
Combination of Abstractions in the ASTRÉE

Static Analyzer⋆

Patrick Cousot 2, Radhia Cousot 1, Jérôme Feret 2, Laurent Mauborgne 2,
Antoine Miné 2, David Monniaux 1,2 & Xavier Rival 2

1 Centre National de la Recherche Scientifique (CNRS)
2 École Normale Supérieure, Paris, France (Firstname.Lastname @ens.fr)

http://www.astree.ens.fr/

Abstract. We describe the structure of the abstract domains in the
Astrée static analyzer, their modular organization into a hierarchical
network, their cooperation to over-approximate the conjunction/reduced
product of different abstractions and to ensure termination using collab-
orative widenings and narrowings. This separation of the abstraction into
a combination of cooperative abstract domains makes Astrée extensi-
ble, an essential feature to cope with false alarms and ultimately provide
sound formal verification of the absence of runtime errors in very large
software.

1 Introduction

Astrée is a static program analyzer based on abstract interpretation [1,2] which
is aimed at proving automatically the absence of run time errors in programs
written in a subset of the C programming language. It has been applied suc-
cessfully to large embedded control/command safety-critical real-time software
generated automatically from synchronous specifications, producing correctness
proofs for complex software without any false alarm, within only a few hours
of computation on personal computers [3,4,5,6]. More recently [7], it has been
extended to handle other kinds of embedded software, some of which are hand-
written.

Astrée was designed using:
– a syntax-directed representation of the program control flow (functions, block

structures);
– functional representation of abstract environments with sharing [3], for mem-

ory and time efficiency, and limited support for analysis parallelization [8];
– basic abstract domains, tracking variables independently (integer and floating-

point intervals [9] using staged widenings);
– relational abstract domains tracking dependencies between variables

– symbolic computation and linearization of expressions [10],
– packed octagons [11],

⋆ This work was supported in part by the French exploratory project Astrée of the
Réseau National de recherche et d’innovation en Technologies Logicielles (RNTL).

http://www.astree.ens.fr/


2 P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, X. Rival

– application-aware domains (such as the ellipsoid abstract domain for dig-
ital filters [12] or the arithmetic-geometric progression abstract domain
[13], e.g. to bound potentially diverging computations);

– abstract domains tracking dependencies between boolean variables and other
variables (boolean partitioning domain [4]), or the history of control flow
branches and values along the execution trace (trace partitioning [14]);

– a memory abstract domain [4] recently extended to cope with unions and
pointer arithmetics [7].

Contrary to many program analysis systems, Astrée does not have separate
phases for pointer/aliasing analysis and arithmetic analysis.

To adjust the cost/precision ratio of the analysis, some of the abstract do-
mains are parametrized (e.g. maximal height of decision trees) and applied lo-
cally (e.g. to variables packs [4]) according to local directives automatically in-
serted by the analyzer3.

The abstract domains communicate as an approximate reduced product [15]
to organize the cooperation between abstract domains and allow for a modular
design and refinement of the abstraction used by Astrée. In this paper we
describe how abstract domains are organized and do cooperate.

This modular design allows abstract domains to be turned on and off by
runtime options, easy addition of new domains, and the suppression of older
domains that have been superseded by newer ones (such as the clock domain
[3], now superseded by the arithmetic-geometric progression abstract domain
[5]). Finally, it allows the addition of new reductions / communications between
existing domains. Astrée is therefore an extensible abstract interpreter, an
essential feature to cope with false alarms and ultimately reach zero false alarm.

Astrée is programmed mostly in OCaml [16] (apart from the octagon do-
main library [17] and some platform-specific dependencies, e.g. to control the
rounding behavior of the FPU). It is currently approximately 80 000 lines long.

2 Handling False Alarms

As all abstract interpretation-based static program analyzers, Astrée may be
subject to false alarms; that is, it may report potential bugs that happen in
no possible concrete execution, because of the over-approximation of program
behaviors entailed by abstractions. Thus, when Astrée raises an alarm, it may
be a true alarm, due to a runtime error appearing at least in one program
execution, but it may also be a false alarm due to excessive over-approximation.

This is the case of all automatic sound formal methods which, because of
undecidability and in absence of human interaction, must be incomplete, and
hence, in many cases, either exhaust time or space resources or terminate with
false alarms.

3 These directives can also be inserted manually, but such intervention of end-users
must be avoided, in particular for programs subject to long-term modifications.



Combination of Abstractions in Astrée 3

2.1 Different Classes of Alarms

We distinguish between three classes of alarms:

1. Conditions that necessarily terminate the execution in the concrete world.
Such is the case, for instance, of floating-point exceptions (invalid operations,
overflows, etc.) if traps are activated, and also integer divisions by zero. We
issue a warning and consider that the incorrect execution has stopped at the
point of the error. The analyzer will continue by taking into account only
the executions that did not trigger the run-time error.

2. Conditions that are defined to be incorrect with respect to the C specifi-
cation or user requirements, but that do not terminate the execution and
for which it is possible to supply a sound semantics for the outcome. For
instance, overflows over signed integers will simply result in some signed in-
teger. We issue a warning, but do not consider that the executions meeting
the warning condition have stopped. The user may examine each such warn-
ing and determine if the condition signaled is really harmful (for instance,
the user may decide to ignore some integer arithmetic overflows). If it is not,
the user may safely ignore the warning.

3. Conditions that are defined to be incorrect with respect to the C specifica-
tion, that may or may not terminate the execution when they are encoun-
tered, but for which it is next to impossible to provide a sound semantics
for the remainder of the execution. They are handled by the analyzer as the
first kind of alarms. The rest of the section is devoted to this third category
as it deserves some explanation.

Some operations, such as pointer arithmetics across memory blocks or mem-
ory accesses out of bounds, are considered “undefined behaviors” or “implemen-
tation defined behaviors” by the specification of the C programming language
[18]. They often result in no immediate runtime crash; but may result in e.g.
memory corruptions, with consequences such as erratic behaviors or crashes
much later.

For such conditions, Astrée considers that execution stops with an error
when the first undefined behavior occurs (and signals an alarm at this point).
Its operational semantics thus coincides exactly with actual program executions
only if there is no (false or true) alarm of the third kind.

If such alarms are raised, particularly those related to memory safety, then
the analysis will not flag all possible runtime errors, i.e. not those arising from
traces that have done some “undefined” memory or pointer manipulation. In this
event, it is insufficient to analyze these warnings and show that the “undefined”
behavior is actually defined in a harmless way for platform-specific reasons (as
one would do for the second class of alarms). Rather, one has to either reach
zero alarm of the third class, or prove by other means that their preconditions
are not met in the concrete.

Our experience shows that industrial programmers often use constructs that
are nonstandard with respect to the C specification [18, 6.3.2.3], but have well-
defined behaviors on the target platform, such as converting a 32-bit pointer



4 P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, X. Rival

into an integer, and then back into a pointer. Thus, we have tried to reduce the
third category of warnings as much as possible and, in agreement with our end-
users, defined a more precise yet platform- and even application domain-specific
semantics that turns most of them into either correct statements, or warnings of
the second class. In several instances, it required us to adapt our concrete seman-
tics and develop specific abstractions (e.g. the memory abstraction of [7] to cope
with some situations where pointers are manipulated using integer arithmetics).

2.2 Causes of False Alarms

There are several possible causes of false alarms:

– The abstract transformers are not the best possible, in which case the algo-
rithm can be improved in the corresponding abstract domain, if this improve-
ment is not algorithmically too expensive.

Example 1. Consider the following program:

y=x; z=sqrt(x*y+3);

Starting from x ∈ [−3, 7], a simple interval analysis will derive y ∈ [−3, 7],
then x.y ∈ [−21, 49], x.y + 3 ∈ [−18, 52] and we flag a false alarm on sqrt:
square root of a negative number. However, we can solve this issue with a
minor alteration: when computing the interval for a product x.y, we issue a
request to the reduced product (see Sect. 6.3) and ask whether x and y are
provably equal; if they are, compute the interval for x2, that is, [0, 49]. We
thus improve the precision at a very minor cost.

A more general approach would be to compute polynomials or other expres-
sions symbolically and extract minimal and maximal values depending on the
range of their variables, but this would be more complex and more costly, and
we have not found a need for this so far. 2

– The automated parametrization (e.g. variable packing) fails to guess that some
relation is important and, in order to save time, artificially limits a relational
abstract domain to an inappropriate level of precision. In this case one must
improve or adapt the pattern-matched program schemata.

Example 2. Our first heuristics for reducing the cost of relational domains was
to relate together only variables that appear simultaneously in an assignment
or test. It prevents proving that x ≤ 21 at the end of the following program:

x=10; for (i=0;i<=10;i++) x++;

despite the ability of the octagon domain to infer the necessary inductive
invariant x− i = 10, simply because no octagon will hold both x and i. The
problem was solved by considering octagon packs relating variables that act
likely as counters (i.e. are incremented or decremented within the same loop).

2



Combination of Abstractions in Astrée 5

– The widening in the fixpoint approximation iteration strategy overshoots the
most imprecise invariant allowing the proof of absence of runtime errors, in
which case we must revise the widening. This can be very hard since at the
limit only a precise infinite iteration might be able to compute the proper
abstract invariant. In that case, it might be better to design a more refined
abstract domain.

– The choice of a precise abstract transformer is not always the best. Indeed,
our goal is to find a precise post-fixpoint: it can happen that a more relaxed
abstract transformer helps the extrapolation process. In short, it is better to
jump straight up to the limit, rather than try to be precise at each iteration,
then fail to converge quickly and have to resort to interval widening techniques,
which will in the end yield a poorer result.
When considering arithmetic-geometric progressions [13], choosing the most
precise abstract transformer is not appropriate at all: it would give no more
information than the interval domain.

– The current combination of abstract domains is inexpressive i.e. indispensable
local inductive invariants are not expressible in the abstract. In that case
a new abstract domain must be added to the reduced product (e.g. filters,
arithmetic-geometric progressions).
When a new abstract domain is introduced, a communication and reduc-

tion process is used so that the other abstract domains can benefit from the
information computed by the new one, as described in Sect. 5.2. This may, but
should not, have effects on the enforcement of convergence by widening as dis-
cussed in Sect. 7. The modular integration of new abstract domains allows coping
with variations between the various families of software successfully analyzed by
Astrée.

3 General Structure of Astrée

When Astrée was designed, we knew that the first simple attempt with interval
analysis could not be sufficient to achieve a precise analysis on the industrial
software we were given. From the beginning, we had in mind the process of
refinement which consists in finding the origin of false alarms and improving the
information generated by the analysis by a modular extension. It is the reason
why we developed Astrée in a modular way, as permitted by the abstract
interpretation theory.

Astrée can be roughly decomposed into 4 parts:

1. a front-end, very similar to that of a compiler,
2. simple independent analyses,
3. an invariant computation mixing many interdependent analyses,
4. invariant checking and alarm reporting.

The first phase is pretty standard and did not change much during the evo-
lution of Astrée. An intermediate code is produced, typed and annotated, and
then simple program transformations are applied, such as constant propagation.



6 P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, X. Rival

The transformations we implemented aim at reducing the complexity of the sub-
sequent analyses. One important aspect is the elimination of useless variables
(e.g. after constant propagation) as the size of the invariants depends directly
on the number of variables.

The second phase consists in simple independent analyses, producing infor-
mation useful for the subsequent invariant computation, such as variable depen-
dencies. It implements automatic parametrization strategies, such as the octagon
packing strategy [11] or the trace partitioning strategy [14].

The third phase is the most important and also the most demanding. It con-
sists in an iterator which follows the control flow of the program and gives orders
(abstract transfer directives) to modules representing information about the pro-
gram. Each of these modules is what we call an abstract domain, and each of
them collects some specialized information about the iteration sequence leading
to the invariants of the program Astrée analyzes. Such abstract domains can
deal with the trace approximation [14], the shape of the data structures and
memory [7], or the numerical values occurring during the program execution.
The way these abstract domains are designed independently and then interact
to produce precise information about the program invariant is crucial to achieve
a fast and precise abstract interpreter.

4 Abstract Domains

4.1 Interfaces, Properties, and Abstractions

An abstract domain collects properties about the potential computations of a
program. In Astrée, the abstract interpreter follows the control flow of the
program; thus, our abstract domain collects some properties about the compu-
tations of the program reaching the current program point.

The design of our abstract domains fits with [2], that is:
– We abstract sets of execution traces, not mere sets of reachable states.
– An abstract domain is not necessarily a lattice, and may not even need a

preorder.
– We do not define a Galois connection, but only a concretization function; that

is, concrete properties may lack a most precise abstraction.
– Abstract transformers are not necessarily monotonic with respect to the infor-

mation preorder induced by the concretization; that is, it may happen that a
more precise abstract precondition is transformed into a less precise abstract
postcondition.
The elements of the concrete domain D are sets of trace fragments.4 A trace

fragment is a sequence of one or more pairs (p, s) where p is a program point
and s is a memory state. All our abstractions will take the following view of a
set of execution traces (p1, s1), . . . , (pn, sn):

4 In fact, it consists in sets of trace fragments collected for the direct flow (normal
program executions) and the pending branching flows (break, continue, forward
goto). In this paper, we shall ignore the latter for the sake of simplicity.



Combination of Abstractions in Astrée 7

– only final states so that pn is the current program point of the analysis are
considered;

– the final memory state sn is abstracted quite precisely;

– the strict prefix (p1, s1), . . . , (pn−1, sn−1) is abstracted more coarsely; the trace
partitioning domain keeps a sequence of program points pk of interest (e.g.
those related to if-then-else or loop branches) as well as the value of a few
selected variables from sk at given program points.

An abstract domain is a set D♯ of abstract properties of trace fragments.
Each abstract property a ∈ D♯ is related to the set of concrete trace fragments
that satisfy this property through a concretization function γD♯ : D♯ → D. We
consider different kinds of information:

– Some abstract properties define the mapping between structured C variables
and the abstract scalar variables manipulated by most abstract domains. In
particular, it handles the case where overlapping sequences of bytes are manip-
ulated as scalar variables of possibly different types (e.g. through union types
or pointer casts) and frees the other domains from the burden of coping with
byte-level aliases and considering the binary memory representation of vari-
ables. This structural abstraction [7] is fully dynamic because, in our model of
concrete executions, the pattern of data accesses is a run-time property that
is not restricted by static typing.

– Some abstract properties constrain abstract variables: they may be non rela-
tional properties (such as a range for each variable) or relational properties
(such as restricted linear relations, as in octagons; restricted polynomial re-
lations, as in ellipsoids; restricted non-polynomial relations, as in arithmetic-
geometric progressions).

– Some abstract properties may be guarded by constraints about some variables
(as in boolean partitioning or by properties on the computation traces that
have led to the current state (as in trace partitioning).

We do not assume that an abstract domain has a lattice structure. However,
we suppose that it is provided with primitives to simulate the computation of the
concrete semantics at the abstract level. This way, for any concrete n-ary primi-
tive F : Dn → D, we have a sound abstraction FD♯ : (D♯)n → D♯ that satisfies:
for any abstract properties ai ∈ D♯, F((γD♯(ai))1≤i≤n) ⊆ γD♯(FD♯((ai)1≤i≤n)).
However, we do not assume FD♯ to be the most precise transformer that satisfy
this property. These primitives not only update memory states, but also the
information about the computation paths that lead to these memory states.

To ensure the termination of our analysis, the abstract domain is provided
with extrapolation operators: the bottom element ⊥ ∈ D♯ is the basis of abstract
iterations, the widening operator ▽D♯ ∈ D♯ × D♯ → D♯ is used to speed up the
iterates (it may discard some information), and the narrowing operator △D♯ ∈
D♯ × D♯ → D♯ is used to refine the iterates (after an imprecise extrapolation).
We require no property whatsoever about the bottom element ⊥. The widening
operator (resp. the narrowing operator) is a sound abstraction of the union set
operator (resp. the meet set operator): this way, for any pair (a, b) ∈ D♯ ×D♯ of
abstract properties, we require that γD♯(a)∪γD♯(b) ⊆ γD♯(a▽D♯b) and γD♯(a)∩



8 P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, X. Rival

γD♯(b) ⊆ γD♯(a△D♯b). Moreover, both widening and narrowing operators ensure
the convergence of iterates, which means that for any sequence (xn) ∈ (D♯)N,

the sequence (x▽

n) (resp. (x△
n )) defined as x▽

0 = x0 (resp. x
△
0 = x0) and x▽

n+1 =

x▽

n▽D♯xn+1 (resp. x
△
n+1 = x△

n △D♯xn+1) is ultimately stationary. More details
are given about the usage of the widening in Sect. 7 and about the usage of the
narrowing in Sect. 8.

Although we do not require abstract domains to be provided with an ab-
stract order, there always exist a so-called information preorder ⊑♯ induced by
the concretization function: a ⊑♯ b ⇐⇒ γD♯(a) ⊆ γD♯(b). This preorder has
little use in a practical analyzer as it is often computationally expensive and
sometimes not even computable. Moreover, although all abstract transfer func-
tions are abstractions of monotonic concrete transfer functions, they are often
not monotonic with respect to the information preorder.
– The first cause of non monotonicity is nested loops. Internal loops may be

analyzed using widening operators, and the abstraction of the least fixpoint
obtained is in general not monotonic with respect to loop precondition.

Example 3. Consider an interval analysis of the following program, using the
standard widening [9]:

x=0;

while(random()) {

x=x+1;

if (random()) x=y

if (x==10) x=0; }

If we know at the beginning that y ∈ [0, 9], then we immediately obtain the
invariant x ∈ [0, 9]. Suppose however that we know the more precise property
y = 0, then our analysis gives x ∈ [0,+∞[. Thus, a more precise precondition
yields a far worse outcome. 2

– Another cause is transfer functions making use of additional information that,
in fact, produce a less precise result.

Example 4. Such is for instance the case of the interval domain [9] helped
by the symbolic computation domain [10]. Consider the following example,
depending on whether we use the rewrite rule j 7→ i + 1 arising from the
assignment j=i+1:

Code Symbolic computation Less precise symbolic

int i, j=i+1; j 7→ i+1 NOTHING
int k=j+1; j 7→ i+1, k 7→ j+1 7→ i+2 k 7→ j+1
if (j > 0) {
l=k; j 7→ i+1, k 7→ i+2, l 7→ i+2 k 7→ j+1, l 7→ j+1

}

By default, our symbolic computation domain performs all possible rewrites,
thus we try to reduce the intervals using k 7→ i+2, which yields no additional



Combination of Abstractions in Astrée 9

precision. However, with the less precise third column, we have k 7→ j + 1,
and since we have the interval information j ∈ [1,+∞[ we conclude that
k ∈ [2,+∞[. 2

– Finally, some abstract domains are implemented using floating-point as over-
approximations of an “ideal” abstract domain and this may introduce non-
monotonicity.

Example 5. The octagon abstract domain uses a propagation scheme based
on an incremental Floyd–Warshall shortest-path-closure algorithm to infer
and refine constraints. On reals or rationals, this propagation is both sound
and complete; in particular, the outcome does not depend on the order of
the variables. On floating-point numbers, soundness can be achieved easily by
rounding all computations towards +∞ (as only upper bounds are manipu-
lated). However, the propagation is no longer complete and different variable
orderings give incomparable sound approximations of the most precise result.
Starting from the same precondition, but two different internal encodings, and
applying the same transfer function, we can obtain slightly different postcon-
ditions, hence the non-monotonicity. 2

4.2 Comparison with Predicate Abstraction

Constraint messages (Sect. 5) and abstract properties are, essentially, predicates
over the set of traces that we abstract. However, our analysis is not what is
usually referred to as predicate abstraction [19].

Predicate abstraction generally refers to the following approach:

– one considers a (small) finite, given, set S of predicates; each predicate p ∈ S

has a semantics JpK in terms of possible program or variable states (thus, the
predicate x < 5 will include all program states where variable x is less than
5); in the simplest case, predicates simply reflect the value of the boolean
variables in the program;

– one computes abstract states as subsets S′ of S, such that JS′K =
⋂

p∈S′JpK;

– transformers over these abstract states may be defined using an automatic
theorem prover;

– once transformers are defined, the program is reduced to a boolean program
and a model checker is used;

– if one cannot prove the desired property, and a fake “counterexample” is
obtained the analysis is insufficiently precise; additional predicates have to be
added, often generated through a process of automatic refinement based on
the examination of the fake counterexample.

Differences with predicate abstraction are as follows:

– Our analyses do not consider a priori a small set of predicates, but rather
operate on parametric predicates [20]. That is, where predicate abstraction
considers different predicates x < 4, x < 5, etc., our analysis considers a
generic predicate x < C and tries to adjust C.



10 P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, X. Rival

– We do not use an automatic theorem prover to generate the program trans-
formers. We could perhaps do so, provided that the theorem prover is capable
of handling efficiently our parametric predicates; obviously, it is more diffi-
cult to generate transformers over parametric predicates, perhaps with some
measure of optimality of the result of the transformer, than to decide or even
semi-decide whether a particular ground predicate ensues from a program
construct in the context of some particular ground predicates. However, such
automated generation of parametric transfer functions is itself a research issue.

– We do not use automatic refinement techniques in the sense of adding new
predicates and starting the analysis again. However, if our analysis fails to find
an invariant, then we extrapolate the invariant “candidates” through widening
techniques.

4.3 Domain Constructors

Some of the abstract domains used in Astrée are based on similar algebraic
constructs or are parametrized by the choice of an underlying abstract domain.
In order to factor code and allow easy parametrization, we defined domain con-
structors [21] that are naturally implemented as OCaml functors [16], while
abstract domains are OCaml modules.

Non-Relational Lifting Functor. Some abstract domains used in Astrée are
non-relational ; that is, they abstract the values of each scalar abstract variable
separately. For instance, we have the following abstractions for scalar values:

– integer intervals with thresholds;
– floating-point intervals with thresholds;
– integer congruences.

We lift these abstractions to non-relational domains on multiple variables by
considering abstract environments mapping each variable to an abstract value.
As described in [3], environments are implemented using balanced binary trees,
which allows a fast abstract union operator in O(m log n), where n is the total
number of variables and m the number of variables that differ in the two envi-
ronment arguments, instead of O(n) for a plain array. This pays off in the kind
of code we analyze, where the number of if-then-else as well as the number of
variables are linear in the size |P | of the program, but then and else branches
have a small size. We obtain a combined cost for the meet operation at the end
of all if-then-else in O(|P | log |P |) instead of O(|P |2). The same optimization is
used for other binary operators, e.g. widening.

Packed Relational Lifting Functor. A similar system is used for relational
domains (such as the octagon abstract domain: the set of abstract variables is
partitioned5 into packs of bounded size. All the variables in a pack are related

5 Actually we consider a covering where one variable may appear in several packs. This
is useful when a single variable is used in different contexts. However, to maintain
an almost linear cost, no information flows between packs sharing variables.



Combination of Abstractions in Astrée 11

together by an instance of the relational domain, but not with variables in other
packs. Each transfer function only modifies a small set of packs, while abstract
unions operate point-wisely on packs. The lifting of a standard relational domain
to a packed domain is similar to the non-relational lifting. The resulting domain
enjoys the same almost-linear asymptotic cost, assuming a bound on the size of
the packs.

Trace Partitioning. Most abstract domains deal with scalar values and data
structures, thus, memory states of the program. However, it is sometimes neces-
sary to distinguish between values according to the history of the computation.

Example 6. Consider the following implementation of a piecewise linear function:

if (x < tx[0] || x > tx[N]) fail();

for (i=0; i<N-1; i++)

if (x <= tx[i+1]) break;

return ty[i]+(ty[i+1]-ty[i])*(x-tx[i])/(tx[i+1]-tx[i]);

where tx and ty are constant arrays of size N+1, and tx is increasing. The plain
interval domain would show a warning for division by zero, since it will compute
the least upper bound of all tx[i+1] for all values of i, the same for tx[i], and
the two would overlap. Precise analysis thus seems to require inferring complex
relationships between i, tx[i], and ty[i] and handling affine functions.

However, the interval domain can find the most precise result provided that
we partition the last assignment with respect to the number of iterations before
exiting the loop. This is semantically equivalent to analyzing the following code:

if (x < tx[0] || x > tx[N])

fail();

if (x < tx[1])

return ty[0]+(ty[1]-ty[0])*(x-tx[0])/(tx[1]-tx[0]);

else if (x < tx[2])

return ty[1]+(ty[2]-ty[1])*(x-tx[1])/(tx[2]-tx[1]);

else ...

else

return ty[N-1]+(ty[N]-ty[N-1])*(x-tx[N-1])/(tx[N]-tx[N-1]);

2

Trace partitioning [14] is a functor parametrized by two abstractions: an ab-
straction of the history of former memory and control states (e.g. a sub-sequence
of branches taken), and an abstraction of the current memory state. Abstract
elements are maps and are implemented as trees: each path corresponds to a
different control history and each leaf contains the corresponding memory state.
This makes it easy to dynamically adjust the precision of history abstractions
by simply splitting leaves and folding sub-trees, which is exactly what Astrée

does, driven by heuristics that achieve a trade-off between cost and precision.



12 P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, X. Rival

Boolean Partitioning. An alternate way of partitioning is to distinguish be-
tween the possible values of a subset of the variables with respect to the value
of one or more boolean variables.

Example 7. Consider the following code that stores an arithmetic condition in
a boolean for future use6:

b = x < 5;

/* unrelated computations */

if (b) x = 5;

In order to prove that x ≥ 5 at the end, one should distinguish between the case
where b is true and where it is false, at least for the information concerning x.

2

Partitioned abstract elements are implemented as decision diagrams [4, 2.6.4],
i.e. trees with boolean variables at internal nodes and abstract memory states at
the leaves, with opportunistic sharing of equivalent sub-trees. Thus, the boolean
partitioning domain it is a functor parametrized by the choice of an abstraction
of memory states. As for relational domains, almost-linear cost is achieved by
only partitioning small, bounded sets of arithmetic variables with respect to
small, bounded sets of booleans. Thus, it also reuses the packing functor.

Abstract Product. In general, the abstract domain used by the analyzer is
formed of the partially reduced product of several abstract domains. Reduction is
implemented through a network of communication channels, as explained in the
following section. We use a binary product functor that takes two domains and
implements communications between them. It returns a new domain that can
be used as argument of any functor, including the product functor itself. Thus,
a full network of domains can be constructed using several product applications.
As the binary product multiplexes communication channels, every domain in the
resulting network can communicate with every other one.

5 Network of Domains

5.1 Hierarchies

Astrée handles very heterogeneous kinds of abstract properties. Each class of
abstract properties is gathered inside a small, independent abstract domain.
Domains are fitted with all the primitives needed to handle their particular class
of abstract properties. Nevertheless, Astrée is not a neutral product of separate
abstract domains (which would be equivalent to running separate analyses); it
organizes an active collaboration between them.

6 This kind of code, where the definition and the use of b are far apart, appears fre-
quently in automatically generated programs (e.g. compiled from graphical languages
à la Simulink).



Combination of Abstractions in Astrée 13

We use the binary product functor to gather several abstract domains to-
gether into a hierarchy and form a reduced product. The product is not commu-
tative because it sets which abstract domain will be processed before the others.
As a consequence, the domains that are computed first may communicate par-
tial results to others that have not yet started their own computations. When
a domain D

♯
1 is computed before domain D

♯
2, we say that D

♯
1 is an underlying

domain of the domain D
♯
2. By construction, being an underlying domain is an

acyclic relation (see Fig. 1).
The argument of a unary functor, such as the trace or boolean partitioning

domain, may also be an abstract domain constructed by applying the binary
product functor. As a consequence, there are generally several hierarchies at
work in an analysis. Each unary functor spawning a hierarchy will be called a
root. Roots have a special role in the communication between domains, as we
will see in Sects. 5.3–5.4.

Example 8. Fig. 1 is a small but realistic hierarchy used in Astrée. Its main
root is the trace partitioning domain. The boolean partitioning domain is used to
spawn a simpler sub-hierarchy. In the example, variable ranges can be partitioned
with respect to the value of some boolean variables, while octagon invariants
cannot. Also note that the interval domain is the most underlying domain in
both hierarchy, hence the first evaluated. On the one hand, it is the least precise,
and so, the one most likely to benefit from refinement by other domains. On the
other hand, it is the only one to handle all C constructs, and so, provides a base
information we can always resort to. 2

5.2 Communication Channels

Domains communicate abstract properties to each other. For that purpose, we
introduce a particular abstract domain of messages. This domain is defined as
a set IO♯ of abstract properties and by a concretization γIO♯ : IO♯ → D that
maps any such abstract property to the set of concrete trace fragments that
satisfy this property.

Each regular abstract domain (D♯, γD♯) is fitted with a primitive extractD♯ :
D♯ × IO♯ → IO♯ that it can use to emit some constraints on communicating
channels. In the expression io′ = extractD♯(c, io), the message io denotes
the contents of the channel before the constraint is emitted, the abstract el-
ement c denotes an abstract element in the domain D♯, and the message io′

denotes the contents of the channel enriched with constraints extracted from
c (hence the name extract). This way, we require that γD♯(c) ∩ γIO♯(io) ⊆
γIO♯(extractD♯(c, io)).

Conversely, each abstract domain (D♯, γD♯) has a primitive refineD♯ : D♯ ×
IO♯ → D♯ allowing the reception of constraints from a communication channel.
In the expression c′ = refineD♯(c, io), the abstract element c′ is a refinement
(hence the name refine) of the abstract element c having taken into account the
constraints denoted by the contents io of the channel. We require that γD♯(c) ∩
γIO♯(io) ⊆ γD♯(refineD♯(c, io)).



14 P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, X. Rival

intervals

trace partitioning

symbolic domain

octagons boolean
partitioning

symbolicintervals
domain

Fig. 1. Example hierarchy.

In the following subsections, we introduce some communicating channels be-
tween domains. We distinguish between two kinds of communications:

1. a domain may ask whether a more precise constraint is available; the channel
used is then called an input channel (Sect. 5.3);

2. a domain may decide to communicate some of its constraints to other do-
mains in order to refine them, in which case the channel used is called an
output channel (Sect. 5.4).

Note that the abstract domain IO♯ of messages does not need to be the
same for input and output channels. In Astrée, they are indeed different and
implemented using different data-structures (a product type for the input, and a
sum type for output). This means that we actually have two versions of refineD♯

and extractD♯ .

5.3 Input Channels

Input channels provide information on both the postcondition being computed
and the precondition computed in the last computation step. A domain D♯ may
update the contents of the postcondition channel at the end of its own compu-
tation (using extractD♯). It may read the pre-condition information from all
domains, but may only access post-condition constraints that have already been
computed by another domain (triggered before itself in the hierarchy). At the
end of a computation step, the network root collects the contents of the channel
and makes it available to all domains as the precondition of the next step.



Combination of Abstractions in Astrée 15

The contents of the channel is implemented as a functional record type. Each
field denotes a particular class of properties in IO♯. For each field, there is
a default value ⊤ which corresponds to the absence of information (when no
domain has filled the field yet). To avoid useless computations, we rely on lazy
evaluation: each field is a function that is evaluated only if/when required. To
update a closure f , a domain replaces it with a new closure f ′. When applied,
the new closure f ′ may or may not evaluate f . Moreover, we use memoization
to avoid computing the same information several times.

The advantage of this design is that adding a new kind of input communi-
cation between two domains is straightforward. First, we add a field in the sig-
nature of the channel and we update the default value of the channel contents.
Then, we modify the primitive extractD♯ of the domain D♯ that provides this
information. Last, we update the primitives that use this information. The code
for the other domains that do not generate nor use this information does not
require any modification.

5.4 Output Channels

Output channels are used when a domain wants to send a message to others.
There are two output channels:

– The first one is used to refine the computation just performed by the under-
lying domains; we call it the oriented output channel.

– The second one broadcasts a message to be used by all domains (including
those that have not performed their computation yet); we call it the broadcast
output channel.

A domain D♯ may send messages (using extractD♯) and fetch messages to
use them (using refineD♯). In the case of oriented outputs, the contents of the
channel is simply handed from one domain to the next by the product functor
so that it can be directly used, refined, or both; then, the (possibly updated)
contents is forwarded to all the underlying domains. In the case of broadcast
outputs, the channel is only updated during the network evaluation; no domain
may use its contents. Then, once the root of the network is reached, the contents
of the channel is sent to all domains using refineD♯ primitives, so that domains
have the opportunity to use (and even refine further) the information.

The contents of an output channel is implemented as a list of constraints.
Constraints are implemented with a sum type, where each summand is a differ-
ent kind of constraints. After each computation, each domain collects a list of
constraints from each output channel. The primitive refineD♯ scans the list and
refines the abstract properties accordingly. It may also generate new constraints
to be communicated to other domains but, to avoid infinite loops, we only allow
refineD♯ to use the oriented output channel, not the broadcast one.

From the point of view of analyzer maintenance, this design is very convenient
since it makes the addition of a new kind of output communication between
two domains easy. First, we add a summand in the signature of the output



16 P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, X. Rival

constraints. Then, we modify the domain that outputs the constraints. Last, we
update the primitive extractD♯ in the domain D♯ that wishes to receive the
constraint. The other domains do not require any modification: they will simply
ignore the new information, which is safe.

6 Domain Cooperation

Abstract computations are made under assumptions about pre/postconditions.
Indeed, any n-ary concrete transfer function F ∈ Dn → D is simulated by
an abstraction FD♯ ∈ (D♯ × IO♯)n × IO♯ → D♯. The abstract element a0 =
FD♯((ai, ioi)1≤i≤n, io0) should be understood as: compute in the abstract the
image of F, knowing that each argument ai satisfies the constraints in ioi, and
that the result a0 satisfies the constraints in io0. This gives the following sound-
ness criterion: if there exists some (ci)0≤i≤n ∈ Dn such that

– ci ∈ γD♯(ai), for any i such that 1 ≤ i ≤ n,
– ci ∈ γIO♯(ioi), for any i such that 0 ≤ i ≤ n,
– c0 ∈ F((ci)1≤i≤n).

then we must have c0 ∈ γD♯(FD♯((ai, ioi)1≤i≤n, io0)).
We now distinguish between several cases of collaboration. Some domains

may be used to refine the abstract properties of other domains. This kind of
reduction boils down to replacing an abstract operation FD♯((ai)1≤i≤n)) with a
refined counterpart ρ0(FD♯((ρi(ai, ioi))1≤i≤n), io0) such that, for any integer i

such that 0 ≤ i ≤ n, ρi is a sound abstraction of the meet: (γD♯ ◦ ρi)(ai, ioi) ⊇
γD♯(ai) ∩ γIO♯(ioi). Whenever i > 0, the reduction ρi : D♯ × IO♯ → D♯ is used
to refine the precondition: this kind of refinement is discussed in Sect. 6.1. The
reduction ρ0 : D♯ × IO♯ → D♯ is used to refine the postcondition: this kind of
refinement is discussed in Sect. 6.2.

In Astrée, this is not the only way the domains may collaborate. We also
perform some refinement of abstract transformers that cannot be expressed as
merely refining abstract states. This is discussed in Sect. 6.3.

6.1 Precondition Refinement

Some domains refine abstract states before they are fed to their abstract trans-
formers. This is made possible thanks to the input channel as it makes the infor-
mation that has been computed by all domains accessible to any domain. Since
the abstract interpretation of the program follows the control flow graph, the
abstract computation of the properties that are valid at a given iteration and
just before interpreting an instruction are fully computed before the abstract
interpretation of the instruction begins.

This kind of reductions is used whenever the domain is a partial mapping
from some tuples of variables to parametric constraints (as in the filters domain
or the arithmetic-geometric progressions domain). In such domains, the support
(i.e. the set of tuples that are mapped to a constraint) changes during the it-
eration. Whenever both arguments of a binary operator do not have the same



Combination of Abstractions in Astrée 17

support or whenever a unary abstract transformer needs a given constraint to
be precise, the domain uses the input channel to synthesize missing constraints.

Example 9. The ellipsoid domain can simulate an assignment of the form X =
a.Y + b.Z + t by mapping a constraint of the form Y 2 − a.Y.Z − b.Z2 ≤ k2 to
a constraint of the form X2 − a.X.Y − b.Y 2 ≤ (f(k))2. When this constraint
is missing, the ellipsoid domain synthesizes an ellipse using interval constraints
about the variables Y and Z, and a possible equality relation between Y and Z.

2

6.2 Postcondition Refinement

Domains may collaborate to refine the result of an abstract transformer. There
are two cases: the refinement is initiated either by the domain that has computed
the information, or by the domain that misses the information.

A first use is when a domain synthesizes a very useful information and prop-
agates it to its underlying domains using the oriented output channel7. For in-
stance, many domains can infer interval information and use the oriented output
channel to inform the interval domain of their discoveries.

Example 10. Consider the following code fragment computing an absolute value:

X=Y;

if (X<0) X=-Y;

if (X<100) { ...Y... }

The interval domain does not track the relationship between X and Y and so
cannot prove that, in the last then block, Y ∈ [−100, 100]. However, the octagon
domain can (see [11, §5.2]). Suppose now that the interval domain is underlying
with respect to the octagon one, thus allowing the later to refine the result of the
former through an oriented output channel (this is always the case in practice).
After each assignment or test, the octagon domain gathers the variables that
had their value updated (for tests, this includes all the variables appearing in
the expression; for assignments, only the left-value is considered) and extracts
their range in all octagons by projection. Each range is then compared to the
one computed by the underlying domains (using the input channel on the post-
condition). When the one computed from the octagon domain is more precise, it
is output to the oriented output channel. When it is not, no interval constraint is
output. This may happen because some modified variables do not appear in any
octagon, or the expression has been so aggressively abstracted (due to floating-
point arithmetics [22] or non-linearity [10]) that the interval domain performs
better. 2

7 Although a domain may use the broadcast output channel to propagate information
to underlying domains, this has not been used in Astrée until now. The broadcast
channel has a more specific use, illustrated in Ex. 12.



18 P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, X. Rival

A second use is when a domain cannot synthesize a precise constraint, and
so, asks for other domains to generate it. A first way to receive constraints from
underlying domains is to use the input channel.

Example 11. In some cases, the octagon domain is not able to compute the effect
of a transfer function at all. Consider, for instance, the assignment X=Y on an
octagon containing X but not Y. In that case, the octagon domain relies on the
underlying interval domain to give it the actual range of X in the postcondition.
To compute the effect of the assignment, the domain first forgets all constraints
about X (are they may no longer hold in the postcondition), and then adds range
constraints gathered from the input channel for the postcondition. 2

Alternatively, a domain may use the broadcast output channel to request
some information about some variables. The root of the network will propa-
gate this message to all domains. Each domain will then try and compute some
constraints over the given variables and communicate them using the oriented
output channel. This is more powerful because all domains participate in the
refinement, but also more costly.

It is important to note that we cannot rely solely on precise domains to ini-
tiate communications towards less precise ones. Suppose, for instance, that we
wish an unstable constraint to be refined by a precise and stable constraint after
some widening application. Because of our systematic optimization of binary
operations (which is key to the scalability of Astrée, see Sect. 4.3), stable con-
straints are not even looked at during widening application. As a consequence,
the precise and stable constraint has no opportunity to initiate the communica-
tion and it is up to the unstable one to ask for help.

Example 12. The widening of the interval domain checks for the stability of
variable ranges. When it detects that some variable range is not stable, it enlarges
it. It also sends a broadcast message to the root of the network and informs it of
the precision loss. As a consequence, each domain will collects all the information
it has on the variable and try to infer a range information. When successful, this
process issues a “refine range” message that is acknowledged by the interval
domain. 2

6.3 Abstract Transformer Refinement

Some refinements cannot be expressed as state refinements: domains actually
collaborate to set up their abstract transformers.

First, some domains require expressions to be presented with a given level of
abstraction. In such cases, a domain may ask its underlying domains to abstract
an expression. This kind of communication is ensured by the input channel.

Example 13. Most abstract domains are purely numerical abstract domains that
abstract sets of points in a vector space R

n. They require expressions to be arith-
metic expressions over some finite set of scalar variables. However, C expressions
also allow structured variables (such as arrays or structures) as well as pointers.



Combination of Abstractions in Astrée 19

A specific domain [7] is devoted to abstracting the memory into a set of indepen-
dent scalar cells. It is its responsibility to evaluate array and structure accesses,
pointer dereferences, and translate C expressions into arithmetic ones.

In order to do this, it abstracts information on the layout of the memory, as
well as information on the memory blocks pointed to by pointers. However, it
relies on the underlying numerical domains to abstract the contents of integer
and floating-point variables, as well as pointer offsets (viewed as integers). For
instance, it may ask the underlying domain for the value of some array index in
the current precondition. The case of complex expressions with several levels of
indirections is solved by structural induction and spawns many communications.

Another example is pointer arithmetics, which is simply translated into inte-
ger arithmetics on offsets, to be evaluated by underlying numerical domains. It
is important to note that pointer and value analyses are performed at the same
time and that expressions are transformed on-the-fly given the abstraction of
the precondition currently available in the network of domains. 2

Example 14. Most relational domains are based on real arithmetic, because it
enjoys convenient properties (e.g. associativity, distributivity). However, con-
crete programs use floating-point operations that violate those. Thus, we use a
linearization domain [22] to soundly translate floating-point arithmetics into real
arithmetics. This may decrease the precision because perfectly deterministic but
highly non-linear rounding errors are abstracted into non deterministic intervals.
But, it outputs simple linear forms with interval coefficients and real semantics
that can be fed directly to numerical domains, even relational ones.8 2

Note that some domains require precise information that is lost by lineariza-
tion or array access resolution. Thus, each domain should be allowed to interpret
expressions at the level of abstraction it chooses (possibly in a dynamic way).

Example 15. The floating-point interval domain bounds tightly each floating-
point operation, enabling us to analyze x < y differently from x ≤ y. The
small non deterministic rounding errors introduced by the linearization would,
however, make this impossible. 2

Example 16. When interpreting an expression of the form A[i]+B[i], where
both A and B are arrays and i is an integer, there may be an invariant about the
expression A[i]+B[i] for any i within the bounds of the arrays A and B. This
invariant is lost when resolving array accesses. If we want abstract domains to
use this invariant, we have to give them the opportunity to access expressions
before array access resolution. Another solution is partitioning, but that may be
too impractical or too costly. 2

8 Interestingly, in relational numerical abstract domains, algorithms are usually proved
on real numbers, but the implementation is done using floating-point numbers, and
soundness is achieved using rounding towards ±∞ as appropriate. Thus, there exists
a real abstract semantics JeK♯

R
and an over-approximation thereof using floating-point

numbers JeK♯
F . Let us call JeKF the concrete semantics over floating-point values and

JeKR the over-approximation using real numbers and intervals for rounding errors,
we have a tower of semantics: JeKF ⊑ JeKR ⊑ JeK♯

R
⊑ JeK♯

F .



20 P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, X. Rival

Abstract domains may use more precise abstract transformers whenever some
properties are satisfied. There are two cases. In the first case, a special-purpose
domain is used to check whether the properties hold and inform other domains
using the broadcast output channel.

Example 17. Consider the following code:

volatile float vI;

void main () {

float I, O = 0, R, OLD;

while (1) {

I = vI;

OLD = O; R = I - OLD; O = I;

if (R <= -0.2) { O = OLD - 0.2; }

else if (0.2 <= R) { O = OLD + 0.2; }

}

}

An input stream (denoted by the variable I) is modified by a rate limiter
that bounds the difference between two successive outputs by the value 0.2. The
variable OLD denotes the last output; the variable R is the difference between the
new input and the last output; the variable O denotes the output stream.

When a rate limiter is involved in a complex dependence cycle, it is cru-
cial that the arithmetic-progression domain be able to compute precise abstract
properties all along the cycle. A specific domain collects the guards in “if-then-
else” statements. When both guards not(R <= -0.2) and not(0.2 <= R) are
satisfied, it checks (using the input channel) in the symbolic domain that both R

matches I-OLD and O matches I (in floating-point arithmetics). Then, it warns
the arithmetic-geometric progression domains that the absolute value of the vari-
able O is less than the expression |(1+ε1)OLD+0.2+ε2|, where the floating-point
numbers ε1 and ε2 model rounding errors and are computed automatically. 2

In the second case, a domain may check that a special property holds using
the input channel and performing abstract pattern matching over the concrete
instruction it is currently abstracting. We have already seen in Ex. 1 that some
transformers can be made more precise if they apply a special case when two
variables are provably equal. In Ex. 18, we describe a more complex example.

Example 18. Digital filtering domains perform computations only when they
discover that a variable X is equal to a linear combination of several other
variables (the number of variables depends on the class of the filter). There are
several trade-offs for detecting this property. The less generic way is to perform
pattern matching of expressions in assignments (using a variety of abstraction
levels for expressions: floating-point expressions, linearized expressions, etc.).
This solution is very fragile: if a filter iteration is not computed using a single
assignment (but, e.g. a loop scanning a parameter array), it is not discovered.
It would be possible, but maybe costly, to collect the desired properties in a
specially-designed abstract domain. Our solution is in-between those: we use the
symbolic domain. Abstract pattern matching takes a pattern and an expression,



Combination of Abstractions in Astrée 21

and tries to unify them by replacing expression variables with the floating-point
expression they are equal to in the symbolic domain. This collaboration uses the
input channel. 2

Finally, some abstract domains provide several implementations for an ab-
stract transformer and rely on strategies to select which one should be used,
depending on constraints computed by other domains.

Example 19. In arithmetic-geometric progression domains, a pair of elements
may lack a least upper bound. We have implemented three ways to compute a
bound: the first one favors the right argument, the second one favors the left
argument, whereas the third one is a trade-off. The selection between the three
strategies depends not only on the arithmetic-geometric constraints, but also on
the dependency graph among variables and on the range of involved variables,
which can be fetched from the input channel of the precondition. 2

6.4 Reduction after Widenings

Special care should be taken when refining an extrapolation operator. Although
it is always safe to refine its right argument; refining its left argument or its
output may break the extrapolation process. Indeed, the standard assumption
required to ensure the termination of the widening iterates (Sect. 4.1 and [1])
may not be applicable anymore. As a consequence, the analyzer may loop forever.

In Astrée, we reduce the output of the extrapolation operator using the
broadcast output channel, as in Ex. 12. We also refine the left argument of
widenings when a constraint is missing, as in Ex. 9. Nevertheless, these kinds of
refinements follow the hierarchic structure of domain networks, which prevents
cyclic reductions. We ensure the termination of Astrée by strengthening the
definition of the widening.

7 Widenings

7.1 Framework

We use widenings to abstract the computation of post-fixpoints in a finite amount
of time [1]. Formally, let D be a concrete domain and D♯ be an abstract domain
related via a concretization map γD♯ ∈ D♯ → D. A widening operator ▽D♯ over
an abstract domain D♯ is a mapping in D♯ × D♯ → D♯ such that [23, Lect. 18]:

– ∀a, b ∈ D♯, γD♯(b) ⊆ γD♯(a▽D♯b) ; (W1)
– for all (ai), the sequence (a▽

i ) defined as a▽

0 = a0 and a▽

n+1 =
a▽

n▽D♯an+1 is ultimately stationary.
(W2)

The second property implies that the widening relation → that is defined as a →
b if and only if there exists c such that a▽D♯c = b is well founded. Nevertheless,
there may be no relation between the information preorder ⊑♯ (defined as a ⊑♯ b

if and only if γD♯(a) ⊆ γD♯(b)) and the relation →.



22 P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, X. Rival

Least fixpoint approximation is performed in the following way. Let F be a
monotonic map in D → D and FD♯ : D♯ → D♯ be an abstraction of F satisfying
∀a ∈ D♯, (F ◦ γD♯)(a) ⊆ (γD♯ ◦ FD♯)(a). The abstract operation FD♯ needs
not be monotonic with respect to the information preorder ⊑♯. The abstract
upward iteration (x▽

n) of FD♯ is defined as x▽

0 = ⊥ and x▽

n+1 = x▽

n▽D♯FD♯(x▽

n).
The sequence (x▽

n) is ultimately stationary and we denote its limit by l. The
following lemma ensures that the limit of the abstract upward iteration is a
post-fixpoint abstraction of the map F:

Lemma 1. We have F(γD♯(l)) ⊆ γD♯(l).

Proof. l is the limit of the upward-iteration, so l = l▽D♯FD♯(l). By (W1), we
obtain: γD♯(FD♯(l)) ⊆ γD♯(l). By soundness of FD♯ , we also have F(γD♯(l)) ⊆
γD♯(FD♯(l)). So F(γD♯(l)) ⊆ γD♯(l). 2

The fact that the information preorder ⊑♯ and the widening relation → are
not assumed to be related limits the usage of the widening far too much for
our need. Indeed, as explained in Sect. 7.2, we would like to refine the abstract
properties after a widening step. Moreover, as explained in Sect. 7.3, we would
like to refrain from widening abstract properties at every iterate. Doing these
carelessly could break the termination of the widening process. Thus, in Sect. 7.4,
we strengthen the definition of the widening to safely allow these manipulations.

7.2 Reduction of Widenings

The interval abstract domain is in many ways the “base” abstract domain. Most
of the properties that we check are properties of bounds, directly expressed in
the interval domain; also, while for each variable we keep an interval, we do not
necessarily keep the other kinds of abstract properties. However, the interval
domain, by default, applies simple preset widening thresholds (enriched with
constants encountered in comparisons). In order to prevent the intervals from
being widened too much, which would result in false alarms, it is necessary
to reduce them using more refined abstract properties. Thus, most numerical
domains reduce the intervals after widening.

However, care must be taken not to reduce too much after a widening in order
not to break the termination property of the widening. A classical example is
the closure operation in the octagon abstract domain, which can be considered a
reduction between separate domains, each considering only a couple of variables:
if one applies the classical widening operation on octagons followed by closure
(reduction), then termination is no longer ensured (e.g. see [11, Fig. 25–26]).

An alternate approach would be to modify the abstract transformers, refining
both its inputs and output, instead of modifying the widening. We denote by ρ :
D♯ → D♯ our reduction function (i.e. it satisfies ∀a ∈ D♯, γD♯(a) ⊆ γD♯(ρ(a))).
We can define the two following sequences:

{

u0 = ⊥,

un+1 = ρ(un▽D♯(ρ(FD♯(un))));

{

v0 = ⊥,

vn+1 = vn▽D♯(ρ(FD♯(ρ(vn)))).



Combination of Abstractions in Astrée 23

In Astrée, we compute the sequence (un), whereas the alternate strategy im-
plements the sequence (vn). The sequence (vn) is ultimately stationary even
without strengthening the definition of the widening. But the sequence (un) can
be computed more easily, while taking benefit of functional data-structures (i.e.
balanced trees). Moreover, the sequence (un) provides a modular definition for
the widening operator of reduced product domains.

Lemma 2. The limit ū of (ui) (resp. v̄ of (vi)) satisfies F(γD♯(ū)) ⊆ γD♯(ū)
(resp. F(γD♯(v̄)) ⊆ γD♯(v̄)).

Proof. For the limit ū of (ui), we have ū = ρ(ū▽D♯(ρ(FD♯(ū)))) so γD♯(ū) =
γD♯(ρ(ū▽D♯(ρ(FD♯(ū))))) whence γD♯(ū▽D♯(ρ(FD♯(ū)))) ⊆ γD♯(ū) by sound-
ness of the reduction ρ. By (W1), γD♯(ρ(FD♯(ū))) ⊆ γD♯(ū), whence γD♯(FD♯(ū))
⊆ γD♯(ū) by soundness of ρ and so F(γD♯(ū)) ⊆ γD♯(ū) by soundness of FD♯ .
Similarly v̄ = v̄▽D♯(ρ(FD♯(ρ(v̄)))) implies γD♯(v̄) = γD♯(v̄▽D♯(ρ(FD♯(ρ(v̄)))))
so γD♯(v̄) ⊇ γD♯(ρ(FD♯(ρ(v̄)))) ⊇ γD♯(FD♯(ρ(v̄))) ⊇ F(γD♯(v̄)) by (W1) and
soundness of ρ and FD♯ . 2

Due to the non-monotonic behavior of the widening (especially with respect
to the second argument), it seems difficult to compare the theoretical accuracy
of the two approaches.

7.3 Delaying Strategies

Premature widenings may result in excessive over-approximation. This is par-
ticularly true when the first few iterations of the system perform some kind of
initialization and do not give a good insight on the regular behavior of the loop.
We therefore delay the application of the widening, replacing it with a mere
abstract union, until a specified iteration, and start extrapolating afterwards.

Unfortunately, this is not sufficient and we may want to interleave unions and
widenings even after the first iteration with widening. Consider the following
example:

Example 20. while (1) {

X := Y + b;

Y := a*X + c;

}

The sequence of assignments is equivalent to Y := a*X + d (with d = c + a.b),
and so a widening with thresholds should find a stable interval. But if we perform
a widening with thresholds at each step, each time we widen Y, X is increased to a
value surpassing the threshold for Y, and so X is widened to the next stage, which
in turn increases Y further and the next widening stage increases the value of Y.
This eventually results in ⊤ abstract values for X and Y. We can see, however,
that if we replace the widening with a union at every other step, X and Y will
stabilize to the smallest threshold larger than their respective concrete bound.

2



24 P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, X. Rival

Our previous approach was the following: we first do N0 iterations with
unions on all abstract domains, then we do widenings unless a variable which
was not stable becomes stable (this is the case of Y here when the threshold
is big enough). We add a fairness condition to avoid livelocks in case for each
iteration there exists a variable that becomes stable. Unfortunately, with large
programs this strategy gives the following behavior: we never do widenings un-
til the fairness condition is taken into account, then we do widenings at each
iteration. So we fail in certifying our example.

The following approach supersedes the previous one: Each abstract property
(or set of abstract properties) is fitted with a freshness indicator. At each it-
eration, the freshness indicator of unstable abstract properties is incremented.
For each abstract property, the choice between taking the union or the widening
among two consecutive iterates is determined according to the freshness indica-
tor: each domain is fitted with a piece-wise affine function, which determines how
often it is widened according to the freshness indicator of the abstract property.

7.4 Enforcing Termination

Both reductions (Sect. 7.2) and delayed widenings (Sect. 7.3) may break the
termination of the extrapolation process. Even intersecting the abstract iterates
with a constant abstract property (i.e. a weak form of reduction) may break the
termination of the extrapolation process.

Example 21. We consider the set D♯ of all parts of the interval [0; 1] containing
both 0 and 1. We want to extrapolate the iterates of the function f that inserts
in a set S each rational 1

2n+1 whenever 1

2n is in S (e.g. f(S) = {S ∪ { 1

2n+1 |
1

2n ∈
S}). We define both ∩ and ∪ as the classical set operators. We define ▽D♯ as:
a▽D♯b = ρ(a, a ∪ b) where ρ(a, b) is obtained by making the convex union of
several connected components of b until there are fewer connected components
than in a, and fewer than five connected components. It is obvious that ▽D♯ is a
widening, since along the abstract iterates the number of connected components
decreases until it reaches 1, and the interval [0; 1] is the only element with one
connected component. Then:

1. The sequence:










u0 = {0; 1},

u2n+1 = u2n ∪ f(u2n),

u2n = u2n−1▽D♯f(u2n−1),

is not ultimately stationary.
Indeed, we have u2n = {0} ∪ [ 1

22n ; 1] and u2n+1 = {0; 1

22n+1 } ∪ [ 1

22n ; 1].
2. The sequence:

{

u0 = {0; 1},

un+1 = (un▽D♯f(un)) ∩ {0; 1; 1

2k | k > 0},

is not ultimately stationary.
Indeed, we have un = fn(u0). 2



Combination of Abstractions in Astrée 25

We solve this problem in two steps. First we strengthen the definition of the
widenings, so that we can both delay the widening steps, and intersect the iter-
ates with a constant value, without loosing the convergence of abstract iterates.
Then, we restrict the kind of reductions that can be made after a widening step.

Strengthened Definition. To solve our problem, we require that the widening
relation → and the information preorder ⊑♯ are strongly related. We suppose
that the abstract domain can be written as a finite product of totally ordered
sets (D♯

i ,⊑
♯
i)i∈I . Moreover, we suppose that each sub-domain D

♯
i is fitted with

a widening operator ▽i such that:

– for any a, b ∈ D
♯
i , we have both a ⊑♯

i a▽ib and b ⊑♯
i a▽ib, (W′

1)

– and the relation →′
i defined as: “for any a, d ∈ D

♯
i , a →i d if and

only if there exist b, c ∈ D
♯
i such that a ⊑♯

i b and d = b▽ic” is
well-founded.

(W′
2)

In the following theorem, we want to extrapolate the iterates of a mapping
FD♯ . Each iterate is intersected with the abstract property (ρi)i∈I ∈ D♯ (we

recall that D♯ =
∏

i∈I D
♯
i ). The sequence ((bi)n) of boolean families denotes the

delaying strategy of the widening.

Theorem 1. Let FD♯ ∈ D♯ → D♯ be a map. Let (ρi)i∈I ∈ D♯ be a finite family
of abstract elements. Let ((bi)n) ∈ ({false; true}I)N be a family of booleans such
that for any i ∈ I, the sequence ((bi)n)n∈N takes the value true an unbounded
number of times. We write ⊥ = (⊥i)i∈I .

Then, the sequence:






























(wi)0 = ⊥i,

un+1 = FD♯(wn),

(vi)n+1 =

{

max
⊑

♯

i

((wi)n, (ui)n+1) whenever (bi)n = false,

(wi)n▽i(ui)n+1 otherwise ,

(wi)n+1 = min
⊑

♯

i

((vi)n+1, ρi),

is ultimately stationary and sound.

Proof. Let i be an element of I. It is easy to see that sequence (wi) is increasing.
Moreover,

1. In the case where for any n ∈ N, (wi)n = (vi)n, we introduce a sequence
(jn) ∈ N

N such that (bi)jn
is true for any n ∈ N (a such sequence exists by

assumption). Then, we have (wi)jn
→i (wi)jn+1

. Since →i is well founded,
(wi)jn

is ultimately stationary.
2. Otherwise, the sequence (wi) is ultimately equal to the value ρi.

For the limits ū, v̄, and w̄ of ((ui)n)n∈N, ((vi)n)n∈N, and ((wi)n)n∈N, we have ū =
FD♯(w̄), γD♯(v̄) ⊇ γD♯(ū), γD♯(v̄) ⊇ γD♯(w̄) (by γ

D
♯

i

(max
⊑

♯

i

(a, b)) ⊇ γ
D

♯

i

(a) ∪

γ
D

♯

i

(b) or (W′
1)) and w̄ ⊑♯ v̄ so γD♯(v̄) = γD♯(w̄) ⊇ γD♯(ū) = γD♯(FD♯(w̄)) ⊇

F(γD♯(w̄)) proving soundness. 2



26 P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, X. Rival

This definition is satisfied by the widening with thresholds, which is applied
to each single abstract constraint in all our domains.

Example 22. The widening W = A▽D♯B of two octagons [11] is performed
point-wisely: given a constraint ±X ± Y ≤ c in A and ±X ± Y ≤ d in B

with the same left member, we set the bound of the corresponding constraint
in W to c if c ≥ d, and to the next threshold greater than d if d ≥ c. In order
to gain precision, we may replace some widening application with a so-called
pre-widening which sets this bound to max(c, d) instead. Note that contrary to
the abstract union, our pre-widening does not apply constraint propagation to
its argument, and thus, is less precise. Indeed, [11, Fig. 25–26] shows that mixing
the widening (that tends to loosen bounds) with constraint propagation (that
tends to refine bounds) breaks the convergence of the iterates. Mixing widenings
with unions would have the same ill-effect. However, we can prove that mixing
widenings with pre-widenings enforces termination by viewing the octagon do-
main as a finite product of totally ordered sets: there is one set for each left
member ±X ±Y of octagonal constraint; all sets are simply the set of reals with
the standard order ≤; each set corresponds to the possible upper bounds of a
single left member. 2

Restricting Reduction Then, we must avoid cyclic reductions between com-
ponents of the product domain. For that purpose, we use the hierarchical struc-
ture of the domain network: after a widening step, a domain can only refine its
underlying domains. This ensures the termination of the analysis: the abstract
iterates in the abstract domains that are at the top of the hierarchy are ulti-
mately stationary. Once the abstract properties in the domains that are above
one domain are stable, the reduction of abstract properties in this domain can
be seen as an intersection with a constant abstract property. Thus, its abstract
iterates are ultimately stationary.

8 Narrowings

The widening jumps above the abstraction of the concrete least fixpoint. Then,
the result may be refined using downward iterations thanks to a narrowing opera-
tor. The Astrée analyzer takes as parameter the number of downward iterations
to compute.

Decreasing iterations raise several issues. The main problem is that the use
of downward iterations may make the checking of the fact that we have com-
puted an abstraction of the concrete least fixpoint much harder for an external
procedure. Although, by construction, the limit of these decreasing iterations is
indeed an abstraction of a concrete post-fixpoint, it may be hard to check in the
abstract (i.e. without resorting to a more concrete, and thus costly, decision pro-
cedure). Performing this check instead of relying on the correctness of a complex
iteration scheme is desirable to add confidence in the result of the analysis.



Combination of Abstractions in Astrée 27

8.1 Frameworks

A narrowing operator △D♯ over an abstract domain D♯ [1] is a mapping in
D♯ ×D♯ → D♯ such that: ∀a, b ∈ D♯, γD♯(a)∩γD♯(b) ⊆ γD♯(a△D♯b). We require
no termination criterion since, in Astrée, the number of downward iterations
is bounded by some user-chosen constant.

Given any x ∈ D♯ (in practice x = l is the limit of the upward iterations),

the downward iteration (x△
n ) of FD♯ from x is defined as x

△
0 = x and x

△
n+1 =

x△
n △D♯FD♯(x△

n ). In the following, we consider F ∈ D → D a monotonic function
and FD♯ an abstraction of F (i.e. we have ∀a ∈ D♯, F(γD♯(a)) ⊆ γD♯(FD♯(a)).
We want to prove that downward iterates preserve abstractions of concrete post-
fixpoints.

Theorem 2. If there exists a concrete element a ∈ D such that F(a) ⊆ a and
a ⊆ γD♯(x) then, for any integer n ∈ N, there exists a concrete element a′ ∈ D

such that F(a′) ⊆ a′ and a′ ⊆ γD♯(x△
n ).

First, we prove the following lemmas:

Lemma 3. For any a ∈ D and x ∈ D♯, a ⊆ γD♯(x) =⇒ a ∩ F(a) ⊆
γD♯(x△D♯FD♯(x)).

Proof. Let a ∈ D and x ∈ D♯ such that a ⊆ γD♯(x). Since F is monotonic,
we have F(a) ⊆ F(γD♯(x)). Then by soundness of FD♯ , we have F(γD♯(x)) ⊆
γD♯(FD♯(x)). Thus F(a) ⊆ γD♯(FD♯(x)). So a∩F(a) ⊆ γD♯(x)∩γD♯(FD♯(x)). By
definition of the narrowing operator, we have γD♯(x)∩γD♯(FD♯(x)) ⊆ γD♯(x△D♯

FD♯(x)). We conclude that a ∩ F(a) ⊆ γD♯(x△D♯FD♯(x)). 2

Lemma 4. For any a ∈ D, F(a) ⊆ a =⇒ F(F(a) ∩ a) ⊆ F(a) ∩ a.

Proof. Let a ∈ D such that F(a) ⊆ a. Since F is monotonic, we have F(F(a)) ⊆
F(a). Moreover, we have F(a) ∩ a = F(a). We conclude that F(F(a) ∩ a) =
F(F(a)) ⊆ F(a) = F(a) ∩ a. 2

Then, Thm. 2 can easily be proved by induction on n ∈ N with a′ = F (a)∩a.

8.2 Practical Aspects

One may be satisfied by the fact that downward iteration provides, by con-
struction, an abstraction of the concrete post-fixpoint (Th. 2). Nevertheless, we
could expect more such as improvement γD♯(a△D♯b) ⊆ γD♯(a) [1]. Moreover,
termination tests (for upward iterations) are performed using a decidable rela-
tion ⊑♯ such that a ⊑♯ b implies γD♯(a) ⊆ γD♯(b) (but which is not necessarily
a preorder). Then, by definition, the limit l of upward iterates of the abstract
operation FD♯ satisfies FD♯(l) ⊑♯ l. But there is no reason for the downward
iterates to satisfy this property (even if a ⊑♯ b ⇐⇒ γD♯(a) ⊆ γD♯(b)), because
the abstract operation FD♯ is in practice not monotonic with respect to ⊑♯.

To solve this problem, whenever downward iterations provide an abstract
property that is not a post-fixpoint of FD♯ (with respect to our ⊑♯), we start



28 P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, X. Rival

upward iterations again. And then, downward iterations again. To get a finite
analysis, we only “rebound” a fixed number of times. For our last try, we do not
perform downward iterations, so that we get a checkable post-fixpoint of FD♯ .

9 Conclusion and Further Challenges

Astrée has shown to be easily extensible. Our early successes have incited
our industrial partners to try and apply the analyzer to classes of programs for
which it was not designed. It was thus necessary to improve domains or create
new ones without a complete overhaul of the system. As with any major software
endeavor, our experience is that dependencies should be limited and orthogo-
nality encouraged; one abstract domain should be able to perform correctly (if
sometimes suboptimally) if another one is not present, or has been modified.

We have targeted applications where the objective is a sound result of zero
false alarms. This is very different from some other (commercial or academic)
static analyzers whose objective is to find bugs. While the two approaches share
common tools, they differ in that bug finding does not need to be sound (some
real errors may be ignored) while a high degree of completeness (few false alarms)
is expected on a variety of programs. A bug finder should thus probably ignore
constructs that it fails to “understand” properly (for instance, writes through
a pointer possibly aliased to many variables because of over-approximation).
A program verification tool such as Astrée does not have that luxury, and
this is why we claim that such programs should often contain domain-specific
abstractions, capable of addressing constructs, structures and algorithms that
generic abstraction do not “understand”. The consequence for the designer of
the analysis is that it should be easy to plug new abstractions at any level.

So far, Astrée has been targeted towards single-threaded programs. How-
ever, we have already implemented analyses for a restricted class of parallel
programs, and we expect to consider wider classes (e.g. multi-threaded code in
shared-memory systems). Our memory abstraction is currently a simple non-
relational one, but we expect that more precise analyses (e.g. shape analysis
and separation properties) will be necessary to tackle programs featuring dy-
namic manipulations of memory. One difficulty will be our stringent efficiency
constraints, since we consider large programs. The other will be to achieve zero
false alarms.

Bibliography

1. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: 4th ACM
POPL. (1977) 238–252

2. Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of Logic and
Computation 2 (1992) 511–547

3. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: Design and implementation of a special-purpose static program ana-
lyzer for safety-critical real-time embedded software, invited chapter. In Mogensen,
T., Schmidt, D., Sudborough, I., eds.: The Essence of Computation: Complexity,



Combination of Abstractions in Astrée 29

Analysis, Transformation. Essays Dedicated to Neil D. Jones. LNCS 2566. Springer
(2002) 85–108

4. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Proc. ACM
SIGPLAN ’2003 Conf. PLDI, San Diego, ACM Press (2003) 196–207

5. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The Astrée analyzer. In Sagiv, M., ed.: Proc. 14th ESOP ’2005, Edinburgh.
LNCS 3444, Springer (2005) 21–30

6. Mauborgne, L.: Astrée: Verification of absence of run-time error. In Jacquart, P.,
ed.: Building the Information Society. Kluwer Academic Publishers (2004) 385–392

7. Miné, A.: Field-sensitive value analysis of embedded C programs with union types
and pointer arithmetics. In: Proc. LCTES 2006. Ottawa, Ontario, Canada, 14–16
June 2006, ACM Press (2006) 54–63

8. Monniaux, D.: The parallel implementation of the Astrée static analyzer. In Yi,
K., ed.: APLAS. Volume 3780 of LNCS., Springer (2005)

9. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: Proceedings of the Second International Symposium on Programming, Paris,
France, Dunod, Paris, France (1976) 106–130

10. Miné, A.: Symbolic methods to enhance the precision of numerical abstract do-
mains. In: VMCAI’06. Volume 3855 of LNCS., Springer (2002) 348–363

11. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation
19 (2006) 31–100

12. Feret, J.: Static analysis of digital filters. In Schmidt, D., ed.: Proc. 30th

ESOP ’2004, Barcelona. LNCS 2986, Springer (2004) 33–48
13. Feret, J.: The arithmetic-geometric progression abstract domain. In Cousot, R.,

ed.: Proc. 6th VMCAI ’2005, Paris. LNCS 3385, Springer (2005) 2–58
14. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based

static analyzers. In Sagiv, M., ed.: Proc. 14th ESOP ’2005, Edinburgh. LNCS
3444, Springer (2005) 21–30

15. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6th

ACM POPL. (1979) 269–282
16. Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vouillon, J.: The Objective Caml

system, documentation and user’s manual (release 3.06). Technical report, INRIA,
Rocquencourt, France (2002)

17. Miné, A.: The octagon abstract domain library (2006)
www.di.ens.fr/∼mine/oct/.

18. ANSI/ISO: Programming languages – C. (1999) Standard ISO/IEC 9899:1999(E).
19. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with

Blast. In: SPIN. Volume 2648 of LNCS., Springer (2003) 235–239
20. Cousot, P.: Verification by abstract interpretation, invited chapter. In Dershowitz,

N., ed.: Proc. Int. Symp. on Verification – Theory & Practice – Honoring Zohar
Manna’s 64th Birthday. LNCS 2772, Springe, Taormina, Italy (2003) 243–268

21. Cousot, P.: The calculational design of a generic abstract interpreter, invited
chapter. In Broy, M., Steinbrüggen, R., eds.: Calculational System Design. Volume
173. NATO Science Series, Series F: Computer and Systems Sciences. IOS Press,
Amsterdam, The Netherlands (1999) 421–505

22. Miné, A.: Relational abstract domains for the detection of floating-point run-
time errors. In Schmidt, D., ed.: Proc. 30th ESOP ’2004, Barcelona. LNCS 2986,
Springer (2004) 3–17

23. Cousot, P.: MIT course 16.399: Abstract Interpretation.
web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/ (2005)

www.di.ens.fr/~mine/oct/
web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

	Combination of Abstractions in the ASTRÉE Static Analyzer
	Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux , & Xavier Rival 

