
Electronic Notes in Theoretical Computer Science 45 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume45.html 24 pages

A Case Study in Abstract Interpretation Based
Program Transformation: Blocking Command

Elimination 1

Patrick Cousot
2

Département d’informatique
École Normale Supérieure

45 rue d’Ulm
75230 Paris cedex 05, France

Radhia Cousot
3

Laboratoire d’informatique, LIX
CNRS & École Polytechnique

91128 Palaiseau cedex, France

Abstract

We illustrate the design of correct semantics-based program transformations by
abstract interpretation on blocking code elimination.

1 Introduction

Static program analysis is closely related to program transformation since a
preliminary program analysis is necessary in order to collect information about
the program runtime behaviors which is then used to decide which offline trans-
formations are applicable [12,14]. Abstract interpretation [4,6,8,9] has been
used as a formal basis for static program analysis. Abstract interpretation can
also be used to define a semantics-based program transformation framework.
This is a new approach to the formal design of program transformations and a

1 This work is dedicated to Neil D. Jones on the occasion of his 60th anniversary. It was
presented as part of the invited talk at the “Special session honoring Neil D. Jones” of
the Seventeenth Conference on the Mathematical Foundations of Programming Semantics,
Århus, Denmark , May 23 – 27, 2001. It was supported in part by the european FP5 project
IST-1999-20527 Daedalus.
2 cousot@ens.fr, www.di.ens.fr/~cousot
3 rcousot@lix.polytechnique.fr, lix.polytechnique.fr/~rcousot

c©2001 Published by Elsevier Science B. V.

cousot@ens.fr
mailto:cousot@ens.fr
www.di.ens.fr/~cousot
http://www.di.ens.fr/~cousot
rcousot@lix.polytechnique.fr
mailto:rcousot@lix.polytechnique.fr
lix.polytechnique.fr/~rcousot
http://lix.polytechnique.fr/~rcousot

Patrick Cousot and Radhia Cousot

new application of the abstract interpretation theory. The idea is to formally
design syntactic (that is source level) program transformations by abstrac-
tion of transformations of the program semantics. Abstract interpretation is
used to formalize the correspondence between semantic and syntactic transfor-
mations. This yields the necessary formal basis for (hopefully mechanically)
constructing correct program transformation tools and may be to systematize
their design.

The framework is applied to blocking code elimination, which consists in
eliminating blocking commands other than stop commands in imperative non-
deterministic programs leaving non-terminating behaviors unchanged. The fi-
nal algorithm is very simple and could have been designed empirically without
error but this case study is simple enough to exemplify our approach.

We believe that this unified abstract interpretation based framework for
reasoning on program transformation should be applicable to a wide variety of
semantics-based program manipulations including constant propagation [15],
transition compression [11], slicing [22], partial evaluation [13], continuation
passing style transformation [18], call-by-name to call-by-value transformation
[19], fold/unfold [3], deforestation [21], compilation [17], etc.

2 A Few Elements of Abstract Interpretation

2.1 Fixpoints

We write lfp
≤

⊥
F for the ≤-least fixpoint of F ≤-greater than or equal to ⊥,

when it exists. We write lfp
≤
F and lfp F when ⊥ and ≤ are understood from

the context. Dually, gfp
≤

�
F is the ≤-greatest fixpoint of F ≤-less than or equal

to �, when it exists.

Theorem 2.1 (Least fixpoint) Let po〈L; ≤〉 be a partially ordered set L

with a binary relation ≤ which is a partial order (reflexive, antisymmetric and
transitive). Assume that F is a monotone operator on po〈L; ≤〉. Assume that
⊥ ∈ L is such that ⊥ ≤ F (⊥). Let L ⊆ L be a subset of L such that ⊥ ∈ L,
∀x ∈ L : x ≤ F (x) ⇒ F (x) ∈ L and if 〈xi, i ∈ ∆〉 is an ≤-increasing chain of
elements of L then the least upper bound (lub) ∨i∈∆xi exists in po〈L; ≤〉 and

satisfies ∨i∈∆xi ∈ L. Then lfp
≤

⊥
F exists, is unique and belongs to L.

Proof. The proof easily derives from [7]. It is based on the iterative definition

of fixpoints in the tradition of Tarski [20] and Kleene [16] F 0 ∆
= ⊥, F δ+1 ∆

=

F (F δ) for successor ordinals δ+1 ∈ O, F λ ∆
= ∨δ<λF

δ for limit ordinal λ ∈ O.�

Most often, we express the semantics in least fixpoint form lfp
≤
F where the

semantic transformer F ∈ L
m�−−→ L is a monotone operator on the complete

partial order (cpo) cpo〈L; ≤, ⊥, ∨〉. Dually, we can also use a greatest fixpoint

gfp
≤
F of a monotone semantic transformer F ∈ L

m�−−→ L on the dual complete
partial order (co-cpo) ccpo〈L; ≤, �, ∧〉.

2

Patrick Cousot and Radhia Cousot

Theorem 2.2 (Least fixpoint iterates) Under the hypotheses of Th. 2.1,

for all x ∈ L such that ⊥ ≤ x ≤ lfp
≤

⊥
F , the iterates F 0 ∆

= x, F δ+1 ∆
= F (F δ)

for successor ordinals δ +1 ∈ O and F λ ∆
= ∨δ<λF δ for limit ordinal λ ∈ O are

ultimately stationary and converge to lfp
≤

⊥
F 4 .

Proof. By monotony and transfinite induction, the iterates of F starting
from x are sandwiched between the iterates of F starting from ⊥ which are

ultimately stationary and converge to lfp
≤

⊥
F and the iterates of F starting

from lfp
≤

⊥
F which are all equal to lfp

≤

⊥
F by the fixpoint property, proving the

ultimate convergence of all the iterates to that fixpoint. �

2.2 Abstraction

An abstraction α(S) of a concrete semantics S is defined by a Galois connec-

tion po〈L; ≤〉 −−→←−−
α

γ
po〈L; ≤〉 between the concrete domain po〈L; ≤〉 and the

abstract domain po〈L; ≤〉 which are both posets 5 . By definition, we have
∀X ∈ L : ∀Y ∈ L : α(X) ≤ Y ⇔ X ≤ γ(Y). It follows that α preserves exist-
ing lubs, by duality γ preserves existing greatest lower bounds (glbs) and one

adjoint uniquely determines the other. We write po〈L; ≤〉 −−→−→←−−−−
α

γ
po〈L; ≤〉

when α is surjective (or equivalently γ is injective) and po〈L; ≤〉 −−−−→←←−−−
α

γ
po〈L;

≤〉 when α is injective (or equivalently γ is surjective).

Given f ∈ A �−−→ B, a standard example is α(X)
∆
= {f(x) | x ∈ X} so

that

po〈℘(A); ⊆〉 −−→←−−
α

γ
po〈℘(B); ⊆〉(1)

where γ(Y)
∆
= {x ∈ A | f(x) ∈ Y }.

2.3 Fixpoint Coabstraction

We have the following sufficient condition for two fixpoints to have the same

abstraction α1(lfp
≤1

F1) = α2(lfp
≤2

F2) which is based on the iterative definition
of fixpoints [7] :

Theorem 2.3 (Fixpoint coabstraction) Let F1 ∈ L1
m�−−→ L1 and F2 ∈

L2
m�−−→ L2 be respective monotone operators on the complete partial orders

cpo〈L1;≤1,⊥1,∨1〉 and cpo〈L2;≤2,⊥2,∨2〉. Let cpo〈L;≤,⊥,∨〉 be a complete

partial order. Let α1 ∈ L1
⊥,↑�−−→ L and α2 ∈ L2

⊥,↑�−−→ L be ⊥-strict 6 Scott-

4 Note that the iterates starting from x need not be an increasing chain.
5 Other equivalent formalizations (e.g. using closure operators) are given in [8] and weaker
ones, not assuming the existence of a best approximation, are provided in [9].
6 A function f is ⊥-strict, written f : D

⊥�−−→ E, if and only if f(⊥) = ⊥.

3

Patrick Cousot and Radhia Cousot

continuous 7 abstraction functions satisfying the following local coabstraction
condition 8 :

∀x ∈ L1 : ∀y ∈ L2 : α1(x) = α2(y) ⇒ α1(F1(x)) = α2(F2(y)) .(2)

Then α1(lfp
≤1

F1) = α2(lfp
≤2

F2).

Proof. Let F δ
1 , δ ∈ O and F δ

2 , δ ∈ O be the respective transfinite iterates for
F1 and F2 [7]. By monotony, they are increasing chains which are therefore
well-defined in the respective complete partial orders cpo〈L1; ≤1, ⊥1, ∨1〉 and
cpo〈L2; ≤2, ⊥2, ∨2〉.

α1 and α2 are ⊥-strict so that α1(⊥1) = ⊥ = α2(⊥2) hence F 0
1 = F 0

2 .

Let δ + 1 be a successor ordinal such that α1(F
δ
1) = α2(F

δ
2) by induction

hypothesis. By the local coabstraction condition (2), we have α1(F
δ+1
1) =

α1(F1(F
δ
1)) = α2(F2(F

δ
2)) = α2(F

δ+1
2).

Let λ be a limit ordinal such that by induction hypothesis, ∀δ < λ: α1(F
δ
1)

= α2(F
δ
2). Then, by continuity of α1 and α2 and induction hypothesis, we have

α1(F
λ
1) = α1(

∨
1

δ<λ

F δ
1) =

∨
δ<λ α1(F

δ
1) =

∨
δ<λ α2(F

δ
2) = α2(

∨
2

δ<λ

F δ
2) = α2(F

λ
2).

By transfinite induction, we conclude that ∀δ ∈ O: α1(F
δ
1) = α2(F

δ
2).

Let ε1 ∈ O and ε2 ∈ O be such that ε1 = lfp
≤1

F1 and ε2 = lfp
≤2

F2 [7]. We

have α1(lfp
≤1

F1) = α1(F
ε1
1) = α1(F

max(ε1,ε2)
1) = α2(F

max(ε1,ε2)
2) = α2(F

ε2
2) =

α2(lfp
≤2

F2). �

2.4 Locally Complete Fixpoint Abstraction

In particular when α1 = α and α2 is the identity, Th. 2.3 yields a sufficient con-

dition for complete (or exact) fixpoint abstractions α(lfp
≤
F) = lfp

≤
F , which

provides guidelines for designing lfp
≤
F from lfp

≤
F (or dually) in fixpoint form

[8, theorem 7.1.0.4(3)], [10, lemma 4.3], [2, fact 2.3] 9 :

Corollary 2.4 (Fixpoint transfer) Let F ∈ L
m�−−→ L be a monotonic op-

erator on the cpo〈L; ≤, ⊥, ∨〉, let F ∈ L
m�−−→ L be a monotone operator

on the cpo〈L; ≤, ⊥, ∨〉 and let α ∈ L
⊥,↑�−−→ L be a ⊥-strict Scott-continuous

abstraction function satisfying the commutation condition F ◦ α = α ◦ F 10 .

7 A function f is Scott-continuous, written f : D
↑�−−→ E, if and only if it preserves the lub

of any directed subset of D [1] (so that it is monotone).
8 As in Th. 2.1, it is sufficient to assume that αi is ⊥-strict, preserves the least upper bound
of the iterates of Fi starting from ⊥i, i = 1, 2 and that the local coabstraction condition
holds for these iterates or a given superset of the iterates.
9 The composition of relations r1 and r2 is r1 ◦ r2

∆= {〈x, z〉 | ∃y : 〈x, y〉 ∈ r1 ∧〈y, z〉 ∈ r2}
whence the composition of functions is f ◦ g(x) ∆= f(g(x)).
10 As in Th. 2.1, it is sufficient to assume that α is ⊥-strict, preserves the least upper bound
of the iterates of F starting from ⊥ and that the commutation condition holds for these
iterates.

4

Patrick Cousot and Radhia Cousot

Then α(lfp
≤
F) = lfp

≤
F .

2.5 Fixpoint Approximation

Due to undecidability, it is often impossible to abstract a fixpoint α(lfp
≤
F)

= lfp
≤
F exactly and to require simultaneously the abstract fixpoint lfp

≤
F to

be effectively computable. In that case, abstract interpretation theory offers

fixpoint approximation methods so that α(lfp
≤
F) ≤ lfp

≤
F [6,8,9]. Let us recall

these basic fixpoint approximation results in a generalized form:

Theorem 2.5 (Least fixpoint upper approximation) Let F ∈ L
m�−−→ L

be a monotonic operator on the complete partial order cpo〈L; ≤, ⊥, ∨〉 and
let F ∈ L

m�−−→ L be a monotone operator on cpo〈L; ≤, ⊥, ∨〉.
Assume that the ⊥-strict Scott-continuous abstraction function α ∈ L

⊥,↑�−−→
L is such that for all x ∈ L such that x ≤ F (x) there exists y ≤ x such that
α(F (x)) ≤ F (α(y)).

Then α(lfp
≤
F) ≤ lfp

≤
F .

Proof. Let F δ and F
δ
, δ ∈ O be the respective ordinal-termed ≤ and ≤-in-

creasing ultimately stationary chains of transfinite iterates of F and F [7]. We

have α(F 0) = α(⊥) = ⊥ = F
0

by strictness of α and definition of the iterates.

Assume α(F δ) ≤ F
δ
by induction hypothesis. We have F δ ≤ F (F δ) = F δ+1 so

that, by hypothesis, ∃y ≤ F δ such that α(F δ+1) ≤ F (α(y)). By monotony of
F and α, F (α(y)) ≤ F (α(F δ)) whence by transitivity, induction hypothesis,

monotony of F and definition of the iterates, α(F δ+1) ≤ F (α(F δ)) ≤ F (F
δ
) =

F
δ+1

. Given a limit ordinal λ, assume α(F δ) ≤ F
δ

for all δ < λ. Then by
definition of the iterates, continuity of α, induction hypothesis and definition

of lubs, α(F λ) = α(
∨

δ<λ

F δ) =
∨

δ<λ

α(F δ) ≤
∨

δ<λ

F
δ

= F
λ
. By transfinite

induction, we conclude ∀δ ∈ O : α(F δ) ≤ F
δ
.

Let ε and ε′ be the respective ordinals such that F ε = lfp
≤
F and F

ε′
=

lfp
≤
F . In particular α(lfp

≤
F) = α(F ε) = α(Fmax{ε,ε′}) ≤ F

max{ε,ε′}
= F

ε′
=

lfp
≤
F . �

The dual of the above Th. 2.5 leads to the approximation of greatest fix-
points from below. We also need to approximate greatest fixpoints from above,
as follows:

Theorem 2.6 (Greatest fixpoint upper approximation 1) Assume that
F ∈ L

m�−−→ L is a monotonic operator on the co-cpo ccpo〈L; ≤, �, ∧〉 and
that F ∈ L

m�−−→ L is a monotone operator on ccpo〈L; ≤, �, ∨〉.
Let the Scott-co-continuous abstraction function α ∈ L

↓�−−→ L be such
that for all x ∈ L such that F (x) ≤ x there exists y ≤ x such that α(F (x)) ≤
F (α(y)).

5

Patrick Cousot and Radhia Cousot

Then α(gfp
≤

�
F) ≤ gfp

≤

α(�)
F .

Proof. Let F δ and F
δ
, δ ∈ O be the respective ordinal-termed ≤ and ≤-de-

creasing ultimately stationary chains of transfinite iterates of F and F respec-
tively starting from � and � [7].

We have α(F 0) = α(�) = F
0

by definition of the iterates.

Assume α(F δ) ≤ F
δ

by induction hypothesis. We have F δ+1 = F (F δ) ≤
F δ so that, by hypothesis, there exists y ≤ F δ such that α(F δ+1) ≤ F (α(y)).
By monotony of F and α, F (α(y)) ≤ F (α(F δ)) whence by transitivity, in-
duction hypothesis, monotony of F and definition of the iterates, α(F δ+1) ≤
F (α(F δ)) ≤ F (F

δ
) = F

δ+1
.

Given a limit ordinal λ, assume α(F δ) ≤ F
δ

for all δ < λ. Then by defini-
tion of the iterates, co-continuity of α, induction hypothesis and definition of

glbs, α(F λ) = α(
∧

δ<λ

F δ) =
∧

δ<λ

α(F δ) ≤
∧

δ<λ

F
δ

= F
λ
.

By transfinite induction, we conclude that ∀δ ∈ O : α(F δ) ≤ F
δ
.

Let ε and ε′ be the respective ordinals such that F ε = gfp
≤
F and F

ε′
=

gfp
≤
F . In particular α(gfp

≤
F) = α(F ε) = α(Fmax{ε,ε′}) ≤ F

max{ε,ε′}
= F

ε′
=

gfp
≤
F . �

A useful variant is:

Theorem 2.7 (Greatest fixpoint upper approximation 2) Assume that
F ∈ L

m�−−→ L is a monotonic operator on the co-cpo ccpo〈L; ≤, �, ∧〉 and
that F ∈ L

m�−−→ L is a monotone operator on ccpo〈L; ≤, �, ∧〉.
Let po〈L; ≤〉 −−−→←−−−

α

γ
po〈L; ≤〉 be such that for all x ∈ L such that F (x) ≤ x

there exists y ≤ x such that α(F (x)) ≤ F (α(y)).

Then α(gfp
≤

�
F) ≤ gfp

≤

α(�)
F .

Proof. The proof is similar to that of Th. 2.6 except for limit ordinals. Given

a limit ordinal λ such that α(F δ) ≤ F
δ

for all δ < λ, we have F δ ≤ γ(F
δ
)

for all δ < λ, by definition of Galois connections. Since 〈F δ, δ < λ〉 and

〈F δ
, δ < λ〉 are decreasing chains and γ is monotone, 〈γ(F

δ
), δ < λ〉 is also

decreasing so that
∧

δ<λ

F δ and
∧

δ<λ

γ(F
δ
) on one hand and

∧
δ<λ

F
δ

on the other

hand do exist respectively in the co-cpos ccpo〈L; ≤, �, ∧〉 and ccpo〈L; ≤,
�, ∧〉. By definition of glbs and γ preserving existing glbs, we have

∧
δ<λ

F δ

≤
∧

δ<λ

γ(F
δ
) = γ(

∧
δ<λ

F
δ
). By definition of Galois connections, it follows that

α(
∧

δ<λ

F δ) ≤
∧

δ<λ

F
δ
. By definition of the iterates, we conclude that α(F λ) =

α(
∧

δ<λ

F δ) ≤
∧

δ<λ

F
δ

= F
λ
. �

6

Patrick Cousot and Radhia Cousot

3 The Syntax and Semantics of Programs

Let us consider imperative iterative programs acting on global variables. Pro-
grams are assumed to be compiled in an intermediate form as shown by the
following example:

X := ?; a : X := ? → b;

while X > 0 do b : (X > 0) → c;

b : ¬ (X > 0) → d;

X := X + 1; c : X + 1 → b;

od; d : stop;

Programs are nondeterministic. The intuition is that if execution is at some
label L then one of the transitions L : A → L′; labeled with L is executed,
provided the action A is not blocking and the execution can go on by branching
to the next label L′. Otherwise the execution is blocked at L, which is the case
for the stop command L : stop; intended to correspond to normally expected
termination while other blocking commands are supposed to be erroneous.

Nondeterminism is modeled by having several actions be referenced by the
same label. For example, the random assignment {L1 : X := ? → L2;} which
is a shorthand for {L1 : X := z → L2; | z ∈ Z}, where Z is the set of integers,
can be used to model interactive integer inputs.

3.1 Abstract Syntax of Programs

X : X Program variables A ::= X := E Assignment

E : E Arithmetic expressions | X := ? Random assignment

B : B Boolean expressions | B Test

A : A Program actions | ¬ B Negated test

| skip Null action

| stop Stop action

Programs are collections of labelled nondeterministic commands:

L : L Program labels

C : C Commands

C ::= L1 : A → L2; label�C�
∆
= L1, action�C�

∆
= A, Transition command

succ�C�
∆
= {L2}

| L1 : stop; label�C�
∆
= L1, action�C�

∆
= stop, Stop command

7

Patrick Cousot and Radhia Cousot

succ�C�
∆
= ∅

P : P
∆
= ℘(C) labels�P�

∆
= {label�C� | C ∈ P} Programs

3.2 Semantics of Program Actions

The commands of a program act on global variables X ∈ X which take their
values in the semantic domain V.

An environment ρ ∈ E maps variables X to their value ρ(X) so E
∆
= X �−−→

V. ρ[X := d] is the environment ρ where the variable X is assigned the value d:

ρ[X := d](X)
∆
= d and ρ[X := d](Y)

∆
= ρ(Y) when X �= Y.

The semantics of expressions is assumed to be given by A�E� ∈ E �−−→ V

for arithmetic expressions E and by B�B� ∈ E �−−→ B where B
∆
= {tt, ff} for

boolean expressions B.

The semantics S�A�ρ of an action A defines the effect of executing this
action on the environment ρ. Nondeterministic statements such as the random
assignment X := ? have more than one possible successor environment so we
define S ∈ A �−−→ (E �−−→ ℘(E)) as follows:

S�B�
∆
= λ ρ • {ρ | B�B�ρ = tt} S�X := ?�

∆
= λ ρ • {ρ[X := z] | z ∈ Z}

S�¬ B�
∆
= λ ρ • {ρ | B�B�ρ = ff} S�skip�

∆
= λ ρ • {ρ}

S�X := E�
∆
= λ ρ • {ρ[X := A�E�ρ]} S�stop�

∆
= λ ρ • ∅

3.3 States

A state s ∈ S is a pair s = 〈ρ, C〉 where the environment ρ records the values
of variables while C is the next command to be executed:

S
∆
= E × C

The set of states S�P� of a program P ∈ P is defined as:

S�P�
∆
= E × P(3)

3.4 Transitional Semantics

The transitional semantics S�P�s of a program P ∈ P specifies which successor
states s′ can follow state s during execution of program P:

S�P� ∈ S�P� �−−→ ℘(S�P�)

S�P�〈ρ, C〉 ∆
= {〈ρ′, C′〉 | ρ′ ∈ S�action�C��ρ ∧ label�C′� ∈ succ�C�}(4)

Observe that by Def. (3) of S�P�, we have C ∈ P and C′ ∈ P in (4). In particular
∀ρ ∈ E : S�P�〈ρ, L : stop;〉 = ∅.

8

Patrick Cousot and Radhia Cousot

Example 3.1 The program:

P = {a, a′, b, c}(5)

which commands are defined as follows:

a
∆
= a : Y > 0 → b; a′ ∆

= a : ¬ (Y > 0) → c;

b
∆
= b : Y := Y− 1 → a; c

∆
= c : stop;

has the following transitional semantics:

S�P�〈ρ, a〉 = {〈ρ, b〉 | ρ(Y) > 0}, S�P�〈ρ, a′〉 = {〈ρ, c〉 | ρ(Y) ≤ 0},
S�P�〈ρ, b〉 = {〈ρ[Y := ρ(Y) − 1], a〉}, S�P�〈ρ, c〉 = ∅ .

�

3.5 Sequences of States

Program executions are recorded in finite or infinite sequences of states over
a given set C of commands. Formally, we define (�ε ∈ ∅ �−−→ S�C� is the
empty sequence of states, [n, m] = {k ∈ Z | n ≤ k ≤ m} so [n, m] = ∅ when
m < n):

Σn�C�
∆
= [0, n − 1] �−−→ S�C�, Σ+�C�

∆
=

⋃
n>0

Σn�C�,

Σ∗�C�
∆
= Σ+�C� ∪ {�ε}, Σω�C�

∆
= N �−−→ S�C�,

Σ∞�C�
∆
= Σ+�C� ∪ Σω�C�, Σ∝�C�

∆
= Σ∞�C� ∪ {�ε} .

We define the length #σ of a sequence σ ∈ Σ∝�C� as 0 when σ = �ε, n > 0
when σ ∈ Σn�C� and the first infinite limit ordinal ω when σ ∈ Σω�C�.

For short, we define (C is the set of commands defined in Sec. 3.1):

Σn ∆
= Σn�C�, Σ+ ∆

= Σ+�C�, Σ∗ ∆
= Σ∗�C�,

Σω ∆
= Σω�C�, Σ∞ ∆

= Σ∞�C�, Σ∝ ∆
= Σ∝�C� .

3.6 Complete Trace Semantics of Programs

A finite complete execution trace σ ∈ Sn�P� of a program P ∈ P is a finite
sequence σ0 . . . σn−1 ∈ Σn�P� of states of length #σ = n such that:

• each state σi, i = 1, . . . , n − 1 is the successor of the previous state σi−1 so
σi ∈ S�P�σi−1, and

• the last state σn−1 is a blocking state so S�P�σn−1 = ∅.
9

Patrick Cousot and Radhia Cousot

The finite complete traces are not empty so S+�P�
∆
=

⋃
n>0 Sn�P�. We define

S∗�P�
∆
= S+�P� ∪ {�ε} where �ε is the empty trace.

An infinite execution trace σ ∈ Sω�P� of a program P ∈ P is an infinite
sequence σ0 . . . σi . . . ∈ Σω�P� of states of infinite length #σ = ω such that
each state σi+1 ∈ S�P�σi is the successor of the previous state σi, 0 ≤ i < ω.

The complete execution traces of a program P ∈ P are S∞�P�
∆
= S+�P�∪Sω�P�

and S∝�P�
∆
= S∞�P� ∪ {�ε} = S∗�P� ∪ Sω�P�.

Formally, the trace semantics of a program P ∈ P is defined as follows:

S∞�P�
∆
= S+�P� ∪ Sω�P�,(6)

S+�P�
∆
=

⋃
n>0

Sn�P�,

Sn�P�
∆
= {σ ∈ Σn�P� | ∀i ∈ [0, n − 2] : σi+1 ∈ S�P�σi ∧

S�P�σn−1 = ∅} when n > 0,

Sω�P�
∆
= {σ ∈ Σω�P� | ∀i ≥ 0 : σi+1 ∈ S�P�σi} .

Example 3.2 The trace semantics of program P defined by (5) is the follow-
ing:

S∞�P� = {〈ρ[Y := n], a〉〈ρ[Y := n], b〉〈ρ[Y := n − 1], a〉 . . .

. . . 〈ρ[Y := 0], a′〉〈ρ[Y := 0], c〉 | ρ ∈ E ∧ n > 0}
∪ {〈ρ[Y := n], a′〉〈ρ[Y := n], c〉 | ρ ∈ E ∧ n ≤ 0}
∪ {〈ρ[Y := n + 1], b〉〈ρ[Y := n], a〉〈ρ[Y := n], b〉〈ρ[Y := n − 1], a〉 . . .

. . . 〈ρ[Y := 0], a′〉〈ρ[Y := 0], c〉 | ρ ∈ E ∧ n > 0}
∪ {〈ρ[Y := n + 1], b〉〈ρ[Y := n], a′〉〈ρ[Y := n], c〉 | ρ ∈ E ∧ n ≤ 0}
∪ {〈ρ, c〉 | ρ ∈ E} .

�

3.7 Suffix-Closure

The suffix σ+ of a trace σ ∈ Σ∞ is defined by s+ = s for traces of length 1
and sσ+ = σ. Intuitively, σ+ describes an execution starting one step after σ,
if possible. When necessary we let �ε+ = �ε.

The suffix of a set T of traces is T + ∆
= {σ+ | σ ∈ T }.

A set T of traces is suffix-closed whenever T + ⊆ T . The suffix-closure of

a set T of traces is the least suffix-closed superset T � = lfp
⊆
λX •T ∪ X+ of

T .

10

Patrick Cousot and Radhia Cousot

Lemma 3.3 (Suffix-closed trace semantics) The trace semantics (8) is
suffix-closed.

Proof. For finite traces s ∈ S∞�P� of length 1, we have s+ = s ∈ S∞�P�.

For finite traces sσ ∈ S∞�P�, we have sσ+ = σ which belongs to S∞�P�
since each state σi, i = 1, . . . , n − 1 is the successor of the previous state σi−1

and the last state σn−1 is a blocking state, by definition of sσ ∈ S∞�P�.

The same way for infinite traces sσ ∈ S∞�P�, we have sσ+ = σ which
belongs to S∞�P� since each state σi+1 ∈ S�P�σi is the successor of the previous
state σi, 0 ≤ i < ω, by definition of sσ ∈ S∞�P�. �

3.8 Complete Trace Semantics of Programs in Fixpoint Form (1)

The trace transformer F∞�P� of a program P ∈ P is defined as follows:

F∞�P� ∈ ℘(Σ∞�P�) �−−→ ℘(Σ∞�P�)

F∞�P�T ∆
= {s | S�P�s = ∅} ∪ {sσ | σ0 ∈ S�P�s ∧ σ ∈ T }(7)

Example 3.4 The trace transformer of the program P defined by (5) is the
following:

F∞�P�T = {〈ρ, c〉 | ρ ∈ E}
∪ {〈ρ, a〉〈ρ, b〉σ | ρ(Y) > 0 ∧ 〈ρ, b〉σ ∈ T }
∪ {〈ρ, a′〉〈ρ, c〉σ | ρ(Y) ≤ 0 ∧ 〈ρ, c〉σ ∈ T }
∪ {〈ρ[Y := ρ(Y) + 1], b〉〈ρ, a〉σ | 〈ρ, a〉σ ∈ T }
∪ {〈ρ[Y := ρ(Y) + 1], b〉〈ρ, a′〉σ | 〈ρ, a′〉σ ∈ T }

�

We have the following fixpoint characterizations of the program trace se-
mantics [5]:

S∞�P� = gfp
⊆

Σ∞F∞�P�(8)

F∞�P� is ⊆-monotone which ensures the existence of the fixpoints [20].

3.9 Feasible Traces

Some finite or infinite sequences of states such as 〈ρ, L : stop;〉ω do not corre-
spond to any execution of any program. In order to eliminate such infeasible
sequences of states, we restrict traces to the finite or infinite sequences of
states corresponding to potential program executions:

11

Patrick Cousot and Radhia Cousot

T
n ∆

= Sn�C�, T
+ ∆

= S+�C�, T
∗ ∆

= S∗�C�,

T
ω ∆

= Sω�C�, T
∞ ∆

= S∞�C�, T
∝ ∆

= S∝�C� .

3.10 Complete Trace Semantics of Programs in Fixpoint Form (2)

The trace transformer F∞�P� of a program P ∈ P can also be defined using
feasible traces only or arbitrary state sequences containing only commands of
P only, as follows:

Theorem 3.5 (Fixpoint complete trace semantics of programs) For all
T ∈ ℘(Σ∞) such that S∞�P� ⊆ T , we have

S∞�P� = gfp
⊆

T
F∞�P� .(9)

Proof. By (8) and the dual of Th. 2.2 since Σ∞ ⊇ T ⊇ S∞�P�. �

Corollary 3.6

S∞�P� = gfp
⊆

Σ∞�P�
F∞�P� = gfp

⊆

�∞F∞�P�(10)

Proof. Obviously Σ∞�P� ⊆ gfp
⊆

Σ∞F∞�P� by (8) and Def. (6) of S∞�P� which
implies that all commands appearing along a trace of S∞�P� belongs to P

proving that this trace belongs to Σ∞�P�.

By (8), gfp
⊆

Σ∞F∞�P� contains only feasible traces so gfp
⊆

Σ∞F∞�P� ⊆ T∞.

Applying Th. 3.5, we conclude that S∞�P� = gfp
⊆

Σ∞�P�
F∞�P� = gfp

⊆

�∞F∞�P�.�

4 Correspondence between Syntax and Trace Seman-

tics of Programs

The trace semantics maps programs to sets of traces. Inversely, we map sets
of traces to programs by collecting commands appearing along traces.

4.1 Trace-wide Command Collection

The abstraction �∞ collects all commands on all traces, as follows:

�∞ ∈ ℘(T∞) �−−→ P � ∈ T
∞ �−−→ P � ∈ S �−−→ C

�∞[T]
∆
=

⋃
σ∈T

�[σ] �[σ]
∆
= {�[σi] | 0 ≤ i < #σ} �[〈ρ, C〉] ∆

= C(11)

This correspondence is formalized by the following Galois connection:

Lemma 4.1

po〈℘(T∞); ⊆〉 −−−−→−→←−−−−−
�
∞

S∞
po〈P; ⊆〉

12

Patrick Cousot and Radhia Cousot

Proof. �∞ and S∞ are obviously ⊆-monotone.

For all programs P ∈ P, we have S∞�P� ∈ (E×P)+∪(E×P)ω so �∞[S∞�P�] ⊆
P.

Inversely, for all C ∈ P, there may exist an environment ρ ∈ E such that
S�P�〈ρ, C〉 = ∅ in which case the trace 〈ρ, C〉 belongs to S∞�P� et so C belongs
to �∞[S∞�P�]. Otherwise, ∀ρ ∈ E : S�P�〈ρ, C〉 �= ∅. Let 〈ρ0, C0〉 = 〈ρ, C〉 and
〈ρ1, C1〉 ∈ S�P�〈ρ0, C0〉. We have built a sequence σn = 〈ρ0, C0〉 . . . 〈ρn, Cn〉 of
states, up to n = 1, such that ∀i < n : 〈ρi+1, Ci+1〉 ∈ S�P�〈ρi, Ci〉. Having built
σn, we may have S�P�〈ρn, Cn〉 = ∅ in which case σn ∈ S∞�P� and consequently
C ∈ �∞[S∞�P�] by definition of �∞. Otherwise, we have ∃〈ρn+1, Cn+1〉 ∈
S�P�〈ρn, Cn〉, so that σn can be extended to σn+1. If we can go on in this way
for ever, we obtain a limit trace σ which nonempty prefixes are the σn, n ≥ 0.
We have σ ∈ S∞�P� and σ starts with 〈ρ, C〉 so that C ∈ �∞[S∞�P�] by definition
of �∞. We conclude that P ⊆ �∞[S∞�P�].

By antisymmetry, we conclude that �∞[S∞�P�] = P.

Let T ⊆ T∞ and σ ∈ T . For all 0 ≤ i < #σ, let σi = 〈ρi, Ci〉. By definition
of �∞, we have {Ci | 0 ≤ i < #σ} ⊆ �∞[T]. Moreover, if σ is finite so that
n = #σ > 0, we have S�C�σn−1 = ∅ = S��∞[T]�σn−1 since Cn−1 ∈ �∞[T].
Whether σ is finite or not, we have σi ∈ S�C�σi−1 for all 0 ≤ i < #σ. But
Ci−1 ∈ �∞[T] so σi ∈ S��∞[T]�σi−1. It follows that σ ∈ S∞��∞[T]� proving
that T ⊆ S∞��∞[T]�. �

4.2 Trace First Command Collection

Let us define the first command of a trace as:

�∞
0 ∈ ℘(T∞) �−−→ P �0 ∈ T

∞ �−−→ C

�∞
0 [T]

∆
= {�0[σ] | σ ∈ T } �0[σ]

∆
= �[σ0](12)

Observe that if T is suffix-closed then �∞[T] = �∞
0 [T]. It immediately follows

from (12) and (1) that:

po〈℘(T∞); ⊆〉 −−−−→←−−−−
�
∞
0

γ∞
0

po〈P; ⊆〉(13)

where γ∞
0 [Q]

∆
= {σ ∈ T∞ | �0[σ] ∈ Q}.

Moreover, for transformations which eliminate commands from the subject
programs, we can use the following correspondence between suffix-closed sets
of traces and programs:

Corollary 4.2 For all programs P ∈ P, we have:

po〈{T ⊆ Σ∞�P� | T + = T }; ⊆〉 −−−−→−→←−−−−−
�
∞
0

S∞
po〈℘(P); ⊆〉

Proof. For all T ⊆ Σ∞�P� such that T + = T and Q ⊆ P, we have:

13

Patrick Cousot and Radhia Cousot

�∞
0 [T] ⊆ Q

⇔ ��∞
0 [T] = �∞[T] since T is suffix-closed�

�∞[T] ⊆ Q

⇔ �by Lem. 4.1�

T ⊆ S∞�Q� .

�

5 Blocking Command Elimination

In the following, we consider the blocking code elimination, which consists in
eliminating blocking commands other than stop commands. The final iterative
algorithm is trivial but this case study is simple enough to exemplify the design
of correct program transformations by abstract interpretation. In particular
the iterative nature of the blocking code elimination algorithm follows from
the fixpoint definition (10) of the trace semantics.

5.1 Introduction to Blocking Command Elimination

A command C of the form L1 : A → L2; of a program P is semantically blocking
if and only if it has no possible successor for all evaluation environments (for-
mally S�P�〈ρ, C〉 = ∅ for all environments ρ ∈ E that can be encountered when
executing command C in program P). We have singled out a stop command
L : stop; corresponding to a normally expected termination. Other blocking
commands are considered as undesirable (for example they might correspond
to some abnormal termination such as e.g. a runtime error freezing the com-
puter screen). The use of such undesirable semantically blocking commands
may be considered as bad program design, and a removal function (prefer-
ably an algorithm) t�[P] would be useful to eliminate blocking commands or
to check that a program P = t�[P] is well designed according to this criterion.
Non-terminating program behaviors should be left unchanged. Because of
tests and iteration, the problem is obviously undecidable so that any effective
algorithm �� is necessarily an approximation of function t�. For example:

��

1 : false → 1;

2 : skip → 3;

3 : skip → 5;

4 : stop;

=
1 : false → 1;

4 : stop;

since the command 3 : skip → 5; and therefore 2 : skip → 3; are blocking.
The command 1 : false → 1; is also blocking but is not removed by the
syntactic blocking command elimination algorithm ��. This is because it is
in general not decidable whether B is false in the command 1 : B → 1;. So
the syntactic elimination algorithm �� only gets rid of syntactically blocking

14

Patrick Cousot and Radhia Cousot

commands where a command C of the form L1 : A → L2; of a program P is
syntactically blocking if L2 �∈ labels�P�. The command 1 : false → 1; would
have been eliminated by the incomputable semantic elimination function t�.
In that sense, �� is an abstraction of t�.

Obviously a preliminary static program analysis could also be used to
determine a larger subset of the semantically blocking actions by taking values
of variables into account (e.g. by using the constant propagation static analysis
[15]). We do not consider this more refined offline transformation because
infinitely many such variants of �� can be designed and we choose the simplest
one to illustrate our purpose.

5.2 Semantic Blocking Trace Elimination

The semantic blocking trace elimination is:

t� ∈ ℘(Σ∞) �−−→ ℘(Σ∞)

t�[T]
∆
= (T ∩ Σω) ∪ {σ ∈ T | C�[σ]}(14)

C�[σ]
∆
= σ ∈ Σ+ ∧ action�last[σ]� = stop(15)

where last[σ] denotes the command C = last[σ] in the last state 〈ρ, C〉 = σ#σ−1

of the finite trace σ ∈ Σ+ of length #σ.

We define:

γt� ∈ ℘(Σ∞) �−−→ ℘(Σ∞)

γt� [Y]
∆
= Y ∪ {σ ∈ Σ+ | ¬C�[σ]}(16)

so that:

Lemma 5.1

po〈℘(Σ∞); ⊆〉 −−−→←−−−
t�

γt�
po〈℘(Σ∞); ⊆〉

Proof.

t�[X] ⊆ Y
⇔ �def. (14) of t��

(X ∩ Σω) ∪ {σ ∈ X | C�[σ]} ⊆ Y
⇔ �def. lubs, def. intersection and X ⊆ Σ∞�

(X ∩ Σω) ⊆ Y ∧ (X ∩ {σ ∈ Σ∞ | C�[σ]}) ⊆ Y
⇔ �C�[σ] ⇒ σ ∈ Σ+ by def. (15) of C��

(X ∩ Σω) ⊆ Y ∧ ((X ∩ Σ+) ∩ {σ ∈ Σ∞ | C�[σ]}) ⊆ Y
⇔ �A ∩ B ⊆ C if and only if A ⊆ (¬B ∪ C)�

(X ∩ Σω) ⊆ Y ∧ (X ∩ Σ+) ⊆ (¬{σ ∈ Σ∞ | C�[σ]} ∪ Y)

15

Patrick Cousot and Radhia Cousot

⇔ �(X ∩ B) ⊆ Y if and only if (X ∩ B) ⊆ (Y ∩ B)�

(X ∩ Σω) ⊆ (Y ∩ Σω) ∧ (X ∩ Σ+) ⊆ ((¬{σ ∈ Σ∞ | C�[σ]} ∪ Y) ∩ Σ+)

⇔ �def. complement�

(X ∩ Σω) ⊆ (Y ∩ Σω) ∧ (X ∩ Σ+) ⊆ (({σ | σ �∈ Σ∞ ∨ ¬C�[σ]} ∪ Y) ∩ Σ+)

⇔ �Σ+ ⊆ Σ∞ and def. intersection�

(X ∩ Σω) ⊆ (Y ∩ Σω) ∧ (X ∩ Σ+) ⊆ (({σ ∈ Σ+ | ¬C�[σ]} ∪ Y) ∩ Σ+)

⇔ �Σ+ ∩ Σω = ∅�
(X ∩ Σω) ⊆ (({σ ∈ Σ+ | ¬C�[σ]} ∪ Y) ∩ Σω) ∧ (X ∩ Σ+) ⊆ (({σ ∈ Σ+ |
¬C�[σ]} ∪ Y) ∩ Σ+)

⇔ �(X ∩ B) ⊆ Y if and only if (X ∩ B) ⊆ (Y ∩ B)�

(X ∩Σω) ⊆ ({σ ∈ Σ+ | ¬C�[σ]}∪Y)∧ (X ∩Σ+) ⊆ ({σ ∈ Σ+ | ¬C�[σ]}∪Y)

⇔ �def. lubs�

(X ∩ Σω) ∪ (X ∩ Σ+) ⊆ ({σ ∈ Σ+ | ¬C�[σ]} ∪ Y)

⇔ �X ⊆ Σ∞ = Σ+ ∪ Σω�

X ⊆ ({σ ∈ Σ+ | ¬C�[σ]} ∪ Y)

⇔ �def. (16) of γt��

X ⊆ γt�[Y]

�

Intuitively Lem. 5.1 states that the transformed semantics is an abstrac-
tion of the subject semantics. This corresponds to the idea that the program
transformation looses some information on the original program. For exam-
ple the elimination of blocking commands looses all behavior about blocking
program behaviors, constant propagation looses all information about how
constants are computed, partial evaluation looses all information on program
computations for input values other than the ones for which the program is
specialized, etc.

Let 1S

∆
= λ x ∈ S •x be the identity operator on a set S and t�[T]

∆
=

{t�[σ] | σ ∈ T } be the right image of T by t�. We have:

Lemma 5.2 If T ⊆ Σ∞ then:

po〈℘(t�[T]); ⊆〉 −−−−−−−−→←←−−−−−−−
1℘(t�[T])

t�
po〈℘(T); ⊆〉

Proof. Observe that t� is a lower closure operator that is reductive (∀X ⊆
T : t�[X] ⊆ X), idempotent (t� ◦ t� = t�) and monotone (∀X ,Y ⊆ T : (X ⊆
Y) ⇒ (t�[X] ⊆ t�[Y])). It follows that for all X ⊆ t�[T] and Y ⊆ T , we have:

1℘(t�[T])(X) ⊆ Y
⇒ �def. identity�

16

Patrick Cousot and Radhia Cousot

X ⊆ Y
⇒ �X ∈ ℘(t�[T]) so that there exists Z ∈ ℘(T) such that X = t�[Z]�

t�[Z] ⊆ Y
⇒ �t� is monotone�

t�[t�[Z]] ⊆ t�[Y]

⇒ �t� is idempotent�

t�[Z] ⊆ t�[Y]

⇒ �def. X = t�[Z]�

X ⊆ t�[Y]

⇒ �t� is reductive and ⊆ is transitive�

X ⊆ Y
⇒ �def. identity�

1℘(t�[T])(X) ⊆ Y
proving that 1℘(t�[T])(X) ⊆ Y if and only if X ⊆ t�[Y]. Moreover 1℘(t�[T]) ∈

℘(t�[T]) �−−→ ℘(T) is injective. �

It immediately follows from Lem. 5.2 with T = Σ∞�P� that:

po〈℘(t�[Σ
∞�P�]); ⊆〉 −−−−−−−−−−→←←−−−−−−−−−−

1℘(t�[Σ∞�P�])

t�
po〈℘(Σ∞�P�); ⊆〉,

so that by duality:

po〈℘(Σ∞�P�); ⊇〉 −−−−−−−−−→−→←−−−−−−−−−−
t�

1℘(t�[Σ∞�P�])

po〈℘(t�[Σ
∞�P�]); ⊇〉 .(17)

The intuition is that t� is a dual abstraction which can be used to approximate
greatest fixpoints from above.

5.3 Observational Abstraction

For a program transformation to be correct, the semantics of the subject
and transformed programs should be equivalent at some level of observation.
This observational equivalence can be formalized in the abstract interpretation
framework by requiring that the abstraction of the semantics of the subject
and of the transformed programs into an abstract observation domain should
to be identical:

∀P ∈ P : αO(S∞�P�) = αO(S∞���P��) .

The specification of the observational abstraction αO must be considered as
part of the problematics (in that it explicitly defines the chosen correctness
criterion).

17

Patrick Cousot and Radhia Cousot

5.4 Observational Abstraction for Blocking Code Elimination

In the particular case of blocking code elimination, the observational abstrac-
tion αO(T) of traces T is t�[T], in that:

• all infinite behaviors of T are observed in t�[T];

• all complete finite behaviors of T terminating with a stop command are
observed in t�[T];

• no other trace of T is observed in t�[T] so none of the complete finite
behaviors terminating of T with a non-stop blocking command is observed
in t�[T].

5.5 Transformation Design Strategy

Our objective is to constructively derive a blocking code elimination algorithm
�� transforming a subject program P into a transformed program ���P� such
that P and ���P� have equivalent semantics for the t� observational abstrac-
tion:

αO(t�[S
∞�P�]) = αO(S∞����P��)

this is

t�[t�[S
∞�P�]] = t�[S

∞����P��]

since αO = t� for blocking command elimination, hence

t�[S
∞�P�] = t�[S

∞����P��] .

since t� is idempotent.

Our design strategy is to first derive the non-blocking trace semantics of
programs t�[S

∞�P�] by abstraction of the trace semantics S∞�P� and then to
design the blocking command elimination algorithm ���P� as an abstraction
of t�[S

∞�P�].

5.6 Non-Blocking Trace Semantics of Programs

We define the non-blocking trace semantics of a program P as:

S∞
� �P�

∆
= t�[S

∞�P�] .(18)

We observe that S∞
� �P� is suffix-closed since, by (18) and (14), it contains

all infinite execution traces of S∞�P� (which suffix is also an infinite execution
trace of S∞�P�), the traces s of length 1 reduced to a stop command (such
that s+ = s) and finite traces of the form sσ which are execution traces of
S∞�P� which, by (15), end with a stop command so that their suffix sσ+ = σ
is also a finite execution trace of S∞�P� ending with a stop command.

18

Patrick Cousot and Radhia Cousot

In order to express S∞
�
�P� algorithmically as a fixpoint iteration, we can

start from the fixpoint form (10) of the program execution trace semantics,

such that S∞
�

= t�[gfp
⊆

Σ∞�P�
F∞�P�] where F∞�P�T ∆

= {s | S�P�s = ∅}∪{sσ | σ0 ∈
S�P�s ∧ σ ∈ T }. Then (17) leads to the idea of using the dual of Cor. 2.4 to

express S∞
�
�P� in greatest fixpoint form gfp

⊆
F∞

�
�P�. We have:

�-strictness

t�[Σ
∞�P�] is the ⊆-supremum of ℘(t�[Σ

∞�P�]);

Scott co-continuity

By (17), t� is a complete ∩-morphism hence Scott co-continuous;

For the commutation condition, we have:

t�[F
∞�P�T]

= �By def. (14) of t��

(F∞�P�T ∩ Σω) ∪ {σ ∈ F∞�P�T | C�[σ]}
= �By def. (7) of F∞�P��

({s | S�P�s = ∅} ∪ {sσ | σ0 ∈ S�P�s ∧ σ ∈ T } ∩ Σω) ∪ {σ ∈ {s | S�P�s =
∅} ∪ {sσ | σ0 ∈ S�P�s ∧ σ ∈ T } | C�[σ]}

= �def. Σω and ∪�

{s | S�P�s = ∅ ∧ C�[s]} ∪ {sσ | σ0 ∈ S�P�s ∧ σ ∈ T ∩ Σω} ∪ {sσ | σ0 ∈
S�P�s ∧ σ ∈ T ∧ C�[σ]}

= �def. (15) of C�[σ]�

{s | S�P�s = ∅ ∧ ∃ρ, L : s = 〈ρ, L : stop;〉 ∪ {sσ | σ0 ∈ S�P�s ∧ σ ∈
(T ∩ Σω) ∪ {σ′ ∈ T | C�[σ

′]}}
= �def. (4) of S�P� and (14) of t��

{〈ρ, L : stop;〉 | L : stop; ∈ P ∧ ρ ∈ E} ∪ {sσ | σ0 ∈ S�P�s ∧ σ ∈ t�[T]}
= F∞

�
�P� ◦ t�[T]

by defining:

F∞
�
�P�

∆
= λ T • {〈ρ, L : stop;〉 | L : stop; ∈ P ∧ ρ ∈ E} ∪

{sσ | σ0 ∈ S�P�s ∧ σ ∈ T } .

(19)

We conclude, by the dual of Cor. 2.4, that:

S∞
�
�P�

∆
= t�[S

∞�P�] = t�[gfp
⊆

Σ∞�P�
F∞�P�] = gfp

⊆

t�[Σ
∞�P�]

F∞
�
�P� .(20)

19

Patrick Cousot and Radhia Cousot

5.7 Blocking Command Elimination Algorithm

We can now design the syntactic blocking command elimination algorithm
���P� as an upper approximation of the non-blocking trace semantics of pro-
grams:

���P� ⊇ �∞[S∞
�
�P�] = �∞

0 [S∞
�
�P�] = �∞

0 [gfp
⊆

t�[Σ∞�P�]
F∞

�
�P�]

since S∞
� �P� is suffix-closed and by (20). Then (13) leads to the idea of using

Th. 2.7 to constructively derive the algorithm ���P�. For all T ⊆ Σ∞�P�, we

have:

�∞
0 [F∞

�
�P�T]

= �def. (12) of �∞
0 �

{�0[σ] | σ ∈ F∞
� �P�T }

= �def. (19) of F∞
�
�P��

{�0[〈ρ, L : stop;〉] | L : stop; ∈ P ∧ ρ ∈ E} ∪ {�0[sσ] | σ0 ∈ S�P�s ∧ σ ∈ T },
= �def. (12) of �0 and (11) of �, s, σ0 ∈ S�P� and def. (3) of S�P� so

that s = 〈ρ, C〉, σ0 = 〈ρ′, C′〉 and σ = σ0σ
′�

{L : stop; | L : stop; ∈ P} ∪ {�[〈ρ, C〉] | ∃ρ′ ∈ E : ∃σ′ ∈ Σ∞�P� : ∃C′ ∈ C :

〈ρ′, C′〉 ∈ S�P�〈ρ, C〉 ∧ 〈ρ′, C′〉σ′ ∈ T }
= �def. (11) of � and (4) of S�P��

{L : stop; | L : stop; ∈ P} ∪ {C ∈ P | ∃ρ′ ∈ E : ∃σ′ ∈ Σ∞�P� : ∃C′ ∈ P :

ρ′ ∈ S�action�C��ρ ∧ label�C′� ∈ succ�C� ∧ 〈ρ′, C′〉σ′ ∈ T }
⊆ �Ignoring the (maybe undecidable) condition ρ′ ∈ S�action�C��ρ�

{L : stop; | L : stop; ∈ P} ∪ {C ∈ P | ∃ρ′ ∈ E : ∃σ′ ∈ Σ∞�P� : ∃C′ ∈ P :

label�C′� ∈ succ�C� ∧ 〈ρ′, C′〉σ′ ∈ T }
= �def. (12) of �0�

{L : stop; | L : stop; ∈ P} ∪

{C ∈ P | ∃C′ ∈ P : label�C′� ∈ succ�C� ∧ C′ ∈ �0[T]}
= �def. ∩�

{L : stop; | L : stop; ∈ P} ∪

{C ∈ P | {label�C′� | C′ ∈ �0[T] ∩ P} ∩ succ�C� �= ∅}
= �by def. of labels in Sec. 3.1�

{L : stop; | L : stop; ∈ P} ∪ {C ∈ P | succ�C� ∩ labels��0[T] ∩ P� �= ∅}
= ���P� ◦ �0[T]

20

Patrick Cousot and Radhia Cousot

by defining:

���P�
∆
= λQ•{L : stop; | L : stop; ∈ P} ∪

{C ∈ P | succ�C� ∩ labels�Q ∩ P� �= ∅},

(21)

Moreover �0[t�[Σ
∞�P�]] = P so by (13) and Th. 2.7, we conclude that:

���P�
∆
= gfp

⊆

P
���P� ⊇ �∞

0 [gfp
⊆

t�[Σ∞�P�]
F∞

�
�P�] = �∞[S∞

�
�P�] .(22)

All iterates of gfp
⊆

P
���P� are included in P so that we have

���P� = gfp
⊆

P
�′

�
�P�

with

���P�
∆
= λQ•{L : stop; | L : stop; ∈ Q} ∪

{C ∈ Q | succ�C� ∩ labels�Q� �= ∅},

Observe that po〈P; ⊆〉 satisfies the descending chain condition so that the
above fixpoint form of ���P� immediately leads to an effective iteration algo-
rithm, that we can describe informally as follows:

• Start from Q := P;

• Repeat
Suppress the commands C from Q such that C �= L : stop; and succ�C� ∩
labels�Q� = ∅;

Until Q is left unchanged;

• Return Q.

5.8 Correctness of the Blocking Command Elimination Algorithm

The correctness of the transformation is stated by the fact that the observation
of the semantics of the subject and transformed programs by the observational
abstraction αO = t� is the same. Formally, αO(S∞�P�) = αO(S∞����P��), that
is

t�[S
∞�P�] = t�[S

∞����P��] .

Proof. By Lem. 4.1, S∞ is monotone. By (17), t� is monotone. By (22),

we have ���P� = gfp
⊆

P
���P� so ���P� ⊆ P. By monotony we conclude that

t�[S
∞����P��] ⊆ t�[S

∞�P�].

By Lem. 4.1, S∞ ◦ �∞ is extensive so that t�[S
∞�P�] ⊆ S∞��∞[t�[S

∞�P�]]�.

21

Patrick Cousot and Radhia Cousot

By (22), �∞[S∞
�
�P�] ⊆ ���P�. By Lem. 4.1, S∞ is monotone. So by monotony,

S∞��∞[S∞
�
�P�]� ⊆ S∞����P��. By (18), S∞

�
�P�

∆
= t�[S

∞�P�] so that we have
S∞��∞[t�[S

∞�P�]]� ⊆ S∞����P��.

By transitivity, t�[S
∞�P�] ⊆ S∞����P��. By Lem. 5.2, t� is monotone and

idempotent so t�[S
∞�P�] = t�[t�[S

∞�P�]] ⊆ t�[S
∞����P��].

By antisymmetry, we conclude that t�[S
∞�P�] = t�[S

∞����P��]. �

6 Conclusion

The general idea to formalize program transformation by abstract interpreta-
tion is to define a semantic transformation as an abstraction of the subject
program semantics. This transformation is an abstraction in that the trans-
formed semantics has lost some information on the subject semantics (e.g. the
existence of blocking traces). The correctness of the semantic transformation
is proved using an observational abstraction specifying which details about
the subject and transformed semantics should be abstracted away to consider
them as equivalent. Then the syntactic – source to source – program trans-
formation is constructively derived by abstraction of transformed semantics
into a transformed program. This new approach has been illustrated on the
simple case of blocking command elimination.

Many more complex examples such as transition compression, constant
propagation, partial evaluation, slicing, etc. have to be treated similarly in
order to convince that this point of view is quite general. This will probably
require the generalization of the present program transformation framework,
for example using weaker hypotheses on abstraction in absence of a best ap-
proximation [9].

References

[1] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, Dov M. Gabbay,
and T.S.E. Maibaum, editors, Semantic Structures, volume 3 of Handbook of
Logic in Computer Science, chapter 1, pages 1–168. Clarendon Press, 1994.

[2] K.R. Apt and G.D. Plotkin. Countable nondeterminism and random
assignment. J. ACM, 33(4):724–767, Oct. 1986.

[3] R.M. Burstall and J. Darlington. A transformation system for developing
recursive programs. J. ACM, 24(1):44–67, Jan. 1977.

[4] P. Cousot. Méthodes itératives de construction et d’approximation de points
fixes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’État ès sciences mathématiques, Université scientifique et médicale de
Grenoble, Grenoble, France, 21 Mar. 1978.

[5] P. Cousot. Constructive design of a hierarchy of semantics of
a transition system by abstract interpretation. ENTCS, 6, 1997.

22

Patrick Cousot and Radhia Cousot

http://www.elsevier.nl/locate/entcs/volume6.html, 25 pages.

[6] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
4th POPL, pages 238–252, Los Angeles, CA, 1977. ACM Press.

[7] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point
theorems. Pacific J. Math., 82(1):43–57, 1979.

[8] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In 6th POPL, pages 269–282, San Antonio, TX, 1979. ACM Press.

[9] P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Logic and
Comp., 2(4):511–547, Aug. 1992.

[10] J.W. de Bakker, J.-J.Ch. Meyer, and J.I. Zucker. On infinite computations in
denotational semantics. Theoret. Comput. Sci., 26:53–82, 1983. (Corrigendum:
Theoret. Comput. Sci. 29:229–230, 1984).

[11] N. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Int. Series in Computer Science. Prentice-Hall, June 1993.

[12] N.D. Jones. Abstract interpretation and partial evaluation in functional and
logic programming. In M. Bruynooghe, editor, Proc. Int. Symp. ILPS ’1994,
pages 17–22. MIT Press, 13–17 Nov. 1994.

[13] N.D. Jones. An introduction to partial evaluation. ACM Comput. Surv.,
28(3):480–504, Sep. 1996.

[14] N.D. Jones. Combining abstract interpretation and partial evaluation (brief
overview). In P. Van Hentenryck, editor, Proc. 4th Int. Symp. SAS ’97, Paris,
France, 8–10 Sep. 1997, LNCS 1302, pages 396–405. Springer-Verlag, 1997.

[15] G. Kildall. A unified approach to global program optimization. In 1st POPL,
pages 194–206, Boston, MA, Oct. 1973. ACMpress.

[16] S.C. Kleene. Representation of events in nerve nets and finite automata.
Automata Studies, pages 3–42, 1956.

[17] A. Pnueli, 0. Shtrichman, and M. Siegel. The code validation tool CVT:
Automatic verification of a compilation process. STTT, 2(2):192–201, 1998.

[18] J.C. Reynolds. The discoveries of continuations. Lisp and Symbolic
Computation, 6(3/4):233–248, Nov. 1993.

[19] P. Steckler and M. Wand. Selective thunkification. In B. Le Charlier, editor,
Proc. 1st Int. Symp. SAS ’94, Namur, Belgium, 20–22 Sep. 1994, LNCS 864,
pages 162–178. Springer-Verlag, 1994.

[20] A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific
J. Math., 5:285–310, 1955.

[21] P. Wadler. Deforestation: Transforming programs to eliminate trees. Theoret.
Comput. Sci., 73(2):231–248, 28 Mar. 1990.

23

http://www.elsevier.nl/locate/entcs/volume6.html

Patrick Cousot and Radhia Cousot

[22] M. Weiser. Program slicing. IEEE Trans. Software Engrg., SE-10(4):352–357,
Jul. 1984.

24

	1 Introduction
	2 A Few Elements of Abstract Interpretation
	2.1 Fixpoints
	2.2 Abstraction
	2.3 Fixpoint Coabstraction
	2.4 Locally Complete Fixpoint Abstraction
	2.5 Fixpoint Approximation

	3 The Syntax and Semantics of Programs
	3.1 Abstract Syntax of Programs
	3.2 Semantics of Program Actions
	3.3 States
	3.4 Transitional Semantics
	3.5 Sequences of States
	3.6 Complete Trace Semantics of Programs
	3.7 Suffix-Closure
	3.8 Complete Trace Semantics of Programs in Fixpoint Form (1)
	3.9 Feasible Traces
	3.10 Complete Trace Semantics of Programs in Fixpoint Form (2)

	4 Correspondence between Syntax and Trace Semantics of Programs
	4.1 Trace-wide Command Collection
	4.2 Trace First Command Collection

	5 Blocking Command Elimination
	5.1 Introduction to Blocking Command Elimination
	5.2 Semantic Blocking Trace Elimination
	5.3 Observational Abstraction
	5.4 Observational Abstraction for Blocking Code Elimination
	5.5 Transformation Design Strategy
	5.6 Non-Blocking Trace Semantics of Programs
	5.7 Blocking Command Elimination Algorithm
	5.8 Correctness of the Blocking Command Elimination Algorithm

	6 Conclusion
	References

