, 6–10 July
1999. 18, 21

[82] N. Halbwachs, J.-É. Proy, and P. Raymond. Verification of linear hybrid systems
by means of convex approximations. In B. Le Charlier, editor, Proceedings of the
First International Symposium on Static Analysis, SAS ’94 , Namur, Belgium,
20–22 september 1994, Lecture Notes in Computer Science 864, pages 223–237.
Springer-Verlag, Berlin, Germany, 1994. 4

[83] N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design , 11(2):157–185,
August 1997. 4

[84] K. Havelund, K.G. Larsen, and A. Skou. Formal verification of an audio/video
power controller using the real-time model checker UPPAAL. In ARTS’99 , 1999.
4

[85] K. Havelund, M. Lowry, and J. Penix. Formal analysis of a space craft controller
using SPIN. In SPIN’98 , 1998. 4

[86] K. Havelund and T. Pressburger. Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer
(STTT) , 2000. toappear. 4

[87] K. Havelund and N. Shankar. Experiments in theorem proving and model check
ing for protocol verification. In M.C. Gaudel and J. Woodcock, editors, Indus
trial Benefit and Advances in Formal Methods, Third International Symposium
of Formal Methods Europe, FME ’96: Industrial Benefit of Formal Methods, Ox
ford, United Kindom, Lecture Notes in Computer Science 1051, pages 662–681.
SPRINGER, 18–22 March 1996. 1 , 6

[88] K. Havelund and J. Skakkebaek. Practical application of model checking in
software verification – a case study using Java PathFinder. In FM’99 , 1999. 4

[89] K. Havelund, A. Skou, K.G. Larsen, and K. Lund. Formal modeling and anal
ysis of an audio/video protocol: An industrial case study using UPPAAL. In
RTSS’97 , 1997. 4

[90] P.-H. Ho and H. Wong-Toi. Automated analysis of an audio control protocol. In
P. Wolper, editor, Proceedings of the Seventh International Conference on Com
puter Aided Verification, CAV ’95 , Liège, Belgium,Lecture Notes in Computer
Science 939, pages 381–394. Springer-Verlag, Berlin, Germany, 3–5 July 1995. 4

[91] A.J. Hu and M.Y. Vardi, editors. Proceedings of the Tenth International Confer
ence on Computer Aided Verification, CAV ’98 , Vancouver, British Columbia,
Canada,Lecture Notes in Computer Science 1427. Springer-Verlag, Berlin, Ger
many, 28 June – 2 July 1998. 18 , 21

[92] F. Huch. Verification of Erlang programs using abstract interpretation and model
checking. In Proceedings of the 1999 ACM SIGPLANInternational Conference
on Logic Programming, ICFP ’99 , pages 261–272, Paris, France, 27–29 septem
ber 1999. ACM Press, New York, New York, United States. 4

[93] H. Hungar. Combining model checking and theorem proving to verify parallel
processes. In C. Courcoubetis, editor, Proceedings of the Fifth International
Conference on Computer Aided Verification, CAV ’93 , Elounda, Greece, Lecture

P. Cousot & R. Cousot 31

Notes in Computer Science 697, pages 154–165. SPRINGER, 28 June –1 July
1993. 1 , 6

[94] P. Jouvelot. Semantic parallelization: a practical exercise in abstract interpreta
tion. In Conference Record of the Fourteenth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 39–48, Munich, Ger
many, 21–23 January 1987. ACM Press, New York, New York, United States.
19

[95] M. Kaplan and J.D. Ullman. A general scheme for the automatic inference of vari
able types. Journal of the Association for Computing Machinary, 27(1):128–145,
1980. 11

[96] P. Kelb. Model checking and abstraction: A framework approximating both
truth and failure information. Technical report, University of Oldenburg, 1994.
3

[97] R.M. Keller. Formal verification of parallel programs. Communications of the
Association for Computing Machinary , 19(7):371–384, July 1976. 2 , 21

[98] P. Lacan, J.N. Monfort, Le Vinh Quy Ribal, A. Deutsch, and G. Gonthier. The
software reliability verification process: The Ariane 5 example. In Proceedings
DASIA 98 – DAta Systems IN Aerospace , Athens, Greece. ESA Publications,
SP-422, 25–28 May 1998. 18, 21

[99] K.G. Larsen and A. Skou, editors. Proceedings of the Third International Work
shop on Computer Aided Verification, CAV ’91 , Aalborg, Denmark, Lecture
Notes in Computer Science 575. Springer-Verlag, Berlin, Germany, 1–4 July
1991, 1992. 18 , 21

[100] B. Le Charlier, editor. Proceedings of the First International Symposium on
Static Analysis, SAS ’94 , Namur, Belgium, Lecture Notes in Computer Science
864. Springer-Verlag, Berlin, Germany, 28–30 september 1994. 18

[101] B. Le Charlier, K. Musumbu, and P. Van Hentenryck. A generic abstract inter
pretation algorithm and its complexity analysis. In K. Furukawa, editor, Pro
ceedings of the International Conference on Logic Programming, Paris, France,
pages 64–78. MIT Press, Cambridge, Massachusetts, United States, 24–28 June
1991. 4

[102] B. Le Charlier and P. Van Hentenryck. Experimental evaluation of a generic
abstract interpretation algorithm for Prolog. In Proceedings of the 1992 Interna
tional Conference on Computer Languages, Oakland, California, pages 137–146.
IEEE Computer Society Press, Los Alamitos, California, United States, 20–23
April 1992. 4

[103] G. Levi, editor. Proceedings of the Fifth International Symposium on Static
Analysis, SAS ’98 , Pisa, Italy, Lecture Notes in Computer Science 1503.
Springer-Verlag, Berlin, Germany, 14–16 september 1998. 18

[104] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property pre
serving abstractions for the verification of concurrent systems. Formal Methods
in System Design, 6(1), 1995. 4 , 6

[105] T. Margaria and B. Steffen, editors. Proceedings of the Second International
Workshop on Tools and Algorithms for the Construction and Analysis of Sys
tems, TACAS ’96 , Passau, Germany, Lecture Notes in Computer Science 1055.
Springer-Verlag, Berlin, Germany, 27–29 March 1996. 18, 21

P. Cousot & R. Cousot 32

[106] L. Mauborgne. Abstract interpretation using TDGs. In B. Le Charlier, editor,
Proceedings of the First International Symposium on Static Analysis, SAS ’94 ,
Namur, Belgium, 20–22 september 1994, Lecture Notes in Computer Science
864, pages 363–379. Springer-Verlag, Berlin, Germany, 1994. 22

[107] L. Mauborgne. Abstract interpretation using typed decision graphs. Science of
Computer Programming , 31(1):91–112, May 1998. 22

[108] L. Mauborgne. Binary decision graphs. In A. Cortesi and G. Filé, editors,
Proceedings of the Sixth International Symposium on Static Analysis, SAS ’99 ,
Venice, Italy, 22–24 september 1999, Lecture Notes in Computer Science 1694,
pages 101–116. Springer-Verlag, Berlin, Germany, 1999. 22

[109] L. Mauborgne. Représentation d’ensembles d’arbres pour l’interprétation abs-
traite. Thèse de l’école polytechnique en informatique, École polytechnique,
Palaiseau, France, 25 November 1999. 22

[110] M. Müller-Olm, D.A. Schmidt, and B. Steffen. Model checking: a tutorial intro
duction. In A. Cortesi and G. Filé, editors, Proceedings of the Sixth International
Symposium on Static Analysis, SAS ’99 , Venice, Italy, 22–24 september 1999,
Lecture Notes in Computer Science 1694, pages 330–354. Springer-Verlag, Berlin,
Germany, 1999. 4

[111] A. Mycroft, editor. Proceedings of the Second International Symposium on Static
Analysis, SAS ’95 , Glasgow, United Kindom, Lecture Notes in Computer Sci
ence 983. Springer-Verlag, Berlin, Germany, 25–27 september 1995. 18

[112] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining
specification, proof checking, and model checking. In R. Alur and T.A. Hen
zinger, editors, Proceedings of the Eight International Conference on Computer
Aided Verification, CAV ’96 , New Brunswick, New Jersey, United States, Lec
ture Notes in Computer Science 1102, pages 411–414. Springer-Verlag, Berlin,
Germany, 31 July –3 August 1996. 1 , 6

[113] S. Owre, J. Rushby, and N. Shankar. Integration in PVS: Tables, types, and
model checking. In Ed Brinksma, editor, Tools and Algorithms for the Con
struction and Analysis of Systems, Third International Workshop , TACAS ’97 ,
number 1217 in Lecture Notes in Computer Science, pages 366–383, Enschede,
Netherlands, 2–4 April 1997. Springer-Verlag, Berlin, Germany. 1 , 6

[114] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification for
fault-tolerant architectures: Prolegomena to the design of PVS. IEEE Transac
tions on Software Engineering, 21(2):107–125, February 1995. 1

[115] S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype verification system.
In D. Kapur, editor, Proceedings of the Eleventh International Conference on
Automated Deduction, CADE ’92 , Saratoga Springs, New York, United States,
Lecture Notes in Computer Science 607, pages 748–752. Springer-Verlag, Berlin,
Germany, 15–18 June 1992. 1

[116] S. Owre, N. Shankar, and D.W.J. Stringer-Calvert. PVS: An experience report.
In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, editors, PROC Applied
Formal Methods - FM-Trends’98, International Workshop on Current Trends in
Applied Formal Method , Boppard, Germany, Lecture Notes in Computer Science
1641, pages 338–345. Springer-Verlag, Berlin, Germany, 7–9 October 1999. 1

[117] G.D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, Denmark, september 1981. 2

P. Cousot & R. Cousot 33

[118] A. Pnueli and E. Shahar. A platform for combining deductive with algorith
mic verification. In R. Alur and T.A. Henzinger, editors, Proceedings of the
Eight International Conference on Computer Aided Verification, CAV ’96 , New
Brunswick, New Jersey, United States, Lecture Notes in Computer Science 1102,
pages 184–195. Springer-Verlag, Berlin, Germany, 31 July –3 August 1996. 6

[119] D.K. Probst and G.V. Bochmann, editors. Proceedings of the Fourth Interna
tional Workshop on Computer Aided Verification, CAV ’92 , Montreal, Canada,
Lecture Notes in Computer Science 663. Springer-Verlag, Berlin, Germany, 29
June – 1 July 1992. 18 , 21

[120] G. Puebla, M. Hermenegildo, and J. P. Gallagher. An integration of partial
evaluation in a generic abstract interpretation framework. In Proceedings of
PEPM’99, The ACM SIGPLAN Workshop on Partial Evaluation and Seman
tics-Based Program Manipulation, ed. O. Danvy, San Antonio, January 1999. ,
pages 75–84. University of Aarhus, Dept. of Computer Science, January 1999.
4

[121] J.-P. Queille and J. Sifakis. Verification of concurrent systems in Cesar. In
Proceedings of the International Symposium on Programming , Lecture Notes in
Computer Science 137, pages 337–351. Springer-Verlag, Berlin, Germany, 1982.
3 , 15 , 21

[122] S. Rajan, N. Shankar, and M.K. Srivas. An integration of model checking and
automated proof checking. In P. Wolper, editor, Proceedings of the Seventh
International Conference on Computer Aided Verification, CAV ’95 , Liège, Bel
gium, Lecture Notes in Computer Science 939, pages 84–97. SPRINGER, 3–5
July 1995. 1 , 6

[123] J.M. Rushby. Automated deduction and formal methods. In R. Alur and T.A.
Henzinger, editors, Proceedings of the Eight International Conference on Com
puter Aided Verification, CAV ’96 , New Brunswick, New Jersey, United States,
Lecture Notes in Computer Science 1102, pages 169–183. Springer-Verlag, Berlin,
Germany, 31 July –3 August 1996. 6

[124] M. Sagiv, T. Reps, and R. Wilhelm. Shape analysis. In Proceedings of the
International Conference on Compiler Construction, CC ’00 , 2000. To appear.
22

[125] H. Saï di and N. Shankar. Abstract and model check while you prove. In N.
Halbwachs and D. Peled, editors, Proceedings of the Eleventh International Con
ference on Computer Aided Verification, CAV ’99 , Trento, Italy, Lecture Notes
in Computer Science 1633, pages 443–454. Springer-Verlag, Berlin, Germany,
6–10 July 1999. 1 , 6

[126] D.A. Schmidt and B. Steffen. Program analysis as model checking of abstract
interpretations. In G. Levi, editor, Proceedings of the Fifth International Sympo
sium on Static Analysis, SAS ’98 , Pisa, Italy, 14–16 september 1998, Lecture
Notes in Computer Science 1503, pages 351–380. Springer-Verlag, Berlin, Ger
many, 1998. 4

[127] N. Shankar. Mechanical verification of real-time systems using PVS. In C. Cour
coubetis, editor, Proceedings of the Fifth International Conference on Computer
Aided Verification, CAV ’93 , Elounda, Greece, Lecture Notes in Computer Sci
ence 697, pages 280–291. Springer-Verlag, Berlin, Germany, 28 June –1 July
1993. 1

P. Cousot & R. Cousot 34

[128] N. Shankar. PVS: Combining specification, proof checking, and model checking.
In M.S. Srivas and A.J. Camilleri, editors, Proceedings of the First International
Conference on Formal Methods in Computer-Aided Design, FMCAD ’96 , num
ber 1166 in LNCS, pages 257–264, Palo Alto, California, United States, 6–8
November 1996. Springer-Verlag, Berlin, Germany. 1 , 6

[129] B. Steffen, editor. Proceedings of the Fourth International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, TACAS ’98 , Lis
bon, Portugal, Lecture Notes in Computer Science 1384. Springer-Verlag, Berlin,
Germany, 28 March – 4 April 1998. 18 , 21

[130] B. Steffen, editor. Ten Years of Partial Order Reduction , Lisbon, Portugal,
Lecture Notes in Computer Science 1384. Springer-Verlag, Berlin, Germany, 28
March – 4 April 1998. 19

[131] A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics , 5:285–310, 1955. 7 , 11

[132] R. Vallée-Rai, H. Hendren, P. Lam, É Gagnon, and P. Co. Soot - a Javatm

optimization framework. In CASCON ’99 , september 1999. 18

[133] P. van Hentenryck, editor. Proceedings of the Fourth International Symposium
on Static Analysis, SAS ’97 , Paris, France, Lecture Notes in Computer Science
1302. Springer-Verlag, Berlin, Germany, 8–10 september 1998. 18

[134] A. Venet. Abstract interpretation of the π-calculus. In M. Dam, editor, Analysis
and Verification of Multiple-Agent Languages, LOMAPS Workshop , Stockhlom,
Sweden, 24–26 June 1996, Lecture Notes in Computer Science 1192, pages 51–75.
Springer-Verlag, Berlin, Germany, 1996. 19

[135] A. Venet. Automatic determination of communication topologies in mobile sys
tems. In G. Levi, editor, Proceedings of the Fifth International Symposium on
Static Analysis, SAS ’98 , Pisa, Italy, 14–16 september 1998, Lecture Notes in
Computer Science 1503, pages 152–167. Springer-Verlag, Berlin, Germany, 1998.
19

[136] P. Wolper, editor. Proceedings of the Seventh International Conference on Com
puter Aided Verification, CAV ’95 , Liège, Belgium, Lecture Notes in Computer
Science 939. Springer-Verlag, Berlin, Germany, 3–5 July 1995. 18 , 21

	1 Introduction
	2 Abstract testing
	3 Differences between abstract model-checking and abstract testing
	3.1 Scope of application
	3.1.1 Scope of abstract testing
	3.1.2 Scope of (abstract) model checking

	3.2 Abstract semantics
	3.3 The need for infinite abstract domains
	3.4 Precise checking in the presence of approximations
	3.4.1 Fixpoint approximation check
	3.4.2 Fixpoint meet approximation
	3.4.3 Fixpoint meet approximation
	3.4.4 Fixpoint meet approximation check

	3.5 Counter-examples to erroneous designs
	3.6 Contrapositive reasoning

	4 Tentative and controversial answers to the questions to the panelists

