Abstract Interpretation of Algebraic Polynomial Systems

Patrick COUSOT

LIENS - DMI École Normale Supérieure 45 rue d'Ulm 75230 Paris cedex 05 France cousot@dmi.ens.fr http://www.dmi.ens.fr/~cousot

Radhia COUSOT

LIX CNRS & École Polytechnique 91140 Palaiseau cedex France rcousot@lix.polytechnique.fr http://lix.polytechnique.fr/~rcousot

Applications of Abstract Interpretation

Design of

- Semantics,
- Proof methods,
- Static analyzers :
 - data flow analyzers,
 - type systems,
 - abstract model-checkers,
 - abstract debuggers, ...

of programming languages and systems.

- 3/29-

UNDECIDABILITY

- All problems considered by abstract interpretation are undecidable;
- The only possible answers are therefore approximate:
 - The answers are safe/sound/correct/conservative,
 - The answers may be partial/incomplete.

Abstract Interpretation

- 1/29-

Abstract interpretation provides:

- A theory of discrete approximation to establish correspondences between various semantics of programming languages;
- A methodology to design algorithms for the static analysis of the dynamic behavior of programs.
- References

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In emphConf. Record of the 4th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM Press.

^[2] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conference Record of the 6th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 269–282, San Antonio, Texas, 1979. ACM Press.

IDEA OF APPROXIMATION

Since interesting program properties are undecidable, no automatic program semantic analysis method can be complete. Automation implies approximation:

- **Proof methods:** unable to prove the following theorem: ...10 pages of unreadable formulæ...;
- Model-checking: 10 hours later: out of memory;
- **Debugging:** 10 years later: still no error found;
- Abstract Interpretation: true/ \top (i.e. I don't know).

- 5/29-

MAIN CHARACTERISTICS OF ABSTRACT INTERPRETATION

- <u>Automatic</u>: no human intervention during the analysis (as opposed e.g. to *interactive proof methods*);
- <u>Static/compile-time</u>: without running the program for specific input data (as opposed e.g. to *profiling*);
- <u>Safe/sound/correct/conservative</u>: without omitting the effect of some runs (as opposed e.g. to *debugging*);
- <u>Dynamic properties</u>: semantic properties of the runtime behaviors (as opposed e.g. to *program metrology*);
- <u>Infinite-state</u>: no (finiteness) limitation on the cardinality of the set of states (as opposed e.g. to *model-checking*).

PRINCIPLE OF ABSTRACT INTERPRETATION

- Syntax;
- Standard semantics;
- Concrete properties;Collecting semantics;

- Abstract Properties;
- Abstraction/concretization;
- Abstract semantics.

The abstract semantics is a safe approximation of the collecting semantics so that all run-time behaviors (specified by the standard semantics) of programs (specified by the syntax) satisfy the abstract properties specified by the abstract semantics.

- 7/29-

Syntax

- The syntax defines a set of valid programs;
- Polynomial systems:
 - $S \to ES \mid E \qquad \text{polynomi}$ $E \to x = P \qquad \text{equation,}$ $\mid x = \Omega \qquad \text{void equa}$ $P \to M[d] + P \mid M[d] \qquad \text{labeled period}$ $M \to x \mid f(M_1, \dots, M_n) \qquad \text{monomial}$
- polynomial system, equation, void equation, labeled polynomial, monomial $(n \ge 0)$.
- Example of syntactically valid polynomial system:

$$A = \begin{array}{c} b(A,A) \ [d_1] \\ + a \ [d_2] \end{array}$$

STANDARD SEMANTICS

- The standard semantics specifies the set of possible runtime behaviors of programs;
- An example of possible parallel derivation tree execution sequence for

$$A = b(A, A) \begin{bmatrix} d_1 \\ + a \end{bmatrix}$$

 $\begin{array}{l} \langle A \rangle \\ \Longrightarrow & A[d_1]b(\langle A \rangle, \langle A \rangle) \\ \Longrightarrow & A[d_1]b(A[d_1]b(\langle A \rangle, A), A[d_2]a) \\ \Longrightarrow & A[d_1]b(A[d_1](A[d_2]a, \langle A \rangle), A[d_2]a) \\ \Longrightarrow & A[d_1]b(A[d_1]b(A[d_2]a, A[d_2]a), A[d_2]a) \end{array}$

9/29-

STANDARD SEMANTICS (CONTINUED)

- The standard semantics of a polynomial system is (e.g.) the set of finite and infinite parallel derivation tree execution sequences for all variables;
- For a polynomial system \mathcal{P} , we define:
- The semantic domain $\mathcal{D}[\![\mathcal{P}]\!]$: the set of derivation tree sequences for the signature of \mathcal{P} ;
- The standard semantics $\mathcal{S}[\![\mathcal{P}]\!] \in \wp(\mathcal{D}[\![\mathcal{P}]\!])$: the set of derivation tree execution sequences for \mathcal{P} .

CONCRETE PROPERTIES

- A concrete property of a program is a set of possible program standard semantics;
- The set of concrete properties of a polynomial system $\mathcal P$ is a complete boolean lattice:

 $\langle \wp(\wp(\mathcal{D}[\![\mathcal{P}]\!])),\subseteq,\emptyset,\wp(\mathcal{D}[\![\mathcal{P}]\!]),\cup,\cap,\neg\rangle$

for subset inclusion \subseteq , that is logical implication.

- 11/29-

Collecting Semantics

• A collecting semantics associates a concrete property (of a given class e.g. safety, liveness, ...) to each program:

 $\mathcal{C}[\![\mathcal{P}]\!] \in \wp(\wp(\mathcal{D}[\![\mathcal{P}]\!]))$

• The standard collecting semantics:

 $\underline{\mathcal{C}}\llbracket \mathcal{P} \rrbracket \stackrel{\text{\tiny def}}{=} \{ \mathcal{S}\llbracket \mathcal{P} \rrbracket \}$

is the strongest concrete property.

is

Abstract Properties

- The abstract properties correspond to a well-chosen and conveniently encoded subset of the concrete properties;
- The set of abstract properties is a complete lattice

 $\left\langle \mathcal{D}^{\sharp}\llbracket \mathcal{P} \rrbracket, \leq, 0, 1, \lor, \land \right\rangle$

for the approximation ordering \leq , corresponding to concrete subset inclusion/logical implication.

-13/29-

Abstraction/Concretization

The correspondence between concrete and abstract properties is defined by a Galois connection ¹:

$$\langle \wp(\wp(\mathcal{D}\llbracket \mathcal{P} \rrbracket)), \subseteq, \emptyset, \wp(\mathcal{D}\llbracket \mathcal{P} \rrbracket), \cup, \cap \rangle \xrightarrow{\gamma} \langle \mathcal{D}^{\sharp}\llbracket \mathcal{P} \rrbracket, \leq, 0, 1, \lor, \land \rangle$$

- α : abstraction ($\alpha(P)$ is the best/strongest/most precise approximation of P in the abstract domain);
- γ : concretization ($\gamma(Q)$ is the concrete meaning of the abstract property Q).

GALOIS CONNECTION

• By definition:

$$\left\langle \wp(\wp(\mathcal{D}\llbracket \mathcal{P} \rrbracket)), \subseteq, \emptyset, \wp(\mathcal{D}\llbracket \mathcal{P} \rrbracket), \cup, \cap \right\rangle \xrightarrow{\gamma} \left\langle \mathcal{D}^{\sharp}\llbracket \mathcal{P} \rrbracket, \leq, 0, 1, \vee, \wedge \right\rangle$$

means:

$$\forall P: \forall Q: \alpha(P) \leq Q \iff P \subseteq \gamma(Q)$$

• If α is surjective, we write:

$$\left\langle \wp(\wp(\mathcal{D}\llbracket \mathcal{P} \rrbracket)), \subseteq, \emptyset, \wp(\mathcal{D}\llbracket \mathcal{P} \rrbracket), \cup, \cap \right\rangle \xrightarrow{\gamma}_{\alpha \xrightarrow{\gamma}} \left\langle \mathcal{D}^{\sharp}\llbracket \mathcal{P} \rrbracket, \leq, 0, 1, \lor, \land \right\rangle$$

-15/29-

The Intuition Behind Galois Connections

- Functional approximation : all properties P have a most precise approximation $\gamma(\alpha(P))$;
- Loss of information: the approximation of property P is less precise than P;
- Monotonicity: if P is more precise than Q then the approximation of P is more precise than the approximation of Q;
- Idempotence: The approximation of the approximation of *P* is just the approximation of *P*.

For weaker models, see P. Cousot & R. Cousot. "Abstract interpretation frameworks". J. Logic and Comp., 2(4):511–547, 1992.

EXAMPLE OF ABSTRACTION FOR POLYNOMIAL SYSTEMS

- I. DISJUNCTIVE APPROXIMATION
- A powerset is approximated by the elements in the subsets:
 - $\begin{aligned} \alpha_1 &: & \wp(\wp(\mathcal{D}\llbracket \mathcal{P} \rrbracket)) \mapsto \wp(\mathcal{D}\llbracket \mathcal{P} \rrbracket) \\ \alpha_1(P) &= \bigcup P \end{aligned}$
- Disjunctive properties are lost.

- 17/29-

II. SAFETY ANALYSIS

• A set of finite and infinite derivation tree sequences is approximated by the set of derivation trees found along these sequences:

 $\alpha_2(P) = \{ d \mid \exists \sigma \in P : \exists \sigma', \sigma'' : \sigma = \sigma' d\sigma'' \}$

• Liveness properties (fairness, termination, ...) are lost.

III. GENERATED TERMINAL LANGUAGE

- A set of derivation trees is approximated by the generated terminal language;
- For the polynomial system:

$$A = b(A, A) \begin{bmatrix} d_1 \\ + a \end{bmatrix}$$

we get:

$$\begin{array}{l} @(\langle A \rangle) \,=\, @(A) \\ @(A[d_1]b(X,Y)) \,=\, @(X) @(Y) \\ @(A[d_2]a) \,=\, a \\ \alpha_3(P) \,=\, \{@(t) \mid t \in P\} \end{array}$$

• Structural properties are lost.

- 19/29-Composing Abstractions

- The composition of Galois connections is a Galois connection;
- Example: for the powerset of finite and infinite parallel derivation tree execution sequences to the generated terminal language abstraction:

$$\langle \wp(\wp(\mathcal{D}[\![\mathcal{P}]\!])), \subseteq \rangle \xrightarrow[]{\gamma_1 \circ \gamma_2 \circ \gamma_3}{\alpha_3 \circ \alpha_2 \circ \alpha_1} \; \langle \wp(\mathcal{T}^2), \subseteq \rangle$$

- The abstraction can be decomposed according to the structure of program semantics hence program properties;
- A great variety of abstractions has been designed to approximate the mathematical structures involved in defining the semantics of programming languages.

 $^{^2~\}mathcal{T}$ is the set of constants of the signature of the polynomial system

Abstract Semantics

• An abstract semantics associates an abstract property to each program \mathcal{P} :

 $\mathcal{S}^{\sharp}\llbracket \mathcal{P}
rbracket \in \mathcal{D}^{\sharp}\llbracket \mathcal{P}
rbracket$

• The abstract semantics is a safe approximation of the collecting semantics:

 $\mathcal{C}\llbracket \mathcal{P} \rrbracket \subseteq \gamma(\mathcal{S}^{\sharp}\llbracket \mathcal{P} \rrbracket)$

DENOTATIONAL GENERIC ABSTRACT INTERPRETERS

- Abstract semantics can be presented in
 - denotational (fixpoint, compositional) style, by induction on the syntactic structure of programs;
 - generic style, by parameterization with basic abstract algebras;
- The compositional presentation is preserved by abstraction, hence can be used as a generic abstract interpreter.

- 23/29-

- 21/29-

THE ABSTRACT INTERPRETATION DESIGN METHODOLOGY

- Define the abstract semantics $S^{\sharp}[\![\mathcal{P}]\!]$ by calculation, simplifying the expression $\alpha(\underline{C}[\![\mathcal{P}]\!])$, using \leq -approximations for simplification purposes;
- The soundness

 $\mathcal{S}\llbracket \mathcal{P} \rrbracket \in \gamma(\mathcal{S}^{\sharp}\llbracket \mathcal{P} \rrbracket)$

of the abstract semantics is then by construction.

Example: Generic Bottom-up Abstract Semantics of Polynomial Systems

- $\langle \mathcal{D}_s, \sqsubseteq, \bot, \sqcup \rangle$, polynomial system semantic domain (cpo);
- $\langle \mathcal{D}_p, \leq, \uplus \rangle$, polynomial semantic domain (poset);
- S [[P]] = lfp[□] B [[P]], fixpoint semantics where B [[P]] is monotonic and defined compositionally as:

$$\begin{split} \mathcal{B}\llbracket ES \rrbracket r &= \mathcal{B}\llbracket E \rrbracket r \sqcup \mathcal{B}\llbracket S \rrbracket r & \mathcal{B}\llbracket x \rrbracket r = x \langle r \rangle \\ \mathcal{B}\llbracket x = P \rrbracket r &= \langle 1 \rangle \sqcup \langle x \circ \to \mathcal{B}\llbracket P \rrbracket r \rangle r & \mathcal{B}\llbracket f(L) \rrbracket r = f \langle r \rangle (\mathcal{B}\llbracket L \rrbracket r) \\ \mathcal{B}\llbracket \Omega \rrbracket r &= \langle \Omega \rangle & \mathcal{B}\llbracket M \rrbracket r \oplus \mathcal{B}\llbracket P \rrbracket r & \mathcal{B}\llbracket M \rrbracket r \oplus \mathcal{B}\llbracket L \rrbracket r \\ \mathcal{B}\llbracket C \rrbracket r = \mathcal{C} \langle r \rangle \end{split}$$

GENERATED TERMINAL LANGUAGE SEMANTICS

⟨X ↦ ℘(T^{*}), ⊆, ∅, ∪⟩, language generated by each variable x ∈ X;
⟨℘(T^{*}), ⊆, ∪⟩, language generated by a polynomial;

Basic abstract operations:

• A straightforward generalization of Ginsburg & Rice and Schützenberger theorem on the fixpoint characterization of the language generated by a context free grammar.

25/29-

GENERATED TERMINAL LANGUAGE SEMANTICS (BIS)

- $\langle \mathcal{X} \mapsto \wp(\mathcal{T}^*), \subseteq, \dot{\emptyset}, \dot{\cup} \rangle$, language generated by each variable $x \in \mathcal{X}$ (complete lattice);
- $\langle \wp(\mathcal{T}^*), \subseteq, \cup \rangle$, language generated by a polynomial (complete lattice);
- $S[\mathcal{P}] = lfp^{\subseteq} \mathcal{B}[\mathcal{P}]$, language generated by polynomial system \mathcal{P} where $\mathcal{B}[\mathcal{P}]$ is \subseteq -monotonic and defined compositionally as:

$$\begin{split} \mathcal{B}\llbracket ES \rrbracket r &= \mathcal{B}\llbracket E \rrbracket r \stackrel{.}{\cup} \mathcal{B}\llbracket S \rrbracket r & \mathcal{B}\llbracket x \rrbracket r = r(x) \\ \mathcal{B}\llbracket x = P \rrbracket ry = (x = y ? \mathcal{B}\llbracket P \rrbracket r \stackrel{.}{,} \emptyset) & \mathcal{B}\llbracket f(L) \rrbracket r = \mathcal{B}\llbracket L \rrbracket r \\ \mathcal{B}\llbracket \Omega \rrbracket r = \emptyset & \mathcal{B}\llbracket M \rrbracket r \cup \mathcal{B}\llbracket P \rrbracket r & \mathcal{B}\llbracket M \rrbracket r = \mathcal{B}\llbracket M \rrbracket r \cdot \mathcal{B}\llbracket L \rrbracket r \\ \mathcal{B}\llbracket M + P \rrbracket r = \mathcal{B}\llbracket M \rrbracket r \cup \mathcal{B}\llbracket P \rrbracket r & \mathcal{B}\llbracket c \rrbracket r = \{c\} \end{split}$$

Composing Homomorphic/Approximate Abstractions

then

If

$$\mathcal{S}^{\sharp}\llbracket\mathcal{P}\rrbracket = \operatorname{lfp}^{\sqsubseteq^{\sharp}} \mathcal{B}^{\sharp}\llbracket\mathcal{P}\rrbracket = /\sqsubseteq^{\sharp} \alpha(\operatorname{lfp}^{\sqsubseteq} \mathcal{B}\llbracket\mathcal{P}\rrbracket) = \alpha(\mathcal{S}\llbracket\mathcal{P}\rrbracket) .$$

12 bottom/up or top/down abstract semantics are given in the paper.

-27/29

DIFFICULTY OF ABSTRACT INTERPRETATION

- The semantics of programming languages is complex;
- The task of designing and constructing a program analyzer is therefore also extremely complex (typically much more complex than a compiler);
- Very few specialists are available who are able to develop and maintain a static analyzer for realistic practical languages.

How can we help in the design and construction of program analyzers?

- 28/29-

Ú: pointwise language join, for each variable $x \in \mathcal{X}$.

 $[\]cdot :$ set of strings concatenation.

TOOLS FOR CONSTRUCTING STATIC ANALYZERS

- Static analyzer generators (akin to compiler generator)?
- Use of intermediate languages:
- (Typed) lambda-calculi: too expressive? too few general purpose abstractions?
- Polynomial systems: many possible language-theoretic abstractions, not enough expressive?
- Use of general purpose abstract domains:
- Polynomial systems can be used for a natural generalization of set based/grammar based program analysis [3].

References

^[3] P. Cousot and R. Cousot. Formal language, grammar and set-constraint-based program analysis by abstract interpretation. In Proc. 7th ACM Conference on Functional Programming Languages and Computer Architecture, pages 170–181, La Jolla, California, 25–28 June 1995. ACM Press.