A Scalable Segmented Decision Tree Abstract Domain

Dedicated to Amir

Patrick Cousot CIMS-NYU & ENS joint work with Radhia Cousot and Laurent Mauborgne ENS & CNRS IMDEA & ENS Amir Pnueli Memorial Symposium CIMS, NYU, New York, May 7—9, 2010

Motivation

Computer scientists have made great contributions to the failure of complex systems

Ariane 5.01 failure Patriot failure Mars orbiter loss (overflow) (float rounding) (unit error)

- On-board checking the presence of bugs is great!
- Proving their absence automatically by static analysis is even better!!!

Static analysis

- Automatic static analysis is extremely easy, but for several serious problems:
 - Formally defining the semantics of programming languages and machines
 - Minimizing efforts of developers and end-users
 - Scaling up with enough precision

Making static analysis very easy

- Choose a simple semantic model (e.g. transition systems)
- Choose a uniform representation of properties (e.g. terms in deductive methods, BDDs in model-checking)
- Problems:
 - Manuel assistance, and/or
 - Combinatorial explosion, and/or
 - Non-termination, and/or
 - Unsoundness, and/or
 - Imprecision (models are not programs)

Origin of the combinatorial explosion: disjunctions

• We have to compute iteratively

where
$$F \triangleq \bigsqcup_{i \in \Delta} F_i$$
 is continuous on a cpo

 $\mathbf{lfp} \sqsubseteq F$

that is

$$\begin{aligned} \mathbf{lfp}_{\perp}^{\sqsubseteq} F &= X^{\omega} = \bigsqcup_{n \geqslant 0} X^{n} = \\ \bigsqcup_{n \geqslant 0} \bigsqcup_{i_{1}, \dots, i_{n} \in \Delta^{n}} F_{i_{1}} \circ \dots \circ F_{i_{n}}(\bot) \end{aligned}$$
combinatorial explosion!

Abstract interpretation

- Sound approximations of disjunctions (Galois connection, widening/narrowing, etc)
- Abstract domains (efficient machine representation of a class of abstract program properties & efficient algorithms for implementing abstract operations and transformers)
- Abstract domain functors for combining abstract domains (e.g. reduced product, reduced cardinal power, etc)

Contribution

8

Segmented decision tree functor

- A new abstract domain functor generalizing
 - The binary decision tree functor (L. Mauborgne)
 - The array segmentation functor (P. Cousot, R. Cousot & F. Logozzo)

to approximate disjunctions efficiently with reasonable expressivity

The binary decision tree functor

```
/* boolean.c */
typedef enum {F=0,T=1} BOOL;
BOOL B;
void main () {
  unsigned int X, Y;
  while (1) {
    B = (X == 0);
    . . .
    if (!B) {
      Y = 1 / X;
    }
     . . .
}
```


Implemented in Astrée, http://www.astree.ens.fr/, http://www.absint.com/astree/

The array segmentation functor

Loop invariant at /* 2 */: if i = 0; then block is empty (so array A is not initialized) else if i > 0 then A[0] = ... = A[i-1] = 0else (* i < 0 *) Impossible

Array A is initialized to 0

Implemented in Clousot, http://research.microsoft.com/apps/pubs/default.aspx?id=70614

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7-9, 2010

The segmented decision tree functor

The segmented decision tree functor

I) Abstract properties

13

An example of segmented decision tree

The abstract domain at the leaves is a \therefore parameter of the functor (here intervals)

This segmented decision tree encodes the fact that if B_1 is false (i.e. $B_1 < true$) then if X < I then Y is non-positive while if $X \ge I$ then $-10 \le Y \le 1$. Similarly, if B_1 is true (i.e. $B_1 \ge true$) then either X < J and $-1 \le Y \le 10$, or $J \le X < M$ and Y is null, or X > M and Y is non-negative.

14

Controling costs

- The time and memory cost of relational abstract domains grows polynomially/exponentially in the number *n* of variables
- For segmented decision trees:
 - Limit the bound expressions to a simple canonical form (e.g. octagons)
 - Limit the height of trees (e.g. 3/4)
 - Variable packing ^(*) for side expressions

^(*) a simple and cheap pre-analysis that groups interdependant variables into packs, leaving unrelated variables in separate packs

The segmented decision tree functor

II) Abstract operations

Amir Pnueli Memorial Symposium, CIMS, NYU, New York, NY, May 7-9, 2010

Union, intersection, comparison, etc

- Unify segmentations
- Perform operation segmentwise at the leaves

Widening

- Unify segments using only common expressions in both segmentations
- Use the side-conditions and leave abstract domain widenings
- The number of expressions in segmentations can only decrease and each segment is widened

\Rightarrow termination

Assignment to leave variables

- Determine the feasible paths
- Perform assignments at the leaves (opportunistic sharing)

Assignments to variables in segment bounds

• Invertible assignments:

 $i' = f(i) \Rightarrow i = f^{-1}(i')$

Replace *i* by *f⁻¹(i)* in each segment bound expression (and side conditions)

Assignments to variables in segment bounds

- Non-invertible assignments:
 - Replace expressions with that variable by an equal one, if any in side condition
 - Otherwise eliminate the segment bounds and merge segments
 - Take assignment into account in side conditions

Assignments to decision variables

- Non-invertible assignment:
 - merge segments related to assigned variable
 - possible preserve information in sideconditions

Abstracting functions and arrays

 f(x₁,...,x_n) : values at leaves are function of sideconditions on decision variables x₁,...,x_n

 $\sin x, \ x \in [0, 2\pi] \quad \text{is} \quad [x \{0 \le x \le 2\pi\} : (\sin x : [0, 1]) \ \pi \ (\sin x : [-1, 0])]]$

 Arrays A map the indexes (denoted A_i for dimension i, i = 1,...,n) to values (denoted A_v)

Examples

Partial array initialization

Partial matrix initialization

```
int m, n; /* m, n > 0 */
int i, j, M[m,n];
/* 0: */ i = 0;
/* 1: */ while /* 2: */ (i < m) {
/* 3: */ j = i+1;
/* 4: */ while /* 5: */ (j < n) {
/* 6: */ M[i,j] = 0;
/* 7: */ j = j+1;
/* 8: */ };
/* 9: */ i = i+1;
/* 10: */ };
/* 11: */
```

11: $\llbracket M1 \{ 0 < m = i \} : \llbracket M2 : (Mv : \top) M1 + 1 (Mv : 0) \rrbracket \rrbracket$

31

The analysis computation is automatic, precise and efficient

32

```
0:
          [M1 : [M2 : (|Mv : ⊤)]]
                                                           /program precondition: i, j, and A uninitialized
\ell:
                                                                                                \ell \ell = 1, \ldots, 11, \text{ infimum}
          70: with i = 0, i < m^8
1:,2:,3: [M1 \{ i = 0 \} : [M2 : (Mv : \top)]]
4:,5:,6: [M1 \{ i = 0, j = i + 1 = 1 < n \} : [M2 : (Mv : \top)]]
                                                                                              3: with j = i+1;, j < n
          [M1 \{ i = 0, j = i + 1 = 1 < n \}:
7:
                  \llbracket \mathsf{M2} : (\llbracket \mathsf{Mv} : \top \rrbracket) j (\llbracket \mathsf{Mv} : 0 \rrbracket) j + 1 (\llbracket \mathsf{Mv} : \top \rrbracket) \rrbracket i + 1 \llbracket \rrbracket \mathsf{M2} : (\llbracket \mathsf{Mv} : \top \rrbracket) \rrbracket
                                                                                                    76: \text{ with } M[i, j] = 0; 
          M1 \{ i = 0, j = i + 2 = 2 \le n \}:
8:
              [M2: (Mv:\top) ] - 1 (Mv:0) ] (Mv:\top) ] i + 1 [M2: (Mv:\top)]
                                                                                                          7: \text{ with } i = i+1; 
4: \sqcup_t 8: \llbracket M1 \{ i = 0, i + 1 \leq j \leq i + 2 \leq n \}:
                     [M2: (Mv:\top) \ 1 \ (Mv:0) \ j \ (Mv:\top) \ ] \ i+1 \ [M2: (Mv:\top) \ ]
                                                                                                           2 join of 4: and 8:
          \llbracket \mathtt{M1} \{ \mathtt{i} = 0, \, \mathtt{i} + 1 \leqslant \mathtt{j} \leqslant \mathtt{n} \} :
5:
              [M2: (Mv: \top) \ 1 \ (Mv: 0) \ j \ (Mv: \top) \ ] \ i+1 \ [M2: (Mv: \top) \ ]
                                                                                                           75: \nabla (4: \sqcup_t 8:)^9
          [M1 \{ i = 0, i + 1 \leq j = n \} : [M2 : (Mv : \top)] 1 (Mv : 0)] i + 1
9:
              [M2 : (Mv : ⊤)]]
                                                                                                                 75: and j \ge n
10: [M1 \{ i = 1, i \leq j = n \} : [M2 : (Mv : \top)] 1 (Mv : 0)] i [M2 : (Mv : \top)]]
                                                                                                           79: \text{ and } i = i+1; 
1: \sqcup_t 10: [M1 \{ i = 1, i \leq j = n \}: [M2 : (Mv : \top) 1 (Mv : 0)] i [M2 : (Mv : \top)]
                                                                                                         i_{join of 1: and 10:}
          \llbracket \mathsf{M1} \left\{ 0 \leqslant \mathbf{i} \right\} : \llbracket \mathsf{M2} : \left( \mathsf{Mv} : \top \right) \ 1 \ \left( \mathsf{Mv} : 0 \right) \ \rrbracket \mathbf{i} \ \llbracket \mathsf{M2} : \left( \mathsf{Mv} : \top \right) \ \rrbracket \right]
2:
                                                                                                             2: \nabla (1: \sqcup_t 10:)
          \llbracket \mathsf{M1} \left\{ 0 \leqslant \mathsf{i} < \mathsf{m} \right\} : \llbracket \mathsf{M2} : \left( \mathsf{Mv} : \top \right) \ 1 \ \left( \mathsf{Mv} : 0 \right) \\ \rrbracket \ \mathsf{i} \ \llbracket \mathsf{M2} : \left( \mathsf{Mv} : \top \right) \\ \rrbracket \\ \rrbracket \\ \rrbracket
3:
                                                                                                                2: and j < n
4:,5:,6: [M1 \{ 0 \le i < m, j = i + 1 < n \}:
                      [M2: (Mv:\top) 1 (Mv:0)] i [M2: (Mv:\top)]
                                                                                                (3:, j = i+1; and j < n)
```

```
7:
         [M1 \{0 \le i < m, j = i + 1 < n\} : [M2 : (Mv : \top)] 1 (Mv : 0)]
                  \llbracket M2 : (Mv : \top) i (Mv : 0) i + 1 (Mv : \top) \rrbracket i + 1 \llbracket M2 : (Mv : \top) \rrbracket
                                                                                                      76: \text{ and } M[i, j] = 0;
        \llbracket M1 \{ 0 \leq i < m, j = i + 2 \leq n \} : \llbracket M2 : (\llbracket Mv : \top \rrbracket) \ 1 \ (\llbracket Mv : 0 \rrbracket) \ n \rrbracket i
8:
                  \llbracket \mathsf{M2} : (\llbracket \mathsf{Mv} : \top \rrbracket) = 1 (\llbracket \mathsf{Mv} : 0 \rrbracket) = (\llbracket \mathsf{Mv} : \top \rrbracket) = 1 + 1 \llbracket \mathsf{M2} : (\llbracket \mathsf{Mv} : \top \rrbracket) 
                                                                                                            7: \text{ with } j = j+1;
4: \sqcup_t 8:  [M1 {0 ≤ i < m, i + 1 ≤ j ≤ i + 2 ≤ n} : [M2 : (Mv : \top) 1 (Mv : 0)] i
                     \llbracket M2: (Mv:\top) i+1 (Mv:0) j (Mv:\top) ]i+1 \llbracket M2: (Mv:\top) \rrbracket
                                                                                                              i join of 4: and 8:
        \llbracket \mathsf{M1} \left\{ 0 \leq \mathtt{i} < \mathtt{m}, \, \mathtt{i} + 1 \leq \mathtt{j} \leq \mathtt{n} \right\} : \llbracket \mathsf{M2} : \, \left( \mathsf{Mv} : \top \right) \, 1 \, \left( \mathsf{Mv} : 0 \right) \, \right] \, \mathtt{i}
5:
                  \llbracket \mathsf{M2} : (\mathsf{Mv} : \top) \mathbf{i} + 1 (\mathsf{Mv} : 0) \mathbf{j} (\mathsf{Mv} : \top) \rrbracket \mathbf{i} + 1 \llbracket \mathsf{M2} : (\mathsf{Mv} : \top) \rrbracket
                                                                                                                 75: \nabla (4: \sqcup_t 8:)
         \llbracket M1 \{ 0 \leq i < m, i+1 \leq j=n \} : \llbracket M2 : (Mv : \top) 1 (Mv : 0) \rrbracket i
9:
                 \llbracket \mathsf{M2} : ( \mathsf{Mv} : \top ) \mathsf{i} + 1 ( \mathsf{Mv} : 0 ) \rrbracket \mathsf{i} + 1 \llbracket \mathsf{M2} : ( \mathsf{Mv} : \top ) \rrbracket
                                                                                                                    75: and j \ge n
10: [M1 \{ 0 < i \le m, i \le j = n \} : [M2 : (Mv : \top)] 1 (Mv : 0)] = 1
                  [M2: (Mv:\top) i (Mv:0)] i [M2: (Mv:\top)]
                                                                                                                79: \text{ and } i = i+1; 
1: \sqcup_t 10: [[M1 \{ 0 \le i \le m \} : [[M2 : ([Mv : \top])] M1 + 1 ([Mv : 0])]] i [[M2 : ([Mv : \top])]]]
                  ioin of 1: and 10: (segments unification yields 1 \le M1 + 1 \le i for subtree
                    merges)
           [[M1 \{ 0 \leq i \} : [[M2 : ([Mv : \top]) M1 + 1 ([Mv : 0])]] i [[M2 : ([Mv : \top])]]]
2:
                                                                    2: \Box (1: \sqcup_t 10:), stabilization at a fixpoint)
          [M1 \{0 < m = i\} : [M2 : (Mv : \top) M1 + 1 (Mv : 0)]]
11:
                                                                             2: and i \ge m, program postcondition.
```

Conclusion

Abstract domain (functors)

- Abstract domains efficiently encode classes of program properties and operations on these properties
- The approach requires more work than universal representations but is much more efficient
- Abstract domain functors combine abstract domains to produce many instanciated powerful abstract domain at various levels of cost/precision
- Key to scalability with precision in abstract interpretation

The End, Thank You