
Bi-inductive Structural Semantics ?

Patrick Cousot
Département d’informatique, École normale supérieure, 45 rue d’Ulm,

75230 Paris cedex 05, France

Radhia Cousot
CNRS & École polytechnique, 91128 Palaiseau cedex, France

Abstract

We propose a simple order-theoretic generalization, possibly non monotone, of set-
theoretic inductive definitions. This generalization covers inductive, co-inductive
and bi-inductive definitions and is preserved by abstraction. This allows structural
operational semantics to describe simultaneously the finite/terminating and infi-
nite/diverging behaviors of programs. This is illustrated on grammars and the
structural bifinitary small/big-step trace/relational/operational semantics of the
call-by-value λ-calculus (for which co-induction is shown to be inadequate).

Key words: fixpoint definition, inductive definition, co-inductive definition,
bi-inductive definition, non-monotone definition, grammar, structural operational
semantics, SOS, trace semantics, relational semantics, small-step semantics, big-step
semantics, divergence semantics.

1 Introduction

The connection between the use of fixpoints in denotational semantics [24]
and the use of rule-based inductive definitions in axiomatic semantics [15] and
? This work was done in the INRIA project team Abstraction common to the
CNRS and the École normale supérieure.
Email addresses: C fst o nc u ek to .ri @s raP . (Patrick Cousot),

C y@ e. cd o n .fs qito pti lh u rha uo eaR (Radhia Cousot).
URLs: www.di.ens.fr/˜cousot/ (Patrick Cousot),

www.enseignement.polytechnique.fr/profs/informatique/Radhia.Cousot/
(Radhia Cousot).

Preprint submitted to Elsevier 28 April 2009

structural operational semantics (SOS) [28,30,29] can be made by a general-
ization of inductive definitions [2] to include co-inductive definitions [11]. It is
then possible to generalize natural semantics describing finite input/output
behaviors [17] so as to also include infinite behaviors [10]. This is necessary
since the definition of the infinite behaviors cannot be derived from the finite
big-step SOS behaviors.

1.1 Motivating example

Let us consider for example the choice operator E1|E2 where the evaluation
of expression E1 either terminates (returning the value a, written E1 =⇒ a)
or does not terminate (written E1 =⇒ ⊥). Similarly for expression E2, either
E2 =⇒ b or E2 =⇒ ⊥. For the semantics of the choice operator, we have three
possible results {r | E1|E2 =⇒ r} ⊆ {a, b,⊥}, depending upon its operational
semantics. Several alternatives are considered below.

• Nondeterministic: an internal choice is made
initially to evaluate E1 or to evaluate E2;

E1

E1|E2 a ⊥

E2
b {a, b} {⊥, b}

⊥ {a,⊥} {⊥}

• Parallel: evaluate E1 and E2 concurently,
with an unspecified scheduling, and return
the first available result a or b;

E1

E1|E2 a ⊥

E2
b {a, b} {b}

⊥ {a} {⊥}

• Eager: evaluate E1 (or respectively E2) first
and then E2 (resp. E1) and return either re-
sult a or b;

E1

E1|E2 a ⊥

E2
b {a, b} {⊥}

⊥ {⊥} {⊥}

• Mixed left-to-right: evaluate E1 first and ei-
ther return its result a or evaluate E2 and
return its results b;

E1

E1|E2 a ⊥

E2
b {a, b} {⊥}

⊥ {a,⊥} {⊥}

2

• Mixed right-to-left: evaluate E2 first and ei-
ther return its result b or evaluate E1 and
return its results a;

E1

E1|E2 a ⊥

E2
b {a, b} {⊥, b}

⊥ {⊥} {⊥} .

Observe that all evaluations have exactly the same convergence big-step seman-
tics. However, they differ on their divergence behaviors. It follows, for example,
that an implementation of the natural semantics [17] will have its diverging
behaviors undefined by the formal semantics hence determined by the behavior
of the implementation. This is the case with left-to-right evaluation Prolog
implementation [3,13], but the problem is general and concerns the class of
all implementations that conform to the semantics, regardless of how they
were produced. So the natural big-step convergence semantics is an abstract
semantics of programs which is not an exact match for its concrete operational
semantics. This shows the need to extend big-step/natural semantics to cope
with infinite behaviors.

1.2 Summary

The paper develops and illustrates the use of “bi-inductive” definitions in
operational semantics.

Bi-inductive definitions enable both finitary and infinitary behaviors to be
described simultaneously [10,11].

Section 2 describes the general methodology. Hilbert proof systems [2] are
extended by replacing the powerset 〈℘(U), ⊆〉 of the universe U by a complete
partial order 〈D, v〉. The method for defining a map from a well-founded
set to complete partial orders combines well-founded recursion and structural
inductive definitions described by using different, but equivalent, forms: fixpoint
definition, equational definition, constraint-based (inequational) definition, and
rule-based definition.

Section 3 recalls a few elements of abstract interpretation, including soundness
and completeness.

Section 4 is a simple illustration of this approach to give a trace semantics to
transition systems [6].

The semantics of context-free grammars in Sect. 5 combines the classical
definitions of the finite and infinite languages generated by a grammar, which
can be recovered by simple abstractions.

3

Section 6 is an application to the call-by-value λ-calculus. We introduce an orig-
inal big-step trace semantics that gives operational meaning to both convergent
and divergent behaviors of programs. The compositional structural definition
mixes induction for finite behaviors and co-induction for infinite behaviors
while avoiding duplication of rules between the two cases. This big-step trace
semantics excludes erroneous behaviors that go wrong. The other semantics
are then systematically derived by abstraction.

The big-step trace semantics is first abstracted to a relational semantics and
then to the standard big-step or natural semantics. These abstractions are
sound and complete in that the big-step trace and relational semantics describe
the same converging or diverging behaviors while the big-step trace and natural
semantics describe the same finite behaviors. The big-step trace semantics is
then abstracted into a small-step semantics, by collecting transitions along
traces. This abstraction is sound but incomplete in that the traces generated
by the small-step semantics describes convergent, divergent, but also erroneous
behaviors of programs. This shows that trace-based operational semantics can
be much more informative that small-step operational semantics.

2 Structural order-theoretic inductive definitions

We introduce different forms of structural order-theoretic inductive definitions
and prove their equivalence.

2.1 Dcpos and complete lattices

Let 〈S, v〉 be a poset [12]. A chain in the poset 〈S, v〉 is a subset of S such
that any two elements in the chain are comparable by v. A directed complete
partial order (dcpo) is a poset such that any chain has a least upper bound (lub
denoted t). For the empty chain the lub is the infimum ⊥ of S. A complete
lattice is a poset such that any subset has a lub. If I is a set and 〈S, v〉 is a
poset (resp. dcpo, complete lattice) then the pointwise extension 〈I −→ S, v̇〉
with f v̇ g , ∀i ∈ I : f(i) v g(i) is a poset (resp. dcpo, complete lattice) and
similarly for the pointwise extension 〈I ′ −→ (I −→ S), v̈〉 of 〈I −→ S, v̇〉.

2.2 Syntax

Structural inductive definitions are by induction on the syntactic structure of
the program. We understand a language L as a set of non-empty “syntactic com-
ponents” (including programs). For example, the λ-calculus has λ y . λx . a,

4

y, λx . a, x and a among its “syntactic components”. A component is “atomic”
or else has finitely many “strict subcomponents” such as y, λx . a, x and a for
λ y . λx . a. For simplicity, these subcomponents are assumed to be distinct
two-by-two (for example thanks to unique labels). The corresponding cover
relation is ` −≺ `′ on L meaning that ` is a “strict immediate syntactic sub-
component” of `′. For example, y −≺ λ y . λx . a and λx . a −≺ λ y . λx . a
while x −≺ λx . a and a −≺ λx . a but a 6−≺ λ y . λx . a. As a shorthand
reminiscent of the grammatical notation, we write λ y . λx . a ::= y, λx . a
and λx . a ::= x, a where the “strict immediate syntactic subcomponents” are
given in left-to-right order (in fact any total order would do).

More generally, to completely abstract away from syntax, we let 〈L, 4〉 be a
partially ordered set where 4 is well-founded and ≺ is the corresponding strict
relation. We write −≺ for the corresponding cover relation that is x −≺ y if
and only if x ≺ y and 6 ∃z : x ≺ z ≺ y. The cover relation −≺ should have finite
left images ∀` ∈ L : |{`′ ∈ L | `′ −≺ `}| ∈ N 1 . We let ∏`′−≺` `

′ be the tuple
of elements covered by ` and given in some total order ∏`′−≺` `

′ = `1, . . . , `n
so that {`1, . . . , `n} = {`′ ∈ L | `′ −≺ `} and write ` ::= `1, . . . , `n for brevity
with n = 0 for atoms (such that ∀`′ ∈ L : `′ 6−≺ `).

2.3 Semantic domains

For each “component” ` ∈ L, we consider a semantic domain 〈D`, v`, ⊥`, t`〉
which is assumed to be a dcpo.

2.4 Variables

For each “component” ` ∈ L, we consider variables X`, Y`, . . . ranging over
the semantic domain D`. We drop the subscript ` when the corresponding
semantic domain is clear from the context (e.g. the semantic domain is the
same for all “components” i.e. ∀` ∈ L : D` = D).

2.5 Transformers

For each “component” ` ∈ L, we let ∆` be indexed sequences (totally ordered
sets). For example if the semantics of the “component” ` is defined by a sequence
of rules labeled (R1), ..., (Rn) in that order, then we can define ∆` = R1, ...,

1 |S| is the cardinality of set S and N is the set of natural numbers.

5

Rn. We write ∏i∈∆` xi when considering the sequence 〈xi, i ∈ ∆`〉 ∈ ∆` −→ S
of elements of a set S as a vector of ∏i∈∆` S.

For each element i ∈ ∆` of the sequence, we consider transformers F i
` ∈ D` ×

D`1 . . .×D`n −→ D` where `::=`1 . . . `n. When n = 0, we have F i
` ∈ D` −→ D`.

The transformers are said to be v`-monotone in their first parameter (v`-
monotone for brevity), whenever ∀i ∈ ∆`, ` ::= `1, . . . , `n, X, Y ∈ D`, X1 ∈
D`1 , . . . , Xn ∈ D`n : X v` Y =⇒ F i

` (X,X1, . . . , Xn) v` F i
` (Y,X1, . . . , Xn).

2.6 Join

For each “component” ` ∈ L, the join g̀ ∈ (∆` −→ D`) −→ D` is used to gather
alternatives in formal definitions. For brevity, we write g̀(

∏
i∈∆`

Xi) =
j
`

i∈∆`

Xi,

leaving implicit the fact that the Xi should be considered in the total order
given by the sequence ∆`.

Most often, the order of presentation of these alternatives in the formal defini-
tion is not significant. In this case, ∆` is just a set and the join may often be
defined in term of a binary join g̀ ∈ (D` ×D`) −→ D`, which is assumed to
be associative and commutative, as g̀(

∏
i∈∆`

Xi) ,
j
`

i∈∆`

Xi. The binary join may

be different from the least upper bound (lub) t` of the semantic domain D`.

The join operator is said to be componentwise v`-monotone whenever (∀〈Xi,

i ∈ ∆`〉 : ∀〈Yi, i ∈ ∆`〉 : (∀i ∈ ∆` : Xi v` Yi) =⇒
j
`
(
∏
i∈∆`

Xi) v`
j
`
(
∏
i∈∆`

Yi)).

This is the case when the binary join is v`-monotone,

2.7 Fixpoint definitions

A fixpoint definition has the form

∀` ∈ L : SfJ`K = lfp
v` FfJ`K

where FfJ`K , λX . j
`

i∈∆`

F i
` (X,

∏
`′−≺`
SfJ`′K)

6

and lfp
v is the partially defined v-least fixpoint operator on a poset 〈P, v〉 2 .

To emphasize structural composition when ` ::= `1, . . . , `n, we write

∀` ∈ L : SfJ` ::= `1, . . . , `nK = lfp
v` λX . j

`
i∈∆`

F i
` (X,SfJ`1K, . . . ,SfJ`nK) .

Hypothesis 1 It is assumed that the least fixpoint lfp
v` FfJ`K does exist. e

Hyp. 1 holds in the event of monotony.
Lemma 2 If λX .F i

` (X,
∏
`′−≺`
SfJ`′K) is monotone for all i ∈ ∆` and g̀ is

monotone then ∀` ∈ L : SfJ`K is well defined. e

Proof Assume, by induction on ≺, that SfJ`′K is well-defined for all `′ −≺ `.
λX . j

`
i∈∆

F i
` (X,

∏
`′−≺`
SfJ`′K) is monotone since λX .F i

` (X,
∏
`′−≺`
SfJ`′K) is mono-

tone for all i ∈ ∆` and g̀ is monotone by hypothesis. It follows that the least
fixpoint lfp

v` FfJ`K does exist in the dcpo 〈D`, v`〉 as shown by [7] 3 (or [27]
without the axiom of choice, see [18,21] for historical perspectives), proving
that SfJ`K is well-defined. �

Definitions without fixpoint or join can nevertheless be encompassed as fixpoints
such as

j
`

i∈∆`

F i
` (SfJ`1K, . . . ,SfJ`nK) = lfp

v` λX . j
`

i∈∆`

F i
` (SfJ`1K, . . . ,SfJ`nK) or

without join F i
` (SfJ`1K, . . . ,SfJ`nK) = lfp

v` λX . j
`

i′∈{i}

F i′
` (SfJ`1K, . . . ,SfJ`nK).

2.8 Equational definitions

An equational definition has the form:

〈SeJ`K, ` ∈ L〉 is the componentwise v`-least 〈X`, ` ∈ L〉 satisfying the system
of equations

X` =
j
`

i∈∆`

F i
` (X`,

∏
`′−≺`

X`′), ` ∈ L .

2 We write lfp
v

a
f for the v-least fixpoint of f ∈ P −→ P which is v-greater than

or equal to a ∈ P if any. If P has an infimum ⊥ ∈ P then lfp
v
f = lfp

v

⊥
f . The dual

partially defined greatest fixpoint operator is gfp
v .

3 The complete lattice hypothesis is not used in [7] to prove the existence of the
least fixpoint of monotone partial functions on a poset. It follows from the well-
definedness of transfinite iterates from pre-fixpoints, in particular for limit ordinals.
This hypothesis, which is weaker than dcpos, would also be sufficient in this paper
when assuming monotony.

7

Lemma 3 If Hyp. 1 holds then ∀` ∈ L : SeJ`K = SfJ`K. e

Proof We prove, by induction on ≺, that the componentwise v`-least such
〈X`, ` ∈ L〉 satisfies ∀` ∈ L : SeJ`K = SfJ`K. For the base case 6 ∃ `′ −≺
`, SeJ`K is the v`-least X` such that X` =

j
`

i∈∆`

F i
` (X`) that is SfJ`K =

lfp
v` λX . j

`
i∈∆`

F i
` (X) by definition and existence of the v`-least fixpoint.

Otherwise X`′ = SeJ`′K = SfJ`′K for all `′ −≺ ` by induction hypothesis and
so SeJ`K is the v`-least X` such that X` =

j
`

i∈∆`

F i
` (X`,

∏
`′−≺`
SfJ`′K), that is

lfp
v` FfJ`K = SfJ`K by definition and existence of the v`-least fixpoint. �

2.9 Constraint-based definitions

A constraint-based definition has the form:

〈ScJ`K, ` ∈ L〉 is the componentwise v`-least 〈X`, ` ∈ L〉 satisfying the system
of constraints (inequations)

j
`

i∈∆`

F i
` (X`,

∏
`′−≺`

X`′) v` X` , ` ∈ L .

Lemma 4 If ∀` ∈ L, FfJ`K is v`-monotone then ∀` ∈ L : ScJ`K = SfJ`K. e

Proof We prove, by induction on ≺, that ScJ`K = SfJ`K. Assume this is true
for all `′ −≺ `. So ScJ`K is the v`-least X` such that

j
`

i∈∆`

F i
` (X`,

∏
`′−≺`
SfJ`′K)

v` X`. Then the fixpoint property SfJ`K =
j
`

i∈∆`

F i
` (SfJ`K,

∏
`′−≺`
SfJ`′K) implies

j
`

i∈∆`

F i
` (SfJ`K,

∏
`′−≺`
SfJ`′K) v` SfJ`K since v` is reflexive, proving that at least

one such X` does exist. By transfinite induction, all transfinite iterates for
FfJ`K from ⊥` (which do exist in a dcpo [7]) are v`-less than or equal to any
such X`. Because SfJ`K = lfp

v` FfJ`K is one of these iterates we conclude that
ScJ`K does exist and, by antisymmetry, is SfJ`K. �

In absence of monotony, as shown on the oppo-
site example, the least fixpoint definition and the
constraint-based definition may not coincide, since
0 = F (∞) @∞ @ > = lfp

v
F

8

2.10 Rule-based definitions

A rule-based definition is a sequence of rules of the form

X`

F i
` (X`,

∏
`′−≺`
SrJ`′K)

v` ` ∈ L, i ∈ ∆`

where the premise and conclusion are elements of the 〈D`, v`〉 cpo. When
understanding the rule in logical form (where the premise is a statement that is
assumed to be true and from which a conclusion can be drawn), the following
form might be preferred.

X` v` SrJ`K

F i
` (X`,

∏
`′−≺`
SrJ`′K) v` SrJ`K

v` ` ∈ L, X` ∈ D`, i ∈ ∆`

If F i
` does not depend upon the premiseX`, it is an axiom. In such presentations,

the join g̀ of the alternatives is left implicit 4 . To make it explicit, we rewrite
such definitions in the form

X` v` SrJ`K
j
`

i∈∆`

F i
` (X`,

∏
`′−≺`
SrJ`′K) v` SrJ`K

v` ` ∈ L, X` ∈ D` . (1)

The formal definition of the join makes explicit whether the order of presentation
of the rules does matter, or not. When it doesn’t, the join can be defined using
a binary associative and commutative join. This binary join can even be left
implicit and, by associativity and commutativity, the rules can be given in any
order. This will be the case for the examples provided in Sect. 5 and Sect. 6.

The meaning of a rule-based definition (1) is

SrJ`K , lfp
v` λX . j

`
i∈∆`

F i
` (X,

∏
`′−≺`
SfJ`′K) .

where, by Hyp. 1, the fixpoint of the consequence operator is assumed to
exist.
4 This is the case in Hilbert’s formal systems, see Sect. 2.12.

9

A D ∈ D` is provable if and only if it has a proof that is a transfinite sequence 5

D0, . . . , Dλ of elements of D` such that D0 = ⊥`, Dλ = D and for all 0 < δ 6 λ,
Dδ v`

j
`

i∈∆`

F i
` (
⊔

`
β<δ

Dβ,
∏
`′−≺`
SrJ`′K).

The proof-theoretic meaning of a rule-based definition (1) is

SpJ`K ,
⊔

`
{D ∈ D` | D is provable} .

Lemma 5 If ∀` ∈ L, FfJ`K is v`-monotone then ∀` ∈ L : SpJ`K = SfJ`K. e

Proof The proof is by induction on ≺, so assume ∀`′ −≺ ` : SpJ`′K =
SfJ`′K. The limit SfJ`K of the ultimately stationary transfinite iterates for
λX . j

`
i∈∆`

F i
` (X,

∏
`′−≺` SpJ`′K) = FfJ`K from ⊥` (which does exist in a dcpo

[7]) belongs to {D ∈ D` | D is provable} since v` is reflexive. Any other proof
is upper-bounded by these iterates and so if D is provable then D v` SfJ`K
proving that the least upper bound (lub)

⊔
`
{D ∈ D` | D is provable} does

exist and is precisely SfJ`K. �

2.11 Equivalence of the order-theoretic inductive definitions

Theorem 6 Hyp. 1 implies that ∀` ∈ L : SJ`K , SfJ`K = SeJ`K = SrJ`K.
If ∀` ∈ L, FfJ`K is v`-monotone then SJ`K = ScJ`K = SpJ`K. e

This generalization of [2] could also include a game-theoretic version (the game
semantics [1] being of quite different nature). The closure-condition version [2]
is also easy to adapt.

2.12 Example: inductive definitions

The classical inductive definition [2] of a subset S of a universe U by rules{
Pi
ci

∣∣∣ i ∈ I} where Pi ⊆ U and ci ∈ U , i ∈ I can be written X ⊆ S

{ci | Pi ⊆ X} ⊆ S
⊆,

i ∈ I or Pi ⊆ X, X ⊆ S

ci ∈ S
⊆, i ∈ I that is Pi ⊆ S

ci ∈ S
⊆, i ∈ I for short. So 〈L,4〉 , 〈{ },

=〉 where stands for the void syntactic component, 〈D ,v ,⊥ , t 〉 , 〈℘(U),⊆,
∅, ∪〉, ∆ , I, for a given i ∈ I, F i ∈ ℘(U) −→ ℘(U) is F i(X) , {ci | Pi ⊆ X}
and

j
,
⋃ thus defining S = lfp

⊆
λX . {ci | i ∈ I ∧ Pi ⊆ X}.

5 In the classical case [2], the fixpoint operator is continuous hence proofs are finite.

10

2.13 Reduction of order-theoretic inductive definitions

An element x of a poset 〈D, v〉 is (complete) join irreducible if and only if
for all X ⊆ D such that x = ⊔

X we necessarily have x ∈ X. Observe that if
〈D, v〉 has an infimum ⊥ then ⊥ is not join irreducible since ⊥ = ⊔∅ but
⊥ 6∈ ∅. We let J (D) be the set of join irreducibles of D. If x ∈ D, we define
J (x) , {y ∈ J (D) | y v x}.

A poset 〈D, v〉 satisfies the descending chain condition (DCC) if and only if
every denumerable descending chain x0 w x1 w . . . in D is finite that is xk =
xk+1 = . . . for some k ∈ N.

If 〈D, v〉 is a poset satisfying (DCC) then for all ∀x ∈ D : x = ⊔J (x). The
proof is an easy generalization of [12, Prop. 2.45].

In case 〈D`, v`〉 satisfies (DCC), we let {F ij
` (Pi,

∏
`′−≺` SfJ`′K) | j ∈ ∆i

`}
, J (F i

` (Pi,
∏
`′−≺` SfJ`′K)) for all i ∈ ∆` and define the reduced inductive

definition as

∀` ∈ L : SJf J`K = lfp
v` λX . j

`
i∈∆`

⊔
`

j∈∆i
`

F ij
` (X,

∏
`′−≺`
SfJ`′K) .

and similarly for the equivalent forms.
Lemma 7 If 〈D`, v`〉, ` ∈ L satisfies (DCC) then SJf J`K = SfJ`K. e

Proof By join irreducibility F i
` (X,

∏
`′−≺` SfJ`′K) =

⊔
`
J (F i

` (X,
∏
`′−≺` SfJ`′K))

=
⊔

`
j∈∆i

`

F ij
` (Pi,

∏
`′−≺` SfJ`′K) by definition. �

For example 0 ∈ E, X ⊆ E

{n | n+ 2 ∈ X} ⊆ E
⊆ can be simplified into 0 ∈ E, n ∈ E

n+ 2 ∈ E
⊆.

2.14 Bi-semantic domains

To account for terminating/finite and diverging/infinite program behaviors,
we consider bi-semantic domains [10] consisting, for each ` ∈ L, of a finitary
semantic domain (of finite program behaviors) 〈D+

` , v+
` , ⊥+

` ,
⊔

+
`
〉 and a

infinitary semantic codomain (of infinite program behaviors) 〈D−` , v−` , ⊥−` ,⊔
−
`
〉 which are assumed to be dcpos (respectively complete lattices). They are

combined into a bi-semantic domain (of bifinite program behaviors) D` thanks
to a projection π+

` ∈ D` −→ D+
` , a coprojection π−` ∈ D` −→ D−` , and a

constructor π` ∈ D+
` ×D−` −→ D` satisfying ∀x ∈ D+

` , y ∈ D−` : π+
` (π`(x, y)) =

x and π−` (π`(x, y)) = y while ∀X ∈ D : π`(π+
` (X), π−` (X)) = X. Examples are

11

the cartesian product, disjoint union or union of disjoint sets. The bi-semantic
domain 〈D`, v`, ⊥`, t`〉 is then a dcpo (respectively a complete lattice) by
defining X+ , π+

` (X), X− , π−` (X), X v` Y , (X+ v+
` Y

+)∧ (X− v−` Y −),
and

⊔
`

i∈I
Xi , π`(

⊔
+
`

i∈I
X+
i ,
⊔
−
`

i∈I
X−i).

2.15 Bi-semantic fixpoints

Lemma 8 Let L+ and L− be a partition of the set L. For all X, Y ⊆ L, define
X+ , X ∩L+, X− , X ∩L−, and (X v Y) , (X+ ⊆ Y +)∧ (X− ⊇ Y −). Let
F ∈ ℘(L) −→ ℘(L) be ⊆-monotone 6 such that ∀X ⊆ L : (F (X))+ = F (X+)
and F (X) ⊆ F ((S+ ∩X+) ∪X−) where F+(X) , (F (X+))+, S+ = lfp

⊆
F+,

F−(X) , (F (S+ ∪X−))−, S− = gfp
⊆
F−. Then S , S+ ∪ S− = lfp

v
F . e

Proof 〈℘(L), ⊆〉 is a complete lattice and F is ⊆-monotone when so are F+

and F− proving that lfp
⊆
F+ and gfp

⊆
F− exist by Tarski’s fixpoint theorem

[33]. We first prove that S is a fixpoint of F .

S

= S+ ∪ S−

= F+(S+) ∪ F−(S−)
Hby fixpoint definitions S+ , lfp

⊆
F+ and S− , gfp

⊆
F−I

= (F (S+))+ ∪ (F (S+ ∪ S−))− Hdef. F+ and F−I
= (F (S))+ ∪ (F (S))− Hsince (F (S+))+ = (F (S))+ and S = S+ ∪ S− I

= F (S) Hsince ∀X ⊆ L : X = X+ ∪X−I

To prove that S is the v-least fixpoint of F , let T be another fixpoint of F that
is T = F (T). It follows that T+ ∪ T− = (F (T))+ ∪ (F (T))− so T+ = (F (T))+
and T− = (F (T))− since L+ ∩ L− = ∅. Therefore T+ = (F (T))+ = (F (T+))+
= F+(T+) hence S+ ⊆ T+ since S+ , lfp

⊆
F+. Moreover T− = (F (T))− =

(F (T+ ∪ T−))− = (F (S+ ∪ T−))− = F−(T−) by ⊆-monotony of F , hypothesis
F (T) ⊆ F ((S+ ∩ T+) ∪ T−) and antisymmetry. It follows that T− ⊆ S− by
Tarski’s fixpoint theorem [33] for gfp

⊆
F− . We conclude that S v T by def. of

v. �

The lemma can be easily generalized to any bi-semantic domain as defined in
the previous Sect. 2.14.

6 but not necessarily v-monotone.

12

2.16 Sequences

Given a set S (for example, a set of states in Sect. 4, a finite terminal alphabet
in Sect. 5 or a set of terms in Sect. 6), we let S? be the set of finite sequences
over the set S including the empty sequence ε, S+ , S? \ {ε}, Sω be the set of
infinite sequences over S, S∝ , S?∪Sω be the set of finite or infinite sequences
over S 7 , and S∞ , S+∪Sω be the set of nonempty finite or infinite sequences
over S. We let |σ| ∈ N ∪ {ω} be the length of σ ∈ S∝, in particular |ε| = 0
and Sn , {σ ∈ S? | |σ| = n}. We let • be the concatenation of traces so that
ε • σ = σ • ε = σ and σ • ς = σ when σ ∈ Sω. If σ ∈ S+ then |σ| > 0 and
σ = σ0 • σ1 • . . . • σ|σ|−1. If σ ∈ Sω then |σ| = ω and σ = σ0 • σ1 • . . . • σn •
For sentences over an alphabet in Sect. 5, we denote concatenation • by
juxtaposition so σ = σ0σ1 . . . σ|σ|−1 ∈ S? and σ = σ0σ1 . . . σn . . . ∈ Sω.

Given X, Y ∈ ℘(S∝), we define X? , X ∩ S?, X+ , X ∩ S+, Xω , X ∩ Sω
and X v Y , X? ⊆ Y ? ∧ Xω ⊇ Y ω, so that 〈℘(S∝), v, Sω, S?, t, u〉 is
an example of bi-semantic domain as defined in Sect. 2.14. It is a complete
lattice with lub X tY , (X?∪Y ?))∪ (Xω∩Y ω). Similarly, for the bi-semantic
domain 〈℘(S∞), v, Sω, S+, t, u〉.

3 Abstraction

We consider a simple form of abstraction based on a continuous abstraction
function α [9], which includes the particular case of a Galois connection [8]
(denoted 〈P, �〉 −−→←−−α

γ
〈Q, v〉, or 〈P, �〉 −−→−→←−−−−

α

γ
〈Q, v〉 when α is onto, where

〈P, �〉 and 〈Q, v〉 are posets, and ∀x ∈ P : ∀y ∈ Q : α(x) v y ⇐⇒ x � γ(y)).

For all ` ∈ L, we let 〈D`, v`, ⊥`, t`〉 be dcpos, F
i

` ∈ D`×D`1 . . .×D`n −→ D`,
i ∈ ∆` be monotone in their first parameter, and define the abstract semantics
SfJ`K in one of the equivalent forms of Th. 6.

If α` ∈ D` −→ D`, we say that the abstract semantics 〈SJ`K, ` ∈ L〉 is sound
with respect to the concrete semantics 〈SJ`K, ` ∈ L〉 if and only if ∀` ∈ L :
α`(SJ`K) v` SJ`K. It is complete whenever ∀` ∈ L : SJ`K v` α`(SJ`K). The
following theorem provides a sufficient soundness and completeness condition.
Theorem 9 If the F i

` and F i
` are monotone in their first parameter, the join

operators
j
`
and

j
`
are componentwise monotone, the α` ∈ D` −→ D`, ` ∈ L

are strict and continuous (in particular 〈D`, v`〉 −−−→←−−−α`
γ` 〈D`, v`〉 is a Galois

7 The “proportional to” symbol ∝ is used as a pictogram similar to “infinity” ∞
but with the possibility of emptiness.

13

connection) and the F i
` commute with the F i

` up to α` i.e. ∀` ∈ L : ∀X` v`
SJ`K : ∀X`′ ∈ D`′ , `′ ≺ `:

j
`

i∈∆`

F
i

`(α`(X`),
∏
`′≺`

α`′(X`′)) = α`(
j
`

i∈∆`

F i
` (X`,

∏
`′≺`

X`′))

then SJ`K = α`(SJ`K). e

Proof By induction on ≺ using the fixpoint definition of SJ`K and SJ`K, and
[8, 7.1.0.4-(3)]. �

4 Order-theoretic inductive definitions of the trace semantics of
transition systems

We let Σ be a set of states and τ ⊆ Σ × Σ be a transition relation on Σ.
We consider the bi-semantic domain 〈℘(Σ∞), v, Σω, Σ+, t, u〉 defined in
Sect. 2.16 and the trace semantics

S ,
⋃
n>0
{σ ∈ Σn | ∀i ∈ [0, n− 1[: 〈σi, σi+1〉 ∈ τ ∧ ∀s ∈ Σ : 〈σn−1, s〉 6∈ τ}

∪ {σ ∈ Σω | ∀i ∈ N : 〈σi, σi+1〉 ∈ τ} .

Since the semantics is not defined by structural induction, we define L , { }
where is a void syntactic component and ≺ , ∅. We let

τ̇ , {σ ∈ Σ+ | |σ| = 1 ∧ ∀s ∈ Σ : 〈σ0, s〉 6∈ τ} blocking state traces
τ ◦ X , {σ0 • σ1 • ς ∈ Σ∞ | 〈σ0, σ1〉 ∈ τ ∧ σ1 • ς ∈ X} transition prefix
F (X) , τ̇ ∪ τ ◦ X trace transformer.

The trace transformer F is v-monotone, indeed upper-continuous. The i-th
iterate F i of F from Σω is

F i =
i−1⋃
n=0
{σ ∈ Σn | ∀i ∈ [0, n− 1[: 〈σi, σi+1〉 ∈ τ ∧ ∀s ∈ Σ : 〈σn−1, s〉 6∈ τ}

∪ {σ0 • . . . • σi . . . • ς ∈ Σω | ∀k ∈ [0, i− 1[: 〈σk, σk+1〉 ∈ τ}

so that S =
⊔
i∈N

F i = lfp
v
F [6]. In rule-based form, we have

14

τ̇ ∈ S
σ ∈ S

τ ◦ σ ∈ S
v .

The trace transformer F isv-monotone for transition systems and for grammars
considered in next Sect. 5 but no longer for the big-step trace semantics of the
call-by-value λ-calculus considered in Sect. 6.3.

5 Structural order-theoretic inductive definitions of the semantics
of context-free grammars

The Ginsburg-Rice/Chomsky-Schützenberger theorem [4,14,31] shows that the
terminal language generated by a context-free grammar can be expressed in
⊆̇-least fixpoint form. This was extended to the infinite language generated by
a context-free grammar by Nivat [26] using ⊆̇-greatest fixpoints. To illustrate
bi-inductive structural definition on a simple example, we define the bifinite
semantics of grammars mixing the least fixpoint for finite sentences and the
greatest fixpoint for infinite sentences.

5.1 Metasyntax of grammars

The (meta-)language L , {ε}∪T∪N∪R∪P∪S∪G is defined by the following
(meta-)grammar (T ∩ N = ∅)

ε 6∈ T ∪ N empty sentence

T ∈ T terminals

N ∈ N nonterminals 8

R ∈ R righthand sides

R ::= T R | N R | ε

P ∈ P productions

P ::= N → R

S ∈ S sets of productions

S ::= P | P S

G ∈ G grammars

G ::= S

As usual N ::= α | β is a shorthand for the two grammar rules N ::= α and
N ::= β. To avoid confusion, the left-hand side N of a grammar rule is separated
from the right-hand side α by ::= in the meta-grammar (N ::= α) and by

8 N is the set of nonterminals while N is the set of natural numbers.

15

→ in the grammar (N→ α). The “strict immediate subcomponent” relation
−≺ on the meta-language L is defined as T −≺ T R, R −≺ T R, N −≺ N R,
R −≺ N R, ε −≺ R (when R ::= ε), R −≺ N → R, P −≺ S (when S ::= P),
P −≺ P S, S −≺ P S, and S −≺ G (when G ::= S). Hence −≺ is well-founded
since sentences in the meta-language (that is grammars) are assumed to be
finite 9 .

5.2 Fixpoint structural bifinite semantics of grammars

The bifinite semantics SJGK ∈ N −→ ℘(T∝) of grammars G is defined in fixpoint
form by structural induction (on ≺). Recall from Sect. 2.16 that 〈N −→ ℘(T∝),
v̇, λN .T ω, λN .T ?, ṫ, u̇〉 is a complete lattice for the pointwise ordering
v̇.

SJεK ∈ {ε} SJTK ∈ T

SJTK , T

SJNK ∈ N

SJNK , NSJεK , ε

SJRK ∈ (N −→ ℘(T∝)) −→ ℘(T∝)
SJR ::= T R′K , (λ ρ . {SJTK}) •̇ SJR′K
SJR ::= N R′K , (λ ρ . ρ(SJNK)) •̇ SJR′K
SJR ::= εK , λ ρ . {SJεK}

SJPK ∈ (N −→ ℘(T∝)) −→ (N −→ ℘(T∝))
SJP ::= N → RK , λ ρ . λN′ . (N′ = N ? SJRKρ : Tω)

SJSK ∈ (N −→ ℘(T∝)) −→ (N −→ ℘(T∝))
SJS ::= PK , SJPK

SJS ::= P S′K , SJPK ∪̈ SJS′K

SJGK ∈ N −→ ℘(T∝)
SJG ::= SK , lfp

v̇ SJSK .

where •̇ is sentence concatenation • extended elementwise and pointwise; ∪̈ is the
pointwise extension of ∪̇, itself the pointwise extension of ∪; and (tt ? a : b) = a,
(ff ? a : b) = b is the conditional.
9 Observe that for a meta-grammar rule A ::= B1 . . .Bn where the nonterminals B1,
. . . , Bn respectively derive into the terminal sentences β1, . . . , βn so that A derives
into α = β1 . . . βn, we have β1 −≺ α, . . . , and βn −≺ α and we write, as defined in
Sect. 2.2, α ::= β1 . . . βn. In the metagrammar, we use the same symbols for A, B1
. . . , Bn and α, β1 . . . , βn!

16

Theorem 10 ∀G ∈ G : SJGK is well-defined. e

Proof If L,L1, L2 ⊆ T∝ and L1 v L2 then L?1 ⊆ L?2 and Lω1 ⊇ Lω2 so L1 •L =
L?1 •L∪Lω1 v L?2 •L∪Lω2 = L2 •L since L?1 •L ⊆ L?2 •L and Lω1 ⊇ Lω2 . Moreover
L •L1 = L •L1 ∪Lω = L •L?1 ∪L •Lω1 ∪Lω v L •L?2 ∪L •Lω2 ∪Lω = L •L2 ∪Lω
= L • L2 since L • L?1 ⊆ L • L?2 and L • Lω1 ∪ Lω ⊇ L • Lω2 ∪ Lω. Therefore • is
v-monotone hence so is •̇ pointwise. It follows, by induction on the “strict
immediate subcomponent” relation −≺, that ∀S ∈ S : SJSK is v̇-monotone so
lfp
v̇ SJSK exists and ∀G ∈ G : SJGK is well-defined. �

Example 11 For the grammar G defined by the rules X → aX, X → b,
we have the following metasyntax tree whose nodes are decorated with their
semantics

G: lfp
v̇
λ ρ . λN′ . (N′ = X ? ({a} • ρ(X)) ∪ {b} : Tω)

S: λ ρ . λN′ . (N′ = X ? ({a} • ρ(X)) ∪ {b} : Tω)

�
��

�
��

�
��

�
��

H
HH

H
HH

H
HH

H
HH

P: λ ρ . λN′ . (N′ = X ? {a} • ρ(X) : Tω)

��
�
��
�

HH
H

HH
H

N: X → R: λ ρ . {a} • ρ(X)

��
�

HH
H

T: a R: λ ρ . ρ(X)

��
�

HH
H

N: X R: λ ρ . {ε}
ε: ε

S: λ ρ . λN′ . (N′ = X ? {b} : Tω)

P: λ ρ . λN′ . (N′ = X ? {b} : Tω)

�
��

�
��

H
HH

H
HH

N: X → R: λ ρ . {b}
��
�

HH
H

T: b R: λ ρ . {ε}
ε: ε

The semantics of the grammar G is therefore

SJGK , lfp
v̇
λ ρ . λN′ . (N′ = X ? ({a} • ρ(X)) ∪ {b} : Tω)

= λN′ . (N′ = X ? {aω} ∪ {anb | n > 0} : Tω)

which is the v̇-least solution of the more traditional system of equations
[4,14,26,31] (where X , ρ(X) and N , ρ(N))

X = ({a} •X) ∪ {b}

N = Tω when N 6= X .

17

The v̇-least solution for the X component is computed iteratively as

X0 = Tω

X1 = ({a} •X0) ∪ {b}
= ({a} • Tω) ∪ {b}

X2 = ({a} •X1) ∪ {b}
= ({a} • (({a} • Tω) ∪ {b})) ∪ {b}
= ({aa} • Tω) ∪ {ab, b}

.

Xn = ({an} • Tω) ∪
⋃

06i<n
{aib} induction hypothesis

Xn+1 = ({a} •Xn) ∪ {b}
= ({a} • (({an} • Tω) ∪

⋃
06i<n

{aib})) ∪ {b}

= {an+1} • Tω ∪
⋃

06i<n
{ai+1b} ∪ {b}

= {an+1} • Tω ∪
⋃

06j<n+1
{ajb} where j = i+ 1

.

Xω =
⋂
n>0

({an} • Tω) ∪
⋃
n>0

(
⋃

06i<n
{aib})

= {aω} ∪
⋃
n>0
{anb}

Xω+1 = Xω . 2

5.3 Rule-based structural bifinite semantics of grammars

An equivalent definition of the bifinite semantics SJGK ∈ N −→ ℘(T∝) of
grammars G can be given in rule-based form by structural induction (on −≺)
as follows (ρ ∈ N −→ ℘(T∝))

ε ∈ SJεK T ∈ SJTK

N ∈ SJNK (λ ρ . {SJTK}) •̇ SJR′K v̇
SJR ::= T R′K

(λ ρ . ρ(SJNK)) •̇ SJR′K v̇ SJR ::= N R′K λ ρ . {SJεK} v̇ SJR ::= εK

18

λ ρ . λN′ . (N′ = N ? SJRK(ρ) : Tω) v̈
SJP ::= N → RK

SJPK v̈ SJS ::= PK

SJPK v̈ SJS ::= P S′K SJS′K v̈ SJS ::= P S′K

ρ v̇ SJG ::= SK

SJSK(ρ) v̇ SJG ::= SK
v̇ .

Example 12 The bi-inductive definition of the semantics SJGK of the grammar
G defined by the rules X → aX, X → b is

ρ v̇ SJGK

λN′ . (N′ = X ? ({a} • ρ(X)) ∪ {b} : Tω) v̇ SJGK
v̇

which, letting X , ρ(X), simplifies into

Tω v SJGKN, N 6= X
X v SJGKX

({a} •X) ∪ {b} v SJGKX
v .

The proof that the finite word anb is generated by G is (each theorem is followed
by a proof argument given between curly brackets H...I)

Tω Hbasis I

{b} H{b} v ({a} • Tω) ∪ {b}I
{ab} H{ab} v ({a} • {b}) ∪ {b} v ({a} • (Tω t {b})) ∪ {b}I
{a2b} H{a2b} v ({a} • {ab}) ∪ {b} v ({a} • (Tω t {b} t {ab})) ∪ {b}I
. . .

{anb} H{anb} v ({a} • {an−1b}) ∪ {b}I .

The transfinite proof that the infinite word aω is generated by G is

Tω Hbasis I

{a} • Tω H{a} • Tω v ({a} • Tω) ∪ {b}I
{a2} • Tω H{a2} • Tω v ({a} • {a} • Tω) ∪ {b}I]
. . .

{an−1} • Tω Hinduction hypothesis, n > 0, a0 = εI

19

{an} • Tω H{an} • Tω v ({a} • {an−1} • Tω) ∪ {b}I
. . .

{aω} H{aω} v (({a} • Tω) ∪ {b}) t (({a2} • Tω) ∪ {b}) . . . (({an+1} • Tω)
∪ {b}) tI 2

5.4 Abstraction into the finite language generated by a context-free grammar

The abstraction is α ∈ ℘(T∝) −→ ℘(T?), α(X) , X ∩ T? extended pointwise
to α̇ ∈ (N −→ ℘(T∝)) −→ (N −→ ℘(T?)) as α̇(ρ) , λN .α(ρ(N)). We
have 〈℘(T∝), v〉 −−→−→←−−−−

α

1 〈℘(T?), ⊆〉 (where 1 is the injection of ℘(T?) into
℘(T∝)) hence 〈N −→ ℘(T∝), v̇〉 −−→−→←−−−−

α̇

1̇ 〈℘(N −→ T?), ⊆̇〉 pointwise. We
get Ginsburg-Rice/Chomsky-Schützenberger’s fixpoint characterization of the
finite language generated by a context-free grammar [4,14,31] by abstracting
SJG ::= SK , lfp

v̇ SJSK into S?JG ::= SK , α̇(lfp
v̇ SJSK) = lfp

⊆̇ SJSK.

5.5 Abstraction into the infinite language generated by a context-free grammar

The abstraction α̇ ∈ (N −→ ℘(T∝)) −→ (N −→ ℘(Tω)), α̇(ρ) , λN . ρ(N)∩Tω,
such that 〈N −→ ℘(T∝), v̇〉 −−→−→←−−−−

α

1̇ 〈℘(N −→ Tω), ⊇̇〉, leads to Nivat’s fixpoint
characterization of the infinite language generated by a context-free grammar
[26] that is SJG::=SK , lfp

v̇ SJSK abstracted into SωJG::=SK , α̇(lfp
v̇ SJSK) =

gfp
⊆̇ SJSK.

6 Structural order-theoretic inductive definitions of the semantics
of the call-by-value λ-calculus

The next example of structural order-theoretic inductive definition is inspired
by [29,22]. We introduce a maximal trace semantics describing terminating
and diverging computations. The trace semantics is then abstracted into a
sound and complete relational semantics. In turn this relational semantics is
abstracted into a sound reduction semantics which is incomplete since the
future of computations is unpredictable. Each semantics can be defined using
small steps or big steps of computation. Each semantics can be defined in
fixpoint or rule-based form.

20

Semantics Fixpoint definition Rule-based definition
big-step small-step big-step small-step

Trace ~S lfp
v ~F lfp

v ~f Z=⇒ Z⇒⇒

Relational ñ
S lfp

v ñ
F lfp

v ñ
f =⇒ ⇒⇒

Reduction S lfp
⊆
f = gfp

⊆
f −A .

These semantics including the maximal trace semantics ~S of Sect. 6.3.1 and
the bifinitary relational semantics ñS of Sect. 6.4 specify the correct finite
computations which end with a value and the infinite computations but do
not describe the erroneous computations so the semantics of a term that “goes
wrong” is empty. Describing these erroneous computations would present no
difficulty but is often irrelevant. For example in typing it must be proved that
well-typed programs cannot “go wrong” (which requires to describe erroneous
computations) or equivalently that well-typed programs “go well” that is have
correct finite computations or diverge (in which case the semantics is simpler
since erroneous computations need not to be described). The practice is also
quite common in natural languages for which no one cares to describe the
syntax and semantics of incorrect or meaningless sentences.

6.1 Syntax

The syntax of the λ-calculus with constants is

x, y, z, . . . ∈ X variables
c ∈ C constants (X ∩ C = ∅)
c ::= 0 | 1 | . . .
v ∈ V values
v ::= c | λ x . a
e ∈ E errors
e ::= c a | e a

a, a′, a1, . . . , b, . . . ∈ T terms
a ::= x | v | a a′

We write a[x ← b] for the capture-avoiding substitution of b for all free
occurences of x within a. We let FV(a) be the free variables of a. We define
the call-by-value semantics of closed terms (without free variables) T , {a ∈
T | FV(a) = ∅}.

21

The application (λ x . a) v of a function λ x . a to a value v is evaluated by
substitution a[x ← v] of the actual parameter v for the formal parameter x in
the function body a. This cannot be understood as induction on the program
syntax since a[x ← v] is not in general a strict syntactic subcomponent of
(λ x . a) v.

Hence the various semantics in this Sect. 6 cannot be defined by structural
induction on the syntax of λ-expressions as was the case in the previous Sect. 5.
So the framework of Sect. 2 is instantiated with L = { } and ≺ is defined to be
false on L which prevents the use of structural induction on program syntax.
For brevity we omit the void syntactic component writing e.g. F for F J K, D
for D , ∆ for ∆ , etc.

6.2 Trace domain

Recursion will be handled using fixpoints in the trace domain 〈D , v 〉 ,
〈℘(T∞), v〉, which is the complete lattice 〈℘(T∞), v, Tω, T+, t, u〉 defined
in Sect. 2.16.

We define the application a@σ of a term a ∈ T to a trace σ ∈ T∞ to be σ′ ∈ T∞
such that |σ′| = |σ| and ∀i < |σ| : σ′i = a σi. Similarly the application σ@a of a
trace σ ∈ T∞ to a term a ∈ T is σ′ such that |σ′| = |σ| and ∀i < |σ| : σ′i = σi a.

6.3 Big-step maximal trace semantics of the call-by-value λ-calculus

6.3.1 Fixpoint big-step maximal trace semantics

The bifinitary trace semantics ~S ∈ ℘(T∞) of the closed call-by-value λ-calculus
T can be specified in fixpoint form ~S = lfp

v ~F where the set of traces trans-
former ~F ∈ ℘(T∞) −→ ℘(T∞) describes big steps of computation

~F (S) , {v ∈ T∞ | v ∈ V} (a)
∪ {(λ x . a) v • a[x ← v] • σ | v ∈ V ∧ a[x ← v] • σ ∈ S} (b)
∪ {σ @ b | σ ∈ Sω} (c)
∪ {(σ @ b) • (v b) • σ′ | σ 6= ε ∧ σ • v ∈ S+ ∧ v ∈ V ∧ (v b) • σ′ ∈ S} (d)
∪ {λ x . a @ σ | a ∈ V ∧ σ ∈ Sω} (e)
∪ {(a @ σ) • (a v) • σ′ | a, v ∈ V ∧ σ 6= ε ∧ σ • v ∈ S+ ∧ (a v) • σ′ ∈ S} . (f)

22

The definition of ~F has (a) for termination, (b) for call-by-value β-reduction, (c)
and (d) for left reduction under applications and (e) and (f) for right reduction
under applications, corresponding to left-to-right evaluation. (b), (d) and (f)
cope both with terminating and diverging traces. In the framework of Sect. 2,
we have ∆ , {a, b, c, d, e, f} where ~F i(S), i ∈ ∆ is defined by equation (i),
(i) = (a), (b), . . . , (f). The join operator is chosen in binary form as g , ∪.

Lemma 13 ~F is ⊆-monotone but not v-monotone. e

Proof ⊆-monotony holds for (a) and ∪ and can be proved for all cases (b)–(f)
of the form F (S) = {f(a, a′, ..., σ, σ′) | p(a, a′, ...) ∧ g(σ) ∈ S+ ∧ h(σ′) ∈ S} so
that S ⊆ S ′ implies F (S) ⊆ F (S ′).

For a counter-example to v-monotony, define X+ , X ∩ T+, Xω , X ∩ Tω
and consider θ , λ x . x x, X = {(θ θ)ω} (where aω , a • a • a • ...) and Y =
{(λ x . x θ) • θ, (θ θ)ω}. We have X v Y since X+ = ∅ ⊆ {(λ x . x θ) • θ} = Y +

and Xω = {(θ θ)ω} ⊇ {(θ θ)ω} = Y ω. However ~F (X) 6v ~F (Y). Indeed by (d),
we have ((λ x . x θ) θ) • (θ θ) • (θ θ)ω = ((λ x . x θ) θ) • (θ θ)ω ∈ ~F (Y) while
((λ x . x θ) θ) • (θ θ)ω 6∈ ~F (X) by examining all cases (a)—(f). �

So we must prove lfp
v ~F to exist. However, because ~F is not v-monotone,

lfp
v ~F cannot be constructed by iteration of ~F from Tω since infinite traces

starting with a finite prefix which is not yet constructed at some iterate would
definitely be eliminated in the next iterate.

Recall that S+ , S ∩ T+, Sω , S ∩ Tω so S+ ∩ Sω = ∅ and define

~S+ , lfp
⊆ ~F + where ~F +(S) , (~F (S+))+ .

By Lem. 13, ~F + ∈ ℘(T+) −→ ℘(T+) is ⊆-monotone so lfp
⊆ ~F + does exist on

the complete lattice 〈℘(T+), ⊆, ∅, T+, ∪, ∩〉.

Define

~Sω , gfp
⊆ ~F ω where ~F ω(S) , (~F (~S+ ∪ Sω))ω .

By Lem. 13, ~F ω ∈ ℘(Tω) −→ ℘(Tω) is ⊆-monotone so gfp
⊆ ~F ω does exist on

the complete lattice 〈℘(Tω), ⊆, ∅, Tω, ∪, ∩〉.

Theorem 14

~S , ~S+ ∪ ~Sω = lfp
v ~F .

Proof By Lem. 13 and 8. �

23

The trace semantics can also be defined coinductively (as is the case for
transition systems [6, Th. 13]):

Theorem 15

~S = gfp
⊆ ~F .

Proof By Lem. 13, ~F is ⊆-monotone so gfp
⊆ ~F exists by Tarski’s fixpoint

theorem [33].

By Th. 14, ~F (lfp
v ~F) = lfp

v ~F so lfp
v ~F ⊆ gfp

⊆ ~F by def. gfp , proving
(lfp

v ~F)+ ⊆ (gfp
⊆ ~F)+ and (lfp

v ~F)ω ⊆ (gfp
⊆ ~F)ω. Moreover ~F (gfp

⊆ ~F) =
gfp

⊆ ~F so lfp
v ~F v gfp

⊆ ~F by def. lfp , proving that (lfp
v ~F)ω ⊇ (gfp

⊆ ~F)ω
hence (lfp

v ~F)ω = (gfp
⊆ ~F)ω by antisymmetry.

It remains to prove (lfp
v ~F)+ ⊇ (gfp

⊆ ~F)+. Given a trace ς ∈ (gfp
⊆ ~F)+ =

(~F (gfp
⊆ ~F))+, we prove that ς ∈ (~F (lfp

v ~F))+ = (lfp
v ~F)+. The case (a) is

trivial, the cases (c) and (e) are impossible since ς is finite and cases (b), (d),
and (f) follow by induction on the length |ς| of ς. In all these case, we have
ς = f(σ, σ′) ∈ (~F (gfp

⊆ ~F))+ with |σ| < |ς| and |σ′| < |ς| so σ, σ′ ∈ (lfp
v ~F)+

by induction hypothesis proving that ς = f(σ, σ′) ∈ (~F (lfp
v ~F))+ = (lfp

v ~F)+

by respective def. (b), (d), and (f) of ~F . �

6.3.2 Properties of the maximal trace semantics

Lemma 16 The bifinitary trace semantics ~S is suffix-closed in that

∀σ ∈ T∞ : a • σ ∈ ~S =⇒ σ ∈ ~S .

Proof We proceed by structural induction on the closed term a. Assume
a • σ ∈ ~S = ~F (~S). The case a • σ = v is impossible since ∀σ ∈ T∞ : σ 6= ε.

If a • σ = (λ x . a′) v • a′[x ← v] • σ′ then σ = a′[x ← v] • σ′ ∈ ~S by def. of ~F .

If a • σ = σ′ @ b where σ′ ∈ ~Sω ⊆ ~S then a = (a′ b) and σ′ = a′ • σ′′ ∈ ~S so
σ′′ ∈ ~Sω ⊆ ~S by induction hypothesis proving that σ = σ′′ @ b ∈ ~F (~S) = ~S.

If a •σ = (σ′@b) • (v b) •σ′′ where σ′ •v ∈ ~S+ and (v b) •σ′′ ∈ ~S then σ′ = a′ •σ′′′
where a = (a′ b) so a′ • σ′′′ • v ∈ ~S+ ⊆ ~S proving σ′′′ • v ∈ ~S+ ⊆ ~S by induction
hypothesis and so σ = (σ′′′ @ b) • (v b) • σ′′ ∈ ~F (~S) = ~S.

If a • σ = a′ @ σ′ where σ′ ∈ ~Sω ⊆ ~S then a = (a′ b) and σ′ = b • σ′′ so
σ′′ ∈ ~Sω ⊆ ~S by induction hypothesis proving that σ = a′ @ σ′′ ∈ ~F (~S) = ~S.

24

Finally, if a•σ = (a′@σ′)•(a′ v)•σ′′ where a′, v ∈ V, σ′ •v ∈ ~S+, and (a′ v)•σ′′ ∈ ~S
then a = (a′ b) and σ′ = b • σ′′′ so b • σ′′′ • v ∈ ~S+ proving that σ′′′ • v ∈ ~S+ by
induction hypothesis hence σ = (a′ @ σ′′′) • (a′ v) • σ′′ ∈ ~F (~S) = ~S. �

Lemma 17 The bifinitary trace semantics ~S is total in that it excludes inter-
mediate or result errors

∀a ∈ T : 6 ∃σ, σ′ ∈ T∝, e ∈ E : a • σ • e • σ′ ∈ ~S .

Proof Assume, by reductio ad absurdum, that a • σ • e • σ′ ∈ ~S then e • σ′ ∈ ~S
since ~S is suffix-closed. By structural induction on e, if e = e1 a then, by
definition of ~S = ~F (~S), ∃σ′′ : e1 • σ

′′ ∈ ~S, which is impossible by induction, or
e = c a and then ∃σ′′ : c • σ′′ ∈ ~S = ~F (~S) so σ′′ = ε, which excludes all cases
(c)–(f), the only possible ones for e. �

Lemma 18 The finite maximal traces are blocking in that the result of a finite
computation is always a final value

∀σ ∈ T∞ ∪ {ε} : σ • b ∈ ~S+ =⇒ b ∈ V .

Proof By induction on the length of σ and definition of ~S+ = ~F (~S) ∩ T+.�

6.3.3 Rule-based big-step maximal trace semantics

The maximal trace semantics ~S can also be defined as follows

v ∈ ~S, v ∈ V
a[x ← v] • σ ∈ ~S

(λ x . a) v • a[x ← v] • σ ∈ ~S
v, v ∈ V

σ ∈ ~Sω

σ @ b ∈ ~S
v

σ • v ∈ ~S+, (v b) • σ′ ∈ ~S

(σ @ b) • (v b) • σ′ ∈ ~S
v, v ∈ V

σ ∈ ~Sω

a @ σ ∈ ~S
v, a ∈ V

σ • v ∈ ~S+, (a v) • σ′ ∈ ~S

(a @ σ) • (a v) • σ′ ∈ ~S
v, v, a ∈ V .

Proof The set of rules
p1
i (σ1

i) ∈ ~S, . . . , pni (σni) ∈ ~S

ci(σ1
i , . . . , σ

n
i) ∈ ~S

v, i ∈ ∆ is a shorthand

for
S v ~S

j
`

i∈∆

{ci(σ1
i , . . . , σ

n
i) | p1

i (σ1
i) ∈ S, . . . , pni (σni) ∈ S} v ~S

v and g̀ is ∪ in this

example. �

25

Defining ~SJaK , {a • σ | a • σ ∈ ~S}, ~S+JaK , {a • σ | a • σ ∈ ~S+}, and
~SωJaK , {a • σ | a • σ ∈ ~Sω}, we can also write for brevity

v ∈ ~SJvK, v ∈ V
σ ∈ ~SJa[x ← v]K

(λ x . a) v • σ ∈ ~SJ(λ x . a) vK
v, v ∈ V

σ ∈ ~SωJaK

σ @ b ∈ ~SJa bK
v

σ • v ∈ ~S+JaK, σ′ ∈ ~SJv bK

(σ @ b) • σ′ ∈ ~SJa bK
v, v ∈ V

σ ∈ ~SωJbK

a @ σ ∈ ~SJa bK
v, a ∈ V

σ • v ∈ ~S+JbK, σ′ ∈ ~SJa vK

(a @ σ) • σ′ ∈ ~SJa bK
v, a, v ∈ V .

Proof g̀ is ∪ and ~S =
⋃
a∈T

~SJaK. �

Observe that the inductive definition of ~SJaK should neither be understood
as a structural induction [28] on a (since a[x ← v] 6≺ (λ x . a) v) nor as action
induction [23] (because of infinite traces). The definition could be split in
inductive rules for termination and co-inductive rules for divergence, as shown
in Th. 14, but the above bi-inductive definition avoids the duplication of
common rules. Defining a Z=⇒ σ , σ ∈ ~SJaK, we can also write

v Z=⇒ v, v ∈ V
a[x ← v] Z=⇒ σ

(λ x . a) v Z=⇒ (λ x . a) v • σ
v, v ∈ V

a Z=⇒ σ

a b Z=⇒ σ @ b
v, σ ∈ T ω

a Z=⇒ σ • v, v b Z=⇒ σ′

a b Z=⇒ (σ @ b) • σ′
v, v ∈ V, σ ∈ T+

b Z=⇒ σ

a b Z=⇒ a @ σ
v, a ∈ V, σ ∈ T ω

b Z=⇒ σ • v, a v Z=⇒ σ′

a b Z=⇒ (a @ σ) • σ′
v, a, v ∈ V, σ ∈ T+ .

6.4 Abstraction of the big-step trace semantics into the big-step relational
semantics of the call-by-value λ-calculus

6.4.1 Relational abstraction of traces

The relational abstraction of sets of traces is

26

α ∈ ℘(T∞) −→ ℘(T× (T ∪ {⊥})) (2)
α(S) , {〈σ0, σn−1〉 | σ ∈ S ∧ |σ| = n} ∪ {〈σ0, ⊥〉 | σ ∈ S ∧ |σ| = ω}

γ ∈ ℘(T× (T ∪ {⊥})) −→ ℘(T∞)
γ(T) , {σ ∈ T∞ | (|σ| = n ∧ 〈σ0, σn−1〉 ∈ T) ∨ (|σ| = ω ∧ 〈σ0, ⊥〉 ∈ T)}

so that

〈℘(T∞), ⊆〉 −−→−→←−−−−
α

γ
〈℘(T× (T ∪ {⊥})), ⊆〉 . (3)

Proof

α(S) ⊆ T

⇐⇒ {〈σ0, σn−1〉 | σ ∈ S ∧ |σ| = n} ∪ {〈σ0, ⊥〉 | σ ∈ S ∧ |σ| = ω} ⊆ T

Hdef. αI

⇐⇒ ∀σ ∈ S+ : 〈σ0, σ|σ|−1〉 ∈ T+ ∧ ∀σ ∈ Sω : 〈σ0, ⊥〉 ∈ T ω

Hdef. ⊆, S+ , S ∩ T+, and Sω , S ∩ TωI
⇐⇒ S+ ⊆ {σ | |σ| = n∧〈σ0, σn−1〉 ∈ T}∧Sω ⊆ {σ | |σ| = ω∧〈σ0, ⊥〉 ∈ T}

Hdef. ⊆, T+ , T ∩ (T× T), and T ω , T ∩ (T× {⊥})I
⇐⇒ S ⊆ γ(T) HS = S+ ∪ Sω and def. γ(T)I �

6.4.2 Bifinitary relational semantics

The bifinitary relational semantics ñS , α(~S) ∈ ℘(T×(T∪{⊥})) is the relational
abstraction of the trace semantics mapping an expression to its final value or
⊥ in case of divergence.

6.4.3 Fixpoint big-step bifinitary relational semantics

The bifinitary relational semantics ñS , α(~S) = α(lfp
v ~F) can be defined in

fixpoint form as lfp
v ñ
F where the big-step transformer ñF ∈ ℘(T×(T∪{⊥})) −→

℘(T× (T ∪ {⊥})) is

ñ
F (T) , {〈v, v〉 | v ∈ V} (4)

∪ {〈(λ x . a) v, r〉 | v ∈ V ∧ 〈a[x ← v], r〉 ∈ T}

27

∪ {〈(a b), ⊥〉 | 〈a, ⊥〉 ∈ T}
∪ {〈(a b), r〉 | a 6∈ V ∧ 〈a, v〉 ∈ T+ ∧ v ∈ V ∧ 〈(v b), r〉 ∈ T}
∪ {〈(a b), ⊥〉 | a ∈ V ∧ 〈b, ⊥〉 ∈ T}
∪ {〈(a b), r〉 | a, v ∈ V ∧ 〈b, v〉 ∈ T+ ∧ 〈(a v), r〉 ∈ T} .

Lemma 19 ñ
F is ⊆-monotone but not v-monotone. e

Proof ⊆-monotony holds for the first constant case and ∪ and can be proved
for all other cases of the form F (S) = {f(a, a′, ..., σ, σ′) | p(a, a′, ...) ∧ g(σ) ∈
S+ ∧ h(σ′) ∈ S} so that S ⊆ S ′ implies F (S) ⊆ F (S ′).

The counter-example of Lem. 13, X = {〈(θ θ), ⊥〉} and Y = {〈λ x . x θ,

θ〉, 〈θ θ, ⊥〉} with X v Y but ñF (X) 6v ñ
F (Y) shows the absence of monotony.�

Lemma 20 α(~F (S)) = ñ
F (α(S)) e

Proof α is a complete ∪-morphism, so we calculate α(~F (S)) by cases.

α({v ∈ T∞ | v ∈ V})
= {〈v, v〉 | v ∈ V} Hdef. α and |v| = 1I

α({(λ x . a) v • a[x ← v] • σ | v ∈ V ∧ a[x ← v] • σ ∈ S})
= α({(λ x . a) v • a[x ← v] • σ | v ∈ V ∧ a[x ← v] • σ ∈ S+}) ∪

α({(λ x . a) v • a[x ← v] • σ | v ∈ V ∧ a[x ← v] • σ ∈ Sω})
HS = S+ ∪ Sω and α preserves lubsI

= {〈(λ x . a) v, r〉 | v ∈ V ∧ 〈a[x ← v], r〉 ∈ α(S)+} ∪
{〈(λ x . a) v, ⊥〉 | v ∈ V ∧ 〈a[x ← v], ⊥〉 ∈ α(S)ω} Hdef. αI

= {〈(λ x . a) v, r〉 | v ∈ V ∧ 〈a[x ← v], r〉 ∈ α(S)}
Hdef. T+ , T ∩ (T× T) and T ω , T ∩ (T× {⊥})I

α({σ @ b | σ ∈ Sω})
= {〈(σ0 b), ⊥〉 | σ ∈ Sω} Hdef. α and @I

= {〈(σ0 b), ⊥〉 | 〈σ0, ⊥〉 ∈ α(S)} Hdef. αI

= {〈(a b), ⊥〉 | 〈a, ⊥〉 ∈ α(S)} HS ⊆ T∞ so σ0 ∈ TI

α({(σ @ b) • (v b) • σ′ | σ • v ∈ S+ ∧ v ∈ V ∧ (v b) • σ′ ∈ S})
= α({(σ @ b) • (v b) • σ′ | σ • v ∈ S+ ∧ v ∈ V ∧ (v b) • σ′ ∈ S+}) ∪

α({(σ @ b) • (v b) • σ′ | σ • v ∈ S+ ∧ v ∈ V ∧ (v b) • σ′ ∈ Sω})
HS = S+ ∪ Sω and α preserves lubsI

28

= {〈(σ0 b), r〉 | σ • v ∈ S+ ∧ v ∈ V ∧ 〈(v b), r〉 ∈ α(S)+} ∪
{〈(σ b), ⊥〉 | σ • v ∈ S+ ∧ v ∈ V ∧ 〈(v b), ⊥〉 ∈ α(S)ω}) Hdef. α and @I

= {〈(σ0 b), r〉 | 〈σ0, v〉 ∈ α(S)+ ∧ v ∈ V ∧ 〈(v b), r〉 ∈ α(S)}
Hdef. T+ , T ∩ (T× T), T ω , T ∩ (T× {⊥}), and αI

= {〈(a b), r〉 | 〈a, v〉 ∈ α(S)+ ∧ v ∈ V ∧ 〈(v b), r〉 ∈ α(S)}
HS ⊆ T∞ so σ0 ∈ TI

α({a @ σ | a ∈ V ∧ σ ∈ Sω})
= {〈(a σ0), ⊥〉 | a ∈ V ∧ σ ∈ Sω} Hdef. α and @I

= {〈(a σ0), ⊥〉 | a ∈ V ∧ 〈σ0, ⊥〉 ∈ α(S)} Hdef. α and T ω , T ∩ (T ∪ {⊥})I
= {〈(a b), ⊥〉 | a ∈ V ∧ 〈b, ⊥〉 ∈ α(S)} HS ⊆ T∞ so σ0 ∈ TI

α({(a @ σ) • (a v) • σ′ | a, v ∈ V ∧ σ • v ∈ S+ ∧ (a v) • σ′ ∈ S})
= α({(a @ σ) • (a v) • σ′ | a, v ∈ V ∧ σ • v ∈ S+ ∧ (a v) • σ′ ∈ S+}) ∪

α({(a @ σ) • (a v) • σ′ | a, v ∈ V ∧ σ • v ∈ S+ ∧ (a v) • σ′ ∈ Sω})
HS = S+ ∪ Sω and α preserves lubsI

= {〈(a σ0), r〉 | a, v ∈ V ∧ 〈σ0, v〉 ∈ α(S)+ ∧ 〈(a v), r〉 ∈ α(S)+} ∪
{〈(a σ0), ⊥〉 | a, v ∈ V ∧ 〈σ0, v〉 ∈ α(S)+ ∧ 〈(a v), ⊥〉 ∈ α(S)ω} Hdef. αI

= {〈(a b), r〉 | a, v ∈ V ∧ 〈b, v〉 ∈ α(S) ∧ 〈(a v), r〉 ∈ α(S)}
HT ω , T ∩ (T ∪ {⊥}) and S ⊆ T∞ so σ0 ∈ TI .

Hence, we have the commutation property α(~F (S)) = ñ
F (α(S)) when defining

ñ
F by (4). �

Lemma 21 ñ
S+ , α(~S

+
) = lfp

⊆ ñ
F + where ñF +(S) ,

ñ
F (S+). e

Proof To prove that α(~S
+
) = α(lfp

⊆ ~F +) is equal to lfp
⊆ ñ
F + = ñ

S+, we
observe that α preserves ∪ and α ◦ ~F + = ñ

F + ◦ α by Lem. 20 so α(lfp
⊆ ~F +)

= lfp
⊆ ñ
F + by [6, Th. 3]. �

Lemma 22 ñ
Sω , α(~S

ω
) = gfp

⊆ ñ
F ω where ñF ω(S) , (ñF (ñS+ ∪ Sω))ω. e

Proof We must prove that α(~S
ω
) = α(gfp

⊆ ~F ω) is equal to gfp
⊆ ñ
F ω = ñ

Sω.

To prove that α(gfp
⊆ ~F ω) ⊆ gfp

⊆ ñ
F ω, we let Xδ, δ ∈ O and X

δ, δ ∈
O be the respective transfinite iterates of ~F

ω
and ñ

F ω from X0 = Tω and
X

0 = T × {⊥} so that α(X0) ⊆ X
0 hence X0 ⊆ γ(X0) by (3) in Sect. 6.4.1.

Assume, by induction hypothesis, that ∀β < δ : Xβ ⊆ γ(Xβ). We have
∀β < δ : (⋂β′<δXβ′) ⊆ γ(Xβ) hence (⋂β<δXβ) ⊆ (⋂β<δ γ(Xβ)) by definition
of the greatest lower bound (glb) ∩ and therefore (⋂β<δXβ) ⊆ γ(⋂β<δXβ)
by (3) in Sect. 6.4.1 so Xδ = ~F ω(⋂β<δXβ) ⊆ ~F ω(γ(⋂β<δXβ)) by monotony.
It follows that Xδ ⊆ γ(ñF ω(⋂β<δXβ)) = γ(Xδ) since α ◦ ~F ω = ñ

F ω ◦ α by

29

Lem. 20 implies α ◦ ~F ω ◦ γ = ñ
F ω ◦ α ◦ γ hence α ◦ ~F ω ◦ γ ⊆̇

ñ
F ω by (3) in

Sect. 6.4.1 and monotony that is ~F ω ◦ γ ⊆̇ γ ◦
ñ
F ω by (3) in Sect. 6.4.1. Hence

∃λ ∈ O : gfp
⊆ ~F ω = Xλ ⊆ γ(Xλ) = γ(gfp

⊆ ñ
F ω) and we conclude by (3) in

Sect. 6.4.1.

To prove that gfp
⊆ ñ
F ω ⊆ α(gfp

⊆ ~F ω), we show that ∀〈a, ⊥〉 ∈ gfp
⊆ ñ
F ω :

∃σ ∈ gfp
⊆ ~F ω : σ0 = a. To do so for any 〈a, ⊥〉 ∈ gfp

⊆ ñ
F ω, we prove by

transfinite induction on δ that

∀δ ∈ O > 0 : ∀〈a, ⊥〉 ∈ gfp
⊆ ñ
F ω : ∃σ ∈ Tω : σ0 = a ∧ σ ∈

⋂
β<δ

Xβ .

For δ = 1, ⋂β<δXβ = X0 = Tω and a ∈ T.

Assume by induction hypothesis, that ∃σ ∈ Tω : σ0 = a ∧ ∀η ∈ O : 0 < η <
δ : σ ∈ ⋂β<ηXβ. We have σ ∈ ⋂η<δ ⋂β<ηXβ = ⋂

β<δX
β et we must show that

∃σ ∈ Tω : σ0 = a ∧ σ ∈ Xδ = ~F
ω
(⋂β<δXβ). Because the iterates Xδ, δ ∈ O

are decreasing, this implies ∃σ ∈ Tω : σ0 = a ∧ σ ∈ ⋂β<δXβ.

It remains to show, by structural case analysis on a, that if σ ∈ S : σ0 = a,
then ∃σ′ ∈ ~F (S) : σ′0 = a where S = ⋂

β<δX
β.

If a ∈ V then 〈a, ⊥〉 6∈ gfp
⊆ ñ
F ω.

If a = (λ x . a′) v, v ∈ V then 〈a, ⊥〉 ∈ gfp
⊆ ñ
F ω = ñ

F ω(gfp
⊆ ñ
F ω) so by (4),

〈a′[x ← v], ⊥〉 ∈ gfp
⊆ ñ
F ω. By induction on δ, we have ∃σ′ ∈ Tω : σ′0 = a′[x ←

v]∧σ′ ∈ ⋂β<δXβ so that, by (b), (λ x . a′) v •a′[x ← v] •σ′ ∈ ~F (⋂β<δXβ) = Xδ.

If a = (a′ b) then there are four subcases.

If 〈a′, ⊥〉 ∈ gfp
⊆ ñ
F ω ⊆ ⋂β<δXβ then, by induction hypothesis on δ, we have

∃σ′ ∈ Tω : σ′0 = a′ ∧ σ′ ∈ ⋂β<δXβ so that, by (c), σ′ @ b ∈ ~F (⋂β<δXβ) = Xδ

is such that σ′0 = (a′ b) = a by definition of @.

If 〈a′, v〉 ∈ ñS+ = α(~S
+
), v ∈ V, and 〈(v b), ⊥〉 ∈ gfp

⊆ ñ
F ω then, by induction

hypothesis on δ, we have ∃σ′ ∈ Tω : σ′0 = (v b) ∧ σ′ ∈ ⋂β<δXβ. By definition
(2) of α in Sect. 6.4.1, there exists ς ∈ T+ : ς ∈ ~S

+
∧|ς| = n∧〈ς0, ςn−1〉 = 〈a′, v〉

proving by definition (d) of ñF that ∃σ′′ = (ς@b);σ′ ∈ ñ
F (⋂β<δXβ) = Xδ where,

by definition, ς •c ;c •ς ′ , ς •c •ς ′. We have σ′′0 = (ς@b)0 = (ς0 @b) = (a′@b) = a.

If a′ ∈ V and 〈b, ⊥〉 ∈ gfp
⊆ ñ
F ω then by induction hypothesis on δ, ∃σ′ ∈

Tω : σ0 = b ∧ σ′ ∈ ⋂β<δXβ proving by definition (e) of ñF that σ = a′ @ σ′ ∈
ñ
F (⋂β<δXβ) = Xδ with σ0 = (a′ @ σ′)0 = (a′ σ′0) = (a′ b) = a.

30

If a′, v ∈ V, 〈b, v〉 ∈ ñ
S+ = α(~S

+
), and 〈(a′ v), ⊥〉 ∈ gfp

⊆ ñ
F ω then, by

induction hypothesis on δ, we have ∃σ′ ∈ Tω : σ′0 = (a′ v) ∧ σ′ ∈ ⋂β<δXβ. By
definition (2) in Sect. 6.4.1 of α, there exists ς ∈ T+ : ς ∈ ~S

+
∧ |ς| = n ∧ 〈ς0,

ςn−1〉 = 〈b, v〉 proving by definition (f) of ñF that (a′@ς);σ′ ∈ ñ
F (⋂β<δXβ) = Xδ

with σ0 = (a′ @ ς)0 = (a′ ς0) = (a′ b) = a. �

Theorem 23 ñ
S , α(~S) = α(lfp

v ~F) = lfp
v ñ
F . e

Proof By Th. 14 and Lem. 20, we have ~S = ~F (~S) so ñS , α(~S) = α(~F (~S)) =
ñ
F (α(~S)) = ñ

F (ñS) proving that ñS is a fixpoint of ñF . By Lem. 21, 22, and 8, we
have ñS = lfp

v ñ
F . �

Contrary to the case of the trace semantics Th. 15, the relational semantics
cannot be defined coinductively which would validate incorrect evaluations of
the form a =⇒ v where a actually diverges [22]. This phenomenon was already
observed for transition systems [6, Sect. 5].

Theorem 24 (lfp
v ñ
F)+ ((gfp

⊆ ñ
F)+ and (lfp

v ñ
F)ω = (gfp

⊆ ñ
F)ω so

ñ
S 6= gfp

⊆ ñ
F .

Proof By Lem. 19, ñF is ⊆-monotone so gfp
⊆ ñ
F exists by Tarski’s fixpoint

theorem [33].

By Th. 23, ñF (lfp
v ñ
F) = lfp

v ñ
F so lfp

v ñ
F ⊆ gfp

⊆ ñ
F by def. gfp , proving

(lfp
v ñ
F)+ ⊆ (gfp

⊆ ñ
F)+ and (lfp

v ñ
F)ω ⊆ (gfp

⊆ ñ
F)ω. Moreover ñ

F (gfp
⊆ ñ
F) =

gfp
⊆ ñ
F so lfp

v ñ
F v gfp

⊆ ñ
F by def. lfp , proving that (lfp

v ñ
F)ω ⊇ (gfp

⊆ ñ
F)ω

hence (lfp
v ñ
F)ω = (gfp

⊆ ñ
F)ω by antisymmetry.

Let θ , λ x . x x and 0 , λ f . λ x . x. 〈θ θ, 0〉 belongs to T∞. If 〈θ θ, 0〉 =
〈x x[x ← θ], 0〉 belongs to an iterate of ñF then, by def. (4) of ñF , 〈(λ x . x x) θ,
0〉 = 〈θ θ, 0〉 belongs to the next iterate, hence, by transfinite induction on the
iterates, to gfp

⊆ ñ
F . However, there is no finite trace in ~S starting with term

θ θ and ending with term 0 so, by Th. 23, 〈θ θ, 0〉 6∈ α(~S) = lfp
v ñ
F , proving

(lfp
v ñ
F)+ 6= (gfp

⊆ ñ
F)+. �

6.4.4 Rule-based big-step bifinitary relational semantics

The big-step bifinitary relational semantics =⇒ is defined as a =⇒ r , 〈a,
r〉 ∈ α(~SJaK) where a ∈ T and r ∈ T ∪ {⊥}. It is

31

v =⇒ v, v ∈ V
a[x ← v] =⇒ r

(λ x . a) v =⇒ r
v, v ∈ V, r ∈ V ∪ {⊥}

a =⇒ ⊥

a b =⇒ ⊥
v

a =⇒ v, v b =⇒ r

a b =⇒ r
v, a 6∈ V, v ∈ V, r ∈ V ∪ {⊥}

b =⇒ ⊥

a b =⇒ ⊥
v, a ∈ V

b =⇒ v, a v =⇒ r

a b =⇒ r
v, a ∈ V, v ∈ V, r ∈ V ∪ {⊥} .

Again this should neither be understood as a structural induction (since
a[x ← v] 6≺ (λ x . a) v) nor as action induction (because of infinite behaviors)
nor as co-induction by Th. 24. The abstraction α(T) , T ∩ (T × T) yields
(a variant of) the classical natural semantics [17] (where all rules with ⊥
are eliminated and v becomes ⊆ in the remaining ones). The abstraction
α(T) , T ∩ (T× {⊥}) yields the divergence semantics (keeping only the rules
with ⊥, v is ⊇, and a =⇒ ⊥ is written a ∞=⇒ in [22]).

The above big-step bifinitary relational semantics =⇒ is equivalent but not
identical to the standard big-step semantics whose bifinitary generalization
would be

v =⇒ v, v ∈ V
a =⇒ λ x . c, b =⇒ v′, c[x ← v′] =⇒ r

a b =⇒ r
v, v, v′ ∈ V,

r ∈ V ∪ {⊥}

a =⇒ ⊥

a b =⇒ ⊥
v

a =⇒ v, b =⇒ ⊥

a b =⇒ ⊥
v, v ∈ V

We have chosen to break evaluations of applications in smaller chunks instead
so as to enforce evaluation of the function before that of the arguments and to
make explicit the reduction step in the trace semantics.

6.5 Abstraction of the big-step trace semantics into the small-step reduction
semantics of the call-by-value λ-calculus

The small-step reduction semantics abstracts the trace semantics by collecting
all transitions along any trace.

32

6.5.1 Small-step abstraction of traces

The abstraction is

αs ∈ ℘(T∞) −→ ℘(T× T)
αs(S) , {〈σi, σi+1〉 | σ ∈ S ∧ 0 6 i ∧ i+ 1 < |σ|} .

Since the bifinitary trace semantics is suffix-closed, we can also use

α ∈ ℘(T∞) −→ ℘(T× T)
α(S) , {〈σ0, σ1〉 | σ ∈ S ∧ |σ| > 1}

so that we have αs(S) = α(S) whenever S is suffix-closed. By defining ℘(T∞)
to be the set of suffix-closed and blocking subsets of T∞ and γ(τ) to be the set
of maximal traces generated by the transition relation τ ∈ ℘(T× T) that is

γ+(τ) , {σ ∈ T+ | ∀i < |σ| : 〈σi, σi+1〉 ∈ τ ∧ ∀a ∈ T : 〈σ<|σ|−1, a〉 6∈ τ}
γω(τ) , {σ ∈ Tω | ∀i ∈ N : 〈σi, σi+1〉 ∈ τ}

γ(τ) , γ+(τ) ∪ γω(τ) ,

we have

〈℘(T∞), ⊆〉 −−→−→←−−−−
α

γ
〈℘((T \ V)× T), ⊆〉 . (5)

Proof Assume that S ∈ ℘(T∞), τ ⊆ (T \ V) × T, and α(S) ⊆ τ so that
the first transition along a trace σ ∈ S is also a transition in τ hence any
transition along a trace σ ∈ S is also a transition in τ since S is suffix-closed.
If σ is infinite, it is a trace generated by τ hence σ ∈ γ(τ). If σ ∈ S is finite,
then σ|σ|−1 ∈ V since S is blocking so σ|σ|−1 has no possible successor by
τ ⊆ (T \ V)× T proving again that σ ∈ γ(τ) that is S ⊆ γ(τ).

Reciprocally, if S ⊆ γ(τ) and σ ∈ S, then by definition of γ, all transitions in σ
are also transitions of τ proving that α({σ}) ⊆ τ hence α(S) = α(⋃σ∈S{σ}) ⊆
τ . �

Observe that this Galois connection is relative to 〈℘(T∞), ⊆〉 and is not valid
for 〈℘(T∞), v〉. Besides absence of monotony, this is another reason why
the abstraction theorem Th. 9 is not applicable for v. Indeed the small-step
reduction semantics is essentially incomplete in that it cannot anticipate that
a computation will go wrong as was the case for the trace semantics and its
relational abstraction.

33

6.5.2 Small-step reduction semantics

The small-step reduction semantics or transition semantics S is defined as

S , lfp
⊆
f (6)

f(τ) , {〈(λ x . a) v, a[x ← v]〉} ∪ {〈a0 b, a1 b〉 | 〈a0, a1〉 ∈ τ} ∪

{〈v b0, v b1〉 | v ∈ V ∧ 〈b0, b1〉 ∈ τ} .

〈℘((T \ V)× T), ⊆〉 is a complete lattice and f is ⊆–monotone so lfp
⊆
f does

exist by Tarski’s fixpoint theorem [33]. The rule-based presentation of (6) has
a call-by-value β-reduction axiom plus two context rules for reducing under
applications, corresponding to left-to-right evaluation [29]. a −A b stands for
〈a, b〉 ∈ S and v ∈ V.

((λ x . a) v) −A a[x ← v]
a0 −A a1

a0 b −A a1 b
⊆

b0 −A b1

v b0 −A v b1

⊆ .

Lemma 25 α ◦ ~F ◦ γ ̇ f e

Proof α is a complete ∪-morphism so we calculate α(~F (S)) by cases.

α({a ∈ T∞ | a ∈ V})
= ∅ Hdef. αI

α({(λ x . a) v • a[x ← v] • σ | v ∈ V ∧ a[x ← v] • σ ∈ S})
= {〈(λ x . a) v, a[x ← v]〉} Hdef. αI

α({σ @ b | σ ∈ Sω})
= {〈σ0 b, σ1 b〉 | σ ∈ Sω} Hdef. α and @I

= {〈a0 b, a1 b〉 | 〈a0, a1〉 ∈ α(Sω)} Hdef. α and Sω ⊆ TωI

α({(σ @ b) • (v b) • σ′ | σ • v ∈ S+ ∧ v ∈ V ∧ (v b) • σ′ ∈ S})
= {〈a b, v b〉 | a • v ∈ S+ ∧ v ∈ V ∧ (v b) • σ′ ∈ S} ∪
{〈σ0 b, σ1 b〉 | σ • v ∈ S+ ∧ |σ| > 1 ∧ v ∈ V ∧ (v b) • σ′ ∈ S}

Hdef. α and |σ| > 0I
⊆ {〈a b, v b〉 | a • v ∈ S+} ∪ {〈σ0 b, σ1 b〉 | σ • v ∈ S+ ∧ |σ| > 1}

Hignoring that a or (v b) might “go wrong”I
= {〈σ0 b, σ1 b〉 | σ ∈ S+ ∧ |σ| > 1}
= {〈a0 b, a1 b〉 | 〈a0, a1〉 ∈ α(S+)} Hdef. α and S+ ⊆ T+I

34

α({a @ σ | a ∈ V ∧ σ ∈ Sω})
= {〈a σ0, a σ1〉 | a ∈ V ∧ σ ∈ Sω} Hdef. α and @I

= {〈v b0, v b1〉 | v ∈ V ∧ 〈b0, b1〉 ∈ α(Sω)} Hdef. α and Sω ⊆ TωI

α({(a @ σ) • (a v) • σ′ | a, v ∈ V ∧ σ • v ∈ S+ ∧ (a v) • σ′ ∈ S})
⊆ α({(a @ σ) • (a v) • σ′ | a, v ∈ V ∧ σ • v ∈ S+})

Hignoring that (a v) might “go wrong”I
= {〈v b0, v b1〉 | v ∈ V ∧ 〈b0, b1〉 ∈ α(S+)} Hdef. α and S+ ⊆ T+I

and so α(~F (S)) ⊆ f(α(S)) by defining f as in (6), proving that α ◦ ~F ◦ γ ⊆̇ f
since f is ⊆-monotone, α ◦ γ is reductive, and by pointwise definition of ⊆̇.

We have α ◦ ~F ◦ γ ̇ f since a single transition cannot anticipate whether
the future computation can “go wrong”. For example ((λ x . x 0) 0) −A (0 0) ∈
f ◦ f(∅) while ((λ x . x 0) 0) −A (0 0) 6∈ α ◦ ~F ◦ γ ◦ α ◦ ~F ◦ γ(∅) since there
is no trace of the form σ • ((λ x . x 0) 0) • (0 0) • σ′ in ~F ◦ γ ◦ α ◦ ~F ◦ γ(∅). �

It follows that the small-step operational semantics or transition semantics S
is sound but incomplete in that the set γ(S) of maximal traces generated by
the transition relation S includes the bifinitary trace semantics ~S plus spurious
traces for computations that can “go wrong” that is terminate with a runtime
error e ∈ E. Indeed, the transition semantics S is an α-overapproximation of
the bifinitary trace semantics ~S.

Theorem 26 ~S (γ(S) . e

Proof We prove ~S+ ⊆ γ(S) and ~Sω ⊆ γ(S) so ~S = ~S+ ∪ ~Sω ⊆ γ(S).

α ◦ ~F ⊆̇ f ◦ α Hby Lem. 25I
=⇒ α ◦ (~F (X)+ ∪ ~F (X)ω) ⊆ f ◦ α(X) HpartitionningI
=⇒ α ◦ ~F (X)+ ⊆ f ◦ α(X) Hα is monotone by (5) in Sect. 6.5.1I
=⇒ α ◦ ~F +(X) ⊆ f ◦ α(X) Hdef. ~F +(X) = ~F (X+)+ = ~F (X)+I

=⇒ α(lfp
⊆ ~F +) ⊆ lfp

⊆
f H[7, Th. 7.1.0.4.(2)]I

=⇒ ~S+ ⊆ γ(S) Hdef. ~S+, S and (5) in Sect. 6.5.1.I

α ◦ ~F ⊆̇ f ◦ α Hby Lem. 25I
=⇒ α ◦ (~F (X)+ ∪ ~F (X)ω) ⊆ f ◦ α(X) HpartitionningI
=⇒ α ◦ ~F (X)ω ⊆ f ◦ α(X) Hα is monotone by (5) in Sect. 6.5.1I
=⇒ α((~F (~S+ ∪ Sω)ω) ⊆ f ◦ α(~S+ ∪ Sω) Hfor X = (~S+ ∪ Sω)I
=⇒ α ◦ ~F ω(Sω) ⊆ f ◦ α(Sω)

35

Hsince ~F ω(S) , (~F (~S+ ∪ Sω))ω and α is monotone by (5) in Sect. 6.5.1I
=⇒ α ◦ ~F ω ◦ γω(X) ⊆ f ◦ α ◦ γω(X) ⊆ f(X)

Hfor Sω = γω(X) and f monotoneI
=⇒ ~F ω ◦ γω ⊆̇ γω ◦ f Hby (5) in Sect. 6.5.1restricted to infinite tracesI
=⇒ gfp

⊆ ~F ω ⊆ γω(lfp
⊆
f) Hdual of [7, Th. 7.1.0.4.(2)] and (5) in Sect. 6.5.1I

=⇒ ~Sω ⊆ γ(S) Hdef. ~Sω, S and γω ⊆̇ γ.I

The strict inclusion follows from spurious traces for computations that can “go
wrong”. �

The inductive definition of S can also be understood as co-inductive since
Theorem 27 lfp

⊆
f = gfp

⊆
f . e

Proof The iterates F δ, δ 6 ω of lfp
⊆
f are (we write a −A b for the pair 〈a,

b〉)

F 0 = ∅
F 1 = f(F 0) = {((λ x . a) v) −A a[x ← v]}

F n = {vi ((λ x . a) v) bj −A vi a[x ← v] bj | 0 6 i+ j < n}
Hind. hyp., where vi ((λ x . a) v) bj is assumed to be parenthesized so that
((λ x . a) v) is the leftmost reducible termI

F n+1 = f(F n)
= {((λ x . a) v) −A a[x ← v]} ∪
{a0 b −A a1 b | a0 −A a1 ∈ {vi ((λ x . a) v) bj −A vi a[x ← v] bj | 0 6
i+ j < n}} ∪
{v b0 −A v b1 | b0 −A b1 ∈ {vi ((λ x . a) v) bj −A vi a[x ← v] bj | 0 6
i+ j < n}}

Hdef. ~F I

= {((λ x . a) v) −A a[x ← v]} ∪
{vi ((λ x . a) v) bj+1 −A vi a[x ← v] bj+1 | 0 6 i+ j < n} ∪
{vi+1 ((λ x . a) v) bj −A vi a[x ← v] bj | 0 6 i+ j < n}

Hdef. ∈I

= {vi ((λ x . a) v) bj −A vi a[x ← v] bj | 0 6 i+ j < n+ 1}

F ω =
⋃
n∈N

F n

= {vi ((λ x . a) v) bj −A vi a[x ← v] bj | i, j ∈ N}

The iterates Gδ, δ 6 ω of gfp
⊆
f are

36

G0 = {y −A z} Hfor any y, z ∈ TI
G1 = f(G0) = {(λ x . a) v −A a[x ← v]} ∪ {y b −A z b} ∪ {v y −A v z}

Gn = {vi ((λ x . a) v) bj −A vi a[x ← v] bj | 0 6 i+ j < n} ∪
{vi y bj −A vi z bj | i+ j = n} Hind. hyp.I

Gn+1 = f(Gn)
= {(λ x . a) v −A a[x ← v]} ∪
{a0 b −A a1 b | a0 −A a1 ∈ {vi ((λ x . a) v) bj −A vi a[x ← v] bj | 0 6
i+ j < n}} ∪
{v b0 −A v b1 | b0 −A b1 ∈ {vi ((λ x . a) v) bj −A vi a[x ← v] bj | 0 6
i+ j < n}} ∪
{a0 b −A a1 b | a0 −A a1 ∈ {vi y bj −A vi z bj | i+ j = n}} ∪
{v b0 −A v b1 | b0 −A b1 ∈ {vi y bj −A vi z bj | i+ j = n}}

Hdef. f and GnI

= {vi ((λ x . a) v) bj −A vi a[x ← v] bj | 0 6 i+ j < n+ 1} ∪
{vi y bj −A vi z bj | i+ j = n+ 1}
Gω =

⋂
n∈N

Gn

= {vi ((λ x . a) v) bj −A vi a[x ← v] bj | i, j ∈ N}

proving that lfp
⊆
f = F ω = Gω = gfp

⊆
f . �

6.6 Small-step maximal trace semantics of the call-by-value λ-calculus

Coming back to the small-step maximal trace semantics ∞−A of a transition
relation −A considered in Sect. 4, let us define

nX−A , {σ ∈ T+ | |σ| = n > 0 ∧ ∀i : 0 6 i < n− 1 : σi −A σi+1} partial traces
n−A , {σ ∈ nX−A | σn−1 ∈ V} maximal execution traces of length n
+−A ,

⋃
n>0

n−A maximal finite execution traces

ω−A , {σ ∈ Tω | ∀i ∈ N : σi −A σi+1} infinite execution traces
∞−A , +−A ∪ ω−A maximal finite and diverging execution traces.

6.6.1 Fixpoint small-step maximal trace semantics

To express the small-step maximal trace semantics ∞−A in fixpoint form, let us
define the junction ; of set of traces as

37

S ; T , Sω ∪ {σ0 • . . . • σ|σ|−2 • σ
′ | σ ∈ S+ ∧ σ|σ|−1 = σ′0 ∧ σ′ ∈ T} ,

and the v-monotone small-step set of traces transformer ~f ∈ ℘(T∞) −→
℘(T∞)

~f(T) , {v ∈ T∞ | v ∈ V} ∪ 2X−A ; T (7)

describing small steps of computation.
Lemma 28 We have

∞−A = lfp
v ~f = gfp

⊆ ~f .

Proof By [6, Th. 13]. �

Theorem 29 The big-step and small-step trace semantics are the same

~S = ∞−A .

Proof We first prove that ~f(~S)+ ⊆ ~S+. By definition (7) of ~f , ~S+ =
~F (~S)+ = ~F (~S+) and definition of ~F by (a)—(f) in Sect. 6.3.1, we must prove
that 2X−A ; ~S+ ⊆ ~S+ that is a −A σ0 ∧ σ ∈ ~S+ =⇒ a • σ ∈ ~S+. By (6) in
Sect. 6.5.2, we proceed by structural induction on a.

If a −A σ0 = (λ x . a′) v −A a′[x ← v] then a′[x ← v] • σ1 • σ2 • . . . ∈ ~S+

implies a • σ = (λ x . a′) v • a′[x ← v] • σ1 • σ2 • . . . ∈ ~F (~S+) = ~S+ by (b).
If a −A σ0 = a0 b −A a1 b where a0 −A a1 so a0 6∈ V and σ ∈ ~S+ = ~F (~S+).

By (a)—(f), there are 3 cases for a1 b • σ1 • σ2 •
In case (b), a1 b = (λ x . a) v. We have a0 −A a1 and a1 = λ x . a so, by (6)

in Sect. 6.5.2, a0 = (λ y . a′) v′ and a1 = a′[y← v′] = λ x . a. Since λ x . a ∈ V
we have a′[y← v′] = λ x . a ∈ ~S by (a) so (λ y . a′) v′ • a′[y← v′] ∈ ~S by (b),
that is a0 • a1 ∈ ~S. By (d), a0 • a1 ∈ ~S, a1 ∈ V, and σ = a1 b • σ1 • σ2 • . . . ∈ ~S
imply that a • σ = a0 b • a1 b • σ1 • σ2 • . . . ∈ ~F (~S+) = ~S+.

In case (d), σ = a1 b • σ1 • σ2 • . . . = (σ′ @ b) • (v′ b) • σ′′ where σ′ 6= ε,
a1 • σ

′
1 • σ

′
2 • . . . = σ′ • v′ ∈ ~S+, v′ ∈ V, and (v′ b) • σ′′ ∈ ~S+. By induction

hypothesis, a0 −A a1 and a1 •σ
′
1 •σ

′
2 • . . . ∈ ~S+ imply that a0 •a1 •σ

′
1 •σ

′
2 • . . . =

a0 • σ
′
• v′ ∈ ~S+ hence, by (d), a • σ = (a0 b) • (σ′ @ b) • (v′ b) • σ′′ =

((a0 • σ
′) @ b) • (v′ b) • σ′′ ∈ ~S+.

In case (f), σ = a1 b•σ1 •σ2 •. . . = (a′@σ′)•(a′ v′)•σ′′ where a1 = a′, v′ ∈ V,
σ′ 6= ε, σ′ • v′ ∈ ~S+, and (a′ v′) • σ′′ ∈ ~S+. By (6) in Sect. 6.5.2, a0 −A a1
and a1 ∈ V imply a0 = (λ y . c) w and a1 = c[y ← w]. Hence, by (a) and
(b), a0 • a1 ∈ ~S+. Then, by (d), a0 • a1 6= ε, a0 • a1 ∈ ~S+, a1 ∈ V, and
σ = a1 b •σ1 •σ2 • . . . ∈ ~S+ imply a •σ = a0 b •σ = a0 b •a1 b •σ1 •σ2 • . . . ∈ ~S+.

38

If a −A σ0 = v b0 −A v b1 where v ∈ V and b0 −A b1 then b0 6∈ V so, by
(a)—(f), there are 3 cases for v b1 • σ1 • σ2 •

If, by (b), v b1 • σ1 • σ2 • . . . = (λ x . a′) v′ • a′[x ← v′] • σ2 • . . . then
b1 = v′ ∈ V so b1 ∈ ~S+ hence b0 −A b1 implies, by induction hypothesis,
that b0 • b1 ∈ ~S+. By b0 • b1 ∈ ~S, b1 ∈ V, and v b1 • σ1 • σ2 • . . . ∈ ~S+, we
conclude, by (f), that a • σ = v b0 • v b1 • σ1 • σ2 • . . . ∈ ~S+

The case where, by (d), v b1 • σ1 • σ2 • . . . = (σ′ @ b′) • (v′ b′) • σ′′, with
σ′ 6= ε, σ′ • v′ ∈ ~S+, v′ ∈ V, and (v′ b′) • σ′′ ∈ ~S+ would have σ′0 = v hence
v • σ′1 • . . . v′ ∈ ~S+, which is impossible.

If, by (f), v b1 •σ1 •σ2 •. . . = (a′@σ′)•(a′ v′)•σ′′ where v = a′, v′ ∈ V, σ′ 6= ε,
σ′ • v′ ∈ ~S+, and (a′ v′) • σ′′ ∈ ~S+ then σ′0 = b1 so, by induction hypothesis,
b1 • σ

′
1 • . . . • v′ ∈ ~S+ and b0 −A b1 imply b0 • b1 • σ

′
1 • . . . • v′ ∈ ~S+ so, a • σ =

v b0 • v b1 •σ1 •σ2 • . . . = v b0 • (a′@σ′) • (a′ v′) •σ′′ = a′ b0 • (a′@σ′) • (a′ v′) •σ′′
= (a′ @ (b0 • σ

′)) • (a′ v′) • σ′′ ∈ ~S+, by (f).

To prove that ~f(~S)ω ⊇ ~Sω, we must, by definition (7) of ~f , prove that
σ ∈ ~Sω implies σ ∈ 2X−A ; ~Sω, that is σ0 −A σ1 and σ1 • σ2 • . . . ∈ ~Sω.

But σ ∈ ~Sω =⇒ σ0 −A σ1 is equivalent to ~Sω ⊆ γ(−A) that is gfp
⊆ ~F ⊆

γ(gfp
⊆
f) which, by the dual of [6, Th. 1], follows from ~F ◦ γ ⊆̇ γ ◦ f or

equivalently, α ◦ ~F ◦ γ ⊆̇ f .

Moreover ~S hence ~Sω is suffix closed and therefore σ1 • σ2 • . . . ∈ ~Sω.

We have ~f(~S)+ ⊆ ~S+ and ~f(~S)ω ⊇ ~Sω so ~f(~S) v ~S, proving, by Tarski’s
fixpoint theorem [33] for the v-monotone ~f on the complete lattice 〈℘(T∞),
v〉, that lfp

v ~f v ~S hence ∞−A v ~S.

We now prove that ~F (+−A) ⊆ +−A that is ∀σ ∈ ~F (+−A) : σ ∈ +−A. If |σ| = 1
then σ = σ0 ∈ V so σ ∈ 1−A ⊆ +−A. Otherwise |σ| > 1 and we proceed by case
analysis on the syntax of σ0.

If σ = (λ x . a) v • a[x ← v] •σ′ ∈ ~F (+−A), v ∈ V then a[x ← v] •σ′ ∈ +−A by
(b) and (λ x . a) −A a[x ← v] by (6) in Sect. 6.5.2 so σ = (λ x . a) v • a[x ←
v] • σ′ ∈ +−A by definition of +−A.

If σ = (σ′ @ b) • (v b) • σ′′ ∈ ~F (+−A), where by (d), σ′ 6= ε, σ′ • v ∈ +−A,
v ∈ V, and (v b) • σ′′ ∈ +−A then, by definition of +−A, σ′0 −A σ′1 −A . . . −A
σ′|σ′|−1 −A v and (v b) −A σ′′0 −A σ′′1 −A . . . −A σ′′|σ′′|−1, and so by (6)
in Sect. 6.5.2, (σ′0 b) −A (σ′1 b) −A . . . −A (σ′|σ′|−1 b) −A (v b) hence
σ = (σ′0 b) • (σ′1 b) • . . . • (σ′|σ′|−1 b) • (v b) •σ′′0 •σ′′1 • . . . •σ′′|σ′′|−1 ∈

+−A by definition
of +−A.

If σ = (a @ σ′) • (a v) • σ′′ ∈ ~F (+−A), where by (f), a, v ∈ V, σ′ 6= ε,
σ′ • v ∈ +−A, (a v) • σ′′ ∈ +−A then, by definition of +−A, σ′0 −A . . . −A
σ′|σ′|−1 −A v and (a v) −A σ′′0 −A . . . −A σ′′|σ′′|−1, and so by (6) in Sect. 6.5.2,

39

(a σ′0) −A . . . −A (a σ′|σ′|−1) −A (a v) proving, by definition of +−A, that
σ = (a σ′0) • . . . • (a σ′|σ′|−1) • (a v) • σ′′0 • . . . • σ′′|σ′′|−1 ∈

+−A.

Next, we prove that ω−A ⊆ ~F (ω−A). If σ ∈ ω−A then σ0 6∈ V and σ0 −A
σ1 . . . −A σn −A By (6) in Sect. 6.5.2, there are three cases.

If σ0 −A σ1 = (λ x . a) v −A a[x ← v] then a[x ← v] • . . . • σn • . . . ∈ ω−A
so σ = (λ x . a) • a[x ← v] • . . . • σn • . . . ∈ ~F (ω−A) by (b).

If σ0 −A σ1 = a0 b −A a1 b where a0 −A a1, then there are two cases.
Either all σi, i ∈ N are of the form ai b in which case, by (6) in Sect. 6.5.2,

a0 −A a1 −A . . . −A an −A . . . hence, by definition of ω−A, a0•a1•. . .•an•. . . ∈
ω−A, proving, by (c), that σ = (a0 b) • (a1 b) • . . . • (an b) • . . . ∈ ~F (ω−A).

Or σ = (a0 b) • . . . • (ai−1 b) • σi • σi+ 1 • . . . and σi is not of the form
(ai b). (a0 b) −A . . . −A (ai−1 b) −A σi implies a0 −A a1 −A . . . −A ai−1,
by (6) in Sect. 6.5.2. Since σi is not of the form (ai b), there are, according
to (6) in Sect. 6.5.2, only two possibe cases for (ai−1 b) −A σi.

Either ((λ x . a) v) = (ai−1 b) −A σi = a[x ← v], or
(v b) = (ai−1 b) −A σi = (v b1) where v ∈ V and b0 −A b1.

In both cases ai−1 ∈ V, so ai−1 6−A hence a0 • a1 • . . . • ai−1 ∈ +−A, and
(ai−1 b)•σi •σi+1 • . . . ∈ ω−A so σ = (a0 b)•(a1 b)• . . .•(ai−1 b)•σi •σi+1 • . . . ∈
~F (ω−A) by (d).

Otherwise σ0 −A σ1 = v b0 −A v b1 where b0 −A b1 and there are two
cases.

Either ∀i ∈ N : σi = (v bi) hence, by (6) in Sect. 6.5.2, b0 −A b1 −A
. . . −A bn −A . . . so b0 • b1 • . . . • bn • . . . ∈ ω−A proving that σ = (v b0) •
(v b1) • . . . • (v bn) • . . . ∈ ~F (ω−A) by (e).

Or σ = (v b0) • . . . • (v bi−1) • σi • . . . where σi is not of the form (v bi).
By (6) in Sect. 6.5.2, (v bi−1) −A σi and σi is not of the form (v bi) imply
that ((λ x . a′) v′) = (v bi−1) −A σi = a′[x ← v′] so bi−1 = v′ ∈ V. Therefore
v ∈ V, b0 • . . . • bi−1 ∈ +−A since bi−1 ∈ V, and (v bi−1) • σi • . . . ∈ ω−A by
definition of ω−A imply that σ = (v b0) • . . . • (v bi−1) • σi • . . . ∈ ~F (ω−A) by
(f).

We have ~F (+−A) ⊆ +−A so ~F +(+−A) , ~F ((+−A)+)+ = ~F (+−A)+ ⊆ (+−A)+ =
+−A and ~F + is ⊆-monotone on the complete lattice 〈℘(T+), ⊆〉 so ~S+ ,

lfp
⊆ ~F + = ⋂{X ⊆ T+ | ~F +(X) ⊆ X} ⊆ +−A by Tarski’s fixpoint theorem [33].

Moreover by⊆-monotony of ~F and ~F (ω−A) ⊇ ω−A, we have ~F ω(ω−A) = ~F ω(S) ,
(~F (~S+ ∪ (ω−A)ω))ω = (~F (~S+ ∪ ω−A))ω ⊇ (~F (ω−A))ω ⊇ (ω−A)ω = ω−A so ~Sω ,
gfp

⊆ ~F ω = ⋃{X ⊆ Tω | X ⊆ ~F ω(X)} ⊇ ω−A by Tarski’s fixpoint theorem [33]
on the complete lattice 〈℘(Tω), ⊆〉.

In follows that ~S , ~S+ ∪ ~Sω v +−A ∪ ω−A = ∞−A.

40

In conclusion, we have ~S = ∞−A by antisymmetry. �

6.6.2 Rule-based small-step maximal trace semantics

The maximal trace semantics ~S = ∞−A = lfp
v ~f where ~f is defined by (7) in

Sect. 6.6.1 can be defined inductively with small-steps as

v ∈ ~S, v ∈ V
a −A b, b • σ ∈ ~S

a • b • σ ∈ ~S
v

that is, writing a Z⇒⇒ σ for σ ∈ ~S and σ0 = a

v Z⇒⇒ v, v ∈ V
a −A b, b Z⇒⇒ σ

a Z⇒⇒ a • σ
v

6.7 Small-step bifinitary relational semantics of the call-by-value λ-calculus

The bifinitary relational semantics was defined as ñS , α(~S) (where α is the
relational abstraction of sets of traces (2) in Sect. 6.4.1) and given in big-step
form in Sect. 6.4. It can be given in small-step form by abstraction of the
small-step bifinitary maximal trace semantics of Sect. 6.6.1.

6.7.1 Fixpoint small-step bifinitary relational semantics

The bifinitary relational semantics ñS , α(~S) = α(lfp
v ~f) can be defined in

fixpoint form as lfp
v ñ
f where the small-step transformer ñf ∈ ℘(T × (T ∪

{⊥})) −→ ℘(T× (T ∪ {⊥})) is

ñ
f(R) , {〈v, v〉 | v ∈ V} (8)

∪ {〈(λ x . a) v, r〉 | v ∈ V ∧ 〈a[x ← v], r〉 ∈ R}
∪ {〈a0 b, r〉 | a0 −A a1 ∧ 〈a1 b, r〉 ∈ R}
∪ {〈v b0, r〉 | b0 −A b1 ∧ 〈v b1, r〉 ∈ R} .

Proof We have

41

α(~f(T))
= α({v ∈ T∞ | v ∈ V} ∪ 2X−A ; T) Hdef. (7) in Sect. 6.6.1 of ~fI

= α({v ∈ T∞ | v ∈ V}) ∪ α(2X−A ; T) Hα preserves ∪ by (3) in Sect. 6.4.1I
= {〈v, v〉 | v ∈ V} ∪ α(2X−A ; T) Hdef. (2) of α in Sect. 6.4.1I
= {〈v, v〉 | v ∈ V} ∪ {a • b • σ | a −A b ∧ b • σ ∈ T} Hdef. 2X−A and ;I
= {〈v, v〉 | v ∈ V} ∪ {〈a, ⊥〉 | a −A b ∧ b • σ ∈ T ω} ∪
{〈a, r〉 | a −A b ∧ b • σ • r ∈ T+} Hdef. (2) of α in Sect. 6.4.1I

= {〈v, v〉 | v ∈ V} ∪ {〈a, r〉 | a −A b ∧ 〈b, r〉 ∈ α(T)}
Hdef. (2) of α in Sect. 6.4.1I

= ñ
f(α(T))

by defining ñf(R) , {〈v, v〉 | v ∈ V} ∪ {〈a, r〉 | a −A b ∧ 〈b, r〉 ∈ R}. The
commutation property α ◦ ~f = ñ

f ◦ α implies that ñS , α(~S) = α(lfp
v ~f) =

lfp
v ñ
f . Using the fixpoint property (6) in Sect. 6.5.2 of S, we get (8). �

6.7.2 Rule-based small-step bifinitary relational semantics

The bifinitary rule-base form is (a⇒⇒ b stands for 〈a, b〉 ∈ ñS and r ∈ V∪{⊥})

v⇒⇒ v, v ∈ V
a −A b, b⇒⇒ r

a⇒⇒ r
v

7 Related work

Divergence/nonterminating behaviors are needed in static program analysis
[25] 10 or typing [5,22]. Such divergence information is part of the classical
order-theoretic fixpoint denotational semantics [24] but not explicit in small-
step/abstract-machine-based operational semantics [28,29,30] and absent of
big-step/natural operational semantics [17]. A standard approach is therefore to
generate an execution trace semantics from a (labelled) transition system/small-
step operational semantics, using either an order-theoretic [6] or metric [35]
10 For example, the authors of [32] claim that their “work is the first provably
correct strictness analysis and call-by-name to call-by-value transformation for an
untyped higher-order language” but since the considered big-step semantics does
not account for divergence, the considered analysis is not strictness but a weaker
needness analysis.

42

fixpoint definition or else a categorical definition as a final coalgebra for a
behaviour functor (modeling the transition relation) up to a weak bisimulation
[16,34,20] or using an equational definition for recursion in an order-enriched
category [19]. However, the description of execution traces by small steps
may be impractical as compared to a compositional definition using big steps.
Moreover, execution traces are not always at an appropriate level of abstraction
and relational semantics often look more natural.

8 Conclusion

We have introduced bi-inductive definitions, an order-theoretic approach to
inductive definitions which allows the simultaneous definition of finite and
infinite behaviors in structural operational semantics — both big-step and
small-step styles. We have related various presentations of the bi-inductive
semantics, such as explicit fixpoint definitions and the familiar rule-based
definitions including in absence of monotony. Bi-induction simultaneously
define the finite behaviors by induction and the infinite behaviors by co-
induction. Using induction only would exclude infinite behaviors while using
co-induction only might introduce spurious finite behaviors (for example in
big-step relational semantics).

We have given two examples of using the approach: specifying the finite
and infinite semantics of context-free grammars and of the call-by-value λ-
calculus, both in small/big-step style and at various levels of abstractions
for trace/relational/operational semantics. The lattice of abstractions of the
big-step bifinite trace semantics is the following

6

t

t

6

t

t
6

t

t

PP
PP

PP
PP

PP
PPi

��
��

��
��

��
��1

PP
PP

PP
PP

PP
PPi

��
��

��
��

��
��1

((((
((((

(((
((((

(t~Sω = gfp
⊆ ~F ω

~S = lfp
v ~F = gfp

⊆ ~F

~S+ = lfp
⊆ ~F +

ñ
Sω = gfp

⊆ ñ
F ω

ñ
S = lfp

v ñ
F 6= gfp

⊆ ñ
F

ñ
S+ = lfp

⊆ ñ
F +

S = lfp
⊆
f = gfp

⊆
f

infinite bifinite finite reduction

trace
semantics

relational
semantics

and the lattice of abstractions of the small-step bifinite trace semantics ~S =
lfp
v ~f is isomorphic.

43

Sound (and sometimes complete) abstractions are essential to establish this
hierarchy of semantics [6] and to prove that all the semantics are well-behaved
in the sense that they abstract the small-step trace semantics.

In conclusion bi-inductive definitions should satisfy the need for formal finite
and infinite semantics, at various levels of abstraction, and in different styles,
despite the possible absence of monotony.

Acknowledgments

We sincerely thank the anonymous referees for their careful reading, deeply
pertinent remarks and extemely useful suggestions.

References

[1] S. Abramsky. Semantics of interaction: an introduction to game semantics. In
A.M. Pitts and P. Dybjer, editors, Semantics and Logics of Computation, pp.
1–32. Cambridge University Press, Cambridge, United Kingdom, 1997.

[2] P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook
of Mathematical Logic, volume 90 of Studies in Logic and the Foundations of
Mathematics, pp. 739–782. Elsevier Science Publishers B.V., Amsterdam, The
Netherlands, 1977.

[3] I. Attali, J. Chazarain, and S. Gilette. Incremental evaluation of natural
semantics specifications. In M. Bruynooghe and M. Wirsing, editors,
Proceedings of the Fourth International Symposium on Programming Language
Implementation and Logic Programming, PLILP ’92, Leuven, Belgium, 26–28
August 1992, Lecture Notes in Computer Science 631, pp. 87–99. Springer,
Berlin, Germany, 1992.

[4] N. Chomsky and M.P. Schützenberger. The algebraic theory of context-free
languages. In P. Bradford and D. Hirschberg, editors, Computer programming
and Formal Systems, pp. 118–161. North-Holland Pub. Co., Amsterdam, The
Netherlands, 1963.

[5] P. Cousot. Types as abstract interpretations, invited paper. In Conference
Record of the Twentyfourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 316–331, Paris, France, January 1997.
ACM Press, New York, United States.

[6] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theoretical Computer Science, 277(1—2):47–103,
2002.

44

[7] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
Pacific Journal of Mathematics, 82(1):43–57, 1979.

[8] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 269–282, San Antonio, Texas, 1979.
ACM Press, New York, United States.

[9] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, August 1992.

[10] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract
interpretation. In Conference Record of the Ninthteenth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
83–94, Albuquerque, New Mexico, United States, 1992. ACM Press, New York,
United States.

[11] P. Cousot and R. Cousot. Compositional and inductive semantic definitions in
fixpoint, equational, constraint, closure-condition, rule-based and game-theoretic
form, invited paper. In P. Wolper, editor, Proceedings of the Seventh International
Conference on Computer Aided Verification, CAV ’95, Liège, Belgium, Lecture
Notes in Computer Science 939, pp. 293–308. Springer, Berlin, Germany, 3–5
July 1995.

[12] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order, Second
Edition. Cambridge University Press, Cambridge, United Kingdom, 2002.

[13] Th. Despeyroux. TYPOL: a formalism to implement natural semantics. Technical
report RT–0094, INRIA Sophia Antipolis, March 1988.

[14] S. Ginsburg and G. Rice. Two families of languages related to ALGOL. Journal
of the Association for Computing Machinery, 9:350–371, 1962.

[15] C.A.R. Hoare. An axiomatic basis for computer programming. Communications
of the Association for Computing Machinery, 12(10):576–580, October 1969.

[16] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS
Bulletin, 62:222–269, 1997.

[17] G. Kahn. Natural semantics. In K. Fuchi and M. Nivat, editors, Programming
of Future Generation Computers, pp. 237–258. Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands, 1988.

[18] A. Kanamori. The mathematical import of Zermelo’s well-ordering theorem.
Bull. Symbolic Logic, 3:281–311, 1997.

[19] B. Klin. Adding recursive constructs to bialgebraic semantics. Journal of Logic
and Algebraic Programming, 60—61:259–286, July–December 2004.

[20] B. Klin. Bialgebraic methods in structural operational semantics. Electronic
Notes in Theoretical Computer Science, 175(1):33–43, May 2007.

45

[21] J.-L. Lassez, V.L. Nguyen, and L. Sonenberg. Fixed point theorems and
semantics: A folk tale. Information Processing Letters, 14(3):112–116, 1982.

[22] X. Leroy. Coinductive big-step operational semantics. In P. Sestoft, editor,
Proceedings of the Fifteenth European Symposium on Programming Languages
and Systems, ESOP ’2006, Vienna, Austria, Lecture Notes in Computer Science
3924, pp. 54–68. Springer, Berlin, Germany, 27–28 March 2006.

[23] R. Milner. Operational and algebraic semantics of concurrent processes. In
J. van Leeuwen, editor, Formal Models and Semantics, volume B of Handbook
of Theoretical Computer Science, chapter 19, pp. 1201–1242. Elsevier Science
Publishers B.V., Amsterdam, The Netherlands, 1990.

[24] P.D. Mosses. Denotational semantics. In J. van Leeuwen, editor, Formal
Models and Semantics, volume B of Handbook of Theoretical Computer Science,
chapter 11, pp. 575–631. Elsevier Science Publishers B.V., Amsterdam, The
Netherlands, 1990.

[25] A. Mycroft. The theory and practice of transforming call-by-need into call-by-
value. In B. Robinet, editor, Proceedings of the Fourth International Symposium
on Programming, Paris, France, 22–24 April 1980, Lecture Notes in Computer
Science 83, pp. 270–281. Springer, Berlin, Germany, 1980.

[26] M. Nivat. Sur les ensembles de mots infinis engendrés par une grammaire
algébrique. Informatique Théorique et Applications, 12(3):259–278, 1978.

[27] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for dcpo’s. 65th
Peripatetic Seminar on Sheaves and Logic, Århus, Denmark, November 1997.
Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures, Vol. 11, Issue 2, pp. 117–124, April 2003.

[28] G.D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN–19, Aarhus University, Denmark, September 1981. Reprinted in [30].

[29] G.D. Plotkin. The origins of structural operational semantics. Journal of Logic
and Algebraic Programming, 60—61:3–15, July–December 2004.

[30] G.D. Plotkin. A structural approach to operational semantics. Journal of Logic
and Algebraic Programming, 60—61:17–139, July–December 2004.

[31] M.P. Schützenberger. On a theorem of R. Jungen. Proceedings of the American
Mathematical Society, 13:885–889, 1962.

[32] P. Steckler and M. Wand. Selective thunkification. In B. Le Charlier, editor,
Proceedings of the First International Symposium on Static Analysis, SAS ’94,
Namur, Belgium, 20–22 September 1994, Lecture Notes in Computer Science
864, pp. 162–178. Springer, Berlin, Germany, 1994.

[33] A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–310, 1955.

46

[34] D. Turi and G.D. Plotkin. Towards a mathematical operational semantics. In
G. Winskel, editor, Proceedings of the Twelfth Annual IEEE Symposium on Logic
in Computer Science, LICS ’1997, pp. 280–291, Warsaw, Poland, 29 June–2 July
1997. IEEE Computer Society Press, Los Alamitos, California, United States.

[35] F. van Breugel. An introduction to metric semantics: operational and
denotational models for programming and specification languages. Theoretical
Computer Science, 258:1–98, May 2001.

47

