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Abstract. When applying abstract interpretation to verification, it may
suffer from the problem of getting too conservative over-approximations
to verify a given target property, and being hardly able to generate
counter-examples when the property does not hold. In this paper, we
propose iterative abstract testing, to create a property-oriented verifica-
tion approach based on abstract interpretation. Abstract testing employs
forward abstract executions (i.e., forward analysis) together with prop-
erty checking to mimic (regular) testing, and utilizes backward abstract
executions (i.e., backward analysis) to derive necessary preconditions
that may falsify the target property, and be useful for reducing the input
space that needs further exploration. To verify a property, we conduct
abstract testing in an iterative manner by utilizing dynamic partitioning
to split the input space into sub-spaces such that each sub-space involves
fewer program behaviors and may be easier to verify. Moreover, we lever-
age bounded exhaustive testing to verify bounded small sub-spaces, as
a means to complement abstract testing based verification. The exper-
imental results show that our approach has comparable strength with
several state-of-the-art verification tools.

Keywords: Program verification · Abstract interpretation · Abstract
testing · Input space partitioning

1 Introduction

Abstract interpretation [18] has been successfully applied to static analysis, due
to its soundness guarantee and scalability. It can automatically handle loops
generally in a terminate and sound way, compared to other approaches such as
bounded model checking and symbolic execution. And it allows the use of infinite
abstract domains of program properties. In this paper, we focus on applying
abstract interpretation to verify properties in numerical programs.

However, in the context of verification, there still exist several limitations
over current abstract interpretation based approaches [25]. One limitation is
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that the generated invariants may be not precise enough to prove the target
property, due to the too conservative over-approximation of the concrete seman-
tics of the program. More clearly, the major sources of imprecision of abstract
interpretation come from the following aspects: (1) Most widely used abstract
domains (such as intervals [18], octagons [41] and polyhedra [22]) have limi-
tations in expressing disjunctive or non-linear properties, which are common in
programs, for instance, at the joins of control-flows; (2) The widening operator in
abstract interpretation which ensures the convergence of fixpoint iteration may
bring severe precision loss, because widening often aggressively weakens unstable
predicates in each iteration. Moreover, when one pass of the analysis does not
provide precise enough invariants to prove the target property, it lacks a system-
atic approach (like counterexample-guided refinement) to refine the abstractions.
Another limitation of most current abstract interpretation based approaches is
that it can hardly generate counter-examples when a property does not hold.

In this paper, we propose an iterative approach to verify properties of numer-
ical programs by exploiting iterative abstract testing based on abstract interpre-
tation. We leverage the notion of “abstract testing” [19] to denote the process of
abstract execution (i.e., forward analysis) of a program with an given abstract
input (which represents a set of concrete inputs) and the checking of whether
the abstract output satisfies the target property. The key idea of our approach
is to perform abstract testing iteratively in a top-down manner, by refining the
abstract input via partitioning, wherein the refinement process also makes use
of the computed necessary precondition of violating the target assertion via the
“inverse” abstract execution (i.e., backward analysis [21]). When the property
has been checked to hold for all abstract sub-inputs in the partition, the iter-
ative process stops and gives a proof. Another benefit of partitioning is that it
enables to conduct verification via bounded exhaustive testing [11,38] over an
abstract sub-input of small size. The use of bounded exhaustive testing allows
our approach to generate counter-examples when the target property does not
hold. Overall, our approach not only can give a proof when the property holds,
but also can supply a concrete counter-example when the property does not
hold.

This paper makes the following contributions.

– We propose an iterative abstract testing based program verification algorithm
with dynamic input partitioning. The partitioning enables our analysis to
focus on smaller input spaces in each of which the program may involve fewer
disjunctive or non-linear behaviors and thus may be easier to verify.

– We propose to use bounded exhaustive testing to complement abstract testing
based verification. When the considered input space after partitioning is of
small enough size, we could utilize bounded exhaustive testing to replace
abstract testing. Bounded exhaustive testing can completely verify the target
program even when it involves very complicated behaviors (which may be
out of the verification capability of abstract interpretation), and can supply
a concrete counterexample when the property does not hold.
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– We have implemented the proposed approach in a tool called VATer and con-
ducted experimental comparison between VATer and other available state-of-
the-art verification tools. Our experiments on a set of verification benchmarks
show that our approach is promising.

The rest of this paper is organized as follow: Sect. 2 gives an overview of
our approach. Section 3 presents the main approach based on iterative abstract
testing. Section 4 presents how to utilize bounded exhaustive testing. Section 5
provides the experimental results on the benchmarks. Section 6 discusses related
work. Finally, the conclusions as well as future work are given in Sect. 7.

2 Overview

2.1 The Framework

First, we give an overview of our verification framework, namely Verification
based on Abstract Testing (VAT), as shown in Fig. 1. Overall, given a numerical
program P (in which each variable is of machine-bounded numerical type) and
a property represented as an assertion ψ, VAT gives a proof when the assertion
holds or generates concrete counter-examples when the assertion does not hold.
In detail, VAT involves the iteration of the following phases.

Dynamic 
Input Space Partitioning

P,X #
Proof or CE

[Refined Input Space]

Bounded
Exhaustive

Testing

[X1'#] [X2'#] [Xn'#]...

Abstract Testing

Forward Abstract 
Execution

Backward Abstract 
Execution

[Invariants]

[Negation of Property]

...

Property Checking

X '#

Fig. 1. The main framework of our approach.

Forward Abstract Execution. It acts as the abstract execution engine of abstract
testing, which takes (one pass) forward abstract interpretation to generate pro-
gram invariants under the given abstract input X♯. Forward abstract execution
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“executes” a program in the sense of an abstract semantics instead of a con-
crete one, thus has the ability to consider several (possibly unbounded) concrete
executions at a time.

Property Checking. It mimics the oracle of abstract testing. It checks the logic
relation between the invariants generated by forward abstract execution and the
assertion ψ. In concrete testing, the verifying result can be only “True” or “False”
for each test case. However, in abstract testing, three possible verifying results
may be returned: “True”, “False” or “Unknown”. If the result is “Unknown”,
we need further exploration on X♯.

Backward Abstract Execution. It performs a backward analysis based on abstract
interpretation for X♯ that needs further exploration, starting from the assertion
location and assuming that the negation of the target assertion holds. It essen-
tially computes the necessary precondition for the failure of the target assertion,
which results in a refined abstract input X ′♯ ⊆ X♯ at the program entry. If X ′♯

is the empty set, it means that the assertion holds true for the abstract input
X♯. Otherwise, we need continue to explore X ′♯.

Input Space Partitioning. To further explore the abstract input case X ′♯, VAT
partitions X ′♯ into a set of sub-inputs {X ′♯

1 ,X
′♯
2 , ...,X

′♯
n }. Then VAT checks fur-

ther for each sub-input X ′♯
i separately. For a sub-input X ′♯

i , if its size is small
enough, VAT uses bounded exhaustive testing, otherwise it uses abstract testing
(on top of forward and backward abstract execution and property checking).
This phase mimics the abstract test case generation of abstract testing.

Bounded Exhaustive Testing. When the number of concrete inputs in the consid-
ered abstract input X ′♯

i is small, VAT uses bounded exhaustive testing to check
the assertion for all possible concrete inputs. The rationale behind bounded
exhaustive testing is that the failure of assertions can be mainly revealed within
small bounds, and exhaustively testing within the bounds ensures that no “cor-
ner case” is missed [33].

When this whole verification process terminates, VAT will find a concrete
counter-example, or provide a complete proof, or a resource limit is reached.

2.2 An Illustrating Example

Now we illustrate our approach by verifying the assertion ψ (i.e., y != 1225 )
in the example P shown in Fig. 2(a). P implements the mathematical function
shown in Fig. 2(b). From the mathematical function, one could know that when
the input is n = 49 and flag = 1, the program will result in y = 1225 at Line 10
(while all other inputs will satisfy the assertion ψ). Thus the assertion ψ actually
does not hold in program P.

Verifying ψ (whether it holds or not) in P automatically and completely is
challenging for the following reasons. First, there is no restriction given on the
input variables n and flag. Thus, without considering any mathematical back-
ground behind the program, 232 ∗ 232 cases of possible values of the input vari-
ables need to be considered if they are 32-bit integers. Directly using exhaustive
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Fig. 2. An illustrating example.

testing to verify ψ in P would cause too much overhead. Second, the loop condi-
tion at Line 3 (i.e., x < n) depends on the symbolic input variable n. Symbolically
executing all feasible program paths (through unrolling) is not possible, owing
to the potentially infinite number of paths. Thus symbolic execution or bounded
model checking can hardly verify ψ in P automatically and completely. Third, P
involves disjunctive and non-linear behaviors, which is out of the expressiveness
of most widely used numerical abstract domains [40]. And the non-linear behav-
iors also make most SMT solvers hard or even unable to verify the assertion.
Hence, it is also difficult to verify the assertion by using abstraction and SMT
based techniques, such as CEGAR based software model checking [17].

We now illustrate step by step how VAT verifies the assertion ψ in P. First,
since there is no constraint over the input variables n and flag, VAT starts from
the initial abstract input X♯ = ⊤. Suppose we use here the octagon abstract
domain [41] to perform abstract interpretation. Abstract execution with abstract
input X♯ = ⊤ will result in the following invariant (namely InvX

♯

) at the
assertion location (at Line 10): n − x ≤ 0 ∧ x ≥ 0. Then our analysis performs
property checking and finds that this invariant is not strong enough to prove
ψ or ¬ψ. Thus we perform a backward analysis starting from the assertion
location assuming that y == 1225 (that is the negation of the original assertion).
However, this round of backward analysis results in ⊤ at program entry and does
not help in refining the necessary precondition to falsify the assertion. Then we
partition the current abstract input ⊤ into several sub-inputs. Here, we use a
predicate based partitioning strategy (which will be described in Sect. 3.3) to
partition ⊤ into the following 6 abstract sub-inputs: {X♯

1 : n ≤ 0 ∧ flag ≤
0;X♯

2 : n ≤ 0 ∧ flag == 1;X♯
3 : n ≤ 0 ∧ flag ≥ 2;X♯

4 : n ≥ 1 ∧ flag ≤ 0;X♯
5 :

n ≥ 1 ∧ flag == 1;X♯
6 : n ≥ 1 ∧ flag ≥ 2}. Then verifying ψ on abstract input

X♯ boils down to verifying ψ on each abstract sub-input.
ForX♯

1, we perform forward abstract execution and get the invariant {InvX
♯
1 :

y == 0∧ . . . } at the assertion location. After performing property checking, we
find that InvX

♯
1 ⇒ ψ, which imply that ψ holds for the abstract input X♯

1. Simi-
larly, for the other abstract inputs X♯

2, X
♯
3, X

♯
4 and X♯

6, the invariants generated
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by abstract execution at the assertion location are respectively {InvX
♯
2 : y ==

0∧ . . . ; InvX
♯
3 : y == 0∧ . . . ; InvX

♯
4 : y ≤ −1∧ . . . ; InvX

♯
6 : y ≤ −1∧ . . . }, which

implies that ψ holds for all these abstract sub-inputs.
Now we consider the more complicated case, i.e., the abstract sub-input X♯

5.
We perform abstract execution on X♯

5 and get invariant InvX
♯
5 : {n − 1 ≥ 0 ∧

−n + y ≥ 0 ∧ x − 1 ≥ 0 ∧ −x + y ≥ 0}. Unfortunately, InvX
♯
5 is not precise

enough to prove ψ or ¬ψ. Then we perform backward analysis assuming that
y == 1225 at the assertion location and get a refined abstract input X♯

51 : {n ≥
1 ∧ n ≤ 1225 ∧ flag == 1}. In other words, inside X♯

5, only those inputs in X♯
51

may cause the assertion ψ to fail, thus we only need to check X♯
51 for the case

X♯
5. Since now the abstract sub-input X♯

51 contains only 1225 concrete inputs,
we employ the bounded exhaustive testing to check the case X♯

51. Then we will
find the concrete counter-example input n = 49, f lag = 1 in X♯

51 that falsifies
the assertion ψ.

To summarize, for the illustrating example shown in Fig. 2(a), we totally
partition the whole input space X♯ into 6 abstract sub-inputs such that X♯ =
X♯

1 ∪. . . ∪X♯
6, where X♯

1,X
♯
2,X

♯
3,X

♯
4,X

♯
6 are verified by abstract testing and we

use bounded exhaustive testing to find a concrete counter-example in X♯
51 which

is a refinement substitution of X♯
5.

3 Property-Oriented Iterative Abstract Testing

In this section, we formalize the main idea of iterative abstract testing.
Section 3.1 gives the background of abstract testing. Section 3.2 introduces our
framework of iterative abstract testing. Section 3.3 presents the algorithm of
partitioning on abstract input.

3.1 Abstract Testing

With the abstract semantics, sound program invariants can be computed auto-
matically in finite steps by forward abstract interpretation [18] (denoted as For-
ward AI) and backward abstract interpretation [21] (denoted as Backward AI)
respectively. The computation with abstract interpretation is parameterized by
abstract domains specifying the considered approximated properties. Note that
backward abstract execution also makes use of the invariants generated by the
aforementioned forward abstract execution. In this paper, we combine forward
and backward abstract execution to generate for each program location those
constraints that describe states which are reachable from the abstract input and
may cause the target assertion fail.

The process of Abstract testing (denoted as AbstractTesting()) is built on
top of Forward AI and Backward AI, as defined in Algorithm 1. Abstract testing
takes a program P, a target property ψ to verify, a chosen abstract domain D and
an abstract input X♯. Abstract testing first calls Forward AI (at Line 1), which
computes the invariants (denoted as InvX

♯

) on program P with initial state X♯.
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Algorithm 1. Abstract Testing Algorithm
Input: program P , property ψ, abstract input X♯, abstract domain D

Output: result res, refined abstract input X′♯, program invariant InvX♯

b

1: InvX♯
← Forward AI(P,X♯, D)

2: InvX♯

b ← InvX♯

3: if InvX♯
(lψ) ⇒ ψ then

4: res ← True
5: X′♯ ← ⊥
6: else
7: if InvX♯

(lψ) ⇒ ¬ψ then
8: res ← False
9: X′♯ ← ⊥
10: else
11: InvX♯

b ← Backward AI(P, InvX♯
(lψ) ⊓¬ψ, D)

12: if X♯ ⊓InvX♯

b (lent) ==⊥ then
13: res ← True
14: X′♯ ← ⊥
15: else
16: res ← Unknown

17: X′♯ ← X♯ ⊓InvX♯

b (lent)
18: end if
19: end if
20: end if
21: return res, X′♯, InvX♯

b

To check whether the property ψ holds, abstract testing extracts InvX
♯

(lψ) of
InvX

♯

at the location (i.e., lψ) before the assertion assert(ψ). Three cases may
arise after the checking: (a) the property ψ is surely true (Line 3 in Algorithm1);
(b) the property ψ is surely false (Line 7); (c) whether the property ψ holds or
not can not be determinated yet by InvX

♯

(lψ) (Line 10). In the third case,
a backward abstract execution Backward AI is launched to refine the abstract
input X♯. Backward AI takes the program and the error state InvX

♯

(lψ) ⊓¬ψ

as input and computes backward the necessary pre-condition InvX
♯

b that may
cause the property to fail. If X♯ ⊓InvX

♯

b (lent) (where lent is the entry location of
P ) is ⊥ (which means there is no concrete input in X♯ that violates ψ), ψ must
be true (Lines 12). Otherwise, whether ψ holds is still unknown (Line 15) within
X♯, and in this case a refined input X ′♯ is generated as a refinement substitution
of X♯ (Line 17).

3.2 Algorithm of Iterative Abstract Testing

One iteration of abstract testing may fail to verify the given property due to the
over-approximation. In this paper, we propose to partition the input space to
refine the computed invariants on demand.
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Definition 1 (Partition of abstract input). A partition of an abstract input X♯

is a set of sub-inputs {X♯
1,X

♯
2, . . . , X

♯
n} such that

⎧
⎪⎨

⎪⎩

∀i ∈ {1, 2, ..., n},X♯
i ̸=⊥

∀i, j ∈ {1, 2, ..., n}, i ̸= j ⇒ X♯
i ⊓X♯

j =⊥
/ i∈{1,2,...,n}X

♯
i = X♯.

Let P (X♯) denote the program P , whose initial state of input variables are
constrained by X♯. Then we have the following proposition.

Proposition 1 (Soundness of verification by partitioning). Let
{
X♯

1,

X♯
2, . . . , X

♯
n

}
be a partition of abstract input X♯. If for any i ∈ {1, 2, ..., n},

assertion ψ is proved to be true in program P(X♯
i ), then ψ must be true in

P(X♯).

Proof. We assume ψ is false in P (X♯), then there must exists a concrete input
x that satisfies the constraint of X♯, but makes ψ false. From Definition 1, we
know / i∈{1,2,...,n}X

♯
i = X♯, thus there exists k ∈ {1, 2, ..., n} such that x ∈ X♯

k,
which means ψ is false in P (X♯

k). This conflicts with the assumption. Thus ψ is
true in P(X♯). ⊓/

Algorithm 2. Iterative Abstract Testing Algorithm
Input: program P , property ψ, abstract domain D
Output: True or False or Timeout
1: worklist L ← {⊤}
2: while L ̸= ∅ do
3: X♯ ← Remove(L) //get and remove an element from L

4: (res, X′♯, InvX♯

b ) ← AbstractTesting(P,ψ, X♯, D)
5: if res == False then
6: Terminate with counter-example in X♯

7: else
8: if res == True then
9: skip
10: else
11: X list ← Partition(X′♯, InvX♯

b )
12: L ← Insert(L,X list)
13: end if
14: end if
15: if Timeout then
16: Terminate with Timeout
17: end if
18: end while
19: Terminate with ψ proved

Intuitively, our framework partitions an abstract input X♯ when one itera-
tion of abstract testing cannot prove whether the property holds or not, and
then applies abstract testing further on the partitioned sub-inputs separately.
The overall iterative algorithm is shown in Algorithm 2, which fits into a con-
ventional worklist algorithm. In the beginning, the only element in the worklist
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L is the initial input space I. For the sake of simplicity, in this paper we assume
I = ⊤ (which means there is no restriction over the input). Then the algo-
rithm copes with the abstract inputs in the worklist L one by one (in Lines
2–18). For each abstract input X♯ in the worklist L (Line 3), the algorithm calls
AbstractTesting(), which is detailed in Algorithm 1, trying to prove the prop-
erty ψ with respect to the abstract input X♯. If it fails, AbstractTesting() will
return a refined abstract input X ′♯. Then Algorithm 2 partitions X ′♯ at Line
11 (where the Partition() procedure will be detailed in Algorithm 3), and puts
all the newly split abstract sub-inputs into the worklist and repeats the process
again (starting from Line 2). Until a counter-example is found or the property
is proved true over all abstract inputs in the worklist, or a time limit is reached,
the algorithm terminates.

Algorithm 3. Partitioning Algorithm
Input: abstract input X♯, program invariant InvX♯

b
Output: abstract input list X list
1: PS0← ∅;X list = {X♯}
2: for each l ∈Lc(P ) do

3: PS0← PS0
⋃

Project(InvX♯

b , l)
4: end for
5: for each p0∈PS0do
6: p ← Rename(p0)
7: for each X ∈X list do
8: X list ← (X list \ X) ∪ {X ∧ p,X ∧ ¬ p}
9: end for
10: end for
11: if X list = {X♯} then
12: Itvs ← Interval Hull(X♯)
13: v ← Var of Largest Range(Itvs)

14: X list ← {X♯ ∧ vinf ≤ v ≤
vinf+vsup

2 , X♯ ∧
vinf+vsup

2 < v ≤ vsup}
15: end if
16: return X list

3.3 Partitioning

Input partitioning plays an important role in the iterative abstract testing.
Depending on the target programs, we employ two strategies for dynamic input
partitioning as shown in Algorithm 3: predicate based strategy (from Lines 2 to
10) and dichotomy strategy (from Lines 11 to 15).

Predicate-Based Strategy. The main idea of this strategy is to first derive a set
of predicates over the symbolic initial values of the input variables and then to
partition the input space X♯ into a set of sub-inputs based on these predicates.
To this end, first, as a preprocessing step, for every input parameter (e.g., x) in
the program P , we introduce a symbolic input variable (e.g., x0) and insert an
assignment statement (e.g., x0 = x;) to symbolically record its initial value.

AbstractTesting() (at Line 4 of Algorithm2) analyzes the instrumented pro-
gram and returns the program invariant InvX

♯

b , which records all the constraints
between the original variables of P and the introduced symbolic input variables.
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In Algorithm 3, to derive interesting predicates, we only consider predicates at
those program locations after conditional tests (which are represented as Lc(P)
at Line 2). Moreover, we are only interested in predicates over symbolic input
variables, the set of which is denoted as PS0. Then for each program location l in
Lc(P), we project out all other variables (except symbolic input variables) from
the computed invariants InvX

♯

b by function Project() at Line 3. Project() returns
a set of predicates over symbolic input variables, which are all collected into PS0.
Note that the projection operator is a default operator in each abstract domain
and implemented efficiently using algorithms tailored to the specific constraint
representation of the abstract domain. Then for each predicate p0 in PS0, we
rename all the symbolic input variables (e.g., x0) as the original input variables
(e.g., x) by function Rename() at Line 6. It returns a splitting predicate p on
input variables, which is used to split all the abstract inputs in X list (from
Lines 7 to 9). For each X in X list, our algorithm first deletes X from X list,
then splits X into two abstract inputs (i.e., X ∧ p, X ∧ ¬ p), and adds them into
X list at Line 8. Note that, in the worst case, 2n abstract inputs can be gen-
erated based on n predicates. To prevent partition explosion, we need to bound
the number of predicates used for partitioning. Our immediate idea chooses a
limited number of those predicates that emerge early in the forward AI analysis.

Take our illustrating program in Fig. 2(a) for example. First, as shown in
Fig. 3, at Line 2, our preprocess defines two symbolic input variables for the
input parameters n and flag, and assigns them with the initial values of n and
flag. Then abstract testing generates invariants as well as necessary precondition
of property violation for the program using the Octagon abstract domain. After
projecting out other variables, the invariants on n0 and flag0 are derived, which
is shown as annotations in Fig. 3 at Lines 4, 6 and 11. After renaming, our
analysis collects two meaningful atomic predicates {n ≥ 1, f lag = 1}. Based on
them, the following 6 abstract sub-inputs are generated: {X♯

1 : n ≤ 0 ∧ flag ≤
0;X♯

2 : n ≤ 0 ∧ flag = 1;X♯
3 : n ≤ 0 ∧ flag ≥ 2;X♯

4 : n ≥ 1 ∧ flag ≤ 0;X♯
5 : n ≥

1 ∧ flag = 1;X♯
6 : n ≥ 1 ∧ flag ≥ 2}.

Fig. 3. The illustrating example with predicates annotated.

Given an abstract input X♯, if no useful predicate on the symbolic input vari-
ables can be found, predicate based partitioning would fail (i.e., the condition
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at Line 11 in Algorithm 3 holds). In this case, our framework employs the
dichotomy strategy (from Lines 12 to 14).

Dichotomy Strategy. This strategy projects every input variable in the abstract
input X♯ into an interval (e.g., we treat ⊤ as [-max int,max int-1] for Integer
type) by function Interval Hull() at Line 12, which returns interval hulls of all
input variables. Then it chooses the variable of the largest range as the variable
(i.e., v) to be split, which is done by function Var of Largest Range() at Line
13. After that, it conducts splitting evenly on the interval range of v, and X♯ is
split into two abstract sub-inputs at Line 14, where vinf and vsup represent the
lower bound and upper bound of v respectively.

3.4 Sorting of Abstract Inputs

This subsection elaborates the sorting of the elements in the worklist L in Algo-
rithm 2 in the framework of iterative abstract testing. This operation is necessary
in the sense that, if an abstract input that violates the property ψ can be put
in the front of the worklist, then the verification process can terminate earlier.

To perform sorting, we define a fitness function for each abstract input

X♯ as fit(X♯) =
|γ(InvX♯

lψ
⊓¬ψ)|

|γ(InvX♯
lψ

⊓ψ)|
, where InvX

♯

lψ
is the invariant at the asser-

tion location computed by Forward AI, and γ is a concrete function mapping
abstract states to concrete states soundly. Here we assume that if the value
returned by fit(X♯) is larger, then it is more likely to find a property violation
within X♯. Since |γ(InvX♯

lψ
⊓¬ψ)| and |γ(InvX♯

lψ
⊓ψ)| are usually too costly

to compute, in practice, we use fit′(X♯) =
|γ(Interval Hull(InvX♯

lψ
⊓¬ψ))|

|γ(Interval Hull(InvX♯
lψ

⊓ψ))|
, where

|γ(Interval Hull(Y ♯))| represents the number of points in the interval hull of
Y ♯. The value of |γ(Interval Hull(Y ♯))| is computed by projecting each input
variable y into its interval bound [ay, by], and multiplying the widths of all these
intervals. In other words, the value of |γ(Interval Hull(Y ♯))| is computed as the
volume of the interval hull of Y ♯.

In iterative abstract testing, our algorithm computes fit′(X♯) for each gener-
ated abstract inputX♯, and adds them into the worklist satisfying the decreasing
order according to their fitness values (in Line 12 of Algorithm 2).

4 Combination with Bounded Exhaustive Testing

When the considered abstract input X♯ is bounded and of small size (which
means that the number of concrete inputs inside X♯ is small), a good alter-
ative of verifying the program on such an abstract input X♯ is to use bounded
exhaustive testing (BET) [11,38], which is complete, sound, and able to find
counter-examples if they exist. In this section, we extend our framework by
combining with bounded exhaustive testing.
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4.1 Synergic Verification Framework

Our synergic verification framework (denoted by SynergicVerification()) is based
on Algorithm2, while the only change is replacing function AbstractTesting() (at
Line 4 in Algorithm2) with SynergicTesting() described in Algorithm4. Com-
pared with Algorithm 2 that uses solely abstract testing, the key difference in
Algorithm 4 is that we add a decision module SizeChecking() to decide whether
to take abstract testing or bounded exhaustive testing (at Line 1) and a module
BETesting() to conduct bounded exhaustive testing (at Line 2).

Algorithm 4. Synergic Testing Algorithm
Input: program P , property ψ, abstract input X♯, abstract domain D

Output: result res, refined abstract input X′♯, program invariant InvX♯

b

1: if SizeChecking(X♯) then
2: res = BETesting(P,X#)
3: X′# ← ⊥
4: InvX♯

b ← ⊥
5: else
6: ⟨res, X′#, InvX♯

b ⟩ = AbstractTesting(P,ψ, X#, D)
7: end if
8: return res, X′#, InvX♯

b

Decision Module. Function SizeChecking() is implemented by just checking
the size of the abstract input (i.e., |γ(X♯)|): If the size is under a threshold,
we adopt bounded exhaustive testing, otherwise we use abstract testing. In
practice, |γ(X♯)| could be hard to be precisely computed, and hence we uti-
lize |γ(Interval Hull(X♯))| as a compromise.

Bounded Exhaustive Testing Module. Bounded exhaustive testing aims
to achieve exhaustive coverage of all the concrete inputs in the given abstract
input X♯. We exhaustively generate concrete input cases not directly from X♯,
but from its interval hull, and then filter out those that are not in γ(X♯) by
checking whether they satisfy the constraints representing X♯. During bounded
exhaustive testing, once a concrete input is found as a counter-example that
violates the target property, we will terminate the whole verification process.

4.2 Soundness Discussion

Theorem 1 (Soundness of the synergic verification). Suppose that we use the
synergic verification algorithm (i.e., Algorithm2 wherein Line 4 is replaced with
SynergicTesting()) to verify whether an assertion ψ holds in program P. If
the algorithm terminates with ψ proved (or terminates with a counter-example
found), then ψ must be true (or false) in program P with any (or some) inputs.
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Proof. First, we consider the case that Algorithm 2 combined with bounded
exhaustive testing terminates with a counter-example found in abstract input
X♯. Since the counter-example must belong to the initial input space (i.e., ⊤),
thus it is also a counter-example input to make P violate ψ.

The more complicated case is when Algorithm 2 terminates with ψ proved.
To prove ψ must be true in P, we first briefly explain the soundness of abstract
testing and bounded exhaustive testing. (1) The soundness of abstract testing
(Algorithm1) is guaranteed by the soundness of abstract interpretation [18],
since it applies forward and backward abstract interpretation, which essentially
compute over-approximations of the concrete reachable states. (2) The soundness
of bounded exhaustive testing is obvious since BET has tested all the possible
input cases (within the given bounded abstract input space) under the most
precise (i.e., concrete) semantics. In Algorithm2, the initial input space is parti-
tioned into a set of sub-inputs, and each sub-input is proved by abstract testing
or BET, or further partitioned into smaller sub-inputs, which are further coped
with by Algorithm2. According to Proposition 1 and the soundness of abstract
testing and BET, we can conclude that ψ is true in P. ⊓/

Note that in this paper, as normal abstract interpretation-based verifica-
tion [28,32], we assume the absence of undefined behaviors and runtime errors
in statements before the assertion location. The unsoundness of verification due
to undefined behaviors and runtime errors has been handled in [16], which is
orthogonal to our work. Moreover, in this paper, a non-deterministic variable is
treated as an interval of its whole valid input range (e.g., [−∞, +∞]) in abstract
testing and a fresh random value in concrete testing. For non-deterministic pro-
grams, bounded exhaustive testing is used to verify false assertions only when it
finds a counter-examples (but not used to provide proof for true assertions).

5 Experiments and Evaluation

We have implemented a prototype tool, namely VATer, based on our verification
approach utilizing both iterative abstract testing (IAT) and bounded exhaustive
testing (BET). We will evaluate VATer along the following three experimental
questions (EQs). VATer can verify programs through refining abstract interpre-
tation by dynamic input partitioning. We want to know whether VATer can
prove more true assertions than abstract interpretation based tools (which may
use other refinement techniques) (EQ1). We also hope to know the performance
of VATer comparing with other widely used verification techniques in practice
(EQ2). VATer utilizes bounded exhaustive testing to help abstract interpretation
to prove “corner cases” or generate counter-examples. We should know whether
the use of bounded exhaustive testing can help verify more assertions in practice
(EQ3).

5.1 Experimental Setup

VATer is constructed based on the APRON numerical abstract domain
library [36] (which includes the abstract domains of intervals [18], octagons [41],
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polyhedra [22], and linear congruence abstract domain [27]), and the Fixpoint
Solver Library [1]. Moreover, VATer syntactically supports both C programs
(by using the front-end CIL [42]) and the SPL language (by using the static
analyzer Interproc [35] as the front-end). The upper bound of the number of
splitting predicates chosen each time is 10, and the threshold for BET is set as
2500, which are both set according to our timeout bound empirically.

To address these experimental questions, we run our tool VATer, abstract
interpretation involved tools (e.g., Interproc [35], SeaHorn [32]) and three tools
participating in SV-COMP’18 [2] (i.e., VeriAbs [14], ULTIMATE Taipan [28]
(which obtained the highest scores in the ReachSafety-Loops category),
CPAchecker [9] (which won the gold medal overall in SV-COMP’18)). We use
three numerical loop benchmark sets: (1) all the 46 programs from HOLA [24];
(2) all the 35 programs from C4B [13]. (3) all the 152 programs from the veri-
fication tasks of six folders in ReachSafety-Loops category of SV-COMP’18 [2].
Note that we used the version of HOLA and C4B from [23].

Different sets of benchmarks and tools are chosen to answer different experi-
mental questions (EQ). To answer EQ1, benchmarks (C4B and Hola) with only
true assertions and tools involving abstract interpretation technique (i.e., Inter-
proc, SeaHorn, ULTIMATE Taipan) are used. To answer EQ2 and EQ3, bench-
marks from SV-COMP’18 (which contain both true and false assertions) are
more suitable, and we chose to compare with three state-of-the-art tools (i.e.,
ULTIMATE Taipan, VeriAbs, CPAchecker) for EQ2.

All the experiments are carried out with a timeout limit of 900 s for each
benchmark program on a machine with Ubuntu 16.04 which has 16GB RAM
and a 3.6GHz octa-core Intel! CoreTM i7-7700U host CPU.

5.2 EQ1: Does VATer Strengthen the Ability of Proving True
Assertions over Abstract Interpretation Based Techniques?

Table 1 shows the verification results on the HOLA and C4B benchmarks. It lists
the number of verified programs (sub-column “#V”) together with the total time
for verified programs in seconds (column “#T(s)”) for each tool. For VATer, it
also lists the number of times using abstract testing (sub-column “#AT”) and
bounded exhaustive testing (sub-column “#BET”) for the verified programs.
We compare VATer with three available abstract interpretation based verifica-
tion tools, i.e., Interproc (based on pure abstract interpretation), SeaHorn (com-
bining Horn-clause solving and abstract interpretation) and ULTIMATE Taipan
(combining CEGAR based software model checking and abstract interpretation).

All the specified assertions hold in the programs from HOLA and C4B.
Table 1 shows that VATer can correctly verify 76 programs out of 81 with total
16.4 s consumed (0.22 s per program on average). Comparing with Interproc (one
pass forward analysis), which can verify 19 programs with average 0.16 s, VATer
achieves significant improvements on proving true assertions without too much
extra time overhead. It indicates that our technique strengthens the ability of
proving true assertions over standard abstract interpretation. And considering
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Table 1. Comparison results with abstract interpretation involved tools.

Benchmark Interproc SeaHorn UTaipan VATer

#V T(s) #V T(s) #V T(s) #V T(s) #AT #BET

HOLA(46) 17 2.9 34 298.5 38 805.2 44 14.1 64 1

C4B(35) 2 0.1 24 274.9 17 1277.4 32 2.3 85 0

Total(81) 19 3.0 58 573.4 51 2082.6 76 16.4 149 1

the iterations of abstract testing and BET, we find that this strengthening mainly
comes from the iterative abstract testing through dynamic input partitioning.

VATer can verify 18 (31%) and 25 (49%) more programs than SeaHorn
and ULTIMATE Taipan, respectively. Concerning timing, for those verified pro-
grams, VATer (on average 0.22 s) has an average 46X, 190X speedups over Sea-
Horn (on average 9.9 s) and ULTIMATE Taipan (on average 40.8 s) respectively.
This improvement is achieved since most of the programs in HOLA and C4B
have complex input-data dependent loops with disjunctive or non-linear prop-
erties. They are difficult to verify as a whole. While VATer utilizes partition-
ing techniques to simplify the program behaviors for each abstract input. This
result reflects that VATer performs more effectively and efficiently than abstract
interpretation based tools that use forward analysis only (e.g., SeaHorn and
ULTIMATE Taipan) on these benchmarks.

Table 2. Comparison results with state-of-the-art verification tools.

Folder P IAT VATer(IAT+BET) VeriAbs UTaipan CPAChecker

#V T(s) #V T(s) #AT #BET #V T(s) #V T(s) #V T(s)

Loops(67) T(35) 21 4.2 23 5.0 23 2 26 749.9 25 400.3 27 1281.6

F(32) 7 2.4 18 55.0 145 11 24 416.4 25 1080.7 29 550.3

Loop-new(8) T(8) 4 4.7 7 5.8 7 3 2 21.9 4 187.1 2 710

F(0) 0 0 0 0 0 0 0 0 0 0 0 0

Loop-lit(16) T(15) 9 2.3 13 2.7 15 4 12 304.9 14 388.5 6 27.1

F(1) 0 0 1 0.2 1 1 1 13.4 1 4.5 1 3.9

Loop-inv(19) T(18) 15 32.6 15 32.6 16 0 8 144.7 10 253.4 5 440.6

F(1) 0 0 1 11.9 86 1 1 17.1 1 7.7 1 5.4

Loop-craft(7) T(6) 2 0.2 4 0.6 4 2 3 33.7 2 9.2 3 520.5

F(1) 0 0 0 0 0 0 1 555.8 1 4.5 1 4.2

Loop-acc(35) T(19) 9 0.9 16 96.2 78 38 12 132.9 13 510.7 10 663.9

F(16) 1 0.1 16 9.0 43 15 13 290.1 6 84.2 8 946.8

Total(152) T(101) 60 44.9 78 142.9 143 49 63 1388 68 1749.2 53 3643.7

F(51) 8 2.5 36 76.1 275 28 40 1292.8 34 1181.6 40 1510.6
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5.3 EQ2 – How Does VATer Work Comparing with Other
Verification Techniques

We compare VATer with three state-of-the-art verification tools participating
in SV-COMP’18: VeriAbs, ULTIMATE Taipan, CPAchecker. Table 2 shows the
comparison result. The column “Folder” shows the names of all the folders and
the number of programs included in each folder. The column “Property” distin-
guishes the programs with true assertions and false assertions in each folder.

For the programs with true assertions (totally 101 programs), VATer can ver-
ify 15 (24%), 10 (15%) and 25 (47%) more programs than VeriAbs, ULTIMATE
Taipan and CPAchecker respectively. This improvement is achieved mainly due
to the fact that most of these programs have input-data dependent loops and
loop-result dependent branches. These program characteristics may result in infi-
nite number of program states and make the precise (enough) loop invariants
difficult to find by software model checking based tools. However, for these pro-
grams, VATer can always utilize input partitioning to get refined abstract inputs
to help forward and backward abstract interpretation to generate sound invari-
ants and necessary preconditions, which may be precise enough to prove the
assertions finally. For the programs with false assertions (totally 51 programs),
VATer finds counter-examples for 36 programs, which is less than VeriAbs
(40 programs), CPAchecker (40 programs) but more than ULTIMATE Taipan
(33 programs). We have further investigated those false-assertion programs for
which other tools succeed but VATer fails. We found that for false-assertion pro-
grams we rely on bounded exhaustive testing to ensure the soundness of VATer,
but if iterative abstract testing cannot reduce the search space into a small-
size region then bounded exhaustive testing may take too much overhead to
do dynamic testing exhaustively. For all the programs with true or false asser-
tions (totally 152 programs), compared with these alternatives, VATer achieves
11%, 13%, 22% improvement respectively. Concerning timing, for those veri-
fied programs, VATer (on average 1.9 s) at least has an average 13.6X, 15.2X,
and 29.2X speedups over VeriAbs (on average 26.0 s), ULTIMATE Taipan (on
average 28.8 s), CPAChecker (on average 55.4 s) respectively. The results indi-
cate that VATer also significantly outperforms other three tools on efficiency for
these benchmarks.

5.4 EQ3: Does BET Help VATer Generate Counter-Examples over
Abstract Testing?

In Table 2, the column “IAT” gives results where only iterative abstract test-
ing is used. Comparing IAT and VATer, we can see that: (1) Considering the
101 programs with true assertions, IAT can verify 60, while VATer can success-
fully verify 78 programs, achieving a 30% improvement. We have inspected those
programs with true assertions that only VATer successfully verified, and found
that all of them have “corner cases” that cannot be verified by abstract test-
ing solely, while testing can handle them quickly. (2) Considering 51 programs
with false assertions, IAT finds counter-examples for 8 programs, while VATer
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generates counter-examples for 36 programs. The result indicates that bounded
exhaustive testing makes significant contribution to generate counter-examples
for programs with false assertions. (3) Overall, VATer can verify 114 programs
with the average time of 1.9 s, while IAT can verify 68 programs with average
time of 0.7 s. Hence, VATer achieves 68% improvement on IAT without much
extra time overhead. This achievement mainly owes to the fact that VATer com-
bines the advantages of both iterative abstract testing and bounded exhaustive
testing. Considering the “#AT” and “#BET” column, VATer can verify 46 pro-
grams more than IAT with 77 (average 1.7) times of BET used. It indicates that,
for these programs, iterative abstract testing has restricted the unverified input
spaces into small sizes, thus only a few numbers of BET are conducted to prove
the true assertions or generate counter-examples for false assertions.

6 Related Work

Abstract interpretation based verification. Many efforts [6,30,31,37] have been
devoted to combine the strengths of over and under approximation. They mainly
used model checking based techniques as over approximation engines. While this
paper has used abstract interpretation, which can handles loops automatically
in a terminate and sound way. Abstract interpretation is one of the fundamental
techniques for automatic program verification [20,25]. Many recent approaches
and tools for program verification use abstract interpretation. SeaHorn [32] com-
bines Horn-clause solving techniques with abstract interpretation based analyzer
IKOS [12], where IKOS is mainly used to supply program invariants to other
techniques. ULTIMATE Taipan [28] is a CEGAR-based software model checker
for verifying C programs, where abstract interpretation is used to derive loop
invariants for the path program corresponding to a given spurious counterexam-
ple. A series of works have used interpolation technique to recover the impre-
cision due to widening and improved the verification ability of abstract inter-
pretation based techniques, such as DAGGER [29], VINTA [4], UFO [5]. Unlike
the above works, we use input space partitioning to refine abstract interpreta-
tion on-demand iteratively, and use bounded exhaustive testing to complement
abstract interpretation.

Recently, combining abstract interpretation with dynamic analysis has
received increasing attention. Most of these works combine abstract interpre-
tation with symbolic execution [3,15,16,26], which mainly combine them in a
two-stage manner and use (non-iterative) abstract interpretation as a black-box.
While our work aims at program verification by performing abstract interpre-
tation in an iterative way and makes use of the results of dynamic testing to
complement abstract interpretation. Quite interestingly, Toman et al. [43] have
recently presented the Concerto system for analyzing framework-based applica-
tions by combining concrete and abstract interpretation, which analyzes frame-
work implementations using concrete interpretation and analyzes application
code using abstract interpretation. Compared with their work, our work uses
dynamic testing and abstract interpretation to verify the same code, rather than
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different parts of the target program. The closest work to ours is [19], in which
Cousot and Cousot propose first the notion of “abstract testing”, and compare
abstract testing with classical program debugging and model checking. Our work
is inspired by this work [19], but we further propose to conduct abstract test-
ing iteratively with respect to the target property with the help of dynamic
input partitioning. Moreover, we also propose to combine abstract testing with
bounded exhaustive testing.

Partitioning Techniques. There exist several partitioning techniques in the con-
text of abstract interpretation. Bourdoncle [10] presents a partitioning method
in the context of analyzing recursive functions, to allow the dynamic determi-
nation of interesting abstract domains using data structures built over simpler
domains. Jeannet [34] proposes a method to dynamically select a suitable par-
titioning according to the property to be proved, which relies on the use of a
new abstract lattice combining Boolean and numerical properties. These parti-
tioning techniques belong to state partitioning, while this paper only partitions
input and then conducts abstract interpretation separately for each partition.
Mauborgne and Rival [39] propose a systematic framework to utilize trace par-
titioning for managing disjunctions. Their trace partitioning techniques rely on
heuristics or annotations to specify partition creation and merge points, while
our approach only chooses program entries as the partitioning points, which
makes our partitioning strategy fully automatic and easier to deploy. Another
benefit of input space partitioning lies in that it can help to recover the pre-
cision loss as early as possible during generating invariants. Thus it can gener-
ate more precise invariants than partitioning intermediate states. Conditional
model checking [7,8] combines the verification abilities of several different model
checkers. Each model checker generates a condition to describe the successfully
verified state space. Thus, utilizing this condition, the later verifiers only focus
on verifying the yet unverified state space. These conditions generated by model
checkers can be considered as a partition of state space. Compared with their
work, we perform partitioning dynamically and iteratively according to the need
of the current verification task and we only consider partitioning the inputs at
the entry point of a program.

7 Conclusion

We have presented a property-oriented verification approach based on iterative
abstract testing, to verify properties of numerical programs. Our approach iter-
ates forward abstract execution (to compute invariants) and backward abstract
execution (to compute necessary pre-condition for property violation) to ver-
ify the target property. The key point behind our iterative mechanism is the
utilization of dynamic input space partitioning to split an abstract input that
needs further exploration into sub-inputs such that each sub-input involves less
program behaviors and may be easier to verify. The partitioning is conducted
dynamically (on demand) according to the needs of the sub-goal of the veri-
fication. Moreover, the partitioning enables the verification to be achieved via
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bounded exhaustive testing over an abstract sub-input of small size, which com-
plements the abstract testing and is able to generate counter-examples when the
property does not hold. Finally, we have shown promising experimental results
comparing against several state-of-the-art program verification tools.

For future work, we plan to investigate other dynamic analysis techniques to
complement our abstract testing, especially for the cases that the property to
be checked does not hold. Also, our approach is highly parallelizable by nature
thanks to the partitioning, and thus we plan to develop a parallel version for
speedup.
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framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4 20

33. Jagannath, V., Lee, Y.Y., Daniel, B., Marinov, D.: Reducing the costs of bounded-
exhaustive testing. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol.
5503, pp. 171–185. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00593-0 12

34. Jeannet, B.: Dynamic partitioning in linear relation analysis: application to the
verification of reactive systems. Form. Methods Syst. Des. 23(1), 5–37 (2003)

35. Jeannet, B.: Interproc analyzer for recursive programs with numerical variables.
INRIA, software and documentation are available at the following, pp. 06-11
(2010). http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
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