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1 Introduction

Abstract interpretation theory [12, 16, 19, 21] formalizes the idea of abstrac-
tion for mathematical constructs involved in the specification of properties of
computer systems.

Applications of abstract interpretation range from static program analysis
[16, 19, 29] (including dataflow analysis [19, 25], set-based analysis [24], etc),
syntax analysis [28], hierarchies of semantics (including proofs) [13, 15, 22]
typing [14], temporal verification and abstract model checking [25] and program
transformation [27].

All these techniques involve approximations that can be formalized by abstract
interpretation. Consequently, sound (and complete) abstracts semantics, in-
cluding abstract models, algorithms, etc can be derived systematically in a
mathematically constructive way by algebraic calculation. The abstract in-
terpretation methodology will be illustrated on ground predicate abstraction
[1, 2, 3, 9, 30, 31, 32, 34, 35, 36, 37, 39, 46, 48, 50, 53] and on generic predicate
abstraction, a program-independent generalization.

1 cousot@ens.fr, www.di.ens.fr/~cousot
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2 A Short Introduction to Abstract Interpretation

Let us recall a few elements of abstract interpretation from [19].

2.1 Properties and their Abstraction

Given a set Σ of objects (such as program states, execution traces, etc), we
represent properties P of objects s ∈ Σ as sets of objects P ∈ ℘(Σ) (which
have the property in question).

Example 1. The property “to be an even natural number” is represented by
the infinite set {0, 2, 4, 6, . . .}. f

Consequently, the set of properties of objects in Σ is a complete boolean lattice
〈℘(Σ), ⊆, ∅, Σ, ∪, ∩, ¬〉 [6, 33].

By “abstraction”, we understand a reasoning or (mechanical) computation on
objects such that only some properties of these objects can be used. Let us
call concrete the general properties in ℘(Σ). Let us call abstract the properties
that can be used in the reasoning or computation. So, abstraction consists in
approximating the concrete properties by the abstract ones.

This “property-based” point of view on abstraction is more general than the
“object-based” point of view where the reasonings on a complex object are ap-
proximated by reasonings on a simpler similar structure (so called a “model”),
as later shown in Ex. 11.

There are two possible directions of approximation. In the approximation from
above, P is over approximated by P such that P ⊆ P . This is illustrated in
Fig. 1. In the approximation from below, P is under approximated by P such
that P ⊆ P . Obviously these notions are dual [6] since an approximation from
above/below for ⊆/⊇ is an inverse approximation from below/above for ⊇/⊆.
Moreover, the complement dual of an approximation from above/below for P
is an approximation from below/above for ¬P . Therefore, from a purely math-
ematical point of view, only approximation from above need to be studied.

We let A ( ℘(Σ) be the set of abstract properties (the only one which can be
used to over-approximate concrete properties). In Fig. 2 we have illustrated the
approximation of the set of points considered in Fig. 1 by signs [19], intervals
[19], octagons [45] and polyhedra [29].

If the abstract properties are chosen arbitrarily (e.g. A = ∅), some con-
crete properties may have no (computable) abstraction. In this case, the ver-
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Fig. 1. A set of points and an upper approximation

Fig. 2. Upper approximations by signs, intervals, octagons and polyhedra

ifier/prover/analyzer may loop forever, block (e.g. out of resources), ask for
help or say something. We insist for always saying something in a finite amount
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of time and therefore require that any property should be approximable from
above by Σ (i.e. “true” or “I don’t know”).

In general a concrete property has several possible abstractions which may be
more or less precise or even incomparable.

Example 2. Fig. 3 provides several interval approximations of a set of points
by intervals (geometrically rectangles covering the cloud of points) including
non-comparable ones (when the rectangles are not included into one another).
f

Fig. 3. Comparable and incomparable upper approximations by intervals

A concrete property P ∈ ℘(Σ) is most precisely abstracted by any minimal
upper approximation P ∈ A:

P ⊆ P

@P ′ ∈ A : P ⊆ P ′ ( P

In particular, an abstract property P ∈ A is best approximated by itself.

Example 3. In the classical rule of signs, 0 is better approximated by the
minimal abstract properties positive (+1) or negative (−1) (than by non-
minimal ones such as e.g. I don’t know). f

A first problem is that minimal abstract properties approximating a given
concrete property may not exist at all.

Example 4. This is the case for the linear inequalities/polyhedra abstract
domain of [29]. For example, a disk (i.e. the property of points inside a circle)

4



has no minimal approximation by polyhedra (i.e. the property of points inside
a polyhedron), as illustrated in Fig. 4 2 . f

Fig. 4. Archimedes’ upper approximations of a disk by polyhedra

A second problem is when minimal abstract properties approximating a given
concrete property do exist but there are several incomparable such minimal
abstract properties. Then the question of which minimal approximation is
most useful depends upon the circumstances.

Example 5. In the rule of signs [19], 0 is better approximated as positive in
“3 + 0 ” (since the sum of two positives is positive) while 0 is better approx-
imated as negative in “−3 + 0 ” (since the sum of two negatives is negative
and, in both cases, the sign of the sum of two numbers of opposite signs is
unknown). f

We would like to avoid backtracking (that is to exhaustively try all minimal
approximations one after the other) as well as parallelism (that is simultane-
ously try all minimal approximations) because of potential exponential costs
when these strategies are applied recursively. Consequently, one may want to
use only one of the minimal over approximations.

Since, for economy, we want to use only one of the minimal abstractions of
a concrete property, we must, for best precision, choose one of the minimal
abstractions. We can either make a circumstantial choice 3 (which may be

2 Indeed Fig. 4 shows the first elements of Archimedes’ infinite sequence of polyhe-
dra which is decreasing (each polyhedron is strictly included in the previous one)
and which limit is the disk, hence not a polyhedron, thus proving the absence of
best upper approximation of a disk by a polyhedron.
3 in that case, [21] uses a concretization function, an example of application being
[29].
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different each time an over approximation is needed), or make a definitive
arbitrary choice 4 (with the risk that in some circumstances this arbitrary
choice is not the best) 5 or require the existence of a best choice 6 .

The requirement that all concrete property P ∈ ℘(Σ) have a best abstraction
P ∈ A:

P ⊆ P

∀P ′ ∈ A : (P ⊆ P ′) ⇒ (P ⊆ P ′)

is, by definition of the intersection/conjunction/greatest lower bound/meet ∩,
equivalent to the fact that the intersection of abstract properties should be
abstract:

P =
⋂

{P ′ ∈ A | P ⊆ P ′} ∈ A

(since otherwise
⋂

{P ′ ∈ A | P ⊆ P ′} would have no best abstraction).

2.2 Moore Family-Based Abstraction

So, the hypothesis that any concrete property P ∈ ℘(Σ) has a best abstraction
P ∈ A implies that [19, Sec. 5.1]:

A is a Moore family 7

that is, by definition, the set of abstract properties is closed under intersection
∩:

∀S ⊆ A :
⋂

S ∈ A .

In particular
⋂

∅ = Σ ∈ A so that any Moore family has a supremum.

Observe that if the abstract domain A is assumed to be a Moore family of a
complete lattice 〈℘(Σ), ⊆, ∅, Σ, ∪, ∩〉 then it is a complete lattice 〈A, ⊆, ∩A,
Σ, λS·∩{P ∈ A | ∪S ⊆ P}, ∩〉.

4 in that case, [21] uses an abstraction function.
5 Note that the strategies of making a circumstantial or arbitrary choice also cover
the case of absence of minimal approximations, see [21].
6 in that case, [21] uses an abstraction/concretization Galois connection, which is
the only case later considered in this paper.
7 Moore families are called topped intersection structures or closure systems in [33].
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Example 6. Let us consider the complete lattice of concrete properties as
given in Fig. 5. It is a Moore family of the concrete properties 〈℘(Z), ⊆〉
capturing signs and integer constant information. A further abstraction is

+
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..
+

⊥
∆
= ∅, infimum;

z
∆
= {z}, singleton, z ∈ Z;

−
∆
= {z ∈ Z | z < 0}, negative;

−̇
∆
= {z ∈ Z | z ≤ 0}, non-positive;

¬0
∆
= {z ∈ Z | z 6= 0}, non-zero;

+̇
∆
= {z ∈ Z | z ≥ 0}, non-negative;

+
∆
= {z ∈ Z | z > 0}, positive;

>
∆
= Z, supremum.

Fig. 5. The complete lattice of constants and signs

captured by the Moore family of Fig. 6 where strict sign and integer constant
information is ignored. f
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Fig. 6. Moore family-based abstraction

The setM(℘(℘(Σ))) of all abstractions i.e. of Moore families on the set ℘(Σ)
of concrete properties is the complete lattice of abstractions :

〈M(℘(℘(Σ))), ⊇, ℘(Σ), {Σ}, λS·M(∪S), ∩〉

where:

M(A) = {
⋂

S | S ⊆ A}
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is the ⊆-least Moore family containing A and the set image f(X) of a set
X ⊆ D by a map f ∈ D 7→ E is f(X)

∆
= {f(x) | x ∈ X}.

2.3 Closure Operator-Based Abstraction

The map ρĀ mapping a concrete property P ∈ ℘(Σ) to its best abstraction
ρĀ(P ) in the Moore family A is:

ρĀ(P ) =
⋂

{P ∈ A | P ⊆ P} .

It is a closure operator [19, Sec. 5.2]:

extensive (∀P ∈ ℘(Σ) : P ⊆ ρ(P )),

idempotent (∀P ∈ ℘(Σ) : ρ(ρ(P )) = ρ(P )),

isotone/monotonic (∀P, P ′ ∈ ℘(Σ) : P ⊆ P ′ ⇒ ρ(P ) ⊆ ρ(P ′));

such that

P ∈ Ā ⇐⇒ P = ρĀ(P )

hence

A = ρĀ(℘(Σ)) .

ρĀ is called the closure operator induced by the abstraction Ā.

Example 7. The closure operator induced by the abstraction of Fig. 6 in
shown in Fig. 7. f

Closure operators are isomorphic to their fixpoints hence to the Moore families.
Therefore, any closure operator ρ on the set of properties ℘(Σ) induces an
abstraction ρ(℘(Σ)). For example:

λP·P is the most precise abstraction (identity),

λP·Σ is the most imprecise abstraction (I don’t know).

The abstract domain Ā = ρ(L) defined by a closure operator ρ on a complete
lattice of concrete properties 〈L, v, ⊥, >, t, u〉 is a complete lattice 〈ρ(L),
v, ρ(⊥), >, λS· ρ(tS), u〉.
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Fig. 7. Closure operator-based abstraction

The set clo(℘(Σ) 7→ ℘(Σ)) of all abstractions, i.e. isomorphically, closure op-
erators ρ on the set ℘(Σ) of concrete properties is the complete lattice of
abstractions for pointwise inclusion [54]:

〈clo(℘(Σ) 7→ ℘(Σ)), ⊆̇, λP·P, λP·Σ, λS· ide(∪̇S), ∩̇〉

where:

— the glb ∩̇ is the reduced product ;
— ide(ρ) = lfp

⊆̇

ρ
λf· f ◦ f is the ⊆̇-least idempotent operator on ℘(Σ) ⊆̇-

greater than ρ.

2.4 Galois Connection-Based Abstraction

For closure operators ρ, we have:

ρ(P ) ⊆ ρ(P ′) ⇐⇒ P ⊆ ρ(P ′)

stating that ρ(P ′) is an abstraction of a property P if and only if it ⊆-
approximates its best abstraction ρ(P ). This can be written:

〈℘(Σ), ⊆〉 −−→−→←−−−
ρ

1
〈ρ(℘(Σ)), ⊆〉

where 1 is the identity and:

〈℘(Σ), ⊆〉 −−→−→←−−−−
α

γ
〈D, v〉
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means that 〈α, γ〉 is a Galois surjection, that is:

— ∀P ∈ ℘(Σ), P ∈ D : α(P ) v P ⇔ P ⊆ γ(P );
— α is onto (equivalently α ◦ γ = 1 or γ is one-to-one).

Observe that reciprocally if 〈℘(Σ), ⊆〉 −−→−→←−−−
ρ

1
〈ρ(℘(Σ)), ⊆〉 holds that ρ is a

closure operator so that this can be taken as an equivalent definition of closure
operators.

We can define an abstract domain as an isomorphic representation D of the set
A ( ℘(Σ) = ρ(℘(Σ)) of abstract properties (up to some order-isomorphism
ι).

Example 8. Kildall’s constant propagation lattice 〈{⊥,>}∪ {i | i ∈ Z}, v〉
[40] shown in Fig. 18 encodes the abstract domain 〈{∅,Z} ∪ {{i} | i ∈ Z},
⊆〉. f

Then, with such an encoding, we have the Galois surjection 8 :

〈℘(Σ), ⊆〉 −−−−→−→←−−−−−
ι◦ρ

ι−1

〈D, v〉

More generally, the correspondence between concrete and abstract properties
can be established by an arbitrary Galois surjection [19, Sec. 5.3]:

〈℘(Σ), ⊆〉 −−→−→←−−−−
α

γ
〈D, v〉

where this notation means (again) that:

— ∀P ∈ ℘(Σ), P ∈ D : α(P ) v P ⇔ P ⊆ γ(P );
— α is onto (equivalently α ◦ γ = 1 or γ is one-to-one).

Example 9. The abstraction of the concrete properties of Fig. 5 in the ab-
stract domain {⊥,−1, 0, +1,>} is given in Fig. 8. The corresponding con-
cretization is given in Fig. 9. f

Relaxing the condition that α is onto:

〈℘(Σ), ⊆〉 −−→←−−α
γ
〈D, v〉

that is to say:

∀P ∈ ℘(Σ), P ∈ D : α(P ) v P ⇔ P ⊆ γ(P );

8 Also called Galois insertion since γ is injective.
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Fig. 8. Galois surjection-based abstraction (α)
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Fig. 9. Galois surjection-based concretization (γ)

so ρ is now γ ◦ α 9 . When α is not onto, the same abstract property can have
different representations.

Example 10. This is illustrated on Fig. 10 where “positive” can be rep-
resented as both “+1” and “1”. The corresponding concretization is given in
Fig. 11 where both “+1” and “1” mean “+̇”. f

Example 11. The classical idea of abstraction of an object s ∈ Σ by a
simpler one h(s) ∈ M where h ∈ Σ 7→ M leads to the Galois connection
〈℘(Σ), ⊆〉 −−→←−−α

γ
〈℘(M), ⊆〉 where:

α(S)
∆
= {h(s) | s ∈ S},

γ(M)
∆
= {s ∈ Σ | h(s) ∈ M}.

It is a Galois surjection when h is onto.

9 In absence of best approximation, one can use a semi-connection, requiring only
∀P ∈ ℘(Σ), P ∈ D : α(P ) v P ⇒ P ⊆ γ(P ), see [21].
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Fig. 10. Galois surjection-based abstraction (α)
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Fig. 11. Galois surjection-based concretization (γ)

An example of object-based surjective abstraction is the rule of signs where
h(0) = 0, h(i) = +1 when i > 0 and h(i) = −1 when h(i) = −1 when
i < 0 together with an isomorphic encoding such that e.g. ∅ is encoded as ⊥,
{−1, 0, +1} as >, {0, +1} as +̇, {+1} as +, etc.

This object-based abstraction is the only type of abstraction considered in [8]
and most other references in model checking (with the notable exception of
polyhedral abstractions to verify hybrid systems [38]).

This object-based type of abstraction is a particular case of the more general
property-based abstraction considered in abstract interpretation. For example
the constant propagation, intervals, octagons, polyhedral, etc abstract do-
mains are not object-based abstractions. Indeed, if for constant propagation,
we want to have α({1, 2} = {h(1), h(2)} = {>} then necessarily h(i) = >
when i ∈ Z and so α({1} = {h(1)} = {>} as opposed to the desired
α({1} = {h(1)} = {1} requiring h(i) = i when i ∈ Z. f

Observe that the inverse dual of 〈L, ≤〉 −−→←−−α
γ
〈M, v〉 is 〈M, w〉 −−→←−−γ

α
〈L, ≥〉.
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Given posets 〈L, ≤〉 and 〈M, v〉, the definition ∀P ∈ ℘(Σ), P ∈ D : α(P ) v

P ⇔ P ⊆ γ(P ) of Galois connections 〈L, ≤〉 −−→←−−α
γ
〈M, v〉 is equivalent to

the following four conditions:

— α is monotonic (∀x, x′ ∈ L : x ≤ x′ ⇒ α(x) v α(x′), thus α preserves
concrete implication ≤ in the abstract), as illustrated in Fig. 12;

— γ is monotonic (∀y, y′ ∈ M : y v y′ ⇒ γ(y) ≤ γ(y′), thus γ preserves
abstract implication v in the concrete), as illustrated in Fig. 13;

— γ ◦ α is extensive (∀x ∈ L : x ≤ γ(α(x)), so ρ
∆
= γ ◦ α and the approximation

is from above), as illustrated in Fig. 14;
— α ◦ γ is reductive (∀y ∈ M : α(γ(y)) v y, so concretization can loose no

information), as illustrated in Fig. 15.

α

α

Fig. 12. The abstraction α is monotonic

Fig. 13. The concretization γ is monotonic

The composition α ◦ γ is the identity if and only if α is onto or equivalently γ
is one-to-one.

The composition of Galois connections:

〈L, ≤〉 −−−→←−−−α1

γ1

〈M, v〉

and:
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α

Fig. 14. The abstraction-concretization composition γ ◦ α is extensive

α

Fig. 15. The concretization-abstraction composition α ◦ γ is reductive (here identity)

〈M, v〉 −−−→←−−−α2

γ2

〈N, �〉

is a Galois connection:

〈L, ≤〉 −−−−−→←−−−−−
α2◦α1

γ1◦γ2

〈N, �〉 .

Example 12. The composition of the octagon and interval abstractions is
illustrated in Fig. 16. f

2.5 Function Abstraction

Given a complete lattice 〈L,⊆,⊥,>, ∪,∩〉, and an abstraction ρ on L, the best
abstraction of a monotone operator f ∈ L

mon

7−→ L on the complete lattice L is
ρ ◦ f ∈ ρ(L)

mon

7−→ ρ(L) [19, Sec. 7.2]. Indeed given any other f ∈ ρ(L)
mon

7−→ ρ(L)
and x ∈ ρ(L) the soundness requirement f(x) ⊇ f(x) implies f(x) ⊆ ρ ◦ f(x)
since ρ is idempotent whence ρ ◦ f(x) ⊆ ρ ◦ f(x) proving that ρ ◦ f is more
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Fig. 16. The composition of octagon and interval abstractions

precise than any other sound abstraction f ∈ ρ(L)
mon

7−→ ρ(L) of f ∈ L
mon

7−→ L:
ρ ◦ f ⊆̇ f for the pointwise ordering f ⊆̇ g if and only if ∀x ∈ L : f(x) ⊆ g(x).

In terms of Galois connections, we have:

〈P, ⊆〉 −−→←−−α
γ
〈Q, v〉 ⇒ 〈P

mon

7−→ P, ⊆̇〉 −−−−−−−−−→←−−−−−−−−−
λF·α◦F ◦γ

λF ]· γ◦F ]◦α
〈Q

mon

7−→ Q, v̇〉 .

2.6 Fixpoint Abstraction

Given a complete lattice 〈L, ⊆, ⊥, >, ∪, ∩〉 and a monotone operator f ∈

L
mon

7−→ L on the complete lattice L, its least fixpoint lfp
⊆

a
f greater than a ∈ L

is defined, if it exists, as:

a ⊆ lfp
⊆

a
f = f(lfp

⊆

a
f);

∀x ∈ L : a ⊆ x = f(x) ⇒ lfp
⊆

a
f ⊆ x.

If a ⊆ f(a) then lfp
⊆

a
f does exists [52] and is the limit of the ultimately

stationary transfinite sequence f η, η ∈ O defined by [18]:

f 0 ∆
= a;

f η+1 ∆
= f(f η), for successor ordinals η + 1;

fλ ∆
=

⋃

η<λ

f η, for limit ordinals λ.

In particular the least fixpoint of f is lfp
⊆

f
∆
= lfp

⊆

⊥
f .

Given f ∈ L
mon

7−→ L on the complete lattice L and an abstraction ρ, we would
like to approximate lfp

⊆

a
f in ρ(L). The best abstraction ρ(lfp

⊆

a
f) is in general
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not computable since neither lfp
⊆

a
f nor ρ are. However, following [19, Sec.

7.1], a computable pointwise over approximation f is sufficient to check for an
over approximation of lfp

⊆

a
f in ρ(L):

∀y ∈ ρ(L) :
(

ρ ◦ f ⊆̇ f ∧ ρ(a) ⊆ y ∧ f(y) ⊆ y
)

⇒
(

lfp
⊆

a
f ⊆ y

)

. (1)

Moreover the ⊆-least such y is lfp
⊆

ρ(a)
ρ ◦ f (which does exist since a ⊆ f(a)

implies ρ(a) ⊆ ρ ◦ f(ρ(a))) such that ρ(y) = y. This means that we can
abstract fixpoints by fixpoints, as illustrated in Fig. 17.

f

f

a
f

f

f

ff

f

f

f

⊆

f

f

f

f

Fig. 17. Fixpoint approximate abstraction

3 Application to Ground Predicate Abstraction

Ground predicate abstraction was introduced by [37] as a verification method
by abstract interpretation which can be implemented using a theorem prover
and a model-checker [1, 2, 3, 9, 30, 31, 32, 34, 35, 36, 37, 39, 46, 48, 50, 53].
The general idea is that elements of the abstract domain are chosen as ground
abstract predicates which interpretation is a set of states of a given program.
Transfer functions are computed using a theorem prover or preferably a sim-
plifier. If the abstract domain is finite it can be encoded in a boolean abstract
domain so as to reuse existing model-checkers for fixpoint computations 10 .

10 This encoding is not specific to ground predicate abstraction and is applicable for
any finite abstract domain.
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3.1 Syntax of the Programming Language

We consider a simple imperative programming language. The syntax, variables
and labelling of expressions, boolean expressions and commands is defined by
an attribute grammar [42].

3.1.1 Syntax of Expressions E ∈ E

We assume that we are given a denumerable set of programming variables
X ∈ X. The attribute varJEK is the set of programming variables appearing in
the expression E ∈ E.

E ::= 1 varJEK = ∅

| X varJEK = {X}

| ? varJEK = ∅

| E1 − E2 varJEK = varJE1K ∪ varJE2K

3.1.2 Syntax of Boolean Expressions B ∈ B

The attribute varJBK is the set of programming variables appearing in the
boolean expression B ∈ B.

B ::= E1 < E2 varJBK = varJE1K ∪ varJE2K
| ¬B1 varJBK = varJB1K
| B1 ∧ B2 varJBK = varJB1K ∪ varJB2K

3.1.3 Syntax of Commands C ∈ C

Each command C ∈ C has labels labJCK to denote execution points. These
labels include an entry label atJCK, an exit label afterJCK and possibly la-
bels of sub-commands in inJCK. In the following attribute grammar defining
commands C ∈ C, we globally assume that:

labJCK = {atJCK} ∪ inJCK ∪ {afterJCK},
atJCK 6= afterJCK,

{atJCK, afterJCK} ∩ inJCK = ∅ .
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The commands C use and modify global variables in varJCK.

C ::= skip varJCK = ∅

inJCK = ∅

| X := E varJCK = {X} ∪ varJEK
inJCK = ∅

| C1 ; C2 varJCK = varJC1K ∪ varJC2K
labJCK = labJC1K ∪ labJC2K
labJC1K ∩ labJC2K = {afterJC1K} = {atJC2K}
atJCK = atJC1K
afterJCK = afterJC2K

| ifB then C1 else C2 varJCK = varJBK ∪ varJC1K ∪ varJC2K
inJCK = labJC1K ∪ labJC2K
labJC1K ∩ labJC2K = ∅

| whileB do C1 varJCK = varJBK ∪ varJC1K
inJCK = labJC1K

3.2 Concrete Reachability Semantics of the Programming Language

We let D be the domain of value of the programming variables X.

3.2.1 Semantics of Expressions E ∈ E

The semantics EJEK ∈ M 7→ ℘(D) of expressions E ∈ E is defined on all
memory states M ∆

= V 7→ D where V is any set of programming variables
including all such variables appearing in E, that is varJEK ⊆ V. Because of
the random choice ?, for all memory states m ∈M, EJEKm has to be chosen
as a set of possible values in ℘(D). In denotational semantics style [51], we
define:

EJEKm ∆
= match E with
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| 1 → {1}

| ? → D

| X → {m(X)}

| E1 − E2 → {v1 − v2 | v1 ∈ EJE1Km ∧ v2 ∈ EJE2Km}

Defining the judgement

m ` E ⇒ v
∆
= v ∈ EJEKm

this can be written in structured operational semantics style [49] as:

m ` 1⇒ 1 m ` ?⇒ v, v ∈ D

m ` X⇒ m(X)
m ` E1 ⇒ v1 m ` E2 ⇒ v2

m ` E1 − E2 ⇒ v1 − v2

3.2.2 Semantics of Boolean Expressions B ∈ B

The semantics BJBK ∈ ℘(M) and BJBK ∈ ℘(M) of boolean expressions
B ∈ B is defined for memory states in M ∆

= V 7→ D where V is any set
of programming variables including all such variables appearing in B, that is
varJBK ⊆ V. BJBK defines the set of memory states in which B may be true
while BJBK defines the set of memory states in which B may be false. We have
BJBK∪BJBK =M but may be BJBK∩BJBK 6= ∅ because of non-determinism
as in ? < 1. We define:

BJE1 < E2K ∆
= {m ∈M | ∃x1, x2 ∈ D : x1 ∈ EJE1Km ∧ x2 ∈ EJE2Km ∧ x1 < x2}

BJ¬BK ∆
= BJBK

BJB1 ∧ B2K ∆
= BJB1K ∩ BJB2K

BJE1 < E2K ∆
= {m ∈M | ∃x1, x2 ∈ D : x1 ∈ EJE1Km ∧ x2 ∈ EJE2Km ∧ x1 ≥ x2}

BJ¬B1K ∆
= BJBK

BJB1 ∧ B2K ∆
= BJB1K ∪ BJB2K

By defining the judgements:

m ‚ B
∆
= m ∈ BJBK

m 1 B
∆
= m ∈ BJBK
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the definition of B and B can also be rephrased as:

m ` E1 ⇒ v1

m ` E2 ⇒ v2

v1 < v2

m ‚ E1 < E2

m ` E1 ⇒ v1

m ` E2 ⇒ v2

v1 ≥ v2

m 1 E1 < E2

m 1 B
m ‚ ¬B

m ‚ B
m 1 ¬B

m ‚ B1 m ‚ B2

m ‚ B1 ∧ B2

m 1 B1

m 1 B1 ∧ B2

m 1 B2

m 1 B1 ∧ B2

3.2.3 Reachability Semantics of Commands C ∈ C

Given a domain D of value of the programming variables X, the reachability
semantics RJCK of a command E ∈ E is defined on any set of states Σ = 〈L,
M〉 such that L is a set of labels/program points/control states and M ∆

=
V 7→ D is a set of memory states on variables V chosen such that labJCK ⊆ L
and varJCK ⊆ V. The reachability semantics for the command C is then 〈Σ,
RJCK〉. For a program C, we can choose Σ = 〈labJCK, varJCK 7→ D〉. We
have:

RJCK ∈ ℘(Σ) 7→ ℘(Σ) (2)

RJCKP ∆
= match C with

| skip → P ∪ {〈afterJCK, m〉 | 〈atJCK, m〉 ∈ P} (3)

| X := E → P ∪ {〈afterJCK, m[X := v]〉 | 〈atJCK, m〉 ∈ P ∧ v ∈ EJEKm} (4)

| C1 ; C2 → let P1 = RJC1KP in (5)

P1 ∪RJC2K{〈atJC2K, m〉 | 〈afterJC1K, m〉 ∈ P1}

| ifB then C1 else C2 → (6)

let P1 = RJC1K{〈atJC1K, m〉 | 〈atJCK, m〉 ∈ P ∧m ∈ BJBK}
and P2 = RJC2K{〈atJC2K, m〉 | 〈atJCK, m〉 ∈ P ∧m ∈ BJBK}
and Pe = {〈afterJCK, m〉 | 〈afterJC1K, m〉 ∈ P1 ∨ 〈afterJC2K, m〉 ∈ P2} in

P ∪ P1 ∪ P2 ∪ Pe

| whileB do C1 → (7)
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let P1 = lfp
⊆

λX·RJC1K({〈atJC1K, m〉 | (〈atJCK, m〉 ∈ P ∨

〈afterJC1K, m〉 ∈ X) ∧m ∈ BJBK}) in

P ∪ P1 ∪ {〈afterJCK, m〉 | (〈atJCK, m〉 ∈ P ∨ 〈afterJC1K, m〉 ∈ P1) ∧m ∈ BJBK}

Let us define:

m ∈ P ↓ `
∆
= 〈`, m〉 ∈ P

P ` C
∗
⇒ `, m

∆
= 〈`, m〉 ∈ RJCKP

so as to define the reachability semantics in rule-based form:

m ∈ P ↓ `

P ` C
∗
⇒ `, m

m ∈ P ↓ atJskipK
P ` skip

∗
⇒ afterJskipK, m

m ∈ P ↓ atJX := EK m ` E ⇒ v

P ` X := E
∗
⇒ afterJX := EK, m[X := v]

P ` C1
∗
⇒ `, m

P ` C1 ; C2
∗
⇒ `, m

P ` C1
∗
⇒ afterJC1K, m {〈atJC2K, m〉} ` C2

∗
⇒ `, m′

P ` C1 ; C2
∗
⇒ `, m′

m ∈ P ↓ atJifB then C1 else C2K m ‚ B

{〈atJC1K, m〉} ` C1
∗
⇒ `, m′

P ` ifB then C1 else C2
∗
⇒ `, m′

m ∈ P ↓ atJifB then C1 else C2K m ‚ B

{〈atJC1K, m〉} ` C1
∗
⇒ afterJC1K, m′

P ` ifB then C1 else C2
∗
⇒ afterJifB then C1 else C2K, m′

m ∈ P ↓ atJifB then C1 else C2K m 1 B

{〈atJC2K, m〉} ` C2
∗
⇒ `, m′

P ` ifB then C1 else C2
∗
⇒ `, m′

m ∈ P ↓ atJifB then C1 else C2K m 1 B

{〈atJC2K, m〉} ` C2
∗
⇒ afterJC2K, m′

P ` ifB then C1 else C2
∗
⇒ afterJifB then C1 else C2K, m′
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m ∈ P ↓ atJwhileB do C1K m ‚ B

P ` whileB do C1
∗
⇒ atJC1K, m

m ∈ P ↓ atJwhileB do C1K m 1 B

P ` whileB do C1
∗
⇒ afterJwhileB do C1K, m

P ` whileB do C1
∗
⇒ afterJC1K, m m ‚ B

P ` whileB do C1
∗
⇒ atJC1K, m

(8)

P ` whileB do C1
∗
⇒ afterJC1K, m m 1 B

P ` whileB do C1
∗
⇒ afterJwhileB do C1K, m

(9)

P ` whileB do C1
∗
⇒ `, m {〈`, m〉} ` C1

∗
⇒ `′, m′

P ` whileB do C1
∗
⇒ `′, m′

(10)

The rules are by structural induction on the command syntax but (10), (9) and
(8), which are self-referential, and therefore should be interpreted as fixpoints
[23].

3.2.4 Ground Abstract Predicates

Predicate abstraction is defined by a set P of syntactic predicates which, for
simplicity, we choose to be boolean expressions P ⊆ B. We define varJPK ∆

=
⋃

p∈P varJpK.

Example 13. For the sign analysis [19] of a command C ∈ C, one would
choose

P = {tt, ff} ∪
⋃

X∈varJCK

{X ≤ 0, X < 0, X = 0, X 6= 0, X > 0, X ≥ 0}

f

The set P may be infinite, as shown by the following example.

Example 14. For Kildall’s constant propagation [40] for a command C ∈ C,
one would represent the lattice of Fig. 18 by

P = {tt, ff} ∪
⋃

X∈varJCK

⋃

v∈D

{X = v}

f

Predicate abstraction uses a prover to prove theorems t ∈ T with interpretation
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Fig. 18. Kildall’s constant propagation abstraction

I ∈ T 7→ ℘(M) assigning a semantics/interpretation/meaning IJtK to all
syntactic predicates t ∈ T. The syntax is as follows:

t ::= p (where p ∈ P) varJtK = varJpK
| tt varJtK = ∅

| ff varJtK = ∅

| X ∈ E varJtK = {X} ∪ varJEK
| ¬t1 varJtK = varJt1K
| t1 ⇒ t2 varJtK = varJt1K ∪ varJt2K
|

∧

i∈∆

ti varJtK =
⋃

i∈∆

varJtiK

| ∀X : t1 varJtK = varJt1K \ {X}

with semantics IJtK ∈ ℘(M):

IJpK ∆
= BJpK,

IJttK ∆
= M,

IJffK ∆
= ∅,

IJX ∈ EK ∆
= {m ∈M | m(X) ∈ EJEKm},

IJ¬tK ∆
= {m ∈M | m 6∈ IJtK},

IJ
∧

i∈∆

tiK ∆
=

⋂

i∈∆

IJtiK,

IJt1 ⇒ t2K ∆
= {m ∈M | m 6∈ IJt1K ∨m ∈ IJt2K},

IJ∀X : tK ∆
= {m ∈M | ∀v ∈ D : m[X := v] ∈ IJtK} .

Variable substitution t[X/X′] is defined as usual with renaming of conflicting
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dummy variables such that:

X 6∈ varJtK ⇒ t[X/X′] = t,

EJE[X/X′]Km = EJEKm[X := m(X′)], (11)

X 6= Y ∧ Y 6∈ varJtK ⇒ IJ∀X : tK = IJ∀Y : (t[X/Y])K,
Z 6∈ varJtK ∪ {X, Y} ⇒ IJ(∀X : t)[Y/X]K = IJ∀Z : (t[X/Z][Y/X)]K,

IJt[X/X′]K = {m | m[X := m(X′)] ∈ IJtK} . (12)

The prover is assumed to be sound in that:

∀t ∈ T : proverJtK ⇒ (IJtK =M) . (13)

(The inverse is not valid since provers are incomplete.)

3.2.5 Ground Predicate Abstraction

Given a set of states in ℘(Σ) where Σ = 〈L,M〉, we can use an isomorphic rep-
resentation associating sets of memory states to labels/program points/control
states thank to the following correspondence:

〈℘(L ×M), ⊆〉 −−−→−→←←−−−−
α↓

γ↓
〈L 7→ ℘(M), ⊆̇〉 (14)

where

α↓(P )
∆
= λ`·{m | 〈`, m〉 ∈ P} (15)

γ↓(Q)
∆
= {〈`, m〉 | ` ∈ L ∧m ∈ Q`}

and ⊆̇ is the pointwise ordering Q ⊆̇ Q′ if and only if ∀` ∈ L : Q` ⊆ Q′
`.

A memory state property Q ∈ ℘(M) is approximated by the subset of pred-
icates p of P which holds when Q holds (formally Q ⊆ BJpK). This defines a
Galois connection:

〈℘(M), ⊆〉 −−−−→←−−−−
αP

γP

〈℘(P), ⊇〉 (16)

where:

24



αP(Q)
∆
= {p ∈ P | Q ⊆ BJpK} (17)

γP(P )
∆
=

⋂

{BJpK | p ∈ P} (18)

= IJ
∧

P K (19)

Observe that in general γP is not one-to-one (e.g. γP({X = 1, X ≥ 1}) =
γP({X = 1}) so αP is not onto 11 .

By pointwise extension, we have:

〈L 7→ ℘(M), ⊆̇〉 −−−−→←−−−−
α̇P

γ̇P

〈L 7→ ℘(P), ⊇̇〉

where:

α̇P(Q)
∆
= λ`·αP(Q`) (20)

γ̇P(P )
∆
= λ`· γP(P`) (21)

P ⊇̇ P ′ ∆
= ∀` ∈ L : P` ⊇ P ′

`

By composition, we get:

〈℘(L ×M), ⊆〉 −−→−→←←−−−α

γ
〈L 7→ ℘(P), ⊇̇〉 (22)

where:

α(P )
∆
= α̇P ◦ α↓(P ) (23)

= λ`·{p ∈ P | {m | 〈`, m〉 ∈ P} ⊆ IJpK}
γ(Q)

∆
= γ↓

◦ γ̇P (24)

= {〈`, m〉 | ` ∈ L ∧m ∈ γP(Q`)} (25)

= {〈`, m〉 | ` ∈ L ∧ ∀p ∈ Q` : m ∈ IJpK}

3.2.6 On Boolean Ground Predicate Abstraction

If P is assumed to be finite then characteristic functions of subsets of P can be
encoded as boolean vectors thus later allowing for the reuse of model-checker

11 In a Galois connection 〈L, ≤〉 −−−→←−−−α

γ
〈M, v〉, α is onto if and only if γ is one-to-

one if and only if γ ◦ α is the identity so, by duality, γ is onto if and only if α is
one-to-one if and only if α ◦ γ is the identity.
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to solve fixpoint equations. However, this encoding of sets is very expensive
to encode small subsets of large subsets and cannot be used to encode infinite
sets.

Counter Example 15. For Kildall’s constant propagation [40] as already
considered in Ex. 14, the encoding of subsets of P by bit vectors is impossible
when the domain of values D is infinite or very large. With this encoding
(otherwise useful to reuse boolean model-checkers), P must be restricted to
the finite small set of those constants which are useful during the analysis of
the command C. These useful constants have to be discovered by some other
means (e.g. user assistance or abstraction refinement), which are much less
automatic and/or efficient than Kildall’s constant propagation algorithm. f

We let B = {tt, ff} be the set of booleans with ff ⇒ ff ⇒ tt ⇒ tt. Assuming
P = {p1, . . . , pk}, we have:

〈℘(P), ⊇〉 −−−→−→←←−−−−
αb

γb

〈
k

∏

i=1

B,
.
⇐〉 (26)

where:

αb(P )
∆
=

k
∏

i=1

(pi ∈ P )

γb(Q)
∆
= {pi | 1 ≤ i ≤ k ∧Qi}

Q
.
⇐ Q′ ∆

= ∀i : 1 ≤ i ≤ k : Qi ⇐ Q′

i

By pointwise extension, we have:

〈L 7→ ℘(P), ⊇̇〉 −−−→−→←←−−−−
α̇b

γ̇b

〈L 7→
k

∏

i=1

B,
..
⇐〉

where:

α̇b(P )
∆
= λ`·αb(P`)

γ̇b(Q)
∆
= λ`· γb(Q`)

Q
..
⇐ Q′ ∆

= ∀` ∈ L : Q`
.
⇐ Q′

`

By composition, we get the variant:

〈℘(L ×M), ⊆〉 −−−→−→←←−−−−
α′

γ′

〈L 7→
k

∏

i=1

B,
..
⇐〉 (27)
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where:

α′(P )
∆
= α̇b ◦ α(P )

= λ`·
k

∏

i=1

({m | 〈`, m〉 ∈ P} ⊆ IJpiK)

γ′(Q)
∆
= γ ◦ γ̇b(Q)

= {〈`, m〉 | ` ∈ L ∧m ∈ IJ
k

∧

i=1

(Q`)i ⇒ piK}

Because of the limitation to a finite set P of abstract predicates introduced
by the boolean abstraction (27), we prefer to use the set abstraction (22) for
which efficient encodings of finite subsets do exist [7, 10] and the corresponding
fixpoint computation engine can be efficiently implemented [7].

3.2.7 Abstract Reachability Semantics of Commands C ∈ C

Given a set of abstract predicates P, the abstract reachability semantics of
command C ∈ C is

RJCK ∈ ℘(P) 7→ (labJCK 7→ ℘(P))

RJCKP = α(RJCK({atJCK} × γP(P )))

that is the abstraction of the reachable states of C from its entry point atJCK
in initial memory states m ∈ γP(P ).

Because of undecidability, whence theorem prover incompleteness, we look for
a ⊇̇-over approximation RJCKP such that:

α(RJCK({atJCK} × γP(P ))) ⊇̇ RJCKP (28)

⇔ RJCK({atJCK} × γP(P )) ⊆ γ(RJCKP ) (29)

We proceed by structural induction on the syntax of commands C ∈ C.

— For the null command , we have

RJskipKP
= α(RJskipK({atJskipK} × γP(P ))) Hdef. RI
= let P = {atJskipK} × γP(P ) in

α(P ∪ {〈afterJCK, m〉 | 〈atJCK, m〉 ∈ P}) Hdef. RI
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= let P = {atJskipK} × γP(P ) in
α(P ) ∩̇α({〈afterJCK, m〉 | 〈atJCK, m〉 ∈ P}) Hby (22), so that α is a

complete join morphismI
= α({atJCK} × γP(P )) ∩̇α({afterJCK} × γP(P )) Hby def. P I

Let us go on with the term α(P ) where P = {locJCK} × γP(P ) with loc ∈

{at, after} (we define (tt ? t : f ) = t, (ff ? t : f ) = f and (b1 ? t1 | b2 ? t2 : f )

= (b1 ? t1 : (b2 ? t2 : f ))).

α({locJCK} × γP(P ))

= λ`·{p ∈ P | {m | 〈`, m〉 ∈ {locJCK} × γP(P )} ⊆ IJpK} Hdef. αI
= λ`·(` = locJCK ? {p ∈ P | γP(P ) ⊆ IJpK} : {p ∈ P | ∅ ⊆ IJpK) Hdef.

conditionalI
= λ`·(` = locJCK ? {p ∈ P |

⋂

{BJpK | p ∈ P} ⊆ IJpK} : P) Hdef. γP and ⊆I
= λ`·(` = locJCK ? {p ∈ P |

⋂

{IJpK | p ∈ P} ⊆ IJpK} : P) Hdef. II
= λ`·(` = locJCK ? {p ∈ P | IJ

∧

P K ⊆ IJpK} : P) Hdef. II
= λ`·(` = locJCK ? {p ∈ P | IJ

∧

P ⇒ pK} : P) Hdef. II
⊇̇ λ`·(` = locJCK ? {p ∈ P | proverJ

∧

P ⇒ pK} : P) Hprover soundness
(13)I

⊇̇ λ`·(` = locJCK ? P : P) (30)

Hwhich is less precise but avoids a call to the proverI

We have shown that for loc ∈ {at, after}:

α({locJCK} × γP(P )) ⊇̇ λ`·(` = locJCK ? P : P) (32)

It follows that:

RJskipKP
= α({atJCK} × γP(P )) ∩̇α({afterJCK} × γP(P )) Hby def. P I
= λ`·(` = atJCK ? P : P) ∩̇λ`·(` = afterJCK ? P : P) Hby (32)I
= λ`·(` = atJCK ? P | ` = afterJCK ? P : P) Hby atJCK 6= afterJCK and def.
∩̇I

— For the assignment X := E, we have

RJX := EKP
= α(RJX := EK({atJX := EK} × γP(P ))) Hdef. RI
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= let P = {atJX := EK} × γP(P ) in
α(P ∪ {〈afterJCK, m[X := v]〉 | 〈atJCK, m〉 ∈ P ∧ v ∈ EJEKm}) Hdef. RI

= let P = {atJX := EK} × γP(P ) in
α(P ) ∩̇α({〈afterJCK, m[X := v]〉 | 〈atJCK, m〉 ∈ P ∧ v ∈ EJEKm})

H(22), so that α is a complete join morphismI

The first term has already been evaluated in (32). Given P = {atJX := EK}×
γP(P ), the second term is

α({〈afterJX := EK, m[X := v]〉 | 〈atJX := EK, m〉 ∈ P ∧ v ∈ EJEKm})
= α({〈afterJX := EK, m[X := v]〉 | m ∈ γP(P ) ∧ v ∈ EJEKm}) Hdef. P I
= λ`·{p ∈ P | {m′ | 〈`, m′〉 ∈ {〈afterJX := EK, m[X := v]〉 | m ∈ γP(P )∧ v ∈
EJEKm}} ⊆ IJpK} Hdef. αI

= λ`·(` = afterJX := EK ? {p ∈ P | {m[X := v] | m ∈ γP(P )∧v ∈ EJEKm} ⊆
IJpK} : P) Hdef. conditional and ⊆I

= λ`·(` = afterJX := EK ? {p ∈ P | {m[X := v] | m ∈
⋂

{BJpK | p ∈ P} ∧ v ∈
EJEKm} ⊆ IJpK} : P) Hdef. γPI

= λ`·(` = afterJX := EK ? {p ∈ P | {m[X := v] | m ∈
⋂

{IJpK | p ∈ P} ∧ v ∈
EJEKm} ⊆ IJpK} : P) Hdef. II

= λ`·(` = afterJX := EK ? {p ∈ P | {m[X := v] | m ∈ IJ
∧

P K ∧ v ∈
EJEKm} ⊆ IJpK} : P) Hdef. II

= λ`·(` = afterJX := EK ? {p ∈ P | {m[X := v′][X := v] | m[X := v′] ∈
IJ

∧

P K ∧ v ∈ EJEKm[X := v′]} ⊆ IJpK} : P) Hby letting v′ = m(X) so that
m = m[X := v′]I

= λ`·(` = afterJX := EK ? {p ∈ P | {m[X := v] | ∃v′ ∈ D : m[X := v′] ∈
IJ

∧

P K ∧ v ∈ EJEKm[X := v′]} ⊆ IJpK} : P) Hsince m[X := v′][X := v] =
m[X := v]I

= λ`·(` = afterJX := EK ? {p ∈ P | {m[X := v] | m[X := m(X′)] ∈ IJ
∧

P K ∧
v ∈ EJEKm[X := m(X′)]} ⊆ IJpK} : P) Hby letting v′ = m(X′) where X′ is a
fresh variable such that X′ 6∈ {X} ∪ varJEK ∪ varJPK so that X′ 6∈ varJP KI

= λ`·(` = afterJX := EK ? {p ∈ P | {m′ | m′[X := m′(X′)] ∈ IJ
∧

P K∧m′(X) ∈
EJEKm′[X := m′(X′)]} ⊆ IJpK} : P) Hby letting m′ = m[X := v] so that
v = m′(X), m(X′) = m′(X′) and m[X := m(X′)] = m′[X := m′(X′)]I

= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X := m(X′)] ∈
IJ(

∧

P )K ∧m(X) ∈ EJEKm[X := v]} ⊆ IJpK} : P) Hby letting m = m′ and
v = m′(X′)I

= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v][X :=
m(X′)] ∈ IJ(

∧

P )K ∧m(X) ∈ EJEKm[X := v]} ⊆ IJpK} : P) Hsince
X′ 6∈ varJP KI
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= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v][X :=
m[X := v](X′)] ∈ IJ(

∧

P )K ∧m(X) ∈ EJEKm[X := v]} ⊆ IJpK} : P) Hsince
X 6= X′ so m(X′) = m[X := v](X′)I

= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v] ∈ {m′ |
m′[X := m′(X′)] ∈ IJ(

∧

P )K} ∧m(X) ∈ EJEKm[X := v]} ⊆ IJpK} : P) Hby
def. ∈ while letting m′ = m[X := v]I

= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v] ∈
IJ(

∧

P )[X/X′]K ∧m(X) ∈ EJEKm[X := v]} ⊆ IJpK} : P) Hby (12)I
= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v] ∈
IJ(

∧

P )[X/X′]K∧m[X′ := v](X) ∈ EJEKm[X := m[X′ := v](X′)]} ⊆ IJpK} : P)
Hdef. m[X := v] and X 6= X′I

= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v] ∈
IJ(

∧

P )[X/X′]K ∧m[X′ := v](X) ∈ EJEKm[X′ := v][X := m[X′ := v](X′)]} ⊆
IJpK} : P) Hsince X′ 6∈ varJEKI

= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v] ∈
IJ(

∧

P )[X/X′]K∧m[X′ := v] ∈ {m′ ∈M | m′(X) ∈ EJEKm′[X := m′(X′)]}} ⊆
IJpK} : P) Hdef. ∈ while letting m′ = m[X′ := v]I

= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v] ∈
IJ(

∧

P )[X/X′]K ∩ {m′ ∈ M | m′(X) ∈ EJEKm′[X := m′(X′)]}} ⊆ IJpK} : P)
Hdef. ∩I

= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v] ∈
IJ(

∧

P )[X/X′]K ∩ {m′ ∈M | m′(X) ∈ EJE[X/X′]Km′}} ⊆ IJpK} : P) Hby
(11)I

= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v] ∈
IJ(

∧

P )[X/X′]K ∩ IJX ∈ E[X/X′]K} ⊆ IJpK} : P) Hdef. II
= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v] ∈
IJ

∧

P [X/X′]K ∩ IJX ∈ E[X/X′]K} ⊆ IJpK} : P) Hdef. substitutionI
= λ`·(` = afterJX := EK ? {p ∈ P | {m ∈ M | ∃v ∈ D : m[X′ := v] ∈
IJ

∧

P [X/X′] ∧ X ∈ E[X/X′]K} ⊆ IJpK} : P) Hdef. II
= λ`·(` = afterJX := EK ? {p ∈ P | IJ∃X′ :

∧

P [X/X′] ∧ X ∈ E[X/X′]K ⊆
IJpK} : P) Hdef. II

= λ`·(` = afterJX := EK ? {p ∈ P | IJ(∃X′ :
∧

P [X/X′]∧X ∈ E[X/X′])⇒ pK} :
P) Hdef. II

⊇̇ λ`·(` = afterJX := EK ? {p ∈ P | proverJ(∃X′ :
∧

P [X/X′]∧ X ∈ E[X/X′])⇒
pK} : P) Hdef. II

Grouping both cases together, we have

RJX := EKP
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= λ`·(` = atJX := EK ? {p ∈ P | proverJ
∧

P ⇒ pK} : P) ∩̇λ`·(` =

afterJX := EK ? {p ∈ P | proverJ(∃X′ :
∧

P [X/X′]∧X ∈ E[X/X′])⇒ pK} : P)

= λ`· (` = atJCK ? {p ∈ P | proverJ∧ P ⇒ pK}
| ` = afterJX := EK ? {p ∈ P | proverJ(∃X′ :

∧

P [X/X′] ∧ X ∈ E[X/X′])⇒ pK}
: P)

Hby def. ∩̇, conditional and atJCK 6= afterJCKI

— For the sequential composition C1 ; C2, we have

RJC1 ; C2KP
= α(RJC1 ; C2K({atJC1 ; C2K} × γP(P ))) Hdef. RI
= let P1 = RJC1K({atJC1 ; C2K} × γP(P )) in

α(P1 ∪RJC2K{〈atJC2K, m〉 | 〈afterJC1K, m〉 ∈ P1}) Hdef. RI
= let P1 = RJC1K({atJC1K} × γP(P )) in

α(P1) ∩̇α(RJC2K{〈atJC2K, m〉 | 〈afterJC1K, m〉 ∈ P1}) H(22), so that α
is a complete join morphism and atJC1 ; C2K = atJC1KI

⊇̇ let P 1 = RJC1K(P ) in
P 1 ∩̇α(RJC2K{〈atJC2K, m〉 | 〈afterJC1K, m〉 ∈ γ(P 1)}) Hby induction

hypothesis (28) and (22), so that γ ◦ α is extensive and α is monotoneI
= let P 1 = RJC1K(P ) in P 1 ∩̇α(RJC2K({atJC2K} × γP(P 1(afterJC1K))) Hby

def. (25) of γI
⊇̇ let P 1 = RJC1K(P ) in P 1 ∩̇RJC2K(P 1(afterJC1K)) Hby induction

hypothesis (28)I

— For tests B, we have:

γP(P ) ∩ BJBK
= IJ

∧

P K ∩ BJBK Hby def. (19) of γPI
⊆

⋂

{BJpK | (IJ
∧

P K ∩ BJBK) ⊆ BJpK} Hby def. upper boundsI
=

⋂

{BJpK | (IJ
∧

P K ∩ IJBK) ⊆ IJpK} Hby def. II
=

⋂

{BJpK | IJ
∧

P ∧ BK ⊆ IJpK} Hby def. II
=

⋂

{BJpK | IJ(
∧

P ∧ B)⇒ pK =M} Hby def. II
⊆

⋂

{BJpK | proverJ(
∧

P ∧ B)⇒ pK} Hby prover soundness (13)I
⊆ γP({p | proverJ(

∧

P ∧B)⇒ pK}) Hdef. (18) of γPI

Therefore we define:

RJBKP ∆
= {p | proverJ(

∧

P ∧B)⇒ pK}

such that:
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γP(RJBKP ) ⊇ γP(P ) ∩ BJBK (33)

⇔ RJBKP ⊆ αP(γP(P ) ∩ BJBK)

— For the conditional C = ifB then C1 else C2, we have

RJifB then C1 else C2KP
= α(RJifB then C1 else C2K({atJCK} × γP(P ))) Hdef. RI
= let P1 = RJC1K{〈atJC1K, m〉 | m ∈ γP(P ) ∩ BJBK}

and P2 = RJC2K{〈atJC2K, m〉 | m ∈ γP(P ) ∩ BJBK}
and Pe = {〈afterJCK, m〉 | 〈afterJC1K, m〉 ∈ P1 ∨ 〈afterJC2K, m〉 ∈ P2} in

α(({atJCK} × γP(P )) ∪ P1 ∪ P2 ∪ Pe) Hdef. RI
= let P1 = RJC1K({atJC1K} × γP(P ) ∩ BJBK)

and P2 = RJC2K({atJC2K} × γP(P ) ∩ BJBK)
and P e = α({〈afterJCK, m〉 | 〈afterJC1K, m〉 ∈ P1 ∨ 〈afterJC2K, m〉 ∈
P2}) in

α({atJCK} × γP(P )) ∩̇α(P1) ∩̇α(P2) ∩̇P e H(22), so that α is a complete
join morphismI

⊇̇ let P1 = RJC1K({atJC1K} × γP(RJBKP ))
and P2 = RJC2K({atJC2K} × γP(RJ¬BKP ))

and P
t

e = α({〈afterJCK, m〉 | m ∈ γP(P 1(afterJC1K))})
and P

f

e = α({〈afterJCK, m〉 | m ∈ γP(P 2(afterJC2K))}) in

α({atJCK} × γP(P )) ∩̇α(P1) ∩̇α(P2) ∩̇P
t

e ∩̇P
f

e Hby BJBK = BJ¬BK,
(33), monotonicity ofRJCK and (22), so that α is a complete join morphism
hence monotonicI

⊇̇ let P 1 = RJC1K(RJBKP ) and P 2 = RJC2K(RJ¬BKP )

and P
t

e = α̇P ◦ α↓({〈afterJCK, m〉 | m ∈ γP(P 1(afterJC1K))})
and P

f

e = α̇P ◦ α↓({〈afterJCK, m〉 | m ∈ γP(P 2(afterJC2K))}) in

α({atJCK} × γP(P )) ∩̇P 1 ∩̇P 2 ∩̇P
t

e ∩̇P
f

e Hby induction hypothesis (28),
(22), and monotony of α and ∩̇ and def. (23) of αI

= let P 1 = RJC1K(RJBKP ) and P 2 = RJC2K(RJ¬BKP )

and P
t

e = λ`·αP({m | ` = afterJCK ∧m ∈ γP(P 1(afterJC1K))})
and P

f

e = λ`·αP({m | ` = afterJCK ∧m ∈ γP(P 2(afterJC2K))}) in

α({atJCK} × γP(P )) ∩̇P 1 ∩̇P 2 ∩̇P
t

e ∩̇P
f

e Hby def. (20) of α̇P and (15)
of α↓I

⊇̇ let P 1 = RJC1K(RJBKP ) and P 2 = RJC2K(RJ¬BKP )

and P
t

e = λ`·(` = afterJCK ? P 1(afterJC1K) : P)
and P

f

e = λ`·(` = afterJCK ? P 2(afterJC2K) : P) in

α({atJCK} × γP(P )) ∩̇P 1 ∩̇P 2 ∩̇P
t

e ∩̇P
f

e Hby def. (17) of αP, (16) so
that αP ◦ γP is reductiveI
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⊇̇ let P 1 = RJC1K(RJBKP ) and P 2 = RJC2K(RJ¬BKP )
and Pe = λ`·(` = afterJCK ? P 1(afterJC1K) ∩ P 2(afterJC2K) : P) in

λ`·(` = atJCK ? P : P) ∩̇P 1 ∩̇P 2 ∩̇P e Hby (30)I

— For the iteration C = whileB do C1, given P ∈ L 7→ ℘(P) and X ⊆ Σ =
L ×M, we define:

F (X)
∆
= RJC1K({〈atJC1K, m〉 | (〈atJCK, m〉 ∈ ({atJCK} × γP(P )) ∨

〈afterJC1K, m〉 ∈ X) ∧m ∈ BJBK})

We can now design the abstraction F of F such that α ◦ F ⊇̇ F ◦ α:

α(F (X))

= α(RJC1K({atJC1K} × {m | (〈atJCK, m〉 ∈ ({atJCK} × γP(P )) ∨ 〈afterJC1K,
m〉 ∈ X) ∧m ∈ BJBK})) Hby def. F I

⊇̇ α(RJC1K({atJC1K}×{m | (m ∈ γP(P )∨〈afterJC1K, m〉 ∈ γ ◦ α(X))∧m ∈
BJBK})) Hby (22) so that γ ◦ α is extensive and monotony of RJC1K and
αI

⊇̇ α(RJC1K({atJC1K} × γP ◦ αP({m | (m ∈ γP(P ) ∨ 〈afterJC1K, m〉 ∈ γ ◦

α(X))∧m ∈ BJBK}))) Hby (16) so that γP ◦ αP is extensive, monotony of
RJC1K and (22) so that α is monotonicI

⊇̇ α(RJC1K({atJC1K}×γP(αP(γP(P )∩BJBK)∩αP({m | 〈afterJC1K, m〉 ∈ γ ◦

α(X) ∧m ∈ BJBK})))) Hby (16) so that αP is a complete join morphismI
⊇̇ α(RJC1K({atJC1K} × γP(αP(γP(P ) ∩ BJBK) ∩ αP(γP(α(X)afterJC1K) ∩
BJBK)))) Hby def. (25) of γI

⊇̇ α(RJC1K({atJC1K} × γP(RJBKP ∩RJBK(α(X)afterJC1K)))) Hby (33) and
monotony I

⊇̇ RJC1K(RJBKP ∩RJBK(α(X)afterJC1K)) Hby induction hypothesis (28)I

We have α(∅) = λ`·P so that it follows that:

α(lfp
⊆

λX·RJC1K({〈atJC1K, m〉 | (〈atJCK, m〉 ∈ P ∨ 〈afterJC1K, m〉 ∈ X)

∧m ∈ BJBK}))
(34)

⊇̇ lfp
⊇̇

λ`·P λX·RJC1K(RJBKP ∩RJBK(XafterJC1K))
∆
= P 1 (35)

We will need to evaluate evaluate:

α({〈`1, m〉 | 〈`2, m〉 ∈ γ(P ) ∧m ∈ BJBK})
= α({〈`1, m〉 | m ∈ γP(P `2) ∧m ∈ BJBK}) Hby def. (25) of γI
= α({`1} × (γP(P `2) ∩ BJBK)) Hby def. ∩ and ×I
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⊇̇ α({`1} × γP(RJBKP `2)) Hby (33) and (22), so that α monotonicI
= α̇P ◦ α↓({`1} × γP(RJBKP `2)) Hby def. (23) of αI
= λ`·αP({m | 〈`, m〉 ∈ {`1} × γP(RJBKP `2)) Hby def. (20) of α̇P and (15)

of α↓I
⊇̇ λ`·(` = `1 ? RJBKP `2 : P) Hby (16) so that αP ◦ γP is reductiveI (36)

and therefore for C = whileB do C1:

α(RJCK({atJCK} × γP(P )))

= α(({atJCK}×γP(P ))∪P1∪{〈afterJCK, m〉 | (m ∈ γP(P )∨〈afterJC1K, m〉 ∈
P1) ∧m ∈ BJBK}) Hby (7)I

⊇̇ α({atJCK} × γP(P )) ∩̇P 1 ∩̇α({〈afterJCK, m〉 | m ∈ γP(P ) ∧ m ∈
BJBK}) ∩̇α({〈afterJCK, m〉 | 〈afterJC1K, m〉 ∈ P1 ∧m ∈ BJBK}) Hby (35)
and (22), so that α is a complete join morphismI

⊇̇ λ`·(` = atJCK ? P : P) ∩̇P 1 ∩̇λ`·(` = afterJCK ? RJ¬BKP : P) ∩̇
λ`·(` = afterJCK ? RJ¬BKP afterJC1K : P) Hby (32), BJBK = BJ¬BK and
(36)I

= P 1 ∩̇λ`·(` = atJCK ? P | ` = afterJCK ? RJ¬BKP ∩ RJ¬BKP afterJC1K : P)
Hby def ∩̇ and conditionalI

— In conclusion of these calculi, we have proved that:

RJCKP` = (` 6∈ labJCK ? P : match C, ` with

| _, atJCK → {p ∈ P | proverJ
∧

P ⇒ pK} (38)

| skip, afterJCK → {p ∈ P | proverJ
∧

P ⇒ pK}
| X := E, afterJCK → {p ∈ P | proverJ(∃X′ :

∧

P [X/X′] ∧ X ∈ E[X/X′])⇒ pK}

| C1 ; C2, _ → let P 1 = RJC1KP and P 2 = RJC2KP 1(afterJC1K) in

P 1(`) ∩ P 2(`)

| ifB then C1 else C2, _ → (39)

let P t = {p ∈ P | proverJ(∧ P ∧B)⇒ pK} and P 1 = RJC1KP t

and P f = {p ∈ P | proverJ(∧ P ∧ ¬B)⇒ pK} and P 2 = RJC2KP f

in P 1(`) ∩ P 2(`) ∩ (` = afterJCK ? P 1(afterJC1K) ∩ P 2(afterJC2K) : P)
| whileB do C1, _ → (40)
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let P 1 = gfp
⊆̇

λ`·P λX·λ`′·(`′ = atJC1K ? {p ∈ P | proverJ((∧ P ∨

X(after(C1))) ∧ B)⇒ pK} : P) ∩̇RJC1KX(atJC1K)`′

in P 1(`) ∩ (` = afterJCK? {p ∈ P | proverJ((∧ P ∨

P 1(afterJC1K) ∧ ¬B)⇒ pK} : P)

(41)

) (42)

Observe that if 〈℘(P), ⊇〉 is Notherian then this abstract semantics can be
computed by induction on the program structure with a finite iteration for
fixpoints. If 〈℘(P), ⊇〉 is finite then the equivalent abstraction (27) would
provide an isomorphic boolean encoding allowing for the reuse of boolean
fixpoint computation algorithms as found in model-checkers, but this is not
mandatory since the iteration is trivial and the induction over the program
structure would be lost (or would have to be rediscovered by the fixpoint
engine).

3.2.8 Reduced Set of Ground Abstract Predicates

Observe that because of the normalization {p ∈ P | proverJ∧ P ⇒ pK} of
P ∈ ℘(P), the abstract domain 〈℘(P, ⊇〉 can be reduced [20, Prop. 10] to

〈{{p ∈ P | proverJ
∧

P ⇒ pK} | P ∈ ℘(P}, ⊇〉 . (43)

The abstract domain 〈℘(P),⊇〉may not be Notherian while the above reduced
abstract domain (43) is Notherian. In this case, the iterative computation of
the abstract fixpoint for loops does terminate in the reduced abstract domain
(43). Otherwise the iterative fixpoint computation may not terminate whence
may require to be over approximated by a widening [16].

Example 16. In Kildall’s constant propagation [40] for a command C, the
set of abstract predicates is P = {X = v | X ∈ varJCK ∧ v ∈ D}. Its reduction
(43) yields the abstract predicates ∅ (“I don’t know”), P (“false”) and the {X1 =
v1, . . . , Xn = vn} (where i 6= j implies Xi 6= Xj). This reduced set of abstract
predicates is still infinite but Notherian. It is isomorphic to the smash product
of Kildall’s lattice 〈{⊥,>}∪{i | i ∈ Z}, v〉 shown in Fig. 18 for each variable
X ∈ varJCK of command C. The fixpoint (42) can be computed iteratively (as
in [40] which corresponds to a particular chaotic iteration strategy [17, 12]). f

3.2.9 Local Ground Abstract Predicates

Instead of choosing the set P of abstract predicates globally, it can be chosen
locally, by choosing a particular set of abstract predicates P` attached to each
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commend label ` ∈ labJCK. Then terms of the form {p ∈ P | proverJP ⇒
pK attached to program point ` in the definition of the abstract predicate
transformer (38)–(42) are to be simply replaced by {p ∈ P` | proverJP ⇒ pK.

3.2.10 Safety Verification of Commands C ∈ C

The verification that a command satisfies a safety specification S ∈ labJCK 7→
℘(P) consists in checking for each point ` ∈ labJCK that:

proverJ(
∧

RJCK(S(atJCK))`)⇒
∧

S(`)K .

This is sound since:

∀` ∈ labJCK : proverJ(
∧

RJCK(S(atJCK))`)⇒
∧

S(`)K
⇒ ∀` ∈ labJCK : IJ(

∧

RJCK(S(atJCK))`)⇒
∧

S(`)K =M Hby soundness
(13) of the proverI

⇒ ∀` ∈ labJCK : IJ(
∧

RJCK(S(atJCK))`)K ⊆ IJ
∧

S(`)K Hby def. of II
⇒ ∀` ∈ labJCK : γP(RJCK(S(atJCK))`) ⊆ γP(S(`)) Hby (21)I
⇒ γ̇P(RJCK(S(atJCK))) ⊆̇ γ̇P(S) Hby (19)I
⇒ γ↓

◦ γ̇P(RJCK(S(atJCK))) ⊆̇ γ↓
◦ γ̇P(S) Hby (14) so that γ↓ is monotoneI

⇒ γ(RJCK(S(atJCK))) ⊆̇ γ(S) Hby def. (24) of γI
⇒ RJCK({atJCK} × γP(S(atJCK))) ⊆ γ(S) Hby (29)I
⇒ ∀` ∈ labJCK : RJCK({atJCK} × γP(S(atJCK)))` ⊆ γP(S(`)) Hdef. γI

so that, informally, S(`) holds whenever program point ` is reached during
any execution of command C starting at point atJCK with an initial memory
state satisfying S(atJCK).

4 Application to Predicate Abstraction Completion

In this section we show that the refinement process which is used in predicate
abstraction [5] is an instance of the fixpoint completion of Sec. ?? and simply
consists in computing the concrete reachability semantics of Sec. 3.2, whence
the need for a widening and the remark that a boolean predicate abstraction
analysis at each iteration step is uselessly laborious.
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5 Application to Generic Predicate Abstraction

The inconvenience of ground predicate abstractions is that the ground pred-
icates directly refer to the program states and control by explicitly naming
program constants, variables and may be control points. Consequently, the
abstract domain, being program specific, has to be redesigned for each new or
modified program. This design can be partially automatize by the refinement
techniques of Sec. 4, including convergence acceleration by widening, but this
alternation of analyzes and refinements would be costly for precise analysis of
large programs. An alternative is to provide program independent predicates
by designing generic abstract domains.

This section introduces more presumptive ideas and is presented informally
through a sorting example.

5.1 Generic Abstract Domains

A generic abstract domains is parameterized so that a particular abstract do-
main instantiation for a given program is obtained by binding the parameters
to the constants, variables, control points, etc. of this specific program.

Example 17. For a simple example, Kildall’s generic abstract domain for
constant propagation D(C, V ) is:

D(C, V ) =
∏

`∈C

∏

X∈V (`)

L .

where L is Kildall’s complete lattice of Ex. 8. Given a command C, it is
instantiated to D(labJCK, varJCK) where labJCK is the set of labels of command
C and varJCK(`) is the set of program variables X which are visible at this
program point ` of command C. f

5.2 Generic Comparison Abstract Domain

We let Dr(X) be a generic relational integer abstract domain parameterized
by a set X of program and auxiliary variables (such as octagons [44, 45] or
polyhedra [29]). This abstract domain is assumed to have abstract operations
on r, r1, r2 ∈ Dr(X) such as the projection or variable elimination ∃x ∈ X : r,
disjunction r1 ∨ r2, conjunction r1 ∧ r2, abstract predicate transformers for
assignments and tests, etc.
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Then we define the generic comparison abstract domain:

Dlt(X) = {〈lt(t, a, b, c, d), r〉 | t ∈ X ∧ a, b, c, d 6∈ X ∧

r ∈ Dr(X ∪ {a, b, c, d})} .

The meaning γ(〈lt(t, a, b, c, d), r〉) of an abstract predicate 〈lt(t, a, b, c, d), r〉
is informally that all elements of t between indices a and b are less than any
element of t between indices c and d and moreover r holds:

γ(〈lt(t, a, b, c, d), r〉) = ∃a, b, c, d : t.` ≤ a ≤ b ≤ t.h ∧ t.` ≤ c ≤ d ≤ t.h

∧ ∀i ∈ [a, b] : ∀j ∈ [c, d] : t[i] ≤ t[j] ∧ r

where t.` is the lower bound and t.h is the upper bound of the indices i of
the array t with elements t[i].

More formally, there should be a declaration t : array[`, h] of int so that
γ(〈lt(t, a, b, c, d), r〉) defines a set of environments ρ mapping program and
auxiliary variables X to their value ρ(X) for which the above concrete predicate
holds:

γ(〈lt(t, a, b, c, d), r〉) = {ρ | ∃a, b, c, d : ρ(t).` ≤ a ≤ b ≤ ρ(t).h

∧ ρ(t).` ≤ c ≤ d ≤ ρ(t).h

∧ ∀i ∈ [a, b] : ∀j ∈ [c, d] : ρ(t)[i] ≤ ρ(t)[j]

∧ ρ ∈ γ(r)}

where the domain of the ρ is X ∪ {a, b, c, d} and γ(r) is the concretization of
the abstract predicate r ∈ Dr(X ∪{a, b, c, d}) specifying the possible values of
the variables in X and the auxiliary variables a, b, c, d.

5.3 Abstract Logical Operations of the Generic Comparison Abstract Domain

Then the abstract domain must be equipped with abstract operations such as
the implication ⇒, conjunction ∧, disjunction ∨, etc. We simply provided a
few examples.

5.3.1 Abstract Implication

We have 〈lt(t, a, b, c, d), r〉 ⇒ r. If r ⇒ r′ and a ≤ b ≤ c ≤ d and e ≤ f ≤ g ≤
h then;
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〈lt(t, a, d, e, h), r〉 ⇒ 〈lt(t, b, c, f, g), r′〉 (44)

as shown in Fig. 19.

t.�
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a b c d e f g h t.h

�
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Fig. 19. Implication

5.3.2 Abstract Conjunction

If t, i, j, k, ` 6∈ varJrK, then:

r ∧ 〈lt(t, a, c, f, h), r′〉 = 〈lt(t, a, c, f, h), r ∧ r′〉 (45)

If a ≤ b ≤ c ≤ d and e ≤ f ≤ g ≤ h then we have:

〈lt(t, a, c, f, h), r〉 ∧ 〈lt(t, b, d, e, g), r′〉, = 〈lt(t, b, c, f, g), ∃a, d, e, h : r ∧ r′〉

as shown in Fig. 20. The same way, as shown in Fig. 21, we have:
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Fig. 20. Conjunction

〈lt(t, a, b, c, e), r〉 ∧ 〈lt(t, d, f, g, h), r′〉 = 〈lt(t, a, b, g, h), ∃c, e, d, f : r ∧ r′〉 (46)

when (r ∧ r′)⇒ (c ≤ d ≤ e ≤ f).
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Fig. 21. Conjunction

5.3.3 Abstract Disjunction

We have:

〈lt(t, a, b, c, d), r〉 ∨ 〈lt(t, e, f, g, h), r′〉 = 〈lt(t, i, j, k, `), (∃a, b, c, d : i = a (47)

∧ j = b ∧ k = c ∧ ` = d ∧ r) ∨ (∃e, f, g, h : i = e ∧ j = f ∧ k = g ∧ ` = h ∧ r′)〉

In case one of the terms does not refer to the array (t 6∈ varJrK), a crite-
rion must be used to force the introduction of an identically true array term
lt(t, i, i, i, i). For example if the auxiliary variables d, f, g, h in r′ depend upon
one selectively chosen variable I, then we have:

r ∨ 〈lt(t, d, f, g, h), r′〉 = 〈lt(t, i, j, k, `), (i = j = k = ` = I ∧ r) ∨ (48)

(∃d, f, g, h : i = d ∧ j = f ∧ k = g ∧ ` = h ∧ r′)〉

This case appears typically in loops, which can also be handled by unrolling,
see Sec. 5.5.

5.4 Abstract Predicate Transformers for the Generic Comparison Abstract
Domain

Then the abstract domain must be equipped with abstract predicate trans-
formers for tests, assignments, etc. We consider forward strongest postcondi-
tions (although weakest preconditions, which avoid an existential quantifier in
assignments, may sometimes be simpler [47]).

We depart from traditional predicate abstraction which uses a simplifier (or
a theorem prover) to formally evaluate the abstract predicate transformer
α ◦ F ◦ γ approximating the concrete predicate transformer F . The alternative
proposed below is traditional in static program analysis and directly provides
an over-approximation of the best abstract predicate transformer α ◦ F ◦ γ in
the form of an algorithm (which correctness must be established formally). The
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simplifier/prover/pattern-matcher is used only to reduce the post-condition in
the normal form (44) which is required for the abstract predicates.

5.4.1 Abstract Strongest Postconditions for Tests

{ P1 }

if (t[I] > t[I + 1]) then

{ P1 ∧ 〈lt(t, i, j, k, `), i = I ∧ j = I + 1 ∧ k = I ∧ ` = I〉 } (49)

. . .

{ P2 }

else

{ P1 ∧ 〈lt(t, i, j, k, `), i = I ∧ j = k = ` = I + 1〉 } (50)

. . .

{ P3 }

fi

{ P2 ∨ P3 } (51)

5.4.2 Abstract Strongest Postconditions for Assignments

For assignment, assuming t 6∈ varJrK and r ⇒ (i = I∧j = I+1∧k = I∧` = I),
we have:

{ 〈lt(t, i, j, k, `), r〉}

t[I] :=: t[I + 1] (52)

{ 〈lt(t, m, n, p, q), ∃i, j, k, ` : r ∧m = I ∧ n = p = q = I + 1〉 } .

The same way if t 6∈ varJrK and r ⇒ (I ∈ [i, j] ∧ J ∈ [i, j]) ∨ (J ∈ [k, `] ∧ I ∈
[k, `]) then:

{ 〈lt(t, i, j, k, `), r〉}

t[I] :=: t[J] (53)

{ 〈lt(t, i, j, k, `), r〉}

since the swap of the array elements does not interfere with the assertions.
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5.5 Widening for the Generic Comparison Abstract Domain

Finally the abstract domain must be equipped with a widening (and optionally
a narrowing to improve precision) to speed up the convergence of iterative
fixpoint computations [16]. We choose to define the widening

`
as:

〈lt(t, i, j, k, `), r〉
`
〈lt(t, m, n, p, q), r′〉 (54)

= let 〈lt(t, r, s, t, u), r′′〉 = 〈lt(t, i, j, k, `), r〉 ∨ 〈lt(t, m, n, p, q), r′〉 in

〈lt(t, r, s, t, u), r
`

r′′〉 . (55)

Typically, when handling loops, one encounters widenings of the form r
`

〈lt(t, m, n, p, q), r′〉 where r corresponds to the loop entry condition while the
term lt(t, m, n, p, q) appears during the analysis of the loop body. There are
several ways to handle this situation:

(1) Incorporate the term lt(t, i, j, k, `) in the form of a tautology, as already
described in (48) for the abstract disjunction;

(2) Use disjunctive completion (see Sec. ??) to preserve the disjunction within
the loop (which may ultimately lead to infinite disjunctions) or better al-
low only abstract predicates of the more restricted form r∨〈lt(t, m, n, p, q),
r′〉 (which definitively avoids the previous potential explosion);

(3) Use semantically loop unrolling (as in [7, Sec. 6.5]) so that the loop:

while B do C od

is handled in the abstract semantics as if written in the form:

if B then C; while B do C od fi

which is equivalent in the concrete semantics. More generally, if several
abstract terms of different kinds are considered (like lt(t, i, j, k, `) and
s(t, m, n) in the forthcoming Sec. 5.10), a further semantic unrolling can
be performed each time a term of a new kind does appear, while all terms
of the same king are merged by the widening.

5.6 Refined Generic Comparison Abstract Domains

The generic comparison abstract domain Dlt(X) of Sec. 5.2 may be imprecise
since it allows only for one term 〈lt(t, a, b, c, d), r〉. First we could consider
several arrays, with one such term per array. Second, we could consider the
conjunction of such terms for a given array, which is more precise but may po-
tentially lead to infinite conjunctions within loops (e.g. for which termination
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cannot be established). So we will consider this alternative within tests only,
then applying the above abstract domain operators term by term 12 .

The same way we could the disjunctive completion (see Sec. ??) of this domain,
that is terms of the form

∨

i

∧

j〈lt(t, aij , bij , cij, dij), rij〉. This would introduce
an exponential complexity factor, which we prefer to avoid. If necessary, we
will use local trace partitioning [7, Sec. 6.6] instead.

5.7 Generic Comparison Static Program Analysis

Let us consider the following program (where a ≤ b) which is similar to the
inner loop of bubble sort [41]:

var t : array [a, b] of int;
1 :

I := a;
2 :

while (I < b) do
3 :

if (t[I] > t[I + 1]) then
4 :

t[I] :=: t[I + 1]
5 :

fi;
6 :

I := I + 1
7 :

od
8 :

We let P i
p be the value of the local predicate attached to the program point

p = 1, ..., 8 at the ith iteration. Initially, P 0
1 = (a ≤ b) while P 0

p = false

for p = 2, ..., 8. We choose the octagonal abstract domain [44, 45] as the

generic relational integer abstract domain Dr(X) parameterized by the set

X of program variables I, J,. . . and auxiliary variables i, j, etc. The fixpoint

iterates are as follows:

P 1
1 = (a ≤ b) Hinitialization to P 0

1 I
P 1

2 = (I = a ≤ b) Hassignment (I := a)I
P 1

3 = (I = a < b) Hloop condition I < bI

12 For short we avoid to resort to semantical loop unrolling which is better adapted
to automatization but would yield to lengthy handmade calculations in this section.
This technique will be illustrated anyway in the forthcoming Sec. 5.10.
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P 1
4 = 〈lt(t, i, j, k, l), i = k = ` = I = a < b ∧ j = I + 1〉 Hby (49) for test

condition (t[I] > t[I + 1])I
P 1

5 = 〈lt(t, m, n, p, q), ∃i, j, k, ` : i = k = ` = I = a < b ∧ j = I + 1 ∧
m = I ∧ n = I + 1 ∧ p = I + 1 ∧ q = I + 1〉

Hby assignment (52) which, by octagonal projection, simplifies
into:I

= 〈lt(t, m, n, p, q), m = I = a < b ∧ n = p = q = I + 1〉

P 1
6 = (P 1

3 ∧ 〈lt(t, i, j, k, `), i = I = a < b ∧ j = k = ` = I + 1〉) ∨ P 1
5

Hby (50) for test condition (t[I] > t[I + 1]) and join (51)I
= (〈lt(t, i, j, k, `), i = I = a < b∧ j = k = ` = I+1〉)∨ (〈lt(t, m, n, p, q),

m = I = a < b ∧ n = p = q = I + 1〉)
Hby def. P 1

3 and (45) as well as by def. of P 1
5 I

= 〈lt(t, a, b, c, d), (∃i, j, k, ` : a = i ∧ b = j ∧ c = k ∧ d = ` ∧
i = I = a < b ∧ j = k = ` = I + 1)∨ (∃m, n, p, q : a = m∧ b = n∧ c =
p ∧ d = q ∧m = I = a < b ∧ n = p = q = I + 1)〉 Hby def. (47) of the
abstract union ∨I

= 〈lt(t, a, b, c, d), (a = I = a < b ∧ b = c = d = I + 1) ∨ (a = I = a <
b ∧ b = c = d = I + 1〉) Hby octagonal projectionI

= 〈lt(t, a, b, c, d), a = I = a < b ∧ b = c = d = I + 1〉 Hby octagonal
disjunctionI

P 1
7 = 〈lt(t, a, b, c, d), a = I− 1 = a < b ∧ b = c = d = I〉 Hby invertible

assignment I := I + 1I
= 〈lt(t, a, b, c, d), I = a + 1 = a + 1 ≤ b ∧ b = c = d = I〉 Hoctagonal

simplificationI
P 2

3 = (P 1
2 ∨ P 1

7 ) ∧ (I < b) Hloop condition I < b and absence of widening on
first iterateI

= ((I = a ≤ b) ∨ (〈lt(t, a, b, c, d), I = a + 1 = a + 1 ≤ b ∧ b = c = d =
I〉)) ∧ (I < b) Hdef. P 1

2 and P 1
7 I

= (〈lt(t, i, j, k, `), (i = j = k = ` = I = a ≤ b) ∨ (∃a, b, c, d : i = a ∧ b =
j ∧ c = k ∧ d = ` ∧ I = a + 1 = a + 1 ≤ b ∧ b = c = d = I)〉) ∧ (I < b)

Hdef. (48) of abstract disjunction, the octagonal predicate
depending only on I, a and b which leads to the selection
of I, the only of these variables which is modified within
the loop bodyI

(56)

= (〈lt(t, i, j, k, `), (i = j = k = ` = I = a ≤ b) ∨ (I = i + 1 = a + 1 ≤
b ∧ j = k = ` = I)〉) ∧ (I < b) Hby octagonal projectionI

= (〈lt(t, i, j, k, `), (i = j = k = ` = I = a < b) ∨ (I = i + 1 = a + 1 <
b ∧ j = k = ` = I)〉) Hby octagonal conjunctionI

= 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I ≤ a + 1 ≤ b〉 Hby octagonal
disjunctionI

P 3
3 = P 2

3

`
〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I ≤ a + 2 ≤ b〉 Hin absence

of stabilization of the iterates, by a similar computation at the next
iterationI
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= 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I < b〉 Hby def. (55) of the
widening

`I
P 3

4 = P 3
3 ∧ 〈lt(t, m, n, p, q), m = p = q = I ∧ n = I + 1〉 Hby (49) for test

condition (t[I] > t[I + 1])I
= 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I < b〉 ∧ 〈lt(t, m, n, p, q), m = p =

q = I ∧ n = I + 1〉 Hby def. P 3
4 , the conjunction being left symbolic

since it cannot be simplified, see Sec. 5.6I
P 3

5 = 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I < b〉∧〈lt(t, i, j, k, `), ∃m, n, p, q :
m = p = q = I ∧ n = I + 1 ∧ i = I ∧ j = k = ` = I + 1〉 Hby (53) and
(52) where t 6∈ varJdK and d⇒ m = p = q = I ∧ n = I + 1I

= 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I < b〉 ∧ 〈lt(t, i′, j′, k′, `′), i′ =
I ∧ j′ = k′ = `′ = I + 1〉 Hby octagonal projectionI

= 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I + 1 ≤ b〉 Hby def. (46), of
conjunction and octagonal projectionI

P 3
6 = (〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I < b〉 ∧ 〈lt(t, i′, j′, k′, `′),

i′ = I ∧ j′ = k′ = `′ = I+ 1〉) ∨ 〈lt(t, i′′, j′′, k′′, `′′), i′′ = a ≤ j′′ = k′′ =
`′′ = I + 1 ≤ b〉 Hby P 3

6 = (P 3
3 ∧ (t[I] ≤ t[I + 1])) ∨ P 3

5 and (50)I
= 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I + 1 ≤ b〉 ∨ 〈lt(t, i′′, j′′, k′′, `′′),

i′′ = a ≤ j′′ = k′′ = `′′ = I + 1 ≤ b〉 Hby def. (46), of conjunction and
octagonal projectionI

= 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I + 1 ≤ b〉 Hby P ∨ P = P I
P 3

7 = 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I ≤ b〉 Hby assignment
I := I + 1I

Now the iterates have stabilized since:

(P 3
2 ∨ P 3

7 ) ∧ (I < b)

= (P 1
2 ∨ P 3

7 ) ∧ (I < b) Hsince P 3
2 = P 1

2 is stableI
= ((I = a ≤ b) ∨ 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I ≤ b〉) ∧ (I < b)

Hdef. P 1
2 and P 3

7 I
= (〈lt(t, i, j, k, `), (i = j = k = ` = I = a ≤ b) ∨ (∃a, b, c, d : i = a ∧ b =

j ∧ c = k ∧ d = ` ∧ I = a + 1 = a + 1 ≤ b ∧ b = c = d = I)〉) ∧ (I < b)
Hdef. (48) of abstract disjunction with selection of I as in (56)I

= (〈lt(t, i, j, k, `), (i = j = k = ` = I = a ≤ b) ∨ (j = k = ` = I =
i + 1 = a + 1 ≤ b)〉) ∧ (I < b) Hby octagonal projectionI

= (〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I ≤ b ∧ a ≤ b〉) ∧ (I < b) Hby
octagonal disjunctionI

= 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I < b〉 Hby abstract conjunction
(45)I

⇒ P 3
3 Hby def. (44) of abstract implicationI

It remains to compute the loop exit invariant:

(P 3
2 ∨ P 3

7 ) ∧ (I ≥ b)
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= (〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I ≤ b ∧ a ≤ b〉) ∧ (I ≥ b) Hby
octagonal disjunctionI

= 〈lt(t, i, j, k, `), i = a ≤ j = k = ` = I = b〉 Hby abstract conjunction
(45)I

The static analysis has therefore discovered the following invariants:

var t : array [a, b] of int;

1 : {a ≤ b}

I := a;

2 : {I = a ≤ b}

while (I < b) do

3 : {lt(t, a, I, I, I) ∧ I < b}

if (t[I] > t[I + 1]) then

4 : {lt(t, a, I, I, I) ∧ I < b ∧ lt(t, I, I + 1, I, I)}

t[I] :=: t[I + 1]

5 : {lt(t, a, I + 1, I + 1, I + 1) ∧ I + 1 ≤ b}

fi;

6 : {lt(t, a, I + 1, I + 1, I + 1) ∧ I + 1 ≤ b}

I := I + 1

7 : {lt(t, a, I, I, I) ∧ I ≤ b}

od

8 : {lt(t, a, I, I, I) ∧ I = b}

5.8 Generic Sorting Abstract Domain

Then we define the generic sorting abstract domain:

Ds(X) = {〈s(t, a, b), r〉 | t ∈ X ∧ a, b 6∈ X ∧ r ∈ Dr(X ∪ {a, b})} .

The meaning γ(〈s(t, a, b), r〉) of an abstract predicate 〈s(t, a, b), r〉 is, infor-
mally that the elements of t between indices a and b are sorted:

γ(〈s(t, a, b), r〉) = ∃a, b : t.` ≤ a ≤ b ≤ t.h ∧

∀i, j ∈ [a, b] : (i ≤ j)⇒ (t[i] ≤ t[j]) ∧ r .
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5.9 Generic Comparison and Sorting Abstract Domain

The analysis of sorting algorithms involves the reduced product [19] of the
generic comparison abstract domain of Sec. 5.2 and sorting abstract domain
of Sec. 5.8, that is triples of the form:

〈lt(t, a, b, c, d), s(t, e, f), r〉 .

The reduction involves interactions between terms such as, e.g.:

lt(t, a, b− 1, b− 1, b− 1) ∧ lt(t, a, b, b, b) (58)

⇒ s(t, b− 1, b) ∧ lt(t, a, b− 1, b− 1, b)

s(t, b + 1, c) ∧ lt(t, a, b + 1, b + 1, c) ∧ lt(t, a, b, b, b) (59)

⇒ s(t, b, c) ∧ lt(t, a, b, b, c)

lt(t, a, a + 1, a + 1, b) ∧ s(t, a + 1, b) ⇒ s(t, a, b) (60)

(61)

The reduction [19] also involves the refinement of abstract predicate trans-
formers (see a.o. [11, 43]) which would be performed automatically e.g. if the
abstract predicate transformers are obtained by automatic simplification of
the formula α ◦ F ◦ γ (where F is the concrete semantics) by the simplifier of
a theorem prover.

5.10 Generic Comparison and Sorting Static Program Analysis

Let us consider the bubble sort [41]:
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var t : array [a, b] of int;
1 :

J := b;
2 :

while (a < J) do
3 :

I := a;
4 :

while (I < J) do
5 :

if (t[I] > t[I + 1]) then
6 :

t[I] :=: t[I + 1]
7 :

fi;
8 :

I := I + 1
9 :

od;
10 :

J := J− 1
11 :

od
12 :

The fixpoint approximation is as follows (P i,k
p denotes the local assertion at-

tached to program point p at the ith iteration and kth loop unrolling, P i
p =

P i,0
p where k = 0 means that the decision to semantically unroll the loop is

not yet taken):

P 0
1 = (a ≤ b) HinitializationI

P 0
i = false, i = 2, . . . , 8

P 1
1 = P 0

1

= (a ≤ b) Hdef. P 0
1 I

P 1
2 = (a ≤ b = J) Hassignment J := bI

P 1,0
3 = (a < b = J) Htest (a < J)I

. . .

P 1,0
10 = lt(t, a, I, I, I) ∧ a < b = I = J 13 Has in Sec. 5.7 since the inner loop

does not modify a, b or II
⇒ lt(t, a, J, J, b) ∧ a < b = J Hby elimination (octagonal projection) of

program variable I which is no longer live at program point 10I
P 1,0

11 = lt(t, a, J + 1, J + 1, b) ∧ a < b ∧ J = b− 1 Hpostcondition for
assignment J := J− 1I

P 1,1
3 = lt(t, a, J + 1, J + 1, b) ∧ a < J = b− 1 Hby semantical loop unrolling

(since a new symbolic “lt” term has appeared, see Sec. 5.5,) and test
(a < J)I

48



. . .

P 1,1
10 = lt(t, a, J + 1, J + 1, J + 1) ∧ a < J = b− 1 ∧ lt(t, a, I, I, I) ∧ I = J

Has in Sec. 5.7 since the inner loop does not modify a, b or
I and the swap t[I] :=: t[I + 1] does not interfere with
lt(t, a, J + 1, J + 1, J + 1) according to a ≤ I < I + 1 ≤
J < J + 1 so I, I + 1 ∈ [a, J + 1] and (53)I

(62)

⇒ lt(t, a, J + 1, J + 1, J + 1) ∧ lt(t, a, J, J, J) ∧ a < J = b− 1 Hby
elimination of I is dead at program point 10I

⇒ s(t, J, b) ∧ lt(t, a, J, J, b) ∧ a < J = b− 1 Hby reduction (58)I
P 1,1

11 = s(t, J+ 1, b) ∧ lt(t, a, J+ 1, J+ 1, b)∧ a ≤ J = b− 2 Hby assignment
J := J− 1I

P 1,2
3 = s(t, J+1, b)∧lt(t, a, J+1, J+1, b)∧a < J = b−2 Hby semantical loop

unrolling (since a new symbolic “s” term has appeared, see Sec. 5.5,)
and test (a < J)I

. . .

P 1,2
10 = s(t, J+1, b)∧lt(t, a, J+1, J+1, b)∧a < J = b−2∧lt(t, a, I, I, I)∧I =

J Hby Sec. 5.7 and non interference, see (62)I
⇒ s(t, J+ 1, b)∧ lt(t, a, J+ 1, J+ 1, b)∧ a < J = b− 2 ∧ lt(t, a, J, J, J)

Hsince I is deadI
⇒ s(t, J, b) ∧ lt(t, a, J, J, b) ∧ a < J = b− 2 Hby reduction (59)I

P 1,2
11 = s(t, J+ 1, b) ∧ lt(t, a, J+ 1, J+ 1, b)∧ a ≤ J = b− 3 Hby assignment

J := J− 1I
P 2,2

3 = (P 1,2
3

`
(P 1,2

11 ∧ (a < J))) ∧ (a < J) Hloop unrolling stops in absence
of new abstract term and widening speeds-up convergenceI

= ((s(t, J + 1, b) ∧ lt(t, a, J + 1, J + 1, b) ∧ a < J = b − 2)
`

(s(t, J +
1, b) ∧ lt(t, a, J + 1, J + 1, b) ∧ a ≤ J = b − 3 ∧ (a < J))) ∧ (a < J)
Hdef. P 1,2

3 and P 1,2
11 I

= s(t, J + 1, b) ∧ lt(t, a, J + 1, J + 1, b) ∧ ((a < J = b − 2)
`

(a < J =
b− 3)) ∧ (a < J) Hby def. wideningI

= s(t, J + 1, b) ∧ lt(t, a, J + 1, J + 1, b) ∧ a < J ≤ b− 2 Hby def.
octagonal widening and conjunctionI

. . .

P 2,2
10 = s(t, J+1, b)∧lt(t, a, J+1, J+1, b)∧a < J ≤ b−2∧lt(t, a, I, I, I)∧I =

J Hby Sec. 5.7 and non interference, see (62)I
= s(t, J+ 1, b) ∧ lt(t, a, J+ 1, J+ 1, b)∧ a < J ≤ b− 2 ∧ lt(t, a, J, J, J)

Hby elimination of the dead variable II
⇒ s(t, J, b) ∧ lt(t, a, J, J, b) ∧ a < J ≤ b− 2 Hby reduction (59)I

P 2,2
11 = s(t, J+ 1, b)∧ lt(t, a, J+ 1, J+ 1, b)∧ a ≤ J ≤ b− 3 Hby assignment

J := J− 1I

13 Notice that this notation is a shorthand for the more explicit notation ∃i, j, k, ` :
lt(t, i, j, k, `) ∧ i = a ∧ j = I ∧ k = I ∧ ` = I) ∧ a < b ∧ b = J ∧ I = J as used
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Now (P 2,2
11 ∧a < J)⇒ P 1,2

3 so that the loop iterates stabilize to a post-fixpoint.

On loop exit, we must collect all cases following from semantic unrolling:

P 2
12 = (P 1

2 ∧ a ≥ J) Hno entry in the loopI
∨ (P 1,0

11 ∧ a ≥ J) Hloop exit after one iterationI
∨ (P 1,1

11 ∧ a ≥ J) Hloop exit after two iterationsI
∨ (P 2,2

11 ∧ a ≥ J) Hloop exit after three iterations or moreI
= (a = J = b) ∨ (s(t, J+ 1, b) ∧ lt(t, a, J+ 1, J+ 1, b) ∧ a = J ≤ b− 1)

Hdef. abstract disjunctionI
= (a = J = b)∨(s(t, a+1, b)∧lt(t, a, a+1, a+1, b)∧a < b) Helimination

of dead variable JI
= (a = b) ∨ (s(t, a, b) ∧ a < b) Hby reduction (60)I
= s(t, a, b) ∧ a ≤ b Hby definition of abstract disjunction similar to

(48)I

The sorting proof would proceed in the same way by proving that the final
array is a permutation of the original one.

Observe that generic predicate abstraction is defined for a programming lan-
guage as opposed to ground predicate abstraction which is specific to a pro-
gram, a usual distinction between abstract interpretation based static program
analysis (a generic abstraction for a set of programs) and abstract model
checking (an abstract model for a given program). Notice that the so-called
polymorphic predicate abstraction of [4] is an instance of symbolic relational
separate procedural analysis [26, Sec. 7] for ground predicate abstraction. The
generalization to generic predicate abstraction is immediate since it only de-
pends on the way concrete predicate transformers are defined (see [26, Sec. 7]).

6 Conclusion

In safety proofs by ground predicate abstraction, one has to provide (or com-
pute by refinement) the ground atomic components of the inductive invariant
which is to be discovered for the proof. Then the routine work of assembling
the atomic components into a valid inductive invariant is mechanized which
simplifies the proof. If the set of atomic components is finite then a boolean
encoding allows for the reuse of model-checkers for fixpoint computation. Oth-
erwise a specific fixpoint engine has to be used designed, which is mandatary
even in cases as simple as constant propagation if the constants are to be dis-

in Sec. 5.7, so that, in particular, we freely replace i, j, k and ` in lt(t, i, j, k, `) by
equivalent expressions.
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covered automatically and not explicitly provided in the list of ground atomic
predicates.

Generic predicate abstraction provides a further abstraction step in that hints
for the proof are provided in the form of parameterized atomic predicates
(which will be instantiated automatically to program specific ground predi-
cates) and reduction rules (which are hints for inductive reasoning on these
generic predicates). This genericity immediately leads to infinite abstract do-
mains (which was not the case for finitary ground predicate abstraction) which
means that fixpoint iterations need more sophisticated inferences, which we
can provide in the simple form of widenings. Moreover the presentation in the
form of structured abstract domains, which can be systematically composed,
reduces the need to appeal to theorem provers by reduction of the widening
to well-studied and powerful basic relational abstract domains which can be
viewed as undecidable theories with finitary extrapolation through widenings.
The hope is then than generic predicate abstractions can handle families of
algorithms and data structures of wider scope than a single program while
avoiding the costly refinement process.
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Cousot, Dennis Dams, Kedar Namjoshi, Amir Pnueli, Lenore Zuck), in partic-
ular Amir Pnueli who proposed the bubble sort as a challenge which is handled
in Sec. 5.
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A Proofs

Proof of (1). We assume that f and f are respective monotone operators
on complete lattice 〈L, ≤, ∧〉 and 〈M, v, u〉 such that 〈L, ≤〉 −−→←−−α

γ
〈M, v〉.

We assume that α ◦ f ◦ γ v̇ f , α(a) v y and f(y) v y and prove that lfp
≤

a
f

≤ γ(y), the least such y being lfp
v

α(a)
α ◦ f ◦ γ so that the theorem is proved

with α = ρ and gamma = 1.

γ ◦ α is extensive and γ monotone so a ≤ γ ◦ α(a) ≤ γ(y), f(γ(y)) ≤ γ ◦

α ◦ f(γ(y)) ≤ γ ◦ f(y) ≤ γ(y) and lfp
≤

a
f is lfp

≤

f on the complete lattice
〈{x ∈ L | a ≤ x}, ≤, ∧〉 so by Tarski’s fixpoint theorem [52], lfp

≤

a
f =

∧

{x ∈ L | a ≤ x ∧ f(x) ≤ x} ≤ γ(y) by def. of glbs.

We let z = lfp
v

α(a)
α ◦ f ◦ γ so that α ◦ f ◦ γ v̇ α ◦ f ◦ γ, α(a) v z and

α ◦ f ◦ γ = y whence α ◦ f ◦ γ v y by reflexivity. We have α(a) v y and
α ◦ f ◦ γ(y) v f(y) v y proving, by Tarski’s fixpoint theorem [52], that z vd
{x ∈ L | α(a) v x ∧ α ◦ f ◦ γ(x) v x} v y. g

Proof of (14).

α↓(P ) ⊆̇ Q

⇔ ∀` ∈ L : α↓(P )` ⊆ Q` Hby def. ⊆̇I
⇔ ∀` ∈ L : {m | 〈`, m〉 ∈ P} ⊆ Q` Hby def. α↓I
⇔ ∀` ∈ L : ∀m ∈M : 〈`, m〉 ∈ P ⇒ m ∈ Q` Hby def. ⊆I
⇔ P ⊆ {〈`, m〉 | ` ∈ L ∧m ∈ Q`} Hby def. ⊆I
⇔ P ⊆ γ↓(Q) Hby def. γ↓I

Moreover for all Q ∈ L 7→ ℘(M):

α↓(γ↓(Q))

= λ`·{m | 〈`, m〉 ∈ γ↓(Q)} Hby def. α↓I
= λ`·{m | 〈`, m〉 ∈ {〈`, m〉 | ` ∈ L ∧m ∈ Q`}} Hby def. γ↓I
= λ`·{m | m ∈ Q`} Hby def. ∈ and Q ∈ L 7→ ℘(M) so ` ∈ LI
= Q Hsince Q ∈ L 7→ ℘(M)I

and for all P ∈ ℘(〈L, M〉):

γ↓(α↓(P ))
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= {〈`, m〉 | ` ∈ L ∧m ∈ α↓(P )`} Hby def. γ↓I
= {〈`, m〉 | ` ∈ L ∧m ∈ {m | 〈`, m〉 ∈ P}} Hby def. α↓I
= {〈`, m〉 | ` ∈ L ∧ 〈`, m〉 ∈ P} Hby def. ∈I
= P Hsince P ∈ ℘(〈L, M〉) so ` ∈ L .I

g

Proof of (16).

αP(Q) ⊇ P

⇔ P ⊆ αP(Q) Hby inversionI
⇔ P ⊆ {p ∈ P | Q ⊆ BJpK} Hby def. αPI
⇔ ∀p ∈ P : Q ⊆ BJpK Hby def. ⊆ and P ∈ ℘(P)I
⇔ Q ⊆

⋂

{BJpK | p ∈ P} Hby def. ∩I
⇔ Q ⊆ γP(P ) Hby def. γPI

g

Proof of (22). We get 〈℘(L×M), ⊆〉 −−→−→←←−−−α

γ
〈L 7→ ℘(P), ⊇̇〉 by composition

of 〈℘(L × M), ⊆〉 −−−→−→←←−−−−
α↓

γ↓
〈L 7→ ℘(M), ⊆̇〉 and 〈L 7→ ℘(M), ⊆̇〉 −−−−→←−−−−

α̇P

γ̇P

〈L 7→ ℘(P), ⊇̇〉.

For all P ∈ L 7→ ℘(P), we have

α(P )

= α̇P ◦ α↓(P ) Hby def. αI
= α̇b(α̇P(α↓(P ))) Hby def. ◦I
= α̇b(α̇P(λ`·{m | 〈`, m〉 ∈ P})) Hby def. α↓I
= λ`·αP({m | 〈`, m〉 ∈ P})) Hby def. α̇PI
= λ`·αP({m | 〈`, m〉 ∈ P})) Hby def. α̇bI
= λ`·{p ∈ P | {m | 〈`, m〉 ∈ P} ⊆ BJpK} Hby def. αPI
= λ`·{p ∈ P | {m | 〈`, m〉 ∈ P} ⊆ IJpK} Hby def. II

The same way for all Q ⊆ P, we have:
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γ(Q)

= γ↓
◦ γ̇P(Q) Hby def. γI

= γ↓(λ`· γP(Q`))) Hby def. γ̇PI
= γ↓(λ`·

⋂

{BJpK | p ∈ Q`}) Hby def. γPI
= {〈`, m〉 | ` ∈ L ∧m ∈

⋂

{BJpK | p ∈ Q`}} Hby def. γ↓I
= {〈`, m〉 | ` ∈ L ∧ ∀p ∈ Q` : m ∈ BJpK} Hby def. ∩I
= {〈`, m〉 | ` ∈ L ∧ ∀p ∈ Q` : m ∈ IJpK} Hby def. II

g

Proof of (26).

αb(P )
.
⇐ Q

⇔
k

∏

i=1

(pi ∈ P )
.
⇐ Q Hby def. αbI

⇔ ∀i : 1 ≤ i ≤ k : (pi ∈ P )⇐ Qi Hby def. .
⇐I

⇔ ∀i : 1 ≤ i ≤ k : Qi ⇒ (pi ∈ P ) Hby inversion of ⇐I
⇔ {pi | 1 ≤ i ≤ k ∧Qi} ⊆ P Hby def. ⊆ and P ⊆ P = {p1, . . . , pk}I
⇔ P ⊇ {pi | 1 ≤ i ≤ k ∧Qi} Hby inversion of ⊆I
⇔ P ⊇ γb(Q) Hby def. γbI

Moreover:

αb(γb(Q))

=
k

∏

i=1

(pi ∈ γb(Q)) Hby def. αbI

=
k

∏

i=1

(pi ∈ {pj | 1 ≤ j ≤ k ∧Qj}) Hby def. γbI

=
k

∏

i=1

Qi Hby def ∈ and 1 ≤ i ≤ kI

= Q Hsince Q ∈
∏k

i=1 BI

and:

γb(αb(P ))

= {pi | 1 ≤ i ≤ k ∧ αb(P )i} Hby def. γbI
= {pi | 1 ≤ i ≤ k ∧ pi ∈ P} Hby def. αbI
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= P Hsince P ⊆ P = {p1, . . . , pk}I

g

Proof of (27). We get 〈℘(L×M), ⊆〉 −−−→−→←←−−−−
α′

γ′

〈L 7→
∏k

i=1 B,
..
⇐〉 by compo-

sition of 〈℘(L ×M), ⊆〉 −−→−→←←−−−α

γ
〈L 7→ ℘(P), ⊇̇〉 and 〈L 7→ ℘(P), ⊇̇〉 −−−→−→←←−−−−

α̇b

γ̇b

〈L 7→
∏k

i=1 B,
..
⇐〉.

For all P ∈ L 7→ ℘(P), we have

α′(P )

= α̇b ◦ α(P ) Hby def. α′I
= α̇b(λ`·{p ∈ P | {m | 〈`, m〉 ∈ P} ⊆ IJpK})) Hby def. αI
= λ`·αb({p ∈ P | {m | 〈`, m〉 ∈ P} ⊆ IJpK}) Hby def. α̇bI

= λ`·
k

∏

i=1

(pi ∈ {p ∈ P | {m | 〈`, m〉 ∈ P} ⊆ IJpK}) Hby def. αbI

= λ`·
k

∏

i=1

({m | 〈`, m〉 ∈ P} ⊆ IJpiK) Hsince pi ∈ PI

The same way for all Q ∈ L 7→
∏k

i=1 B, we have:

γ′(Q)

= γ ◦ γ̇b(Q) Hby def. γ′I
= γ ◦ γ̇b(Q) Hby def. γI
= γ(γ̇b(Q)) Hby def. ◦I
= γ(λ`· γb(Q`)) Hby def. γ̇bI
= γ(λ`·{pi | 1 ≤ i ≤ k ∧ (Q`)i}) Hby def. γbI
= {〈`, m〉 | ` ∈ L ∧ ∀p ∈ {pi | 1 ≤ i ≤ k ∧ (Q`)i} : m ∈ IJpK} Hby def. γI

= {〈`, m〉 | ` ∈ L ∧
n
∧

i=1

(Q`)i ⇒ m ∈ IJpiK} Hby def. ∈I

= {〈`, m〉 | ` ∈ L ∧m ∈
n
⋂

i=1

(Q`)i ? IJpiK :M)} Hby def. ∩ and conditionalI

= {〈`, m〉 | ` ∈ L ∧m ∈ IJ
k

∧

i=1

(Q`)i ⇒ piK} Hby def. II

g
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