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Abstract

Earley’s parsing algorithm is shown to be an abstract interpretation
of a refinement of the derivation semantics of context-free grammars.

1 Introduction

Abstract interpretation is a theory of the approximation of the mathematical
structures involved in the formalization of the semantics of computer systems
[6]. It offers a unifying point of view on static program analysis [4] (including
data flow analysis [6, 8] and typing [2]) of specification and programming lan-
guages, model-checking [8], etc. Following this synthetic point of view, we show
that Earley’s parsing algorithm [9] can be formally designed by abstract inter-
pretation of a refinement of the derivation semantics of context-free grammars.

2 Context-free Grammars, Derivations, Gener-
ated Language and Parsing

The set of finite words on an alphabet A is denoted A�. This includes the
empty word ε. A language on the alphabet A is a subset of A�. A context-free
grammar G is a quadruple 〈N , T , P , A〉, where:

• X, Y, . . . ∈ N is the finite set of nonterminals ;

• the distinguished nonterminal A ∈ N is the axiom;

• a, b, . . . ∈ T , such that T ∩ N = ∅, is the finite set of terminals ;

• V ∆= (N ∪ T ) \ {A} is the vocabulary;

• α, β, . . . ∈ V� is the set of finite words on the vocabulary V ;
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• P ⊆ N × V� is the finite set of productions, 〈X, α〉 ∈ P being written
X

G−→ α.

Observe that the axiom A cannot appear on the righthand side α of productions
〈X, α〉. This restriction can be easily bypassed by introducing a new axiom A′

such that A′ G−→ A.
The semantics of a grammar G can be defined as the derivation relation G=⇒

which is the least relation such that a nonterminal derives to the righthand side
of any of its productions, as specified by the following axiom schema (X ∈ N ,
α ∈ V�):

X
G=⇒ α, whenever X

G−→ α (1)

and a word derives to another word by replacement of a nonterminal by any one
of its derivations, as specified by the following inference rule schema:

X
G=⇒ αY γ, Y

G=⇒ β

X
G=⇒ αβγ

, X, Y ∈ N , α, β, γ ∈ V� . (2)

The leftmost derivation G=⇒� is defined in the same way but for the nonter-
minal replacement which is restricted to the leftmost nonterminal:

X
G=⇒� α, whenever X

G−→ α (3)

X
G=⇒� αY γ, Y

G=⇒� β

X
G=⇒� αβγ

, X, Y ∈ N , α ∈ T �, β, γ ∈ V� (4)

Similarly, the leftmost derivation from the axiom G=⇒A,� is the restriction
of the leftmost derivation G=⇒� to nonterminals deriving from the grammar ax-
iom:

A
G=⇒A,� α, whenever A

G−→ α (5)

X
G=⇒A,� αY γ

Y
G=⇒A,� β

, X, Y ∈ N , α ∈ T �, γ ∈ V�, Y
G−→ β (6)

X
G=⇒A,� αY γ, Y

G=⇒A,� β

X
G=⇒A,� αβγ

, X, Y ∈ N , α ∈ T �, β, γ ∈ V� (7)

The language LG generated by a grammar G is the set of terminal words
deriving from the axiom A:

LG
∆= {α ∈ T � | A

G=⇒ α} . (8)

Equivalently, the language generated by a grammar can be defined using the
leftmost derivation [12, Theorem 4.1.1]:

LG = {α ∈ T � | A
G=⇒� α} . (9)

Equivalently, we can also use the leftmost derivation from the axiom:
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Lemma 1

LG = {α ∈ T � | A
G=⇒A,� α} . (10)

Proof Obviously if we have proved X
G=⇒A,� α we can prove X

G=⇒� α using
(3) for either (5) or (6) and (4) for (7).

Reciprocally, we prove that if X = A or ∃η ∈ T �, ξ ∈ V� : A
G=⇒� ηXξ and

X
G=⇒� δ then X

G=⇒A,� δ.
The proof is on the length of the proof of X

G=⇒� δ by the formal system (3)
– (4).

• If we have proved X
G=⇒� δ by (5) then X

G−→ δ and there are two
subcases:

– If X = A then X
G=⇒A,� δ follows from (5);

– Otherwise, there exist η ∈ T � and ξ ∈ V� such that A
G=⇒� ηXξ. So,

by induction, we can prove that A
G=⇒A,� ηXξ whence X

G=⇒A,� δ by
(6).

• Otherwise, we have proved X
G=⇒� δ by (4) so we have δ = αβγ, α ∈ T �

and we made subproofs for X
G=⇒� αY γ and Y

G=⇒� β. There are now
two subcases:

– If X = A then by induction X
G=⇒A,� αY γ that is A

G=⇒A,� αY γ with
α ∈ T � so that again by induction Y

G=⇒A,� β. By (7), we conclude
that X

G=⇒A,� αβγ that is X
G=⇒A,� δ;

– Otherwise, there exist η ∈ T � and ξ ∈ V� such that A
G=⇒� ηXξ. By

X
G=⇒� αY γ and (4), it follows that A

G=⇒� ηαY γξ with ηα ∈ T �.
Hence we can apply the induction hypothesis and therefore prove
that Y

G=⇒A,� β. By (7), we conclude that X
G=⇒A,� αβγ, whence

X
G=⇒A,� δ.

We conclude that A
G=⇒� α if and only if A

G=⇒A,� α so that (9) implies (10). �

Parsing of a given terminal word ω ∈ T � for a given grammar G consists in
deciding whether this word ω belongs to the language generated by the grammar
G: ω ∈ LG .

3 Fixpoint Semantics of Formal Systems

It is well-known that formal systems specify a least fixpoint [1, 7]. The axioms
and rule schemata of a formal system are interpreted as rule instances Φ ∆={ Pi

ci

∣∣∣ i ∈ ∆
}

on a given universe U where for all i ∈ ∆, P ⊆ U is the premise

(which is the empty set ∅ for axiom instances) and ci ∈ U is the conclusion of the
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rule instance
Pi

ci
. The subset of the universe U specified by the formal system

Φ is defined as its semantics �Φ�
∆= lfp

⊆
FΦ where the consequence operator :

FΦ(X) ∆= {ci | i ∈ ∆ ∧ Pi ⊆ X} (11)

is the set of valid consequences of the hypothesis X . The consequence operator
FΦ on ℘(U) is ⊆-monotonic so that the least fixpoint lfp

⊆
FΦ does exist [13].

The fixpoint semantics is equivalent to the more traditional one based on formal
proofs [1].

For example the formal system (5) – (7) defines the leftmost derivation from
the grammar axiom as:

G=⇒A,� = lfp
⊆
DG

A,� , (12)

DG
A,�(R) ∆= {〈A, α〉 | A

G−→ α}
∪ {〈Y , β〉 | 〈X, αY γ〉 ∈ R ∧ α ∈ T � ∧ Y

G−→ β}
∪ {〈X, αβγ〉 | 〈X, αY γ〉 ∈ R ∧ α ∈ T � ∧ 〈Y , β〉 ∈ R} .

4 Earley’s Parsing Algorithm

4.1 Earley’s Items

Given a terminal word ω ∈ T �, ω = ω1 . . . ωn, n ≥ 0 (which is ε when n = 0),
Earley’s parsing algorithm [9, 11] involves Earley’s items which are quintuples
written:

〈X → α·β, i, j〉

where X
G−→ αβ is a production of the given grammar G and 0 ≤ i ≤ j ≤ n. A

valid Earley’s item is an assertion or judgement stating that α
G=⇒ ωi+1 . . . ωj

(that is α
G=⇒ ε when i = j). Valid Earley’s items are derived left to right

and top-down starting from the grammar axiom. The set IE

G,ω of valid Earley’s
items for the gammar G and input word ω is specified by the formal system (13)
– (16) below.

4.2 Rule-Based Specification of Earley’s Parsing Algorithm

The initialization axioms are instances of the following schema (for all produc-
tions A

G−→ γ of the grammar axiom A):

〈A → ·γ, 0, 0〉 . (13)

The derivation rules are instances of the following schema (for all productions
X

G−→ αY β and Y
G−→ γ of the grammar G and 0 ≤ i ≤ j ≤ n):

〈X → α·Y β, i, j〉
〈Y → ·γ, j, j〉

. (14)

The reduction rule schema is (for all productions X
G−→ αY β and Y

G−→ γ of
the grammar G and 0 ≤ k ≤ i ≤ j ≤ n):

〈X → α·Y β, k, i〉, 〈Y → γ·, i, j〉
〈X → αY ·β, k, j〉

. (15)
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The advance rule schema is (for all productions X
G−→ αaβ of the grammar G

and 0 ≤ i < j ≤ n such that a = ωj):

〈X → α·ωjβ, i, j − 1〉
〈X → αωj·β, i, j〉

. (16)

The parsing succeeds, that is ω ∈ LG , if and only if one can derive a final
Earley’s item of the form 〈A → γ·, 0, n〉 where A is the grammar axiom.

4.3 Fixpoint Specification of Earley’s Parsing Algorithm

The derivation of the set IE

G,ω of valid Earley’s items by the formal system (13)
– (16) consists in computing the least fixpoint:

IE

G,ω
∆= lfp

⊆
FE

G,ω , (17)

F
E

G,ω(I) ∆= {〈A → ·γ, 0, 0〉 | A
G−→ γ}

∪ {〈Y → ·γ, j, j〉 | 〈X → α·Y β, i, j〉 ∈ I}
∪ {〈X → αY ·β, k, j〉 | 〈X → α·Y β, k, i〉 ∈ I ∧ 〈Y → γ·, i, j〉 ∈ I}
∪ {〈X → αωj·β, i, j〉 | 〈X → α·ωjβ, i, j − 1〉 ∈ I} .

The Earley’s parsing algorithm [9] terminates by checking that a final item is
valid, so that the correctness of the original algorithm and its variants can be
specified as:

ω ∈ LG ⇐⇒ 〈A → γ·, 0, n〉 ∈ I
E

G,ω . (18)

5 Elements of Abstract Interpretation

5.1 The Abstraction

The approximation or abstraction of a semantics is specified by a Galois con-
nection [6] that is a pair of maps α ∈ L �→ M and γ ∈ M �→ L between posets
〈L, ≤〉 and 〈M, �〉 satisfying ∀x ∈ L : ∀y ∈ M : α(x) � y ⇐⇒ x ≤ γ(y) which
is written 〈L, ≤〉 −−−→←−−−

¸

‚
〈M, �〉.

An equivalent definition is α ∈ L �→ M and γ ∈ M �→ L are monotonic,
α ◦ γ �̇ 1M and 1L ≤̇ γ ◦ α where f �̇ g is the pointwise extension of � that
is ∀x ∈ L : f(x) � g(x) and 1S is the identity map ∀x ∈ S : 1S(x) = x on the
set S.

We will use the fact that if 〈L, ≤〉 is a complete lattice and α preserves least
upper bounds then it has a unique adjoint γ such that 〈L, ≤〉 −−−→←−−−

¸

‚
〈M, �〉,

which is γ(y) =
∨
{x | α(x) � y}.

5.2 The Abstract Interpretation of the Semantics

If 〈L, ≤〉 is a complete lattice and f ∈ L �→ L is a monotone map on L, then it
has a least fixpoint lfp

≤
f [13] which is interpreted as a concrete semantics. The

monotone map g ∈ M �→ M on M is a said to be a locally complete abstraction
of f if and only if α ◦ f = g ◦ α (see [6, 7.1.0.4 (3)]). This implies fixpoint
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completeness in that the abstract semantics lfp
≤
g = α(lfp

≤
f) is the precise or

exact abstraction of the concrete semantics lfp
≤
f by the abstraction function

α:

Lemma 2 If 〈L, ≤〉 is a complete lattice, 〈L, ≤〉 −−−→←−−−
¸

‚
〈M, �〉, f ∈ L �→ L and

g ∈ M �→ M are monotone maps and α ◦ f = g ◦ α then α(lfp
≤
f) = lfp

�
g.

Proof α ◦ f ◦ γ = g ◦ α ◦ γ �̇ g by monotony and α(lfp
≤
f) = lfp

�
g by [6,

7.1.0.4 (3)]. �

Numerous examples of locally complete abstractions of the derivation semantics
of context-free grammars are given in [3]. In this paper, we show that parsing
is another one.

6 Concrete Grammar Item Semantics

Our task is now to show that Earley’s parsing algorithm (17) is an abstract
interpretation of the grammar semantics. We consider a refinement of the left-
most derivation from the axiom semantics (12) in order to take into account the
possible contexts of derivations.

6.1 Grammar Items

The grammar semantics defines grammar items which are quintuples written:

[λ, X → α·β, γ] ,

where λ, γ ∈ T � and X
G−→ αβ. The interpretation of a valid grammar item is

that there exists η ∈ V� such that A
G=⇒ λXη, X

G−→ αβ and α
G=⇒ γ.

The set IG of valid grammar items is defined by the formal system (19) –
(22) below.

6.2 Rule-Based Specification of the Grammar Item Se-
mantics

The initialization axiom schema is (for all productions A
G−→ β of the grammar

axiom A):
[ε, A → ·β, ε] . (19)

The derivation rule schema is (for all productions X
G−→ αY β and Y

G−→ δ of
the grammar G):

[λ, X → α·Y β, γ]
[λγ, Y → ·δ, ε]

. (20)

The reduction rule schema is (for all productions X
G−→ αY β and Y

G−→ γ of
the grammar G):

[λ, X → α·Y β, γ], [λγ, Y → δ·, ξ]
[λ, X → αY ·β, γξ]

. (21)
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The advance rule schema is (for all productions X
G−→ αaβ of the grammar G):

[λ, X → α·aβ, γ]
[λ, X → αa·β, γa]

. (22)

The derivation context from the axiom is always empty since the axiom never
appears in the righthand side of production:

Lemma 3 If [λ, A → α·β, γ] ∈ IG then λ = ε.

Proof We proceed by induction on the length of the proof that [λ, A → α·β,
γ] ∈ IG using (19) – (22).

This is obvious for the basis by (19). For the induction step, we cannot
conclude the proof with (20) because there would be a grammar production of
the form 〈X, αAα〉. So the proof ends with the use of either (21) or (22) and
in both cases λ = ε follows by induction. �

6.3 Fixpoint Specification of the Grammar Item Seman-
tics

In fixpoint form, the grammar item semantics is:

IG = lfp
⊆
FG , (23)

FG(I) ∆= {[ε, A → ·β, ε] | A
G−→ β}

∪ {[λγ, Y → ·δ, ε] | [λ, X → α·Y β, γ] ∈ I ∧ Y
G−→ δ}

∪ {[λ, X → αY ·β, γξ] | [λ, X → α·Y β, γ] ∈ I ∧ [λγ, Y → δ·, ξ] ∈ I}
∪ {[λ, X → αa·β, γa] | [λ, X → α·aβ, γ] ∈ I} .

7 The Leftmost Derivation from the Axiom is a

Complete Abstraction of the Grammar Item
Semantics

7.1 The Abstraction

We consider the elementwise abstraction:

α�(I) ∆= {〈X, γβ〉 | ∃λ ∈ T � : [λ, X → α·β, γ] ∈ I} . (24)

α� is a complete ∪-morphism so it is the lower adjoint of a Galois connection:

〈℘(T � ×N × V� × V� × T �), ⊆〉 −−−→←−−−
¸�

‚�

〈℘(N × V�), ⊆〉 . (25)

7.2 The Abstract Interpretation of the Semantics

The leftmost derivation from the axiom semantics is a complete abstract inter-
pretation of the grammar item semantics:

Lemma 4

G=⇒A,� = α�(IG) . (26)
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Proof

α� ◦ FG(I)

= �by definition (24) of α� and (23) of FG�

{〈A, β〉 | A
G−→ β}

∪ {〈Y , δ〉 | ∃λ ∈ T �, α, β ∈ V� : [λ, X → α·Y β, γ] ∈ I ∧ Y
G−→ δ}

∪ {〈X, γξβ〉 | ∃λ ∈ T � : [λ, X → α·Y β, γ] ∈ I ∧ [λγ, Y → δ·, ξ] ∈ I}
∪ {〈X, γaβ〉 | ∃λ ∈ T � : [λ, X → α·aβ, γ] ∈ I} .

= �by definition (24) of α� so that ∃λ ∈ T � : [λ, X → α·β, γ] ∈ I if and
only if 〈X, γβ〉 ∈ α�(I) and γ ∈ T ��

{〈A, β〉 | A
G−→ β}

∪ {〈Y , δ〉 | 〈X, γY β〉 ∈ α�(I) ∧ γ ∈ T � ∧ Y
G−→ δ}

∪ {〈X, γξβ〉 | 〈X, γY β〉 ∈ α�(I) ∧ γ ∈ T � ∧ 〈Y , ξ〉 ∈ α�(I)}
∪ {〈X, γaβ〉 | 〈X, γaβ〉 ∈ α�(I) ∧ γ ∈ T �} .

= F �

G ◦ α�(I),

by defining:

F �

G(R) ∆= {〈A, α〉 | A
G−→ α}

∪ {〈Y , β〉 | 〈X, αY γ〉 ∈ R ∧ α ∈ T � ∧ Y
G−→ β}

∪ {〈X, αβγ〉 | 〈X, αY γ〉 ∈ R ∧ α ∈ T � ∧ 〈Y , β〉 ∈ R}
∪ {〈X, αaβ〉 | 〈X, αaβ〉 ∈ R ∧ α ∈ T �} .

(27)

By lemma 2, we conclude that α�(lfp
⊆
FG) = lfp

⊆
F �

G . Since F �

G(R) = DG
A,�(R)∪

{〈X, αaβ〉 | 〈X, αaβ〉 ∈ R ∧ α ∈ T �} and the last term {〈X, αaβ〉 | 〈X, αaβ〉 ∈
R∧α ∈ T �} of F �

G(R) in (27) adds no new element to the transfinite iterates [5]

of lfp
⊆
F �

G(R), we have lfp
⊆
F �

G(R) = lfp
⊆
DG

A,�
proving α�(lfp

⊆
FG) = lfp

⊆
DG

A,�

whence (26) by (12) and (23). �

8 Item Semantics Based Specification of the Lan-

guage Generated by a Grammar

It directly follows from (26) that the language LG generated by a grammar G
traditionally defined by (8) can be equivalently defined using the grammar item
semantics IG :

Corollary 5

LG = {γ ∈ T � | ∃λ ∈ T � : [λ, A → α·, γ] ∈ IG} . (28)

Proof We have:

〈X, δ〉 ∈ α�(IG) ∧ δ ∈ T �

⇐⇒ �by definition (24) of α��
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∃λ, β, γ ∈ T � : δ = γβ ∧ [λ, X → α·β, γ] ∈ IG
=⇒ �since [λ, X → α·β, γ] ∈ IG ∧ β ∈ T � implies [λ, X → αβ·, γβ] ∈ IG by

(22) and induction on the length of β�
∃λ, β ∈ T � : [λ, X → αβ·, δ] ∈ IG

=⇒ �by definition (24) of α��

〈X, δ〉 ∈ α�(IG),

proving that for δ ∈ T � we have the equivalence:

〈X, δ〉 ∈ α�(IG) ⇐⇒ ∃λ ∈ T � : [λ, X → α·, δ] ∈ IG . (29)

We conclude that the language generated by the grammar G is:

LG

= {δ ∈ T � | A
G=⇒A,� δ} �by (10)�

= {δ ∈ T � | 〈A, δ〉 ∈ α�(IG)} �by (26)�

= {δ ∈ T � | ∃λ ∈ T � : [λ, X → α·, δ] ∈ IG} �by (29)� . �

9 Earley Parsing Algorithm is a Complete Ab-
straction of the Grammar Item Semantics

The Earley’s parsing algorithm (17) derives the only grammar items which are
valid for the given input word ω = ω1 . . . ωn, n ≥ 0 to be analyzed.

9.1 The Abstraction

This is a forgetful abstraction disregarding all information provided by the gram-
mar item semantics, but for the input word:

αE
ω(I) ∆= {〈X → α·β, i, j〉 | 0 ≤ i ≤ j ≤ n ∧

[ω1 . . . ωi, X → α·β, ωi+1 . . . ωj ] ∈ I} .

(30)

αE
ω is a complete ∪-morphism so it is the lower adjoint of a Galois connection:

〈℘(T � ×N × V� × V� × T �), ⊆〉 −−−−→←−−−−
¸E

ω

‚E
ω 〈℘(N × V� × V� × N × N), ⊆〉 . (31)

9.2 The Abstract Interpretation of the Semantics

By abstraction of the fixpoint definition (23) of the grammar item semantics
with αE

ω, we get the fixpoint characterization (17) of the Earley’s valid item
semantics:

Theorem 6

IE

G,ω = αE
ω(IG) . (32)
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Proof We must prove that IE

G,ω = lfp
⊆
FE

G,ω = αE
ω(lfp

⊆
FG) = αE

ω(IG) which,

by lemma 2, immediately follows from αE
ω ◦ FG = FE

G,ω
◦ αE

ω. Because αE
ω is a

complete ∪-morphism, it is sufficient to do prove that term by term. We have:

• αE
ω({[ε, A → ·β, ε] | A

G−→ β})

= �Definition (30) of αE
ω�

{〈X → α·β, i, j〉 | 0 ≤ i ≤ j ≤ n ∧ [ω1 . . . ωi, X → α·β, ωi+1 . . . ωj ] = [ε, A →
·β, ε] ∧ A

G−→ β}
= �ω1 . . . ωi = ε so i = 0, X = A, α·β = ·β so α = ε, ωi+1 . . . ωj = ω1 . . . ωj

= ε so j = 0�

{〈A → ·γ, 0, 0〉 | A
G−→ γ} .

• αE
ω({[λα, Y → ·δ, ε] | [λ, X → α·Y β, γ] ∈ I ∧ Y

G−→ δ})

= �Definition (30) of αE
ω�

{〈X → α·β, i, j〉 | 0 ≤ i ≤ j ≤ n ∧ [ω1 . . . ωi, X → α·β, ωi+1 . . . ωj ] ∈
{[λ′γ, Y → ·δ, ε] | [λ′, X → α′·Y β′, γ] ∈ I ∧ Y

G−→ δ}}
= �λ′γ = ω1 . . . ωi so ∃k ∈ [0, i] : λ′ = ω1 . . . ωk ∧ γ = ωk+1 . . . ωi, X = Y ,

α·β = ·δ so α = ε and β = δ, ωi+1 . . . ωj = ε so i = j�

{〈Y → ·δ, j, j〉 | 0 ≤ k ≤ j ≤ n ∧ [ω1 . . . ωk, X → α′·Y β′, ωk+1 . . . ωj ] ∈
I ∧ Y

G−→ δ}
= �α·β = α′·Y β′ if and only if α = α′ and β = Y β′, renaming k as i�

{〈Y → ·δ, j, j〉 | 〈X → α·Y β, i, j〉 ∈ {〈X → α′·β′, i, j〉 | 0 ≤ i ≤ j ≤
n ∧ [ω1 . . . ωi, X → α′·β′, ωi+1 . . . ωj ] ∈ I ∧ Y

G−→ δ}}
= �Definition (30) of αE

ω�

{〈Y → ·δ, j, j〉 | 〈X → α·Y β, i, j〉 ∈ αE
ω(I) ∧ Y

G−→ δ} .

• αE
ω({[λ, X → αY ·β, γξ] | [λ, X → α·Y β, γ] ∈ I ∧

[λγ, Y → δ·, ξ] ∈ I})
= �Definition (30) of αE

ω�

{〈X → α·β, i, j〉 | 0 ≤ i ≤ j ≤ n ∧ [ω1 . . . ωi, X → α·β, ωi+1 . . . ωj ] ∈
{[λ, X → α′Y ·β′, γξ] | [λ, X → α′·Y β′, γ] ∈ I ∧ [λγ, Y → δ·, ξ] ∈ I}}

= �λ = ω1 . . . ωi, α = α′Y , β = β′, γξ = ωi+1 . . . ωj so ∃k ∈ [i, j] : γ =
ωi+1 . . . ωk ∧ ξ = ωk+1 . . . ωj�

{〈X → α′Y ·β′, i, j〉 | 0 ≤ i ≤ k ≤ j ≤ n ∧ [ω1 . . . ωi, X → α′·Y β′,
ωi+1 . . . ωk] ∈ I ∧ [ω1 . . . ωiωi+1 . . . ωk, Y → δ·, ωk+1 . . . ωj] ∈ I}

= �def. (30) of αE
ω�

{〈X → αY ·β, k, j〉 | 〈X → α·Y β, k, i〉 ∈ αE
ω(I) ∧ 〈Y → γ·, i, j〉 ∈ αE

ω(I)} .
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• αE
ω({[λ, X → αa·β, γa] | [λ, X → αa·β, γa] ∈ I})

= �Definition (30) of αE
ω�

{〈X → α·β, i, j〉 | 0 ≤ i ≤ j ≤ n ∧ [ω1 . . . ωi, X → α·β, ωi+1 . . . ωj ] ∈
{[λ, X → α′a·β′, γa] | [λ, X → α′·aβ′, γ] ∈ I}}

= �λ = ω1 . . . ωi, α = α′a, β = β′ and γa = ωi+1 . . . ωj so γ = ωi+1 . . . ωj−1

and a = ωj�

{〈X → α′ωj·β, i, j〉 | 0 ≤ i ≤ j ≤ n∧ [ω1 . . . ωi, X → α′·ωjβ
′, ωi+1 . . . ωj−1] ∈

I}
= �def. (30) of αE

ω�

{〈X → αωj·β, i, j〉 | 〈X → α·ωjβ, i, j − 1〉 ∈ αE
ω(I)} . �

10 Correctness of Earley’s Parsing Algorithm

Earley’s parsing algorithm approximates the grammar items for the given ter-
minal input word. This word is in the language generated by the grammar only
if is recognized by a grammar item for the axiom, so:

Corollary 7 The Earley’s parsing algorithm is correct in that (18) holds.

Proof

〈A → γ·, 0, n〉 ∈ I
E

G,ω

⇐⇒ �by (32)�

〈A → γ·, 0, n〉 ∈ αE
ω(IG)

⇐⇒ �by definition (30) of αE
ω�

〈A → γ·, 0, n〉 ∈ {〈X → α·β, i, j〉 | 0 ≤ i ≤ j ≤ n ∧ [ω1 . . . ωi, X → α·β,
ωi+1 . . . ωj ] ∈ IG}

⇐⇒ �X = A, γ· = α·β so γ = α and β = ε, i = 0, j = n so ω1 . . . ωi = ε and
ωi+1 . . . ωj = ω�

[ε, A → α·, ω] ∈ IG
⇐⇒ �choosing λ = ε and lemma 3�

∃λ ∈ T � : [λ, A → α·, ω] ∈ IG
⇐⇒ �by (28)�

ω ∈ LG . �

11 Conclusion

We have shown that Earley’s parsing algorithm [9] is an abstract interpretation
of a refinement of the derivation semantics of grammars.

Other parsing algorithms may certainly be formally derived in a similar way
using a more refined item semantics with nonterminal left and right contexts.
A compile-time/static analysis of the grammar (item semantics) is used for top-
down left-to-right generation of sets of grammar items abstracted e.g. as states.

11



The same way a preliminary analysis of the grammar approximates terminal
derivations from the right contexts by a lookahead. This preliminary static
grammar analysis is used to ensure that the the bottom-up recognition with
left context is deterministic. This point of view remains to be applied, e.g. to
LR-parsing [10].
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