A Scalable Segmented Decision Tree

 Abstract DomainDedicated to Amir

> Patrick Cousot CIMS-NYU \& ENS
joint work with Radhia Cousot and Laurent Mauborgne ENS \& CNRS IMDEA \& ENS

Amir Pnueli Memorial Symposium
CIMS, NYU, New York, May 7-9, 2010

Motivation

Computer scientists have made great contributions to the failure of complex systems

Ariane 5.01 failure (overflow) (float rounding)

Mars orbiter loss (unit error)

- On-board checking the presence of bugs is great!
- Proving their absence automatically by static analysis is even better!!!

Static analysis

- Automatic static analysis is extremely easy, but for several serious problems:
- Formally defining the semantics of programming languages and machines
- Minimizing efforts of developers and end-users
- Scaling up with enough precision

Making static analysis very easy

- Choose a simple semantic model (e.g. transition systems)
- Choose a uniform representation of properties (e.g. terms in deductive methods, BDDs in modelchecking)
- Problems:
- Manuel assistance, and/or
- Combinatorial explosion, and/or
- Non-termination, and/or
- Unsoundness, and/or
- Imprecision (models are not programs)

Origin of the combinatorial explosion: disjunctions

- We have to compute iteratively

$$
\boldsymbol{\operatorname { l f }} \underset{\perp}{\sqsubseteq} F
$$

where $\quad F \triangleq \bigsqcup_{i \in \Delta} F_{i}$ is continuous on a cpo that is

$$
\begin{aligned}
& \operatorname{lfp}_{\perp}^{\sqsubseteq} F=X^{\omega}=\bigsqcup_{n \geqslant 0} X^{n}= \\
& \underbrace{\bigsqcup_{n \geqslant 0} \bigsqcup_{i_{1}, \ldots, i_{n} \in \Delta^{n}}} F_{i_{1}} \circ \ldots \circ F_{i_{n}}(\perp)
\end{aligned}
$$

combinatorial explosion!

Abstract interpretation

- Sound approximations of disjunctions (Galois connection, widening/narrowing, etc)
- Abstract domains (efficient machine representation of a class of abstract program properties \& efficient algorithms for implementing abstract operations and transformers)
- Abstract domain functors for combining abstract domains (e.g. reduced product, reduced cardinal power, etc)

Contribution

Segmented decision tree functor

- A new abstract domain functor generalizing
- The binary decision tree functor (L. Mauborgne)
- The array segmentation functor (P. Cousot, R. Cousot \& F. Logozzo)
to approximate disjunctions efficiently with reasonable expressivity

The binary decision tree functor

```
/* boolean.c */
typedef enum {F=0,T=1} BOOL;
BOOL B;
void main () {
    unsigned int X, Y;
    while (1) {
    B = (X == 0);
    if (!B) {
        Y = 1 / X;
        }
    }
}
```


The boolean decision tree abstract domain fünctor is parameterized by the maximal height of the decision tree (an analyzer option) and the abstract domain at the leaves

The array segmentation functor

```
    int \(n=10\);
    int i, A[n];
    i = 0;
/* 1: */
    while /* 2: */ (i < n) \{
    \(p 2=[A:<\{0\}[0,0]\{i\} ?[-00,+\infty]\{n, 10\} ?>\)
                    \(\mathrm{i}:[0,+\infty] \mathrm{n}:[10,10]]\)
/* 3: */
    \(A[i]=0 ;\)
/* 4: */
    \(\mathrm{i}=\mathrm{i}+1 ;\)
/* 5: */
    \}
\(p 6=[A:<\{0\}[0,0]\{n, 10, i\}>i:[10+\infty] n:[10,10]]\)
```

Loop invariant at /* 2 *:
if $\mathrm{i}=0$; then
block is empty (so array A is not initialized)
else if $\mathrm{i}>0$ then
$A[0]=\ldots=A[i-1]=0$
else (* i < 0 *)
Impossible
Array A is initialized to 0

The segmented decision tree functor

The segmented decision tree functor

I) Abstract properties

An example of segmented decision tree

Decision nodes for a given variable with totally ordered values at a given level

false < true for Booleans

Segment delimited
by 2 expressions
Total order on segment bound

- expressions

The abstract domain at the leaves is a
parameter of the functor (here intervals)
This segmented decision tree encodes the fact that if B_{1} is false (i.e. $B_{1}<$ true) then if $X<I$ then Y is non-positive while if $X \geqslant I$ then $-10 \leqslant Y \leqslant 1$. Similarly, if B_{1} is true (i.e. $B_{1} \geqslant$ true) then either $X<J$ and $-1 \leqslant Y \leqslant 10$, or $J \leqslant X<M$ and Y is null, or $X>M$ and Y is non-negative.

The segmented decision tree abstract functor

$$
\mathbb{T}\left(\left(\mathbb{D},<_{\mathbb{D}}\right), \mathbb{E}, D_{c}, D_{\ell}\right)
$$

Domain of totally ordered variables

Domain of
canonical bound
expressions

Domain of ordering side conditions

Controling costs

- The time and memory cost of relational abstract domains grows polynomially/exponentially in the number n of variables
- For segmented decision trees:
- Limit the bound expressions to a simple canonical form (e.g. octagons)
- Limit the height of trees (e.g. 3/4)
- Variable packing ${ }^{(*)}$ for side expressions
${ }^{(*)}$ a simple and cheap pre-analysis that groups interdependant variables into packs, leaving unrelated variables in separate packs

The segmented decision tree functor

II) Abstract operations

Segment unification

- Abstract precondition:

- Assignment:

$$
B_{1}=\text { ? }
$$

- Abstract postcondition:

Segment unification (cont'd)

Segment unification

- Given two segments to unify:

- Build pre-orders with bounds and side conditions

- Eliminate expressions not comparable in both pre-orders:

- Choose a maximal chain (valid in both pre-orders)

- Keep representatives of bounds in either segment

(0,1 and N did not appear)
- Merge the corresponding sub-trees

Union, intersection, comparison, etc

- Unify segmentations
- Perform operation segmentwise at the leaves

Widening

- Unify segments using only common expressions in both segmentations
- Use the side-conditions and leave abstract domain widenings
- The number of expressions in segmentations can only decrease and each segment is widened \Rightarrow termination

Assignment to leave variables

- Determine the feasible paths
- Perform assignments at the leaves (opportunistic sharing)

Assignments to variables in segment bounds

- Invertible assignments:

$$
i^{\prime}=f(i) \Rightarrow i=f^{-1}\left(i^{\prime}\right)
$$

- Replace i by $f^{-1}(i)$ in each segment bound expression (and side conditions)

$$
I=I-1 ;
$$

Assignments to variables in segment bounds

- Non-invertible assignments:
- Replace expressions with that variable by an equal one, if any in side condition
- Otherwise eliminate the segment bounds and merge segments
- Take assignment into account in side conditions

Assignments to decision variables

- Invertible assignments:

$$
x^{\prime}=f(x) \Rightarrow x=f^{-1}\left(x^{\prime}\right)
$$

- Replace $e \leq x$ by $e \leq f^{-1}\left(x^{\prime}\right)$ that is
- $f(e) \leq x^{\prime} \quad$ when f increasing
- $f(e) \geq x^{\prime} \quad$ when f decreasing

Assignments to decision variables

- Non-invertible assignment:
- merge segments related to assigned variable
- possible preserve information in sideconditions

Abstracting functions and arrays

- $f\left(x_{1}, \ldots, x_{n}\right)$: values at leaves are function of sideconditions on decision variables x_{1}, \ldots, x_{n}
$\sin x, x \in[0,2 \pi]$ is $\llbracket x\{0 \leqslant x \leqslant 2 \pi\}:(\sin x:[0,1]) \pi(\sin x:[-1,0]) \rrbracket$
- Arrays A map the indexes (denoted A_{i} for dimension $i, i=1, \ldots, n$) to values (denoted A_{v})

Examples

Partial array initialization

$$
\begin{aligned}
& \text { int } \mathrm{n} ; / * \mathrm{n}>0 \text { */ } \\
& \text { int } k, A[n] \text {; } \\
& \text { /* 0: */ k = 0; } \\
& \text { /* 1: */ while /* 2: */ (k < n) \{ } \\
& \text { /* 3: */ if (k > 0) \{ } \\
& \text { /* 4: */ } \quad \mathrm{A}[\mathrm{k}]=0 \text {; } \\
& \text { /* 5: */ \}; } \\
& \text { /* 6: */ } \mathrm{k}=\mathrm{k}+1 \text {; } \\
& \text { /* 7: */ \}; } \\
& \text { /* 8: */ }
\end{aligned}
$$

Loop invariant at /* 3 */:

Partial matrix initialization

The analysis computation is automatic，precise and efficient

0：\quad M1 ：$\llbracket \mathrm{M} 2: ~(\mathrm{Mv}: ~ T\rceil \rrbracket \rrbracket \quad$ 2program precondition：i，j，and A uninitialized 5
$\ell: \perp \quad\langle\ell=1, \ldots, 11$ ，infimum 5
$1:, 2:, 3: \llbracket \mathrm{M} 1\{\mathrm{i}=0\}: \llbracket \mathrm{M} 2:\left(\mathrm{Mv}: T \mathrm{D} \rrbracket \rrbracket \quad\right.$ 20：with $i=0, i<\mathrm{m}^{8}$ §
$4:, 5:, 6: \llbracket \mathrm{M} 1\{\mathrm{i}=0, \mathrm{j}=\mathrm{i}+1=1<\mathrm{n}\}: \llbracket \mathrm{M} 2:(\mathrm{Mv}: T) \rrbracket \rrbracket$
23：with $\mathrm{j}=\mathrm{i}+1 ;, \mathrm{j}<\mathrm{n}$ \}
7：\quad M1 $\{i=0, j=i+1=1<n\}:$

$$
\llbracket \mathrm{M} 2:(\mathrm{Mv}: T) j(\mathrm{Mv}: 0\rangle \mathrm{j}+1(\mathrm{Mv}: T) \rrbracket i+1 \llbracket \mathrm{M} 2:(\mathrm{Mv}: T) \rrbracket
$$

】
26：with $M[i, j]=0 ; \rho$
8：$\quad \llbracket \mathrm{M} 1\{i=0, j=i+2=2 \leqslant n\}$ ：

$$
\llbracket \mathrm{M} 2:(\mathrm{Mv}: T) j-1(\mathrm{Mv}: 0\rangle \mathrm{j}(\mathrm{Mv}: T) \rrbracket \mathrm{i}+1 \llbracket \mathrm{M} 2:(\mathrm{Mv}: T \rrbracket \rrbracket
$$

27：with $\mathrm{j}=\mathrm{j}+1 ; \mathrm{S}$
4：$\sqcup_{t} 8: \quad \llbracket \mathrm{M} 1\{\mathrm{i}=0, \mathrm{i}+1 \leqslant \mathrm{j} \leqslant \mathrm{i}+2 \leqslant \mathrm{n}\}$
【 M2：（Mv：T） 1 （Mv：0）j（Mv：TD】i＋1【M2：（Mv：TD】
】
2join of 4：and 8： \int
5：$\quad \llbracket \mathrm{M} 1\{i=0, i+1 \leqslant \mathrm{j} \leqslant \mathrm{n}\}:$

$$
\llbracket \mathrm{M} 2:(\mathrm{Mv}: T) 1(\mathrm{Mv}: 0) \mathrm{j}(\mathrm{Mv}: \operatorname{T}) \rrbracket \mathrm{i}+1 \llbracket \mathrm{M} 2:(\mathrm{Mv}: T) \rrbracket
$$

】 25： $\mathrm{\nabla}\left(4: \sqcup_{t} 8:\right)^{9} \mathrm{~S}$

$$
\llbracket \mathrm{M} 2: ~(\mathrm{Mv}: ~ T \mathrm{D} \rrbracket \rrbracket
$$

25：and $\mathrm{j} \geqslant \mathrm{n}$ §
10：$\llbracket \mathrm{M} 1\{\mathrm{i}=1, \mathrm{i} \leqslant \mathrm{j}=\mathrm{n}\}: \llbracket \mathrm{M} 2:(\mathrm{Mv}: T) 1(\mathrm{Mv}: 0 \mathrm{D} \rrbracket \mathrm{i} \llbracket \mathrm{M} 2:(\mathrm{Mv}: T \mathrm{D} \rrbracket \rrbracket$ 29：and $i=i+1 ; \rho$
$1: \sqcup_{t} 10: \llbracket \mathrm{M} 1\{\mathrm{i}=1, \mathrm{i} \leqslant \mathrm{j}=\mathrm{n}\}: \llbracket \mathrm{M} 2:(\mathrm{Mv}: T) 1(\mathrm{Mv}: 0\rangle \rrbracket \mathrm{i} \llbracket \mathrm{M} 2:(\mathrm{Mv}: T \mathrm{D} \rrbracket \rrbracket$
2join of 1：and $10: 5$

$22: \nabla\left(1: \sqcup_{t} 10:\right) S$
3：$\llbracket \mathrm{M} 1\{0 \leqslant \mathrm{i}<\mathrm{m}\}: \llbracket \mathrm{M} 2:(\mathrm{Mv}: T) 1(\mathrm{Mv}: 0 \mathrm{D} \rrbracket \mathrm{i} \llbracket \mathrm{M} 2:(\mathrm{Mv}: T) \rrbracket \rrbracket$
22：and j ＜ n S
4：，5：，6：$\llbracket \mathrm{M} 1\{0 \leqslant \mathrm{i}<\mathrm{m}, \mathrm{j}=\mathrm{i}+1<\mathrm{n}\}:$

$$
\begin{aligned}
& \text { 【 M2: (Mv:T) } 1 \text { (Mv:0)】i【M2: (Mv:TD】 } \\
& \text { 】 } 23:, j=i+1 ; \text { and } j<n 乌
\end{aligned}
$$

```
7: \(\quad\) M1 \(\{0 \leqslant i<m, j=i+1<n\}: \llbracket M 2:(M v: T D 1 \ M v: 0 \rrbracket \rrbracket i\)
    【M2: (Mv:T) j (Mv:0) j+1 (Mv:TD】i+1【M2: (Mv:T)】
】 26: and M[i, \(j]=0 ; \rho\)
8: \(\quad\) M1 \(\{0 \leqslant i<m, j=i+2 \leqslant n\}: \llbracket M 2:(M v: T D 1 \ M v: 0\rangle n \rrbracket i\)
    【M2: (Mv:T) j-1 (Mv: O) j (Mv:TD】i+1【M2: (Mv:TD】
】 27: with \(\mathrm{j}=\mathrm{j}+1\); \(\rho\)
4: \(\sqcup_{t} 8: \llbracket \mathrm{M} 1\{0 \leqslant \mathrm{i}<\mathrm{m}, \mathrm{i}+1 \leqslant \mathrm{j} \leqslant \mathrm{i}+2 \leqslant \mathrm{n}\}: \llbracket \mathrm{M} 2:(\mathrm{Mv}: T D 1(\mathrm{Mv}: 0\rangle \rrbracket \mathrm{i}\)
            【M2: (Mv:TDi+1 (Mv:0) j (Mv:TD】i+1【M2: (Mv:T)】
】 2join of 4: and 8: \(\int\)
5: 【M1 \(\{0 \leqslant \mathrm{i}<\mathrm{m}, \mathrm{i}+1 \leqslant \mathrm{j} \leqslant \mathrm{n}\}: \llbracket \mathrm{M} 2:(\mathrm{Mv}: T \mathrm{D} 1\) Mv:0才】i
    【M2: (Mv:T) i+1 (Mv: 0) j (Mv:TD】i+1【M2: (Mv:T)】
】 25: \(\nabla\left(4: \sqcup_{t} 8:\right) S\)
9: \(\quad\) M \(140 \leqslant \mathrm{i}<\mathrm{m}, \mathrm{i}+1 \leqslant \mathrm{j}=\mathrm{n}\}: \llbracket \mathrm{M} 2:(\mathrm{Mv}: T D 1(\mathrm{Mv}: 0\rangle \rrbracket \mathrm{i}\)
    \(\llbracket \mathrm{M} 2:(\mathrm{Mv}: T) i+1(\mathrm{Mv}: 0\rangle \rrbracket i+1 \llbracket \mathrm{M} 2:(\mathrm{Mv}: T) \rrbracket\)
】
25: and \(\mathrm{j} \geqslant \mathrm{n}\) S
10: \(\llbracket \mathrm{M} 1\{0<\mathrm{i} \leqslant \mathrm{m}, \mathrm{i} \leqslant \mathrm{j}=\mathrm{n}\}: \llbracket \mathrm{M} 2:(\mathrm{Mv}: T) 1(\mathrm{Mv}: 0\rangle \rrbracket \mathrm{i}-1\)
    \(\llbracket \mathrm{M} 2: ~(\mathrm{Mv}: ~ T \mathrm{D}\) i \((\mathrm{Mv}: 0 \mathrm{D} \rrbracket \mathrm{i} \llbracket \mathrm{M} 2:(\mathrm{Mv}: T \mathrm{D} \rrbracket\)
】
29: and \(i=i+1 ; \int\)
```



```
    2join of 1: and 10:(segments unification yields \(1 \leq \mathrm{M} 1+1 \leq i\) for subtree
    merges) \(S\)
2: \(\quad \llbracket \mathrm{M} 1\{0 \leqslant \mathrm{i}\}: \llbracket \mathrm{M} 2:(\mathrm{Mv}: T) \mathrm{M} 1+1(\mathrm{Mv}: 0\rangle \rrbracket \mathrm{i} \llbracket \mathrm{M} 2:(\mathrm{Mv}: T \mathrm{D} \rrbracket \rrbracket\)
                    \(22: \sqsubseteq\left(1: \sqcup_{t} 10:\right)\), stabilization at a fixpoint \(S\)
11: \(\llbracket \mathrm{M} 1\{0<\mathrm{m}=\mathrm{i}\}: \llbracket \mathrm{M} 2:(\mathrm{Mv}: T \downarrow \mathrm{M} 1+1(\mathrm{Mv}: 0 \rrbracket \rrbracket \rrbracket\)
22：and \(\mathrm{i} \geqslant \mathrm{m}\) ，program postcondition． S
```


Conclusion

Abstract domain (functors)

- Abstract domains efficiently encode classes of program properties and operations on these properties
- The approach requires more work than universal representations but is much more efficient
- Abstract domain functors combine abstract domains to produce many instanciated powerful abstract domain at various levels of cost/precision
- Key to scalability with precision in abstract interpretation

The End, Thank You

