Static Analysis and Verification of Aerospace Software by Abstract Interpretation

Julien Bertrane

École normale supérieure, Paris

Patrick Cousot

Courant Institute of Mathematical Sciences, NYU, New York & École normale supérieure, Paris

Radhia Cousot

École normale supérieure & CNRS, Paris

École normale supérieure & INRIA, Paris

Laurent Mauborgne

École normale supérieure, Paris & IMDEA Software, Madrid

Antoine Miné

École normale supérieure & CNRS, Paris

AIAA Infotech@Aerospace 2010, Atlanta, Georgia

École normale supérieure & INRIA, Paris

April 20, 2010

Jérôme Feret

Xavier Rival^{*}

Content

Motivation

- An informal introduction to abstract interpretation
- A short overview of a few applications and on-going work on aerospace software


• All necessary theoretical and practical details and references are given in the paper

Motivation

All computer scientists have experienced bugs

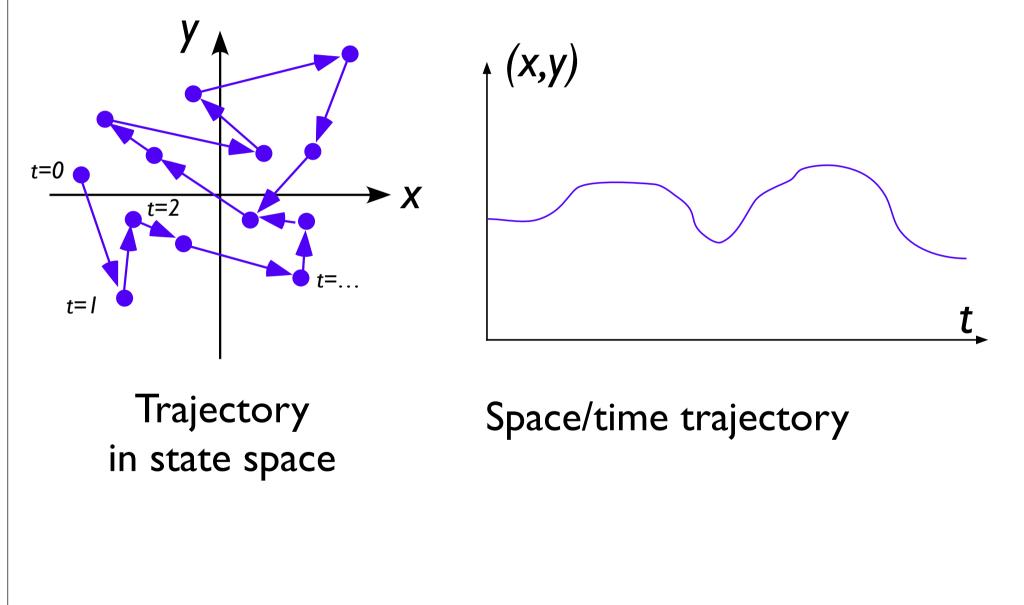
Ariane 5.01 failure Patriot failure Mars orbiter loss (overflow) (float rounding) (unit error)

- Checking the presence of bugs is great
- Proving their absence is even better!

Abstract interpretation

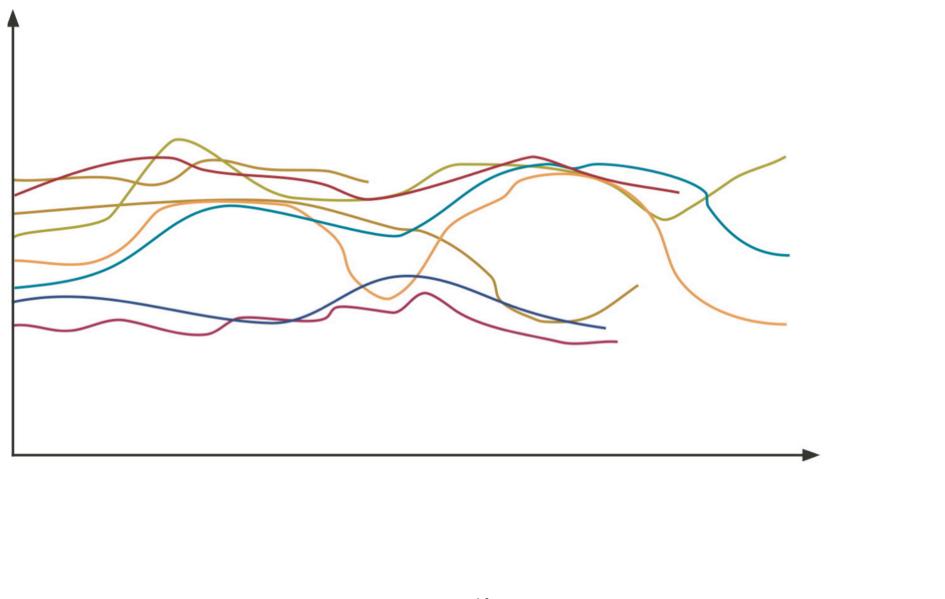
Abstract interpretation

- Started in the 70's and well-developped since then
- Originally for program dataflow analysis in compilers (e.g. check for conditions under which optimizations are applicable such as elimination of useless runtime checks)
- Based on the idea that undecidability and complexity of automated program analysis can be fought by approximation
- Applications evolved from static analysis to verification
- Does scale up!

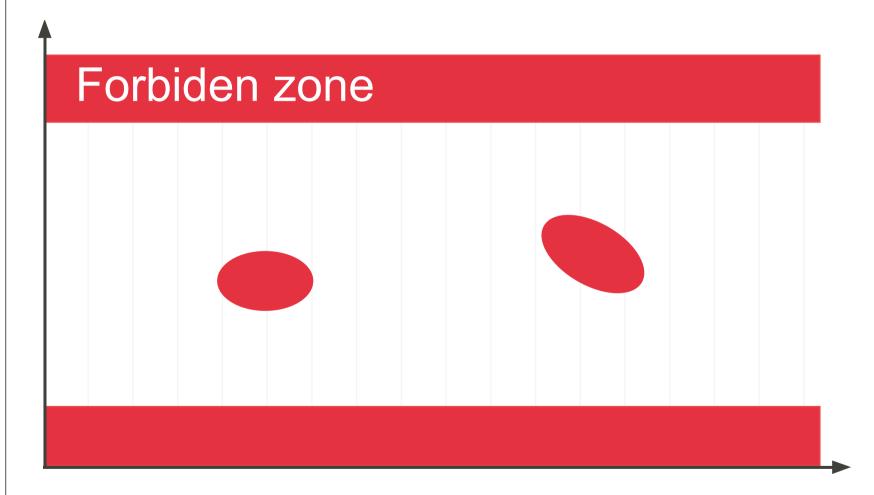

Fighting undecidability and complexity in program verification

- Any *automatic* program verification method will definitely fail on infinitely many programs (Gödel)
- Solutions:
 - Ask for human help (theorem-prover based deductive methods)
 - Consider (small enough) finite systems (modelchecking)
 - Do sound approximations or complete abstractions (abstract interpretation)

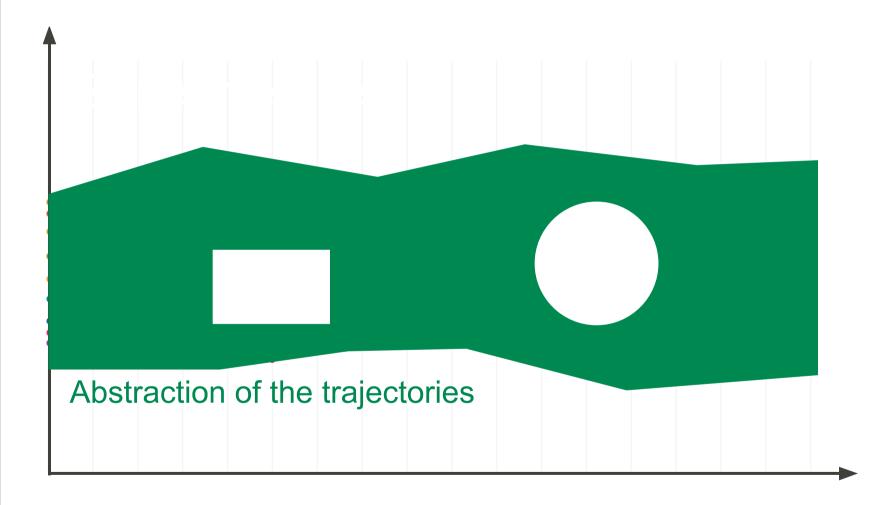
An informal introduction to abstract interpretation


I) Define the programming language semantics

Formalize the concrete **execution** of programs (e.g. transition system)

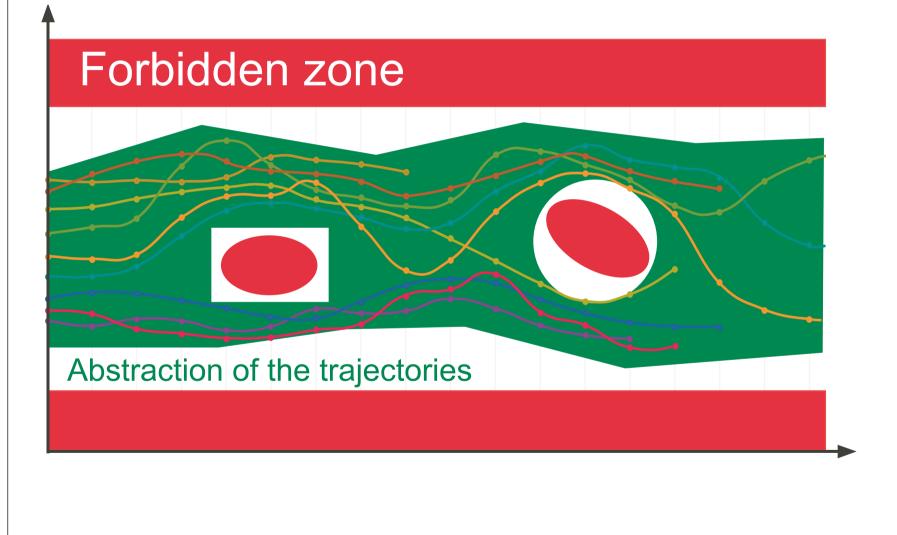

II) Define the program properties of interest

Formalize what you are interested to know about program behaviors

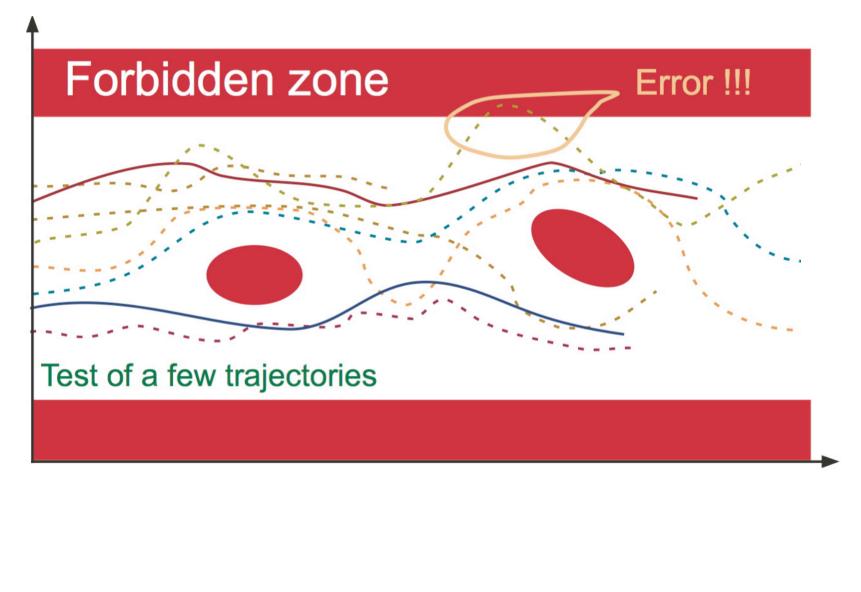

III) Define which specification must be checked

Formalize what you are interested to prove about program behaviors

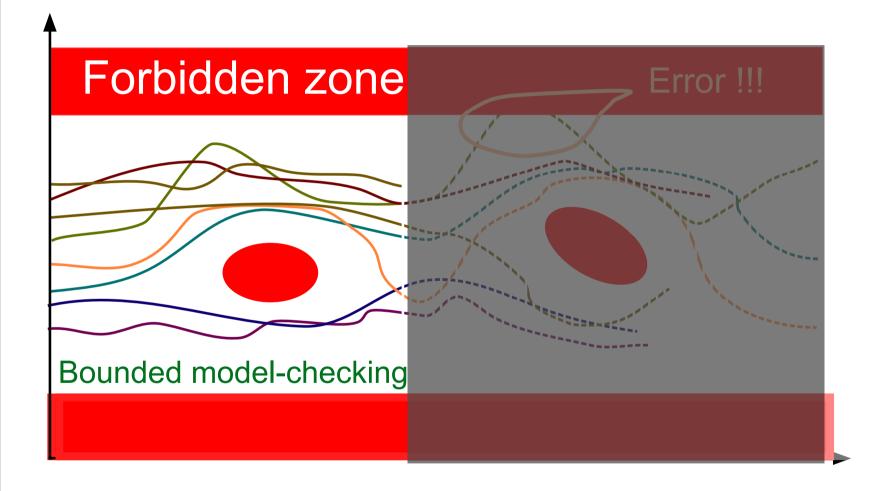
IV) Choose the appropriate abstraction


Abstract away all information on program behaviors irrelevant to the proof

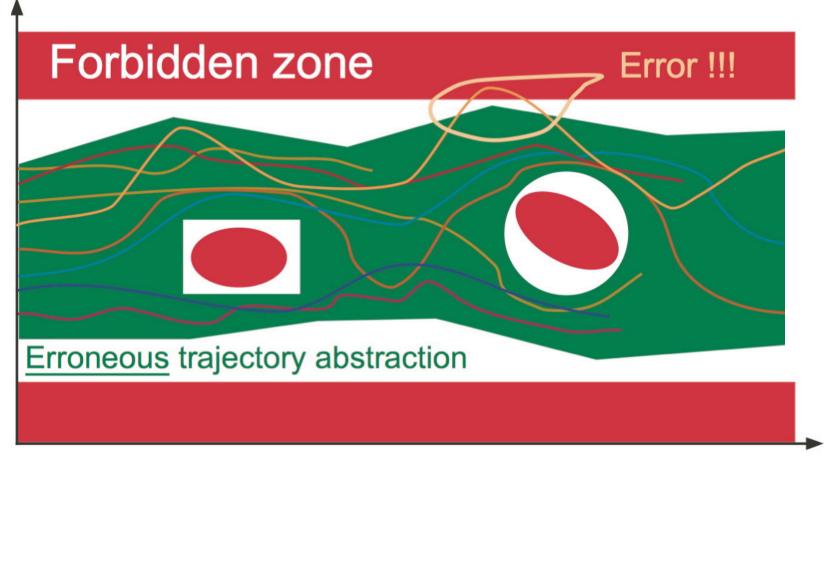
V) Mechanically verify in the abstract The proof is fully **automatic** Forbidden zone Abstraction of the trajectories


Soundness of the abstract verification

Never forget any possible case so the **abstract proof is correct in the concrete**


Unsound validation: testing

Try a few cases

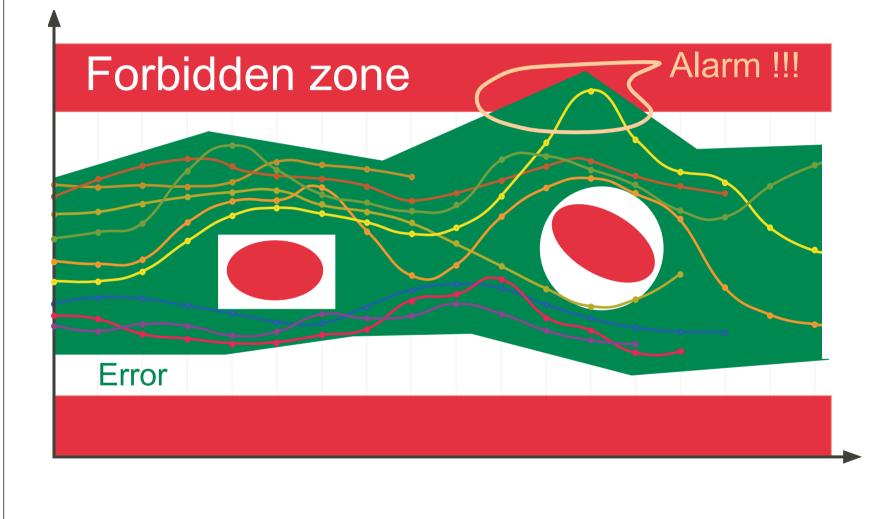

Unsound validation: bounded model-checking

Simulate the beginning of all executions

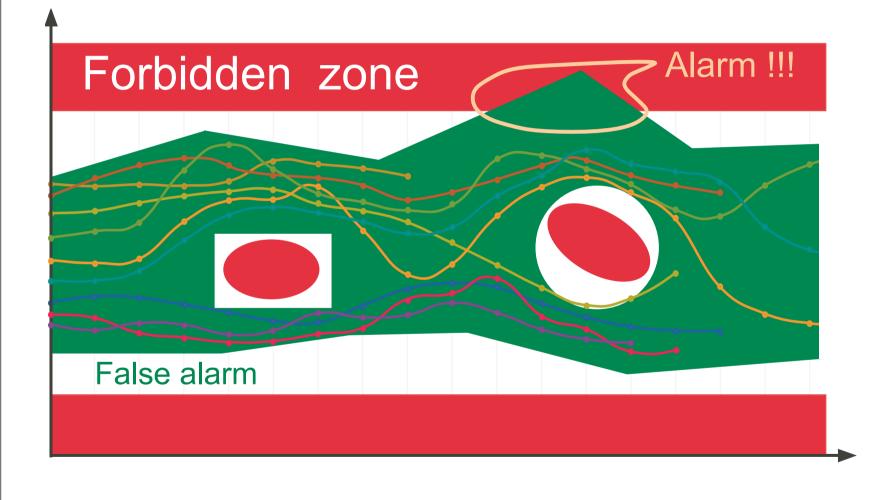

Unsound validation: static analysis

Many static analysis tools are **unsound** (e.g. Coverity, etc.) so inconclusive

Incompleteness


When abstract proofs may fail while concrete proofs would succeed

By soundness an alarm must be raised for this overapproximation!


True error

The abstract alarm may correspond to a concrete error

False alarm

The abstract alarm may correspond to no concrete error (false negative)

What to do about false alarms?

- Automatic refinement: inefficient and may not terminate (Gödel)
- Domain-specific abstraction:
 - Adapt the abstraction to the programming paradigms typically used in given domain-specific applications
 - e.g. synchronous control/command: no recursion, no dynamic memory allocation, maximum execution time, etc.

ASTRÉE

Target language and applications

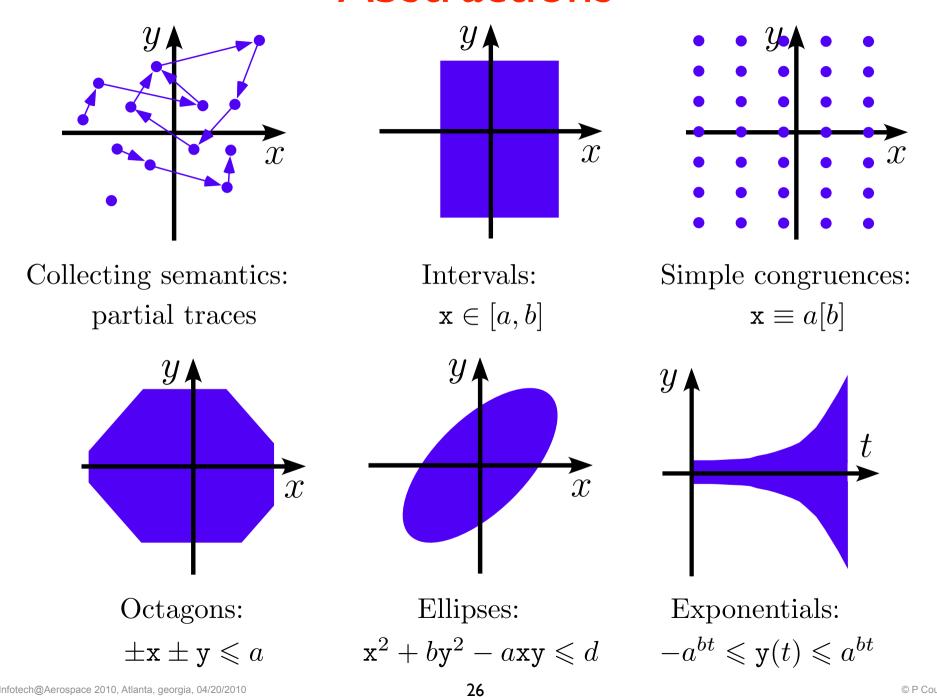
• C programming language

- Without recursion, longjump, dynamic memory allocation, conflicting side effects, backward jumps, system calls (stubs)
- With all its horrors (union, pointer arithmetics, etc)
- Reasonably extending the standard (e.g. size & endianess of integers, IEEE 754-1985 floats, etc)
- Synchronous control/command
 - e.g. generated from Scade

The semantics of C implementations is very hard to define

What is the effect of out-of-bounds array indexing?

```
% cat unpredictable.c
#include <stdio.h>
int main () { int n, T[1];
    n = 2147483647;
    printf("n = %i, T[n] = %i\n", n, T[n]);
```


Yields different results on different machines:

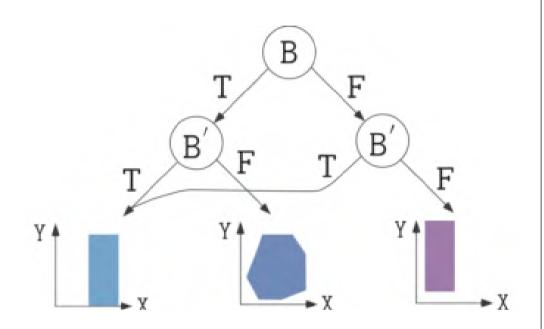
n = 2147483647, T[n] = 2147483647 Macintosh PPC n = 2147483647, T[n] = -1208492044 Macintosh Intel n = 2147483647, T[n] = -135294988 PC Intel 32 bits Bus error PC Intel 64 bits

Implicit specification

- Absence of runtime errors: overflows, division by zero, buffer overflow, null & dangling pointers, alignment errors, ...
- Semantics of runtime errors:
 - Terminating execution: stop (e.g. floating-point exceptions when traps are activated)
 - Predictable outcome: go on with worst case (e.g. signed integer overflows result in some integer, some options: e.g. modulo arithmetics)
 - Unpredictable outcome: stop (e.g. memory corruption)

Abstractions

Example of general purpose abstraction: octagons


- Invariants of the form $\pm x \pm y \leq c$, with $\mathcal{O}(\mathbf{N^2})$ memory and $\mathcal{O}(\mathbf{N^3})$ time cost.
- Example:

while (1) {
 R = A-Z;
 L = A;
 if (R>V)
 { ★ L = Z+V; }
}

- At ★, the interval domain gives
 L ≤ max(max A, (max Z)+(max V)).
- In fact, we have $L \leq A$.
- To discover this, we must know at \bigstar that R = A-Z and R > V.
- Here, R = A-Z cannot be discovered, but we get $L-Z \leq \max R$ which is sufficient.
- We use many octagons on small packs of variables instead of a large one using all variables to cut costs.

Example of general purpose abstraction: decision trees

```
/* boolean.c */
typedef enum {F=0,T=1} BOOL;
BOOL B;
void main () {
  unsigned int X, Y;
  while (1) {
    B = (X == 0);
    . . .
    if (!B) {
      Y = 1 / X;
    }
```


The boolean relation abstract domain is parameterized by the height of the decision tree (an analyzer option) and the abstract domain at the leaves

Example of domain-specific abstraction: ellipses

```
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
  BOOLEAN INIT; float P, X;
  void filter () {
    static float E[2], S[2];
    if (INIT) { S[0] = X; P = X; E[0] = X; }
    else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4)))
                + (S[0] * 1.5)) - (S[1] * 0.7)); \}
    E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
    /* S[0], S[1] in [-1327.02698354, 1327.02698354] */
  }
  void main () { X = 0.2 * X + 5; INIT = TRUE;
    while (1) {
      X = 0.9 * X + 35; /* simulated filter input
      filter (); INIT = FALSE; }
  }
                                 29
AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010
```

Example of domain-specific abstraction: exponentials

```
% cat count.c
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
volatile BOOLEAN I; int R; BOOLEAN T;
void main() {
 R = 0;
  while (TRUE) {
    __ASTREE_log_vars((R));
                                          \leftarrow potential overflow!
    if (I) { R = R + 1; }
    else { R = 0; }
    T = (R \ge 100);
    __ASTREE_wait_for_clock(());
 }}
% cat count.config
__ASTREE_volatile_input((I [0,1]));
__ASTREE_max_clock((3600000));
% astree -exec-fn main -config-sem count.config count.c|grep '|R|'
|R| <= 0. + clock *1. <= 3600001.
```

Example of domain-specific abstraction: exponentials

```
% cat retro.c
typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST:
volatile BOOL SWITCH;
volatile float E;
float P. X. A. B:
void dev( )
{ X=E;
  if (FIRST) { P = X; }
  else
    \{ P = (P - ((((2.0 * P) - A) - B)) \}
             * 4.491048e-03)); };
  B = A;
  if (SWITCH) \{A = P;\}
  else {A = X;}
}
```

```
void main()
{ FIRST = TRUE:
  while (TRUE) {
    dev();
    FIRST = FALSE:
    ASTREE wait for clock(());
  }}
% cat retro.config
__ASTREE_volatile_input((E [-15.0, 15.0]));
__ASTREE_volatile_input((SWITCH [0,1]));
__ASTREE_max_clock((3600000));
|P| <= (15. + 5.87747175411e-39
/ 1.19209290217e-07) * (1 +
1.19209290217e-07)<sup>clock</sup> - 5.87747175411e-39
/ 1.19209290217e-07 <= 23.0393526881
                                  x
```

An erroneous common belief on static analyzers

"The properties that can be proved by static analyzers are often simple" [2]

Like in mathematics:

- May be simple to state (no overflow)
- But harder to discover (s[0], s[1] in [-1327.02698354, 1327.02698354])
- And difficult to prove (since it requires finding a non trivial non-linear invariant for second order filters with complex roots [Fer04], which can hardly be found by exhaustive enumeration)

<u>Reference</u>

[2] Vijay D'Silva, Daniel Kroening, and Georg Weissenbacher. A Survey of Automated Techniques for Formal Software Verification. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 27, No. 7, July 2008.

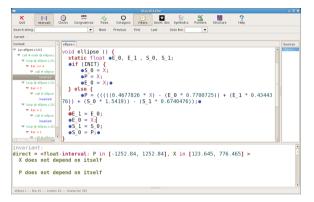
(

Industrial applications

Examples of applications

- Verification of the absence of runtime-errors in
 - Fly-by-wire flight control systems

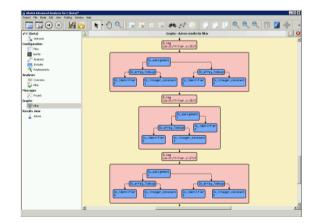
• ATV docking system


 Flight warning system (on-going work)

Industrialization

• 8 years of research (CNRS/ENS/INRIA):

www.astree.ens.fr



• Industrialization by AbsInt (since Jan. 2010):

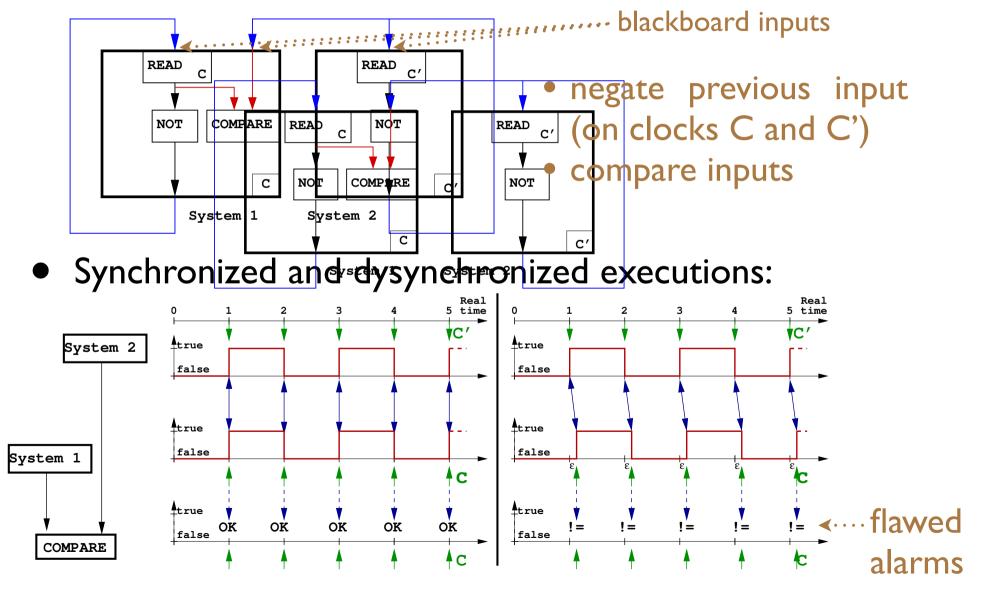
www.absint.com/astree/

Sector Description Image: Constraint of the sector	A Traine 0 Faire 0 Main 0
The set of	A [21152 13 math 0
The control of the control o	A Filter U Bala B
Advance 1 typeski meni (12022 - 0, TEEE - 1) BOOLER) Nobe 1 typeski meni (12022 - 0, TEEE - 1) BOOLER) Nobe 1 typeski meni (12022 - 0, TEEE - 1) BOOLER) Nobe 1 typeski meni (12022 - 0, TEEE - 1) BOOLER) Nobe 1 typeski meni (1202 - 0, TEEE - 1) BOOLER) Nobe 1 typeski meni (1202 - 0, TEEE - 1) BOOLER) Nobe 1 typeski meni (1202 - 0, TEEE - 1) BOOLER) Nobe 1 typeski meni (1202 - 0, TEEE - 1) BOOLER) Nobe 1 typeski meni (1202 - 0, TEEE - 1) BOOLER) Nobe 1 typeski meni (1202 - 0, TEEE - 1) BOOLER) Nobe 1 typeski meni (1202 - 0, TEEE - 1) BOOLER) Nobe 1 typeski meni (1202 - 0, TEEE - 1) BOOLER) Nobe 1 typeski meni (1202 - 1)	
2 Notes 1 DOLLAR BUT? Abade 4 Elat 1, 1; 2; 3 Parametti 4 Elat 1, 1; 2; 4 Parametti 5 Static Elat g(1), 1; 1; 1; 1; 1; 4 Parametti 5 Static Elat g(1), 1; 1; 1; 1; 1; 4 Parametti 5 Static Elat g(1), 1; 1; 1; 1; 1; 4 Parametti 5 Static Elat g(1), 1; 1; 1; 1; 1; 5 Parametti 1; 1; 2; 1; 2; 1; 2; 1; Static Elat g(1), 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;	
Dodd East 7, 1: Andorson Final 7, 1: Ama	98(1+1.5)-08(1+5.7)/g
A representation 1 ref dialized [1] 1 AD overve 0 0 (1) 1 1 AD overve 0 0 (1) 1	18(2) ¥1. 41)−(18(1)¥0,71) / ⊕
Anse I = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	3(0)=1.5()=(3(1)=0.7())0
D Owner 0 0 ≠ 4 (1177) (± 1.0.7 ± 1.0.1 /±	18(0)+1.5)-(8(1)+0.7)) 0
Tors 9 00(0) -21 None 10 97 = 21 9 Ownet 11 92(0) 9 9 Mont 11 92(0) 9 9 9 9 9 Mont 11 92(0) 9<	(8(0)*1.55)-(8(1)*0.75))0
yperiod 10 g + - + z_1 Quenet 11 g E(0) - + Lg Quenet 12) alse (13) alse (0.0 Quenet 13) alse (Quenet 13) alse (Quenet 14) alse (Quenet 15 g E(1) - E(0) Quenet 16 g (10) - 12 Maxwww 16 g (10) - 12	18(0)*1.59)-(8(1)*0.79)) 0
Tops 10 $0^{p} = \pi_{2}$ $[p]$ heret 11 $0 \pm 1(0) = -310$ 13 $1 \pm 1_{1}$ $1 \pm 1_{1}$ $[p]$ heret 13 $1 \pm 1_{1}$ $[p]$ heret 13 $1 \pm 1_{1}$ $[p]$ filter 13 $1 \pm 1_{1}$ $[p]$ filter $1 \pm 1_{1}$ $1 \pm 1_{1}$ $[m]$ filter $1 \pm 1_{1}$ $1 \pm 1_{1}$	(\${0}*1-5+)-{\${1}*0.7}} 0
Image: Control in the second	(\$(0)*1.5})-(\$(1)*0.7})) 0
bits 13 g.P = ((((0.5*3)-(E[0]*0.7))*(E[1]*0.4))+ in Boy 14) in Boy 15 g.E[1] = T[0] / ults view 16 g.E[0] = Z_2	(8(0)*1-5+)-(8(1)*0-7+). 0
Max 14 J 15 DT[1] E(0) / 16 GT(0) XJ	(s(c)+1.55)-(s(1)+0.75))0
15 0E(1) = E(0); 16 0E(0) = X;	
16 0 E [0] = E]	
17 0 \$(1) = \$(0) /	
18 05(0) - 7:0	
19 1	
20	
21 Yold main () (
22 oI = 0.2 * I + 5;	
23 O 2017 - TRUEJ	
24 O OWNELS (1) (
25 OX = 0.9 * X + 35J	
26 Ofilter ();	-
27 BINT - FALSEID	
Context	Invariant
Losi8/filter.si9i4 🛶	N 🖉 🖬 🎫 🖬 🕴 🔛 🚾 🔍 🕫 🖸
calification (integers (ntv+comp+hitfield+set) INIT in (1) >
loogd24=1 am	wal: I in [39.5, 39.500004], S[1] in [0.], S[0] in [0.],
	E[1] 1n (0.), E[0] 1n (0.) >
	100004*(0. + elock *0.) + 39.500005 <= 1.4220004e+008
	<pre>:c= 0.18000005*(0. + clock *0.) + 39.500005 <<= 1.4220006e+0</pre>
<ortagen:< td=""><td></td></ortagen:<>	
filter.oPi	#3 = E d= 39.500004, P = 0, −39.500004 d= P-X d= −39.5, 39.5 d= P-
(39.5 <=)	E <= 39.500004, P = 0, -39.500004 <= P-E <= -39.5, 39.5 <= P-

On-going work

Verification of target programs

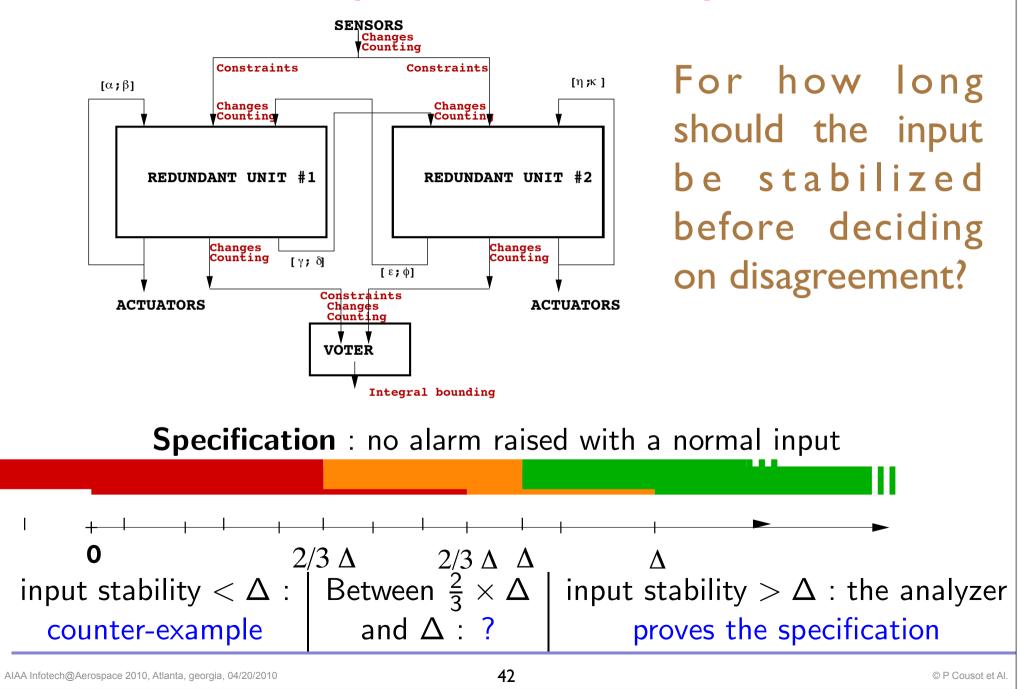
© P Cousot et Al.


Verification of compiled programs

- The valid source may be proved correct while the certified compiler is incorrect so the target program may go wrong
- Possible approaches:
 - Verification at the target level
 - Source to target proof translation and proof check on the target
 - Translation validation (local verification of equivalence of run-time error free source and target)
 - Formally certified compilers

Verification of imperfectly clocked synchronous systems

Imperfect synchrony


• Example of (buggy) communicating synchronous systems:

Semantics and abstractions

- Continuous semantics (value s(t) of signals s at any time t)
- Clock ticks and serial communications do happen in known time intervals $[l, h], l \leq h$
- Examples of abstractions:
 - $\forall t \in [a; b] : s(t) = x.$
 - $\exists t \in [a; b] : s(t) = x.$
 - change counting (≤ k, a ► <b) and (≥ k, a ► <b)
 (signal changes less (more) than k times in time interval [a, b])

Example of static analysis

THÉSÉE: Verification of embedded real-time parallel C programs

Parallel programs

- Bounded number of processes with shared memory, events, semaphores, message queues, blackboards,...
- Processes created at initialization only
- Real time operating system (ARINC 653) with fixed priorities (highest priority runs first)
- Scheduled on a single processor

Verified properties

- Absence of runtime errors
- Absence of unprotected data races

Semantics

- No memory consistency model for C
- Optimizing compilers consider sequential processes out of their execution context

init: flag1 = flag2 = 0		
process 1:	process 2:	
flag1 = 1;	flag2 = 1;	write to flag1/2 and
if (!flag2)	if (!flag1)	read of flag2/1 are
{	{	independent so can be
<pre>/* critical section */</pre>	<pre>/* critical section */</pre>	reordered → error!

• We assume:

- sequential consistency in absence of data race
- for data races, values are limited by possible interleavings between synchronization points

Abstractions

- Based on Astrée for the sequential processes
- Takes scheduling into account
- OS entry points (semaphores, logbooks, sampling and queuing ports, buffers, blackboards, ...) are all stubbed (using Astrée stubbing directives)
- Interference between processes: flow-insensitive abstraction of the writes to shared memory and inter-process communications

Example of application: FWS

- Degraded mode (5 processes, 100 000 LOCS)
 - Ih40 on 64-bit 2.66 GHz Intel server
 - 98 alarms
- Full mode (15 processes, 1 600 000 LOCS)
 - 50 h
 - 12 000 alarms <u>!!!</u> more work to be done <u>!!!</u> (e.g. analysis of complex data structures, logs, etc)

Conclusion

Cost-effective verification

- The rumor has it that:
 - Manuel validation (testing) is costly, unsafe, not a verification!
 - Formal proofs by theorem provers are extremely laborious hence costly
 - Model-checkers do not scale up
- Why not try abstract interpretation?
 - Domain-specific static analysis scales and can deliver no false alarm

The End