
Amir Pnueli Memorial Symposium
CIMS, NYU, New York, May 7—9, 2010

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Patrick Cousot
CIMS-NYU & ENS

joint work with Radhia Cousot and Laurent Mauborgne
 ENS & CNRS IMDEA & ENS

1

A Scalable Segmented Decision Tree
Abstract Domain

Dedicated to Amir

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Motivation

2

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot
3

All Computer Scientists Have Experienced Bugs

Ariane 5.01 failure Patriot failure Mars orbiter loss
(overflow) (float rounding) (unit error)

It is preferable to verify that mission/safety-critical pro-
grams do not go wrong before running them.

Sep. 5, 2006 September 5, 2006 J!!!— 3 — []¨—"""I ľ P. Cousot

• On-board checking the presence of bugs is great!

• Proving their absence automatically by static analysis
is even better!!!

Computer scientists have made great contri-
butions to the failure of complex systems

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Static analysis

4

• Automatic static analysis is extremely easy, but for
several serious problems:

• Formally defining the semantics of programming
languages and machines

• Minimizing efforts of developers and end-users

• Scaling up with enough precision

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Making static analysis very easy

• Choose a simple semantic model (e.g. transition
systems)

• Choose a uniform representation of properties (e.g.
terms in deductive methods, BDDs in model-
checking)

• Problems:

• Manuel assistance, and/or
• Combinatorial explosion, and/or
• Non-termination, and/or
• Unsoundness, and/or
• Imprecision (models are not programs)

5

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Origin of the combinatorial explosion:
disjunctions

• We have to compute iteratively

where is continuous on a cpo

that is

6

A Scalable Segmented Decision Tree
Abstract Domain

Patrick Cousot 2,3, Radhia Cousot 3,1, and Laurent Mauborgne 3,4

1 Centre National de la Recherche Scientifique
2 Courant Institute of Mathematical Sciences, New York University

3 École Normale Supérieure, Paris
4 Instituto Madrileño de Estudios Avanzados, Madrid

Dedicated to the memory of Amir Pnueli

1 Introduction

The key to precision and scalability in all formal methods for static program
analysis and verification is the handling of disjunctions arising in relational anal-
yses, the flow-sensitive traversal of conditionals and loops, the context-sensitive
inter-procedural calls, the interleaving of concurrent threads, etc. Explicit case
enumeration immediately yields to combinatorial explosion. The art of scalable
static analysis is therefore to abstract disjunctions to minimize cost while pre-
serving weak forms of disjunctions for expressivity.

Building upon packed binary decision trees to handle disjunction in tests,
loops and procedure/function calls and array segmentation to handle disjunc-
tions in array content analysis, we introduce segmented decision trees to allow
for more expressivity while mastering costs via widenings.

2 Semantic Disjunctions in Abstract Interpretation

The main problem in applying abstract interpretation [2, 5, 6] to static analysis is
to abstract a non-computable fixpoint collecting semantics lfp�⊥ F for a concrete
transformer F ∈ C �→ C, partial order �, and infimum ⊥ into an abstract
semantics lfp�

�

⊥� F � for an abstract transformer F � ∈ A �→ A, abstract order
��, and abstract infimum ⊥� where the existence of fixpoints is guaranteed by
Tarski’s theorem [21] on complete lattices or its extension to complete partial
orders (cpos). The collecting semantics is the specification of the undecidable
properties we want to collect about programs. The abstract semantics is an
effective approximation of the collecting semantics. For soundness, lfp�⊥ F �
γ(lfp�

�

⊥� F �) where γ ∈ A �→ C is the concretization function. Particular cases
involve a Galois connection �C, �� −−−→←−−−

α

γ
�A, ��� such that ∀x ∈ C : ∀y ∈ A :

α(x) �� y ⇐⇒ x � γ(y) and the case of completeness requiring α(lfp�⊥ F) =
lfp�

�

⊥� F �.
In general the concrete domain �C, �, ⊥, �� is a complete lattice or cpo

and the concrete transformer F is in disjunctive form F � �
i∈∆ Fi and often

A Scalable Segmented Decision Tree
Abstract Domain

Patrick Cousot 2,3, Radhia Cousot 3,1, and Laurent Mauborgne 3,4

1 Centre National de la Recherche Scientifique
2 Courant Institute of Mathematical Sciences, New York University

3 École Normale Supérieure, Paris
4 Instituto Madrileño de Estudios Avanzados, Madrid

Dedicated to the memory of Amir Pnueli

1 Introduction

The key to precision and scalability in all formal methods for static program
analysis and verification is the handling of disjunctions arising in relational anal-
yses, the flow-sensitive traversal of conditionals and loops, the context-sensitive
inter-procedural calls, the interleaving of concurrent threads, etc. Explicit case
enumeration immediately yields to combinatorial explosion. The art of scalable
static analysis is therefore to abstract disjunctions to minimize cost while pre-
serving weak forms of disjunctions for expressivity.

Building upon packed binary decision trees to handle disjunction in tests,
loops and procedure/function calls and array segmentation to handle disjunc-
tions in array content analysis, we introduce segmented decision trees to allow
for more expressivity while mastering costs via widenings.

2 Semantic Disjunctions in Abstract Interpretation

The main problem in applying abstract interpretation [2, 5, 6] to static analysis is
to abstract a non-computable fixpoint collecting semantics lfp�⊥ F for a concrete
transformer F ∈ C �→ C, partial order �, and infimum ⊥ into an abstract
semantics lfp�

�

⊥� F � for an abstract transformer F � ∈ A �→ A, abstract order
��, and abstract infimum ⊥� where the existence of fixpoints is guaranteed by
Tarski’s theorem [21] on complete lattices or its extension to complete partial
orders (cpos). The collecting semantics is the specification of the undecidable
properties we want to collect about programs. The abstract semantics is an
effective approximation of the collecting semantics. For soundness, lfp�⊥ F �
γ(lfp�

�

⊥� F �) where γ ∈ A �→ C is the concretization function. Particular cases
involve a Galois connection �C, �� −−−→←−−−

α

γ
�A, ��� such that ∀x ∈ C : ∀y ∈ A :

α(x) �� y ⇐⇒ x � γ(y) and the case of completeness requiring α(lfp�⊥ F) =
lfp�

�

⊥� F �.
In general the concrete domain �C, �, ⊥, �� is a complete lattice or cpo

and the concrete transformer F is in disjunctive form F � �
i∈∆ Fi and often

completely distributive (∀i ∈ ∆ : Fi(
�
j∈∆� Xj) =

�
j∈∆� Fi(Xj)) or continuous

(completely distributive on increasing chains).

In that most usual case, the iterative fixpoint computation X0
= ⊥, . . . ,

Xn+1
= F (Xn

), . . . , Xω
=

�
n�0 Xn

= lfp�⊥ F is X1
= F (⊥) =

�
i∈∆ Fi(⊥),

X2
= F (X1

) =
�

i∈∆ Fi(
�
j∈∆ Fj(⊥)) =

�
i,j∈∆2 Fi ◦ Fj(⊥), . . . , Xn+1

=

F (Xn
) =

�
i∈∆ Fi(

�
i1,...,in∈∆n Fi1 ◦ . . . ◦ Fin(⊥)) =

�
i1,...,in,in+1∈∆n+1 Fi1 ◦

. . . ◦ Fin
◦ Fin+1(⊥), . . . , so that passing to the limit lfp�⊥ F = Xω

=
�

n�0 Xn
=�

n�0

�
i1,...,in∈∆n Fi1 ◦ . . . ◦ Fin(⊥). This shows that the disjunctive explosion

problem appears in the concrete iterative fixpoint definition.

If the abstraction is a Galois connection, the abstraction preserves existing

joins. It follows that α(lfp�⊥ F) = α(
�

n�0

�
i1,...,in∈∆n Fi1 ◦ . . . ◦ Fin(⊥)) =

��
n�0

��
i1,...,in∈∆n α(Fi1 ◦ . . . ◦ Fin(⊥)) which is most often over approximated

as
��

n�0

��
i1,...,in∈∆n α ◦ Fi1 ◦ γ ◦ α ◦ Fi2 ◦ γ ◦ . . . ◦ α ◦ Fin

◦ γ(α(⊥))) ��

��
n�0

��
i1,...,in∈∆n F �

i1
◦ F �

i2
◦ . . . ◦ F �

in
(⊥�

)) = lfp�
�

⊥� F �
where ∀i ∈ ∆ : α ◦

Fi ◦ γ �� F �
i , F � � ��

i∈∆ F �
i and ⊥� � α(⊥). This shows that the disjunctive

explosion problem does also exist in the abstract.

The situation is even worst in absence of best abstraction, that is of a Galois

connection, since the concrete transformers Fi may have many, possibly non-

comparable, abstractions F �
i . In absence of minimal abstractions (as shown by

the abstraction of a disk by polyhedra [12]), infinitely many potential abstrac-

tions may exist. Choosing which abstraction should better be used during the

analysis is another source of potential combinatorial explosion.

3 Handling Disjunctions in Abstract Interpretation

Contrary to purely enumerative or symbolic encodings of program properties,

abstract interpretation offers solutions to the combinatorial explosion of disjunc-

tions so as to minimize computational costs. The key idea is to abstract away

irrelevant properties of the collecting semantics.

The abstract domain �A, ��, ⊥�, ��� can be chosen as finite (e.g. predicate

abstraction [3, 13]) or better of finite height (e.g. constant propagation [15]) to

bound n in lfp�
�

⊥� F �
=

��
n�0 F �n

(⊥�
)).

However this solution has been shown to have intrinsic limitations [8] that can

be eliminated thanks to infinite abstract domains not satisfying the ascending

chain condition together with widenings
�

and narrowings
�

[2, 4, 5] (including

the common practice of including the widening in the transformers F �
i , i ∈ ∆

mentioned in [9], by choosing λX .X
�

(α ◦ Fi ◦ γ(X)) �� F �
i , i ∈ ∆, which is

not such a good idea since it precludes the later use of a narrowing).

Moreover, in absence of a best abstraction, that is of a Galois connection, a

choice is usually made among the possible non-comparable abstractions F �
i of

the concrete transformers Fi to minimize costs [7].

completely distributive (∀i ∈ ∆ : Fi(
�
j∈∆� Xj) =

�
j∈∆� Fi(Xj)) or continuous

(completely distributive on increasing chains).

In that most usual case, the iterative fixpoint computation X0
= ⊥, . . . ,

Xn+1
= F (Xn

), . . . , Xω
=

�
n�0 Xn

= lfp�⊥ F is X1
= F (⊥) =

�
i∈∆ Fi(⊥),

X2
= F (X1

) =
�

i∈∆ Fi(
�
j∈∆ Fj(⊥)) =

�
i,j∈∆2 Fi ◦ Fj(⊥), . . . , Xn+1

=

F (Xn
) =

�
i∈∆ Fi(

�
i1,...,in∈∆n Fi1 ◦ . . . ◦ Fin(⊥)) =

�
i1,...,in,in+1∈∆n+1 Fi1 ◦

. . . ◦ Fin
◦ Fin+1(⊥), . . . , so that passing to the limit lfp�⊥ F = Xω

=
�

n�0 Xn
=�

n�0

�
i1,...,in∈∆n Fi1 ◦ . . . ◦ Fin(⊥). This shows that the disjunctive explosion

problem appears in the concrete iterative fixpoint definition.

If the abstraction is a Galois connection, the abstraction preserves existing

joins. It follows that α(lfp�⊥ F) = α(
�

n�0

�
i1,...,in∈∆n Fi1 ◦ . . . ◦ Fin(⊥)) =

��
n�0

��
i1,...,in∈∆n α(Fi1 ◦ . . . ◦ Fin(⊥)) which is most often over approximated

as
��

n�0

��
i1,...,in∈∆n α ◦ Fi1 ◦ γ ◦ α ◦ Fi2 ◦ γ ◦ . . . ◦ α ◦ Fin

◦ γ(α(⊥))) ��

��
n�0

��
i1,...,in∈∆n F �

i1
◦ F �

i2
◦ . . . ◦ F �

in
(⊥�

)) = lfp�
�

⊥� F �
where ∀i ∈ ∆ : α ◦

Fi ◦ γ �� F �
i , F � � ��

i∈∆ F �
i and ⊥� � α(⊥). This shows that the disjunctive

explosion problem does also exist in the abstract.

The situation is even worst in absence of best abstraction, that is of a Galois

connection, since the concrete transformers Fi may have many, possibly non-

comparable, abstractions F �
i . In absence of minimal abstractions (as shown by

the abstraction of a disk by polyhedra [12]), infinitely many potential abstrac-

tions may exist. Choosing which abstraction should better be used during the

analysis is another source of potential combinatorial explosion.

3 Handling Disjunctions in Abstract Interpretation

Contrary to purely enumerative or symbolic encodings of program properties,

abstract interpretation offers solutions to the combinatorial explosion of disjunc-

tions so as to minimize computational costs. The key idea is to abstract away

irrelevant properties of the collecting semantics.

The abstract domain �A, ��, ⊥�, ��� can be chosen as finite (e.g. predicate

abstraction [3, 13]) or better of finite height (e.g. constant propagation [15]) to

bound n in lfp�
�

⊥� F �
=

��
n�0 F �n

(⊥�
)).

However this solution has been shown to have intrinsic limitations [8] that can

be eliminated thanks to infinite abstract domains not satisfying the ascending

chain condition together with widenings
�

and narrowings
�

[2, 4, 5] (including

the common practice of including the widening in the transformers F �
i , i ∈ ∆

mentioned in [9], by choosing λX .X
�

(α ◦ Fi ◦ γ(X)) �� F �
i , i ∈ ∆, which is

not such a good idea since it precludes the later use of a narrowing).

Moreover, in absence of a best abstraction, that is of a Galois connection, a

choice is usually made among the possible non-comparable abstractions F �
i of

the concrete transformers Fi to minimize costs [7].

combinatorial explosion!

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Abstract interpretation

• Sound approximations of disjunctions (Galois
connection, widening/narrowing, etc)

• Abstract domains (efficient machine representation
of a class of abstract program properties & efficient
algorithms for implementing abstract operations
and transformers)

• Abstract domain functors for combining abstract
domains (e.g. reduced product, reduced cardinal
power, etc)

7

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Contribution

8

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Segmented decision tree functor

9

• A new abstract domain functor generalizing

• The binary decision tree functor
(L. Mauborgne)

• The array segmentation functor
(P. Cousot, R. Cousot & F. Logozzo)

to approximate disjunctions efficiently with
reasonable expressivity

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

The binary decision tree functor

10

Example of abstract domain functor in Astrée: decision trees

– Code Sample:
/* boolean.c */

typedef enum {F=0,T=1} BOOL;

BOOL B;

void main () {

unsigned int X, Y;

while (1) {

...

B = (X == 0);

...

if (!B) {

Y = 1 / X;

}

...

}

}

The boolean relation abstract do-
main is parameterized by the height
of the decision tree (an analyzer
option) and the abstract domain at
the leafs

MPI, 8/26/2008 — 66 — ľ P. Cousot

The boolean decision tree
abstract domain functor is
parameterized by the maximal
height of the decision tree (an
ana lyzer opt ion) and the
abstract domain at the leaves

Implemented in Astrée, http://www.astree.ens.fr/, http://www.absint.com/astree/

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

The array segmentation functor

11

 int n = 10;
 int i, A[n];
 i = 0;
/* 1: */
 while /* 2: */ (i < n) {
 p2 = [A: <{0} [0,0] {i}? [-oo,+oo] {n,10}?>
 i: [0,+oo] n: [10,10]]
/* 3: */
 A[i] = 0;
/* 4: */
 i = i + 1;
/* 5: */
 }
/* 6: */
p6 = [A: <{0} [0,0] {n,10,i}> i: [10 +oo] n: [10,10]]

 if i = 0;then
 block is empty (so
 array A is not
 initialized)
 else if i > 0 then
 A[0] = ... = A[i-1] = 0
 else (* i < 0 *)
 Impossible
 Array A is initialized to 0

Loop invariant at /* 2 */:

Implemented in Clousot, http://research.microsoft.com/apps/pubs/default.aspx?id=70614

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

The segmented decision
tree functor

12

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

The segmented decision tree functor

13

1) Abstract properties

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

An example of segmented decision tree

14

Example 5. The segmented decision tree (where false < true for booleans)

Y ! [-",0] Y ! [-10,1] Y ! [0,0]Y ! [-1,10] Y ! [0,+"]

B1: ! true !

X: ! I ! X: ! J ! M !0 < I = K ! N 1 < J = K+1 < M ! N

can be written in the parenthesized form

JB1 : JX {0 < I = K � N} : LY ∈ [−∞, 0] M I LY ∈ [−10, 1] M K true
JX {1 < J = K + 1 < M � N} :
LY ∈ [−1, 10] M J LY ∈ [0, 0] M M LY ∈ [0,+∞] M K K

This segmented decision tree encodes the fact that if B1 is false (i.e. B1 < true)
then if X < I then Y is non-positive while if X � I then −10 � Y � 1. Similarly,
if B1 is true (i.e. B1 � true) then either X < J and −1 � Y � 10, or J � X < M
and Y is null, or X > M and Y is non-negative. So the leaf nodes specify abstract
properties of Y while the decision nodes on B1 and X specifying conditions for
these properties to hold. Attached to each decision node, is a side relation on
expressions that holds in the concrete under the condition that this node is
reached. For example (B1 ∧ 1 < J = K + 1 < M � N) ∨ (¬B1 ∧ 0 < I = K �
N). These expressions are usually in a restricted normal form. In this example
the normal form of expressions is an integer constant, a variable, or a variable
plus an integer constant and the side relations are those expressible with the
octagon abstract domain [20]. The segment bounds are any representative of the
equivalent class of expressions which have equal concrete values (so that we could
have chosen K for I and K + 1 for J). The abstract domain of side relations is
assumed to be expressive enough to maintain such equality information between
expressions in normal form (i.e. I = K and J = K + 1). ��

As for boolean decision trees, an ordering is imposed on all decision variables.
That allows binary operations on decisions trees to operate on the same vari-
able 5. But unlike binary decision trees, the number of choices for a given variable
is not bounded a priori and the choices may be on different criteria (the bounds
in the symbolic segmentations) at each node, even if they have the same decision
variables.

As for simple array segmentation, the ordering of the bounds of each segment
describes an order on expressions. That means that segments could describe
5 In addition it may allow to eliminate the nodes with only one child, an optimization

we will not apply in this paper.

Decision nodes for a given
variable with totally ordered

values at a given level

false < true for Booleans

Segment delimited
by 2 expressions

Total order on
segment bound

expressions

The abstract domain at the leaves is a
parameter of the functor (here intervals)

I ≤ XX < I
 J ≤ X < M

X < J M ≤ X

RootExample 5. The segmented decision tree (where false < true for booleans)

Y ! [-",0] Y ! [-10,1] Y ! [0,0]Y ! [-1,10] Y ! [0,+"]

B1: ! true !

X: ! I ! X: ! J ! M !0 < I = K ! N 1 < J = K+1 < M ! N

can be written in the parenthesized form

JB1 : JX {0 < I = K � N} : LY ∈ [−∞, 0] M I LY ∈ [−10, 1] M K true
JX {1 < J = K + 1 < M � N} :
LY ∈ [−1, 10] M J LY ∈ [0, 0] M M LY ∈ [0,+∞] M K K

This segmented decision tree encodes the fact that if B1 is false (i.e. B1 < true)
then if X < I then Y is non-positive while if X � I then −10 � Y � 1. Similarly,
if B1 is true (i.e. B1 � true) then either X < J and −1 � Y � 10, or J � X < M
and Y is null, or X > M and Y is non-negative. So the leaf nodes specify abstract
properties of Y while the decision nodes on B1 and X specifying conditions for
these properties to hold. Attached to each decision node, is a side relation on
expressions that holds in the concrete under the condition that this node is
reached. For example (B1 ∧ 1 < J = K + 1 < M � N) ∨ (¬B1 ∧ 0 < I = K �
N). These expressions are usually in a restricted normal form. In this example
the normal form of expressions is an integer constant, a variable, or a variable
plus an integer constant and the side relations are those expressible with the
octagon abstract domain [20]. The segment bounds are any representative of the
equivalent class of expressions which have equal concrete values (so that we could
have chosen K for I and K + 1 for J). The abstract domain of side relations is
assumed to be expressive enough to maintain such equality information between
expressions in normal form (i.e. I = K and J = K + 1). ��

As for boolean decision trees, an ordering is imposed on all decision variables.
That allows binary operations on decisions trees to operate on the same vari-
able 5. But unlike binary decision trees, the number of choices for a given variable
is not bounded a priori and the choices may be on different criteria (the bounds
in the symbolic segmentations) at each node, even if they have the same decision
variables.

As for simple array segmentation, the ordering of the bounds of each segment
describes an order on expressions. That means that segments could describe
5 In addition it may allow to eliminate the nodes with only one child, an optimization

we will not apply in this paper.

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

The segmented decision tree abstract functor

15

γt.(J x {C} : t0b1t1 . . . bntn K) �
{ρ ∈ γc(C) | ∀i ∈ [1, n) : �bi�ρ � �bi+1�ρ ∧

(n = 0 ∨ ρ(x) < �b1�ρ) =⇒ ρ ∈ γt(t0) ∧
∀i ∈ [1, n) : (�bi�ρ � ρ(x) < �bi+1�ρ) =⇒ ρ ∈ γt(ti) ∧
(n > 0 ∧ ρ(x) � �bn�ρ) =⇒ ρ ∈ γt(tn)}

We introduce also the notation ⊥D for the decision tree in T((D, <D), E, Dc, D�)
such that each node is of the form J x {�C} : t K and the only leaf is L⊥� M ,
where �C is the top element of Dc and ⊥� is the bottom element of D�. When
D is clear from the context, we simply write ⊥.

7.1 Segmented Decision Tree Abstract Functor

The segmented decision tree abstract functor T((D, <D), E, Dc, D�) is a param-
eterized abstract domain taking as a parameter a totally ordered set (D, <D) of
decision variables, a set E of canonical expressions, an ordering abstract domain
Dc and a leaf abstract domain D� for the leaves.

The abstract domain D� for the leaves is usually the reduced product [6] of
several abstract domains, as was the case for binary decision trees in Sect. 4.
The list of abstract domains appearing in this reduced product at the leaves is
assumed to be an option of the static analyzer constructor. Therefore this option
specifies a particular instance of the segmented decision tree abstract functor
used to build a particular instance of the static analyzer for that option. The
advantage of this modular approach is that the static analyzer can be changed
by changing the options, without any re-programming.

The maximal height of the segmented decision trees is a parameter of the
static analysis which can therefore be changed before each run of the static
analyzer. A variable packing pre-analysis is used to determine which variables D
are chosen to appear in the decision and leave nodes. The number of variables in
the decision nodes is bounded by this maximal height. Following [11], the choice
of which expressions b1, . . . , bn ∈ E, n � 0 do appear in decision nodes is made
during the static analysis.

7.2 Reduction of an Abstract Property by a Segmented Decision
Tree

Given a segmented decision tree t and an abstract property p ∈ D of the variables
in abstract domain �D,�,⊥, �, �� with concretization γ, t�Dp is the abstraction
of the conjunction γt(t) ∩ γ(p) in the abstract domain D. It is the intersection
of p with the join of the abstract properties obtained along paths of t feasible
for p.

Example 6. In Ex. 5, the hypotheses that B1 is true and X < M imply that
Y ∈ [−1, 10]� [0, 0] = [−1, 10]. The implied condition collects information along

Domain of totally
ordered variables

Domain of
canonical bound

expressions

Domain of ordering
side conditions

Domain of leaves

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Controling costs

• The time and memory cost of relational abstract
domains grows polynomially/exponentially in the
number n of variables

• For segmented decision trees:

• Limit the bound expressions to a simple canonical
form (e.g. octagons)

• Limit the height of trees (e.g. 3/4)

• Variable packing (*) for side expressions

16

(*) a simple and cheap pre-analysis that groups interdependant variables into packs, leaving unrelated
variables in separate packs

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

The segmented decision tree functor

17

1I) Abstract operations

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Segment unification (cont’d)
• Abstract precondition:

• Assignment: B1 = ?

• Abstract postcondition:

18

Example 5. The segmented decision tree (where false < true for booleans)

Y ! [-",0] Y ! [-10,1] Y ! [0,0]Y ! [-1,10] Y ! [0,+"]

B1: ! true !

X: ! I ! X: ! J ! M !0 < I = K ! N 1 < J = K+1 < M ! N

can be written in the parenthesized form

JB1 : JX {0 < I = K � N} : LY ∈ [−∞, 0] M I LY ∈ [−10, 1] M K true
JX {1 < J = K + 1 < M � N} :
LY ∈ [−1, 10] M J LY ∈ [0, 0] M M LY ∈ [0,+∞] M K K

This segmented decision tree encodes the fact that if B1 is false (i.e. B1 < true)
then if X < I then Y is non-positive while if X � I then −10 � Y � 1. Similarly,
if B1 is true (i.e. B1 � true) then either X < J and −1 � Y � 10, or J � X < M
and Y is null, or X > M and Y is non-negative. So the leaf nodes specify abstract
properties of Y while the decision nodes on B1 and X specifying conditions for
these properties to hold. Attached to each decision node, is a side relation on
expressions that holds in the concrete under the condition that this node is
reached. For example (B1 ∧ 1 < J = K + 1 < M � N) ∨ (¬B1 ∧ 0 < I = K �
N). These expressions are usually in a restricted normal form. In this example
the normal form of expressions is an integer constant, a variable, or a variable
plus an integer constant and the side relations are those expressible with the
octagon abstract domain [20]. The segment bounds are any representative of the
equivalent class of expressions which have equal concrete values (so that we could
have chosen K for I and K + 1 for J). The abstract domain of side relations is
assumed to be expressive enough to maintain such equality information between
expressions in normal form (i.e. I = K and J = K + 1). ��

As for boolean decision trees, an ordering is imposed on all decision variables.
That allows binary operations on decisions trees to operate on the same vari-
able 5. But unlike binary decision trees, the number of choices for a given variable
is not bounded a priori and the choices may be on different criteria (the bounds
in the symbolic segmentations) at each node, even if they have the same decision
variables.

As for simple array segmentation, the ordering of the bounds of each segment
describes an order on expressions. That means that segments could describe
5 In addition it may allow to eliminate the nodes with only one child, an optimization

we will not apply in this paper.

Example 8. Consider the random assignment B1 =? to the boolean variable B1

in the context of Ex. 5. The subtrees of the two segments of B1 must be merged,

as follows

B1: !

Y ! [-",10] Y ! [-10,10] Y ! [-10,+"]

X: ! K ! K+1 ! 0 < K < K+1 ! N

The pre-orders on the decision variable X in Ex. 5 involve the bounds of the

decision variable and the equivalence classes of the expressions appearing in the

segmentation.

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1
!

0
!

I, K N
!

K+1K N+11
!

0
! ! !

The union of these pre-orders eliminates the variables I, J , and M since they

are not comparable in both pre-orders. For example the first pre-order may

correspond to a program context where I = K but this might not hold in the

program context corresponding to the second pre-order. However although K
and N might have different values in these two program contexts, the relation

K � N is valid in both program contexts and so is preserved in the union of the

pre-orders.

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

This union contains only one maximal chain

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

which yields a relation between (classes of equal) expressions which is valid in

both pre-orders and can therefore be attached to the merged node for X. The

segmentation for X in the merged tree is the subchain obtained by considering

classes of expressions with representatives appearing in either of the original

segmentations (that is K = I and K + 1 = J while 0, 1 and N did not appear).

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

– The subtree in the refined first segment X < K is the merge of the subtrees

of the corresponding segment Y ∈ [−∞, 0] on the left (X < I = K) and

Y ∈ [−1, 10] on the right (X < J = K + 1), that is Y ∈ [−∞, 0] � [−1, 10] =

[−∞, 10].

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Segment unification (cont’d)

19

Example 5. The segmented decision tree (where false < true for booleans)

Y ! [-",0] Y ! [-10,1] Y ! [0,0]Y ! [-1,10] Y ! [0,+"]

B1: ! true !

X: ! I ! X: ! J ! M !0 < I = K ! N 1 < J = K+1 < M ! N

can be written in the parenthesized form

JB1 : JX {0 < I = K � N} : LY ∈ [−∞, 0] M I LY ∈ [−10, 1] M K true
JX {1 < J = K + 1 < M � N} :
LY ∈ [−1, 10] M J LY ∈ [0, 0] M M LY ∈ [0,+∞] M K K

This segmented decision tree encodes the fact that if B1 is false (i.e. B1 < true)
then if X < I then Y is non-positive while if X � I then −10 � Y � 1. Similarly,
if B1 is true (i.e. B1 � true) then either X < J and −1 � Y � 10, or J � X < M
and Y is null, or X > M and Y is non-negative. So the leaf nodes specify abstract
properties of Y while the decision nodes on B1 and X specifying conditions for
these properties to hold. Attached to each decision node, is a side relation on
expressions that holds in the concrete under the condition that this node is
reached. For example (B1 ∧ 1 < J = K + 1 < M � N) ∨ (¬B1 ∧ 0 < I = K �
N). These expressions are usually in a restricted normal form. In this example
the normal form of expressions is an integer constant, a variable, or a variable
plus an integer constant and the side relations are those expressible with the
octagon abstract domain [20]. The segment bounds are any representative of the
equivalent class of expressions which have equal concrete values (so that we could
have chosen K for I and K + 1 for J). The abstract domain of side relations is
assumed to be expressive enough to maintain such equality information between
expressions in normal form (i.e. I = K and J = K + 1). ��

As for boolean decision trees, an ordering is imposed on all decision variables.
That allows binary operations on decisions trees to operate on the same vari-
able 5. But unlike binary decision trees, the number of choices for a given variable
is not bounded a priori and the choices may be on different criteria (the bounds
in the symbolic segmentations) at each node, even if they have the same decision
variables.

As for simple array segmentation, the ordering of the bounds of each segment
describes an order on expressions. That means that segments could describe
5 In addition it may allow to eliminate the nodes with only one child, an optimization

we will not apply in this paper.

Example 8. Consider the random assignment B1 =? to the boolean variable B1

in the context of Ex. 5. The subtrees of the two segments of B1 must be merged,

as follows

B1: !

Y ! [-",10] Y ! [-10,10] Y ! [-10,+"]

X: ! K ! K+1 ! 0 < K < K+1 ! N

The pre-orders on the decision variable X in Ex. 5 involve the bounds of the

decision variable and the equivalence classes of the expressions appearing in the

segmentation.

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1
!

0
!

I, K N
!

K+1K N+11
!

0
! ! !

The union of these pre-orders eliminates the variables I, J , and M since they

are not comparable in both pre-orders. For example the first pre-order may

correspond to a program context where I = K but this might not hold in the

program context corresponding to the second pre-order. However although K
and N might have different values in these two program contexts, the relation

K � N is valid in both program contexts and so is preserved in the union of the

pre-orders.

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

This union contains only one maximal chain

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

which yields a relation between (classes of equal) expressions which is valid in

both pre-orders and can therefore be attached to the merged node for X. The

segmentation for X in the merged tree is the subchain obtained by considering

classes of expressions with representatives appearing in either of the original

segmentations (that is K = I and K + 1 = J while 0, 1 and N did not appear).

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

– The subtree in the refined first segment X < K is the merge of the subtrees

of the corresponding segment Y ∈ [−∞, 0] on the left (X < I = K) and

Y ∈ [−1, 10] on the right (X < J = K + 1), that is Y ∈ [−∞, 0] � [−1, 10] =

[−∞, 10].

Segment unification

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

• Given two segments to unify:

• Build pre-orders with bounds and side conditions

• Eliminate expressions not comparable in both pre-orders:

• Choose a maximal chain (valid in both pre-orders)

• Keep representatives of bounds in either segment

• Merge the corresponding sub-trees
20

Example 8. Consider the random assignment B1 =? to the boolean variable B1

in the context of Ex. 5. The subtrees of the two segments of B1 must be merged,

as follows

B1: !

Y ! [-",10] Y ! [-10,10] Y ! [-10,+"]

X: ! K ! K+1 ! 0 < K < K+1 ! N

The pre-orders on the decision variable X in Ex. 5 involve the bounds of the

decision variable and the equivalence classes of the expressions appearing in the

segmentation.

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1
!

0
!

I, K N
!

K+1K N+11
!

0
! ! !

The union of these pre-orders eliminates the variables I, J , and M since they

are not comparable in both pre-orders. For example the first pre-order may

correspond to a program context where I = K but this might not hold in the

program context corresponding to the second pre-order. However although K
and N might have different values in these two program contexts, the relation

K � N is valid in both program contexts and so is preserved in the union of the

pre-orders.

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

This union contains only one maximal chain

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

which yields a relation between (classes of equal) expressions which is valid in

both pre-orders and can therefore be attached to the merged node for X. The

segmentation for X in the merged tree is the subchain obtained by considering

classes of expressions with representatives appearing in either of the original

segmentations (that is K = I and K + 1 = J while 0, 1 and N did not appear).

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

– The subtree in the refined first segment X < K is the merge of the subtrees

of the corresponding segment Y ∈ [−∞, 0] on the left (X < I = K) and

Y ∈ [−1, 10] on the right (X < J = K + 1), that is Y ∈ [−∞, 0] � [−1, 10] =

[−∞, 10].

Example 8. Consider the random assignment B1 =? to the boolean variable B1

in the context of Ex. 5. The subtrees of the two segments of B1 must be merged,

as follows

B1: !

Y ! [-",10] Y ! [-10,10] Y ! [-10,+"]

X: ! K ! K+1 ! 0 < K < K+1 ! N

The pre-orders on the decision variable X in Ex. 5 involve the bounds of the

decision variable and the equivalence classes of the expressions appearing in the

segmentation.

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1
!

0
!

I, K N
!

K+1K N+11
!

0
! ! !

The union of these pre-orders eliminates the variables I, J , and M since they

are not comparable in both pre-orders. For example the first pre-order may

correspond to a program context where I = K but this might not hold in the

program context corresponding to the second pre-order. However although K
and N might have different values in these two program contexts, the relation

K � N is valid in both program contexts and so is preserved in the union of the

pre-orders.

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

This union contains only one maximal chain

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

which yields a relation between (classes of equal) expressions which is valid in

both pre-orders and can therefore be attached to the merged node for X. The

segmentation for X in the merged tree is the subchain obtained by considering

classes of expressions with representatives appearing in either of the original

segmentations (that is K = I and K + 1 = J while 0, 1 and N did not appear).

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

– The subtree in the refined first segment X < K is the merge of the subtrees

of the corresponding segment Y ∈ [−∞, 0] on the left (X < I = K) and

Y ∈ [−1, 10] on the right (X < J = K + 1), that is Y ∈ [−∞, 0] � [−1, 10] =

[−∞, 10].

Example 8. Consider the random assignment B1 =? to the boolean variable B1

in the context of Ex. 5. The subtrees of the two segments of B1 must be merged,

as follows

B1: !

Y ! [-",10] Y ! [-10,10] Y ! [-10,+"]

X: ! K ! K+1 ! 0 < K < K+1 ! N

The pre-orders on the decision variable X in Ex. 5 involve the bounds of the

decision variable and the equivalence classes of the expressions appearing in the

segmentation.

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1
!

0
!

I, K N
!

K+1K N+11
!

0
! ! !

The union of these pre-orders eliminates the variables I, J , and M since they

are not comparable in both pre-orders. For example the first pre-order may

correspond to a program context where I = K but this might not hold in the

program context corresponding to the second pre-order. However although K
and N might have different values in these two program contexts, the relation

K � N is valid in both program contexts and so is preserved in the union of the

pre-orders.

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

This union contains only one maximal chain

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

which yields a relation between (classes of equal) expressions which is valid in

both pre-orders and can therefore be attached to the merged node for X. The

segmentation for X in the merged tree is the subchain obtained by considering

classes of expressions with representatives appearing in either of the original

segmentations (that is K = I and K + 1 = J while 0, 1 and N did not appear).

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

– The subtree in the refined first segment X < K is the merge of the subtrees

of the corresponding segment Y ∈ [−∞, 0] on the left (X < I = K) and

Y ∈ [−1, 10] on the right (X < J = K + 1), that is Y ∈ [−∞, 0] � [−1, 10] =

[−∞, 10].

Example 8. Consider the random assignment B1 =? to the boolean variable B1

in the context of Ex. 5. The subtrees of the two segments of B1 must be merged,

as follows

B1: !

Y ! [-",10] Y ! [-10,10] Y ! [-10,+"]

X: ! K ! K+1 ! 0 < K < K+1 ! N

The pre-orders on the decision variable X in Ex. 5 involve the bounds of the

decision variable and the equivalence classes of the expressions appearing in the

segmentation.

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1
!

0
!

I, K N
!

K+1K N+11
!

0
! ! !

The union of these pre-orders eliminates the variables I, J , and M since they

are not comparable in both pre-orders. For example the first pre-order may

correspond to a program context where I = K but this might not hold in the

program context corresponding to the second pre-order. However although K
and N might have different values in these two program contexts, the relation

K � N is valid in both program contexts and so is preserved in the union of the

pre-orders.

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

This union contains only one maximal chain

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

which yields a relation between (classes of equal) expressions which is valid in

both pre-orders and can therefore be attached to the merged node for X. The

segmentation for X in the merged tree is the subchain obtained by considering

classes of expressions with representatives appearing in either of the original

segmentations (that is K = I and K + 1 = J while 0, 1 and N did not appear).

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

– The subtree in the refined first segment X < K is the merge of the subtrees

of the corresponding segment Y ∈ [−∞, 0] on the left (X < I = K) and

Y ∈ [−1, 10] on the right (X < J = K + 1), that is Y ∈ [−∞, 0] � [−1, 10] =

[−∞, 10].

Example 5. The segmented decision tree (where false < true for booleans)

Y ! [-",0] Y ! [-10,1] Y ! [0,0]Y ! [-1,10] Y ! [0,+"]

B1: ! true !

X: ! I ! X: ! J ! M !0 < I = K ! N 1 < J = K+1 < M ! N

can be written in the parenthesized form

JB1 : JX {0 < I = K � N} : LY ∈ [−∞, 0] M I LY ∈ [−10, 1] M K true
JX {1 < J = K + 1 < M � N} :
LY ∈ [−1, 10] M J LY ∈ [0, 0] M M LY ∈ [0,+∞] M K K

This segmented decision tree encodes the fact that if B1 is false (i.e. B1 < true)
then if X < I then Y is non-positive while if X � I then −10 � Y � 1. Similarly,
if B1 is true (i.e. B1 � true) then either X < J and −1 � Y � 10, or J � X < M
and Y is null, or X > M and Y is non-negative. So the leaf nodes specify abstract
properties of Y while the decision nodes on B1 and X specifying conditions for
these properties to hold. Attached to each decision node, is a side relation on
expressions that holds in the concrete under the condition that this node is
reached. For example (B1 ∧ 1 < J = K + 1 < M � N) ∨ (¬B1 ∧ 0 < I = K �
N). These expressions are usually in a restricted normal form. In this example
the normal form of expressions is an integer constant, a variable, or a variable
plus an integer constant and the side relations are those expressible with the
octagon abstract domain [20]. The segment bounds are any representative of the
equivalent class of expressions which have equal concrete values (so that we could
have chosen K for I and K + 1 for J). The abstract domain of side relations is
assumed to be expressive enough to maintain such equality information between
expressions in normal form (i.e. I = K and J = K + 1). ��

As for boolean decision trees, an ordering is imposed on all decision variables.
That allows binary operations on decisions trees to operate on the same vari-
able 5. But unlike binary decision trees, the number of choices for a given variable
is not bounded a priori and the choices may be on different criteria (the bounds
in the symbolic segmentations) at each node, even if they have the same decision
variables.

As for simple array segmentation, the ordering of the bounds of each segment
describes an order on expressions. That means that segments could describe
5 In addition it may allow to eliminate the nodes with only one child, an optimization

we will not apply in this paper.

and

Example 5. The segmented decision tree (where false < true for booleans)

Y ! [-",0] Y ! [-10,1] Y ! [0,0]Y ! [-1,10] Y ! [0,+"]

B1: ! true !

X: ! I ! X: ! J ! M !0 < I = K ! N 1 < J = K+1 < M ! N

can be written in the parenthesized form

JB1 : JX {0 < I = K � N} : LY ∈ [−∞, 0] M I LY ∈ [−10, 1] M K true
JX {1 < J = K + 1 < M � N} :
LY ∈ [−1, 10] M J LY ∈ [0, 0] M M LY ∈ [0,+∞] M K K

This segmented decision tree encodes the fact that if B1 is false (i.e. B1 < true)
then if X < I then Y is non-positive while if X � I then −10 � Y � 1. Similarly,
if B1 is true (i.e. B1 � true) then either X < J and −1 � Y � 10, or J � X < M
and Y is null, or X > M and Y is non-negative. So the leaf nodes specify abstract
properties of Y while the decision nodes on B1 and X specifying conditions for
these properties to hold. Attached to each decision node, is a side relation on
expressions that holds in the concrete under the condition that this node is
reached. For example (B1 ∧ 1 < J = K + 1 < M � N) ∨ (¬B1 ∧ 0 < I = K �
N). These expressions are usually in a restricted normal form. In this example
the normal form of expressions is an integer constant, a variable, or a variable
plus an integer constant and the side relations are those expressible with the
octagon abstract domain [20]. The segment bounds are any representative of the
equivalent class of expressions which have equal concrete values (so that we could
have chosen K for I and K + 1 for J). The abstract domain of side relations is
assumed to be expressive enough to maintain such equality information between
expressions in normal form (i.e. I = K and J = K + 1). ��

As for boolean decision trees, an ordering is imposed on all decision variables.
That allows binary operations on decisions trees to operate on the same vari-
able 5. But unlike binary decision trees, the number of choices for a given variable
is not bounded a priori and the choices may be on different criteria (the bounds
in the symbolic segmentations) at each node, even if they have the same decision
variables.

As for simple array segmentation, the ordering of the bounds of each segment
describes an order on expressions. That means that segments could describe
5 In addition it may allow to eliminate the nodes with only one child, an optimization

we will not apply in this paper.

Example 8. Consider the random assignment B1 =? to the boolean variable B1

in the context of Ex. 5. The subtrees of the two segments of B1 must be merged,

as follows

B1: !

Y ! [-",10] Y ! [-10,10] Y ! [-10,+"]

X: ! K ! K+1 ! 0 < K < K+1 ! N

The pre-orders on the decision variable X in Ex. 5 involve the bounds of the

decision variable and the equivalence classes of the expressions appearing in the

segmentation.

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1
!

0
!

I, K N
!

K+1K N+11
!

0
! ! !

The union of these pre-orders eliminates the variables I, J , and M since they

are not comparable in both pre-orders. For example the first pre-order may

correspond to a program context where I = K but this might not hold in the

program context corresponding to the second pre-order. However although K
and N might have different values in these two program contexts, the relation

K � N is valid in both program contexts and so is preserved in the union of the

pre-orders.

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

This union contains only one maximal chain

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

which yields a relation between (classes of equal) expressions which is valid in

both pre-orders and can therefore be attached to the merged node for X. The

segmentation for X in the merged tree is the subchain obtained by considering

classes of expressions with representatives appearing in either of the original

segmentations (that is K = I and K + 1 = J while 0, 1 and N did not appear).

1
!

I, K N
!!

0

1 J-1, K M N
!!!

J, K+1
!

M-1
!

1 K N
!!!

K+1

1
!

0
!

K N
!

K+1K
!! !

1
!

0 N

K+1K
!! !

– The subtree in the refined first segment X < K is the merge of the subtrees

of the corresponding segment Y ∈ [−∞, 0] on the left (X < I = K) and

Y ∈ [−1, 10] on the right (X < J = K + 1), that is Y ∈ [−∞, 0] � [−1, 10] =

[−∞, 10].

()

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Union, intersection, comparison, etc

• Unify segmentations

• Perform operation segmentwise at the leaves

21

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Widening

• Unify segments using only common expressions in
both segmentations

• Use the side-conditions and leave abstract domain
widenings

• The number of expressions in segmentations can
only decrease and each segment is widened

) termination

22

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Assignment to leave variables

• Determine the feasible paths
• Perform assignments at the leaves (opportunistic

sharing)

23

Assignments to leaf variables An assignment to a variable appearing in the
leaf nodes only will determine the feasible paths to the leaves where it appears
and perform the assignments in each of these leaves (in the abstract domain of
the leaves).

Example 9. Assuming in Ex. 5 that nothing is known on the upper bound of
I, J , K, M , and N in the variable environment, the assignment Y = X will
determine that either ¬B1 in which case if X < I then else X � I > 0 so
Y ∈ [1,+∞] or B1 holds and so either X < J in which case Y ∈ [−∞,+∞], or
1 < J � X so Y ∈ [2,+∞], or else 1 < J < M � X and so Y ∈ [2,+∞]. We get

Y ! [-",+"] Y ! [1,+"] Y ! [3,+"]

B1: ! true !

X: ! I ! X: ! J ! M !0 < I = K ! N 1 < J = K+1 < M ! N

Y ! [2,+"]
��

In general the assignment of an expression to a variable involves some conditions
(such as absence of overflow, positiveness, non-nullity, etc) that have to be taken
into account by pruning the tree as in Sect. 7.3. In case where we have to do
such pruning, we can follow the same algorithm, but performing the assignment
at the leaves in addition to imposing the test.

Assignments to segment bound variables An assignment to a variable
appearing in segment bounds may be invertible, in which case segments which
were based on the old value of the variable can be expressed based on the new
value, or not invertible, in which case it is not possible to keep the segments
bounds when they are only expressible in terms of the old values of the assigned
variable.

More precisely, if the assignment can be expressed as b = f(b) and f invert-
ible, we can replace the variable b by f−1(b) in each expression appearing in
bounds of the decision tree, and that encodes the same property. To complete
the assignment, we must also carry it to incremental pre-orders at each node.

Example 10. Consider the assignment I = I − 1 in the context of Ex. 5. After
this assignment the old value Io of I (to which Ex. 5 is referring to) can be
expressed in terms of the new value In as In = Io−1 so Io = In +1 by inversion.
So, we get the post-condition of the assignment I = I−1 by replacing I by I +1

Example 5. The segmented decision tree (where false < true for booleans)

Y ! [-",0] Y ! [-10,1] Y ! [0,0]Y ! [-1,10] Y ! [0,+"]

B1: ! true !

X: ! I ! X: ! J ! M !0 < I = K ! N 1 < J = K+1 < M ! N

can be written in the parenthesized form

JB1 : JX {0 < I = K � N} : LY ∈ [−∞, 0] M I LY ∈ [−10, 1] M K true
JX {1 < J = K + 1 < M � N} :
LY ∈ [−1, 10] M J LY ∈ [0, 0] M M LY ∈ [0,+∞] M K K

This segmented decision tree encodes the fact that if B1 is false (i.e. B1 < true)
then if X < I then Y is non-positive while if X � I then −10 � Y � 1. Similarly,
if B1 is true (i.e. B1 � true) then either X < J and −1 � Y � 10, or J � X < M
and Y is null, or X > M and Y is non-negative. So the leaf nodes specify abstract
properties of Y while the decision nodes on B1 and X specifying conditions for
these properties to hold. Attached to each decision node, is a side relation on
expressions that holds in the concrete under the condition that this node is
reached. For example (B1 ∧ 1 < J = K + 1 < M � N) ∨ (¬B1 ∧ 0 < I = K �
N). These expressions are usually in a restricted normal form. In this example
the normal form of expressions is an integer constant, a variable, or a variable
plus an integer constant and the side relations are those expressible with the
octagon abstract domain [20]. The segment bounds are any representative of the
equivalent class of expressions which have equal concrete values (so that we could
have chosen K for I and K + 1 for J). The abstract domain of side relations is
assumed to be expressive enough to maintain such equality information between
expressions in normal form (i.e. I = K and J = K + 1). ��

As for boolean decision trees, an ordering is imposed on all decision variables.
That allows binary operations on decisions trees to operate on the same vari-
able 5. But unlike binary decision trees, the number of choices for a given variable
is not bounded a priori and the choices may be on different criteria (the bounds
in the symbolic segmentations) at each node, even if they have the same decision
variables.

As for simple array segmentation, the ordering of the bounds of each segment
describes an order on expressions. That means that segments could describe
5 In addition it may allow to eliminate the nodes with only one child, an optimization

we will not apply in this paper.

Y = X;

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Assignments to variables in segment bounds

• Invertible assignments:
 i’ = f(i)) i = f-1(i’)

• Replace i by f-1(i) in each segment bound
expression (and side conditions)

24

Example 5. The segmented decision tree (where false < true for booleans)

Y ! [-",0] Y ! [-10,1] Y ! [0,0]Y ! [-1,10] Y ! [0,+"]

B1: ! true !

X: ! I ! X: ! J ! M !0 < I = K ! N 1 < J = K+1 < M ! N

can be written in the parenthesized form

JB1 : JX {0 < I = K � N} : LY ∈ [−∞, 0] M I LY ∈ [−10, 1] M K true
JX {1 < J = K + 1 < M � N} :
LY ∈ [−1, 10] M J LY ∈ [0, 0] M M LY ∈ [0,+∞] M K K

This segmented decision tree encodes the fact that if B1 is false (i.e. B1 < true)
then if X < I then Y is non-positive while if X � I then −10 � Y � 1. Similarly,
if B1 is true (i.e. B1 � true) then either X < J and −1 � Y � 10, or J � X < M
and Y is null, or X > M and Y is non-negative. So the leaf nodes specify abstract
properties of Y while the decision nodes on B1 and X specifying conditions for
these properties to hold. Attached to each decision node, is a side relation on
expressions that holds in the concrete under the condition that this node is
reached. For example (B1 ∧ 1 < J = K + 1 < M � N) ∨ (¬B1 ∧ 0 < I = K �
N). These expressions are usually in a restricted normal form. In this example
the normal form of expressions is an integer constant, a variable, or a variable
plus an integer constant and the side relations are those expressible with the
octagon abstract domain [20]. The segment bounds are any representative of the
equivalent class of expressions which have equal concrete values (so that we could
have chosen K for I and K + 1 for J). The abstract domain of side relations is
assumed to be expressive enough to maintain such equality information between
expressions in normal form (i.e. I = K and J = K + 1). ��

As for boolean decision trees, an ordering is imposed on all decision variables.
That allows binary operations on decisions trees to operate on the same vari-
able 5. But unlike binary decision trees, the number of choices for a given variable
is not bounded a priori and the choices may be on different criteria (the bounds
in the symbolic segmentations) at each node, even if they have the same decision
variables.

As for simple array segmentation, the ordering of the bounds of each segment
describes an order on expressions. That means that segments could describe
5 In addition it may allow to eliminate the nodes with only one child, an optimization

we will not apply in this paper.

in the segmented decision tree of Ex. 5.

Y ! [-",0] Y ! [-10,1] Y ! [0,0]Y ! [-1,10] Y ! [0,+"]

B1: ! true !

X: ! I+1 ! X: ! J ! M !0 < I+1 = K ! N 1 < J = K+1 < M ! N

��

In case of non-invertible assignment to a variable b appearing in a bound, we

look at all bounds were b appears. If at that bound the pre-order information

can provide another expression that is known to be equal to the bound but that

does not contain b, we can replace the bound by that expression. Otherwise, we

drop the bound from the segmentation and merge the two consecutive subtrees

that were separated by that bound. As for the tests, if that results in only one

child for a node, we can push up the incremental pre-order information of that

child.

In addition, the assignment must be carried also in the incremental pre-

orders.

Assignments to decision variables For an invertible assignment X = f(X)

to a decision variable X where Xo (resp. Xn) is the value of X before (resp.

after) the assignment, we have Xn = f(Xo) such that Xo = f−1(Xn). The

segment conditions b � Xo are transformed into b � f−1(Xn) that is f(b) � Xn

when f is increasing and f(b) � Xn when f is decreasing. Similarly Xo < b are

transformed into f−1(Xn) < b that is Xn < f(b) when f is strictly increasing

and xn > f(b) when f is strictly decreasing. If f also depends on other decision

variables, their abstract value must be evaluated along the path to the nodes for

X.

Example 11. Consider the invertible assignment is X = int(B1) − X in Ex. 5
where int(false) = 0 and int(true) = 1 that is X = −X when B1 is false and

X = 1−X when B1 is true , which are both invertible assignments.

Y ! [-",0]Y ! [-10,1] Y ! [0,0] Y ! [-1,10]Y ! [0,+"]

B1: ! true !

X: ! -I ! X: ! 2-M ! 2-J !0 < I = K ! N 1 < J = K+1 < M ! N

��

I = I-1;

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Assignments to variables in segment bounds

• Non-invertible assignments:

• Replace expressions with that variable by an
equal one, if any in side condition

• Otherwise eliminate the segment bounds and
merge segments

• Take assignment into account in side conditions

25

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Assignments to decision variables

26

in the segmented decision tree of Ex. 5.

Y ! [-",0] Y ! [-10,1] Y ! [0,0]Y ! [-1,10] Y ! [0,+"]

B1: ! true !

X: ! I+1 ! X: ! J ! M !0 < I+1 = K ! N 1 < J = K+1 < M ! N

��

In case of non-invertible assignment to a variable b appearing in a bound, we

look at all bounds were b appears. If at that bound the pre-order information

can provide another expression that is known to be equal to the bound but that

does not contain b, we can replace the bound by that expression. Otherwise, we

drop the bound from the segmentation and merge the two consecutive subtrees

that were separated by that bound. As for the tests, if that results in only one

child for a node, we can push up the incremental pre-order information of that

child.

In addition, the assignment must be carried also in the incremental pre-

orders.

Assignments to decision variables For an invertible assignment X = f(X)

to a decision variable X where Xo (resp. Xn) is the value of X before (resp.

after) the assignment, we have Xn = f(Xo) such that Xo = f−1(Xn). The

segment conditions b � Xo are transformed into b � f−1(Xn) that is f(b) � Xn

when f is increasing and f(b) � Xn when f is decreasing. Similarly Xo < b are

transformed into f−1(Xn) < b that is Xn < f(b) when f is strictly increasing

and xn > f(b) when f is strictly decreasing. If f also depends on other decision

variables, their abstract value must be evaluated along the path to the nodes for

X.

Example 11. Consider the invertible assignment is X = int(B1) − X in Ex. 5
where int(false) = 0 and int(true) = 1 that is X = −X when B1 is false and

X = 1−X when B1 is true , which are both invertible assignments.

Y ! [-",0]Y ! [-10,1] Y ! [0,0] Y ! [-1,10]Y ! [0,+"]

B1: ! true !

X: ! -I ! X: ! 2-M ! 2-J !0 < I = K ! N 1 < J = K+1 < M ! N

��

Example 5. The segmented decision tree (where false < true for booleans)

Y ! [-",0] Y ! [-10,1] Y ! [0,0]Y ! [-1,10] Y ! [0,+"]

B1: ! true !

X: ! I ! X: ! J ! M !0 < I = K ! N 1 < J = K+1 < M ! N

can be written in the parenthesized form

JB1 : JX {0 < I = K � N} : LY ∈ [−∞, 0] M I LY ∈ [−10, 1] M K true
JX {1 < J = K + 1 < M � N} :
LY ∈ [−1, 10] M J LY ∈ [0, 0] M M LY ∈ [0,+∞] M K K

This segmented decision tree encodes the fact that if B1 is false (i.e. B1 < true)
then if X < I then Y is non-positive while if X � I then −10 � Y � 1. Similarly,
if B1 is true (i.e. B1 � true) then either X < J and −1 � Y � 10, or J � X < M
and Y is null, or X > M and Y is non-negative. So the leaf nodes specify abstract
properties of Y while the decision nodes on B1 and X specifying conditions for
these properties to hold. Attached to each decision node, is a side relation on
expressions that holds in the concrete under the condition that this node is
reached. For example (B1 ∧ 1 < J = K + 1 < M � N) ∨ (¬B1 ∧ 0 < I = K �
N). These expressions are usually in a restricted normal form. In this example
the normal form of expressions is an integer constant, a variable, or a variable
plus an integer constant and the side relations are those expressible with the
octagon abstract domain [20]. The segment bounds are any representative of the
equivalent class of expressions which have equal concrete values (so that we could
have chosen K for I and K + 1 for J). The abstract domain of side relations is
assumed to be expressive enough to maintain such equality information between
expressions in normal form (i.e. I = K and J = K + 1). ��

As for boolean decision trees, an ordering is imposed on all decision variables.
That allows binary operations on decisions trees to operate on the same vari-
able 5. But unlike binary decision trees, the number of choices for a given variable
is not bounded a priori and the choices may be on different criteria (the bounds
in the symbolic segmentations) at each node, even if they have the same decision
variables.

As for simple array segmentation, the ordering of the bounds of each segment
describes an order on expressions. That means that segments could describe
5 In addition it may allow to eliminate the nodes with only one child, an optimization

we will not apply in this paper.

X = int(B1)-X;

• Invertible assignments:
 x’ = f(x)) x = f-1(x’)

• Replace e ≤ x by e ≤ f-1(x’) that is

• f(e) ≤ x’ when f increasing

• f(e) ≥ x’ when f decreasing

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Assignments to decision variables

• Non-invertible assignment:

• merge segments related to assigned variable

• possible preserve information in side-
conditions

27

Example 5. The segmented decision tree (where false < true for booleans)

Y ! [-",0] Y ! [-10,1] Y ! [0,0]Y ! [-1,10] Y ! [0,+"]

B1: ! true !

X: ! I ! X: ! J ! M !0 < I = K ! N 1 < J = K+1 < M ! N

can be written in the parenthesized form

JB1 : JX {0 < I = K � N} : LY ∈ [−∞, 0] M I LY ∈ [−10, 1] M K true
JX {1 < J = K + 1 < M � N} :
LY ∈ [−1, 10] M J LY ∈ [0, 0] M M LY ∈ [0,+∞] M K K

This segmented decision tree encodes the fact that if B1 is false (i.e. B1 < true)
then if X < I then Y is non-positive while if X � I then −10 � Y � 1. Similarly,
if B1 is true (i.e. B1 � true) then either X < J and −1 � Y � 10, or J � X < M
and Y is null, or X > M and Y is non-negative. So the leaf nodes specify abstract
properties of Y while the decision nodes on B1 and X specifying conditions for
these properties to hold. Attached to each decision node, is a side relation on
expressions that holds in the concrete under the condition that this node is
reached. For example (B1 ∧ 1 < J = K + 1 < M � N) ∨ (¬B1 ∧ 0 < I = K �
N). These expressions are usually in a restricted normal form. In this example
the normal form of expressions is an integer constant, a variable, or a variable
plus an integer constant and the side relations are those expressible with the
octagon abstract domain [20]. The segment bounds are any representative of the
equivalent class of expressions which have equal concrete values (so that we could
have chosen K for I and K + 1 for J). The abstract domain of side relations is
assumed to be expressive enough to maintain such equality information between
expressions in normal form (i.e. I = K and J = K + 1). ��

As for boolean decision trees, an ordering is imposed on all decision variables.
That allows binary operations on decisions trees to operate on the same vari-
able 5. But unlike binary decision trees, the number of choices for a given variable
is not bounded a priori and the choices may be on different criteria (the bounds
in the symbolic segmentations) at each node, even if they have the same decision
variables.

As for simple array segmentation, the ordering of the bounds of each segment
describes an order on expressions. That means that segments could describe
5 In addition it may allow to eliminate the nodes with only one child, an optimization

we will not apply in this paper.

In case of non-invertible assignment, we cannot keep the segments related to

the assigned variable. So we merge the children of that variable. In case where

the assignment x=e can be represented exactly in the pre-order domain, then we

are as precise as possible. Otherwise, it is still possible to add some information

in the tree. For example if the expression is a monotone function over another

variable y smaller than x (for <D) then we can store the inequalities implied by

the segmentation over y into the incremental pre-orders associated with y. If

the variable is greater than x, we can do the same if all the nodes on y share a

bound.

Example 12. Consider the non-invertible assignment is X = int(B1). The post-

condition is preserved while selectively merging the children. Assuming int(b)
to be a canonical integer expression for canonical Boolean expressions b, we get:

Y ! [-1,+"]Y ! [-",1]

B1: ! true !

X: !

X = int(B1)

X: !

��

8 Abstracting Functions (and Array Contents)

Binary Decision Diagrams were originaly developped to represent boolean func-

tions [1]. In the same way, segmented decision trees can be used to approximate

functions over totaly ordered domains: we make decisions for each parameter

of the function, and the leaves of the tree represent the possible values of the

function for that constraint on the parameters.

Example 13. The function sinx, x ∈ [0, 2π] could be approximated by the seg-

mented decision tree Jx {0 � x � 2π} : L sinx : [0, 1] M π L sinx : [−1, 0] M K. ��

Formaly, a function f(x0, . . . , xn) can be seen as a set of vectors of size n+1

of the form < v0, . . . , vn, f(v0, . . . , vn) >. Then a property over functions is a

set of sets of vectors. The first abstraction we perform is to go back to sets of

vectors, by taking the union of the sets, then we are in a setting where we can

use segmented decision trees directly, with decision variables the first n variables

ordered by the order on parameters of the function. Such abstraction could be

very powerful to summarize functions and perform modular analyzes.

Multi-dimensional arrays can be seen as functions from index values to array

content. So we can use the same combination of abstractions and obtain precise

representations. Because arrays don’t have formal parameters, we just need a

convention to name to variables which will correspond to the array dimensions

X = int(B1);

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Abstracting functions and arrays

• f(x1,…,xn) : values at leaves are function of side-
conditions on decision variables x1,…,xn

 is

• Arrays A map the indexes (denoted Ai for
dimension i, i = 1,…,n) to values (denoted Av)

28

In case of non-invertible assignment, we cannot keep the segments related to

the assigned variable. So we merge the children of that variable. In case where

the assignment x=e can be represented exactly in the pre-order domain, then we

are as precise as possible. Otherwise, it is still possible to add some information

in the tree. For example if the expression is a monotone function over another

variable y smaller than x (for <D) then we can store the inequalities implied by

the segmentation over y into the incremental pre-orders associated with y. If

the variable is greater than x, we can do the same if all the nodes on y share a

bound.

Example 12. Consider the non-invertible assignment is X = int(B1). The post-

condition is preserved while selectively merging the children. Assuming int(b)
to be a canonical integer expression for canonical Boolean expressions b, we get:

Y ! [-1,+"]Y ! [-",1]

B1: ! true !

X: !

X = int(B1)

X: !

��

8 Abstracting Functions (and Array Contents)

Binary Decision Diagrams were originaly developped to represent boolean func-

tions [1]. In the same way, segmented decision trees can be used to approximate

functions over totaly ordered domains: we make decisions for each parameter

of the function, and the leaves of the tree represent the possible values of the

function for that constraint on the parameters.

Example 13. The function sinx, x ∈ [0, 2π] could be approximated by the seg-

mented decision tree Jx {0 � x � 2π} : L sinx : [0, 1] M π L sinx : [−1, 0] M K. ��

Formaly, a function f(x0, . . . , xn) can be seen as a set of vectors of size n+1

of the form < v0, . . . , vn, f(v0, . . . , vn) >. Then a property over functions is a

set of sets of vectors. The first abstraction we perform is to go back to sets of

vectors, by taking the union of the sets, then we are in a setting where we can

use segmented decision trees directly, with decision variables the first n variables

ordered by the order on parameters of the function. Such abstraction could be

very powerful to summarize functions and perform modular analyzes.

Multi-dimensional arrays can be seen as functions from index values to array

content. So we can use the same combination of abstractions and obtain precise

representations. Because arrays don’t have formal parameters, we just need a

convention to name to variables which will correspond to the array dimensions

In case of non-invertible assignment, we cannot keep the segments related to

the assigned variable. So we merge the children of that variable. In case where

the assignment x=e can be represented exactly in the pre-order domain, then we

are as precise as possible. Otherwise, it is still possible to add some information

in the tree. For example if the expression is a monotone function over another

variable y smaller than x (for <D) then we can store the inequalities implied by

the segmentation over y into the incremental pre-orders associated with y. If

the variable is greater than x, we can do the same if all the nodes on y share a

bound.

Example 12. Consider the non-invertible assignment is X = int(B1). The post-

condition is preserved while selectively merging the children. Assuming int(b)
to be a canonical integer expression for canonical Boolean expressions b, we get:

Y ! [-1,+"]Y ! [-",1]

B1: ! true !

X: !

X = int(B1)

X: !

��

8 Abstracting Functions (and Array Contents)

Binary Decision Diagrams were originaly developped to represent boolean func-

tions [1]. In the same way, segmented decision trees can be used to approximate

functions over totaly ordered domains: we make decisions for each parameter

of the function, and the leaves of the tree represent the possible values of the

function for that constraint on the parameters.

Example 13. The function sinx, x ∈ [0, 2π] could be approximated by the seg-

mented decision tree Jx {0 � x � 2π} : L sinx : [0, 1] M π L sinx : [−1, 0] M K. ��

Formaly, a function f(x0, . . . , xn) can be seen as a set of vectors of size n+1

of the form < v0, . . . , vn, f(v0, . . . , vn) >. Then a property over functions is a

set of sets of vectors. The first abstraction we perform is to go back to sets of

vectors, by taking the union of the sets, then we are in a setting where we can

use segmented decision trees directly, with decision variables the first n variables

ordered by the order on parameters of the function. Such abstraction could be

very powerful to summarize functions and perform modular analyzes.

Multi-dimensional arrays can be seen as functions from index values to array

content. So we can use the same combination of abstractions and obtain precise

representations. Because arrays don’t have formal parameters, we just need a

convention to name to variables which will correspond to the array dimensions

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Examples

29

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Partial array initialization

30

5: �x1 {0 < y = x1 < z < 100} : �x2 : � INIT � � �
6: �x1 {0 < y = x1 < z < 100, y < x2} : �x2 : � SPECIAL � � �
7: �x1 {0 < y = x1 < z < 100, x2 ≤ y} : �x2 : � COMP � � �
8: �x1 {0 < y = x1 < z < 100} : �x2 : � COMP � � y + 1 � SPECIAL � �
9: �x1 {0 ≤ x1 ≤ y ≤ z < 100, x1 < z, 0 < y} : �x2 : � INIT � � y �x2 : � COMP � �

y + 1 � SPECIAL � �
10: �x1 {0 ≤ x1 ≤ y < z < 101, x1 < z − 1, 0 < y} : �x2 : � INIT � �

y �x2 : � COMP � � y + 1 � SPECIAL � �
11: �x1 {0 ≤ x1 < y ≤ z < 101, x1 < z − 1, 1 < y} : �x2 : � INIT � �

y − 1 �x2 : � COMP � � y � SPECIAL � �
12: �x1 {0 ≤ x1 ≤ y ≤ z < 101, x1 < z − 1, 0 < y} : �x2 : � INIT � � y − 1

�x2 : � COMP ∪ INIT � y � COMP ∪ SPECIAL � � y

�x2 : � COMP � y � COMP ∪ SPECIAL � y + 1 � SPECIAL � � �
13: �x1 {1 < x1 < z < 101, 0 < y ≤ z} : �x2 : � INIT � � y

�x2 : � COMP ∪ INIT � y � COMP ∪ SPECIAL � � y + 1

�x2 : � COMP � y � COMP ∪ SPECIAL � y + 1 � SPECIAL � � �
14: �x1 {0 ≤ x1 < z < 101, 0 < y ≤ z} : �x2 : � INIT � � y − 1

�x2 : � COMP ∪ INIT � y � COMP ∪ SPECIAL ∪ INIT � � y

�x2 : � COMP ∪ INIT � y � COMP ∪ SPECIAL � � y + 1

�x2 : � COMP � y � COMP ∪ SPECIAL � y + 1 � SPECIAL � � �
2: = 14: without z < 101

�as the union of 14: and 2: is 14: here and this is the abstract loop invariant�
15: = 2:

16: �x1 {0 < y < x1 < z, y < x2, 99 < z} : �x2 : � SPECIAL � � �
�The assertion in 16: is proved correct.�

9.2 Partial Array Initialization

The program below partially initializes an array A.

int n; /* n > 0 */

int k, A[n];

/* 0: */ k = 0;

/* 1: */ while /* 2: */ (k < n) {

/* 3: */ if (k > 0) {

/* 4: */ A[k] = 0;

/* 5: */ };

/* 6: */ k = k+1;

/* 7: */ };

/* 8: */

The ordering abstract domain Dc is assumed to be the octagon abstract domain [20]).
Following Sect. 8, an array A is abstracted by two fresh variables A1 ∈ D to segment

indices A1 of array A, A1 ∈ [A.low, A.high] and a variable Av ∈ D standing for any value
of the array in a given segment such that Av <D A1 and Av is a leave. For leaves we use
constant propagation [15]. The loop invariant found at point 3 is

Av: 0Av: !

k: ! 2 !

A1: ! 1 ! k !A1: !

0 ! k < n

Av: !Av: !

The fixpoint iteration with widening is the following:

0: � k {0 < n, 0 � A1 < n} : � A1 : � Av : � � � � �k and A uninitialized�
�: ⊥ �� = 1, . . . , 8, infimum�
1:,2:,3:,6: � k {k = 0 < n} : � A1 : � Av : � � � � �0: where k = 0, k < n, k � 0�
7: � k {k = 1 � n} : � A1 : � Av : � � � � �6: where k = k + 1�
2:,3: � k {0 � k � 1, k < n} : � A1 : � Av : � � � � �joining 1: and 7:, test k < n�
4: � k {1 = k < n} : � A1 : � Av : � � � � �3: with k > 0�
5: � k {1 = k < n} : � A1 : � Av : � � 1 � Av : 0 � 2 � Av : � � � �

�4: with A[k] = 0 where k = 1�
6: � k {0 � k � 1, k < n} : � A1 {k = 0} : � Av : � � � 1

� A1 {k = 1} : � Av : � � 1 � Av : 0 � 2 � Av : � � � �
�joining 3: and k � 0 so k = 0 together with 5: where k = 1�

7: � k {1 � k � 2, k � n} : � A1 {k = 1} : � Av : � � � 2

� A1 {k = 2} : � Av : � � 1 � Av : 0 � 2 � Av : � � � � �6: where k = k + 1�
1: �t 7: � k {0 � k � 2, k � n} : � A1 {0 � k � 1} : � Av : � � � 2

� A1 {k = 2} : � Av : � � 1 � Av : 0 � 2 � Av : � � � � � �join of 1: and 7:�
2:,3: � k {0 � k < n} : � A1 {0 � k � 1} : � Av : � � � 2

� A1 : � Av : � � 1 � Av : 0 � k � Av : � � � � � �2: �
(1: �t 7)

7, test k < n�
4: � k {0 < k < n} : � A1 {k = 1} : � Av : � � � 2

� A1 : � Av : � � 1 � Av : 0 � k � Av : � � � � � �3: with k > 0�
5: � k {0 < k < n} : � A1 {k = 1} : � Av : � � 1 � Av : 0 � 2 � Av : � � � 2

� A1 : � Av : � � 1 � Av : 0 � k + 1 � Av : � � � � � �4: with A[k] = 0�
6: � k {0 � k < n} : � A1 {k = 0} : � Av : � � � 1

� A1 {k = 1} : � Av : � � 1 � Av : 0 � 2 � Av : � � � 2

� A1 : � Av : � � 1 � Av : 0 � k + 1 � Av : � � � � �
�joining 3: and k � 0 with 5:�

7: � k {0 < k � n} : � A1 {k = 1} : � Av : � � � 2

Loop invariant at /* 3 */:

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Partial matrix initialization

31

10: � M1 {0 < i � m, i � j = n} : � M2 : � Mv : � � 1 � Mv : 0 � � i− 1

� M2 : � Mv : � � i � Mv : 0 � � i � M2 : � Mv : � � �
� �9: and i = i+1;�

1: �t 10: � M1 {0 � i � m} : � M2 : � Mv : � � M1 + 1 � Mv : 0 � � i � M2 : � Mv : � � � �
�join of 1: and 10:(segments unification yields 1 ≤ M1 + 1 ≤ i for subtree
merges)�

2: � M1 {0 � i} : � M2 : � Mv : � � M1 + 1 � Mv : 0 � � i � M2 : � Mv : � � � �
�2: � (1: �t 10:), stabilization at a fixpoint�

11: � M1 {0 < m = i} : � M2 : � Mv : � � M1 + 1 � Mv : 0 � � �
�2: and i � m, program postcondition.�

10 Conclusion

Many static analyses are very impressive on small examples but fail to scale up. The
problem mainly originates from the explosion of possibles cases in handling disjunc-
tions. Mastering the exponential growth is the key to scalability, while enabling weak
forms of disjunction is essential to the precision which is necessary to avoid false alarms.
Based on two abstract domain functors that have shown experimentally to scale up, we
have proposed a new combination which expressivity is better than each of them taken
separately and which complexity can be mastered by imposing both static restrictions
(like maximal depth or variable packing) and dynamic restrictions (by widening to
control the breath of the tree).

References

1. Randal E. Bryant. Graph based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35:677–691, August 1986.

2. P. Cousot. Méthodes itératives de construction et d’approximation de points fi-
xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes (in
French). Thèse d’État ès sciences mathématiques, Université scientifique et médi-
cale de Grenoble, Grenoble, 21 March 1978.

3. P. Cousot. Verification by abstract interpretation. In N. Dershowitz, editor, Proc.
Int. Symp. on Verification – Theory & Practice – Honoring Zohar Manna’s 64th
Birthday, pages 243–268. LNCS 2772, Springer, Berlin, Taormina, 29 June – 4 July
2003.

4. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proc. 2nd Int. Symp. on Programming, pages 106–130, Paris, 1976. Dunod, Paris.

5. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th POPL,
pages 238–252, Los Angeles, 1977. ACM Press.

6. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
6th POPL, pages 269–282, San Antonio, 1979. ACM Press.

9 When a new branch is taken in a test within a loop the widening is usually delayed,
which we avoid to shorten the example.

� A1 {k = 2} : � Av : � � 1 � Av : 0 � 2 � Av : � � � 3

� A1 : � Av : � � 1 � Av : 0 � k � Av : � � � � � �6: where k = k + 1�
1: �t 7: � k {0 � k � n} : � A1 {0 � k � 1} : � Av : � � � 2

� A1 : � Av : � � 1 � Av : 0 � k � Av : � � � � � �join of 1: and 7:�
2:,3: � k {0 � k < n} : � A1 : � Av : � � � 2

� A1 : � Av : � � 1 � Av : 0 � k � Av : � � � � �
�2: �

(1: �t 7), test k < n, convergence, 3: is the abstract loop invariant�
8: � k {0 � k = n, 0 � A1 < n} : � A1 : � Av : � � � 2

� A1 {0 � k < n} : � Av : � � 1 � Av : 0 � � � �
�2: and k � n, program postcondition�

Observe that the segmented decision tree automatically discovers a partition of the

loop body as given by the condition k > 0 while the segmented array partitions the

values of the array elements according to variable k.

9.3 Multidimentional Arrays

The program below partially initializes a matrix M.

int m, n; /* m, n > 0 */
int i, j, M[m,n];

/* 0: */ i = 0;
/* 1: */ while /* 2: */ (i < m) {
/* 3: */ j = i+1;
/* 4: */ while /* 5: */ (j < n) {
/* 6: */ M[i,j] = 0;
/* 7: */ j = j+1;
/* 8: */ };
/* 9: */ i = i+1;
/* 10: */ };
/* 11: */

A global invariant is 0 ≤ M1 < m and 0 ≤ M2 < n, so we keep it implicit in the following

fixpoint iteration:

0: � M1 : � M2 : � Mv : � � � � �program precondition: i, j, and A uninitialized�
�: ⊥ �� = 1, . . . , 11, infimum�
1:,2:,3: � M1 {i = 0} : � M2 : � Mv : � � � � �0: with i = 0, i < m 8�
4:,5:,6: � M1 {i = 0, j = i + 1 = 1 < n} : � M2 : � Mv : � � � �

�3: with j = i+1;, j < n�
7: � M1 {i = 0, j = i + 1 = 1 < n} :

� M2 : � Mv : � � j � Mv : 0 � j + 1 � Mv : � � � i + 1 � M2 : � Mv : � � �
� �6: with M[i,j] = 0;�

7
When a new branch is taken in a test within a loop the widening is usually delayed,

which we avoid to shorten the example.

> 0 0 0 0 0 0 0 0 0
> > 0 0 0 0 0 0 0 0
> > > 0 0 0 0 0 0 0
> > > > 0 0 0 0 0 0
> > > > > 0 0 0 0 0
> > > > > > 0 0 0 0

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

The analysis computation is automatic, precise
and efficient

32

� A1 {k = 2} : � Av : � � 1 � Av : 0 � 2 � Av : � � � 3

� A1 : � Av : � � 1 � Av : 0 � k � Av : � � � � � �6: where k = k + 1�
1: �t 7: � k {0 � k � n} : � A1 {0 � k � 1} : � Av : � � � 2

� A1 : � Av : � � 1 � Av : 0 � k � Av : � � � � � �join of 1: and 7:�
2:,3: � k {0 � k < n} : � A1 : � Av : � � � 2

� A1 : � Av : � � 1 � Av : 0 � k � Av : � � � � �
�2: �

(1: �t 7), test k < n, convergence, 3: is the abstract loop invariant�
8: � k {0 � k = n, 0 � A1 < n} : � A1 : � Av : � � � 2

� A1 {0 � k < n} : � Av : � � 1 � Av : 0 � � � �
�2: and k � n, program postcondition�

Observe that the segmented decision tree automatically discovers a partition of the

loop body as given by the condition k > 0 while the segmented array partitions the

values of the array elements according to variable k.

9.3 Multidimentional Arrays

The program below partially initializes a matrix M.

int m, n; /* m, n > 0 */
int i, j, M[m,n];

/* 0: */ i = 0;
/* 1: */ while /* 2: */ (i < m) {
/* 3: */ j = i+1;
/* 4: */ while /* 5: */ (j < n) {
/* 6: */ M[i,j] = 0;
/* 7: */ j = j+1;
/* 8: */ };
/* 9: */ i = i+1;
/* 10: */ };
/* 11: */

A global invariant is 0 ≤ M1 < m and 0 ≤ M2 < n, so we keep it implicit in the following

fixpoint iteration:

0: � M1 : � M2 : � Mv : � � � � �program precondition: i, j, and A uninitialized�
�: ⊥ �� = 1, . . . , 11, infimum�
1:,2:,3: � M1 {i = 0} : � M2 : � Mv : � � � � �0: with i = 0, i < m 8�
4:,5:,6: � M1 {i = 0, j = i + 1 = 1 < n} : � M2 : � Mv : � � � �

�3: with j = i+1;, j < n�
7: � M1 {i = 0, j = i + 1 = 1 < n} :

� M2 : � Mv : � � j � Mv : 0 � j + 1 � Mv : � � � i + 1 � M2 : � Mv : � � �
� �6: with M[i,j] = 0;�

7
When a new branch is taken in a test within a loop the widening is usually delayed,

which we avoid to shorten the example.

8: � M1 {i = 0, j = i + 2 = 2 � n} :

� M2 : � Mv : � � j− 1 � Mv : 0 � j � Mv : � � � i + 1 � M2 : � Mv : � � �
� �7: with j = j+1;�

4: �t 8: � M1 {i = 0, i + 1 � j � i + 2 � n} :

� M2 : � Mv : � � 1 � Mv : 0 � j � Mv : � � � i + 1 � M2 : � Mv : � � �
� �join of 4: and 8:�

5: � M1 {i = 0, i + 1 � j � n} :

� M2 : � Mv : � � 1 � Mv : 0 � j � Mv : � � � i + 1 � M2 : � Mv : � � �
� �5: �

(4: �t 8:)
9�

9: � M1 {i = 0, i + 1 � j = n} : � M2 : � Mv : � � 1 � Mv : 0 � i + 1

� M2 : � Mv : � � � � �5: and j � n�
10: � M1 {i = 1, i � j = n} : � M2 : � Mv : � � 1 � Mv : 0 � � i � M2 : � Mv : � � � �

�9: and i = i+1;�
1: �t 10: � M1 {i = 1, i � j = n} : � M2 : � Mv : � � 1 � Mv : 0 � � i � M2 : � Mv : � � � �

�join of 1: and 10:�
2: � M1 {0 � i} : � M2 : � Mv : � � 1 � Mv : 0 � � i � M2 : � Mv : � � � �

�2: �
(1: �t 10:)�

3: � M1 {0 � i < m} : � M2 : � Mv : � � 1 � Mv : 0 � � i � M2 : � Mv : � � � �
�2: and j < n�

4:,5:,6: � M1 {0 � i < m, j = i + 1 < n} :

� M2 : � Mv : � � 1 � Mv : 0 � � i � M2 : � Mv : � � �
� �3:, j = i+1; and j < n�

7: � M1 {0 � i < m, j = i + 1 < n} : � M2 : � Mv : � � 1 � Mv : 0 � � i

� M2 : � Mv : � � j � Mv : 0 � j + 1 � Mv : � � � i + 1 � M2 : � Mv : � � �
� �6: and M[i, j] = 0;�

8: � M1 {0 � i < m, j = i + 2 � n} : � M2 : � Mv : � � 1 � Mv : 0 � n � i

� M2 : � Mv : � � j− 1 � Mv : 0 � j � Mv : � � � i + 1 � M2 : � Mv : � � �
� �7: with j = j+1;�

4: �t 8: � M1 {0 � i < m, i + 1 � j � i + 2 � n} : � M2 : � Mv : � � 1 � Mv : 0 � � i

� M2 : � Mv : � � i + 1 � Mv : 0 � j � Mv : � � � i + 1 � M2 : � Mv : � � �
� �join of 4: and 8:�

5: � M1 {0 � i < m, i + 1 � j � n} : � M2 : � Mv : � � 1 � Mv : 0 � � i

� M2 : � Mv : � � i + 1 � Mv : 0 � j � Mv : � � � i + 1 � M2 : � Mv : � � �
� �5: �

(4: �t 8:)�
9: � M1 {0 � i < m, i + 1 � j = n} : � M2 : � Mv : � � 1 � Mv : 0 � � i

� M2 : � Mv : � � i + 1 � Mv : 0 � � i + 1 � M2 : � Mv : � � �
� �5: and j � n�

8: � M1 {i = 0, j = i + 2 = 2 � n} :

� M2 : � Mv : � � j− 1 � Mv : 0 � j � Mv : � � � i + 1 � M2 : � Mv : � � �
� �7: with j = j+1;�

4: �t 8: � M1 {i = 0, i + 1 � j � i + 2 � n} :

� M2 : � Mv : � � 1 � Mv : 0 � j � Mv : � � � i + 1 � M2 : � Mv : � � �
� �join of 4: and 8:�

5: � M1 {i = 0, i + 1 � j � n} :

� M2 : � Mv : � � 1 � Mv : 0 � j � Mv : � � � i + 1 � M2 : � Mv : � � �
� �5: �

(4: �t 8:)
9�

9: � M1 {i = 0, i + 1 � j = n} : � M2 : � Mv : � � 1 � Mv : 0 � i + 1

� M2 : � Mv : � � � � �5: and j � n�
10: � M1 {i = 1, i � j = n} : � M2 : � Mv : � � 1 � Mv : 0 � � i � M2 : � Mv : � � � �

�9: and i = i+1;�
1: �t 10: � M1 {i = 1, i � j = n} : � M2 : � Mv : � � 1 � Mv : 0 � � i � M2 : � Mv : � � � �

�join of 1: and 10:�
2: � M1 {0 � i} : � M2 : � Mv : � � 1 � Mv : 0 � � i � M2 : � Mv : � � � �

�2: �
(1: �t 10:)�

3: � M1 {0 � i < m} : � M2 : � Mv : � � 1 � Mv : 0 � � i � M2 : � Mv : � � � �
�2: and j < n�

4:,5:,6: � M1 {0 � i < m, j = i + 1 < n} :

� M2 : � Mv : � � 1 � Mv : 0 � � i � M2 : � Mv : � � �
� �3:, j = i+1; and j < n�

7: � M1 {0 � i < m, j = i + 1 < n} : � M2 : � Mv : � � 1 � Mv : 0 � � i

� M2 : � Mv : � � j � Mv : 0 � j + 1 � Mv : � � � i + 1 � M2 : � Mv : � � �
� �6: and M[i, j] = 0;�

8: � M1 {0 � i < m, j = i + 2 � n} : � M2 : � Mv : � � 1 � Mv : 0 � n � i

� M2 : � Mv : � � j− 1 � Mv : 0 � j � Mv : � � � i + 1 � M2 : � Mv : � � �
� �7: with j = j+1;�

4: �t 8: � M1 {0 � i < m, i + 1 � j � i + 2 � n} : � M2 : � Mv : � � 1 � Mv : 0 � � i

� M2 : � Mv : � � i + 1 � Mv : 0 � j � Mv : � � � i + 1 � M2 : � Mv : � � �
� �join of 4: and 8:�

5: � M1 {0 � i < m, i + 1 � j � n} : � M2 : � Mv : � � 1 � Mv : 0 � � i

� M2 : � Mv : � � i + 1 � Mv : 0 � j � Mv : � � � i + 1 � M2 : � Mv : � � �
� �5: �

(4: �t 8:)�
9: � M1 {0 � i < m, i + 1 � j = n} : � M2 : � Mv : � � 1 � Mv : 0 � � i

� M2 : � Mv : � � i + 1 � Mv : 0 � � i + 1 � M2 : � Mv : � � �
� �5: and j � n�

10: � M1 {0 < i � m, i � j = n} : � M2 : � Mv : � � 1 � Mv : 0 � � i− 1

� M2 : � Mv : � � i � Mv : 0 � � i � M2 : � Mv : � � �
� �9: and i = i+1;�

1: �t 10: � M1 {0 � i � m} : � M2 : � Mv : � � M1 + 1 � Mv : 0 � � i � M2 : � Mv : � � � �
�join of 1: and 10:(segments unification yields 1 ≤ M1 + 1 ≤ i for subtree
merges)�

2: � M1 {0 � i} : � M2 : � Mv : � � M1 + 1 � Mv : 0 � � i � M2 : � Mv : � � � �
�2: � (1: �t 10:), stabilization at a fixpoint�

11: � M1 {0 < m = i} : � M2 : � Mv : � � M1 + 1 � Mv : 0 � � �
�2: and i � m, program postcondition.�

10 Conclusion

Many static analyses are very impressive on small examples but fail to scale up. The
problem mainly originates from the explosion of possibles cases in handling disjunc-
tions. Mastering the exponential growth is the key to scalability, while enabling weak
forms of disjunction is essential to the precision which is necessary to avoid false alarms.
Based on two abstract domain functors that have shown experimentally to scale up, we
have proposed a new combination which expressivity is better than each of them taken
separately and which complexity can be mastered by imposing both static restrictions
(like maximal depth or variable packing) and dynamic restrictions (by widening to
control the breath of the tree).

References

1. Randal E. Bryant. Graph based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35:677–691, August 1986.

2. P. Cousot. Méthodes itératives de construction et d’approximation de points fi-
xes d’opérateurs monotones sur un treillis, analyse sémantique de programmes (in
French). Thèse d’État ès sciences mathématiques, Université scientifique et médi-
cale de Grenoble, Grenoble, 21 March 1978.

3. P. Cousot. Verification by abstract interpretation. In N. Dershowitz, editor, Proc.
Int. Symp. on Verification – Theory & Practice – Honoring Zohar Manna’s 64th
Birthday, pages 243–268. LNCS 2772, Springer, Berlin, Taormina, 29 June – 4 July
2003.

4. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proc. 2nd Int. Symp. on Programming, pages 106–130, Paris, 1976. Dunod, Paris.

5. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th POPL,
pages 238–252, Los Angeles, 1977. ACM Press.

6. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
6th POPL, pages 269–282, San Antonio, 1979. ACM Press.

9 When a new branch is taken in a test within a loop the widening is usually delayed,
which we avoid to shorten the example.

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Conclusion

33

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

Abstract domain (functors)

34

• Abstract domains efficiently encode classes of
program properties and operations on these
properties

• The approach requires more work than universal
representations but is much more efficient

• Abstract domain functors combine abstract
domains to produce many instanciated powerful
abstract domain at various levels of cost/precision

• Key to scalability with precision in abstract
interpretation

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7—9, 2010 © P. Cousot

The End, Thank You

35

