
Abstract Interpretation

of Algebraic Polynomial Systems

Patrick COUSOT

LIENS – DMI

École Normale Supérieure
45 rue d’Ulm

75230 Paris cedex 05
France

cousot@dmi.ens.fr

http://www.dmi.ens.fr/~cousot

Radhia COUSOT

LIX

CNRS & École Polytechnique
91140 Palaiseau cedex

France
rcousot@lix.polytechnique.fr

http://lix.polytechnique.fr/~rcousot

– 1/29–

Abstract Interpretation

Abstract interpretation provides:

• A theory of discrete approximation to establish correspondences
between various semantics of programming languages;

• A methodology to design algorithms for the static analysis of the
dynamic behavior of programs.

References

[1] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or
approximation of fixpoints. In emphConf. Record of the 4th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM Press.

[2] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conference Record of the 6th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 269–282, San Antonio, Texas, 1979. ACM Press.

Applications of Abstract Interpretation

Design of

• Semantics,

• Proof methods,

• Static analyzers :

-- data flow analyzers,

-- type systems,

-- abstract model-checkers,

-- abstract debuggers, . . .

of programming languages and systems.

– 3/29–

Undecidability

• All problems considered by abstract interpretation are undecidable;

• The only possible answers are therefore approximate:

-- The answers are safe/sound/correct/conservative,

-- The answers may be partial/incomplete.

P. Cousot & R. Cousot – 2/29– – 4/29– AMAST’97



Idea of Approximation

Since interesting program properties are undecidable, no automatic pro-
gram semantic analysis method can be complete. Automation implies
approximation:

• Proof methods: unable to prove the following theorem: . . . 10
pages of unreadable formulæ. . . ;

• Model-checking: 10 hours later: out of memory;

• Debugging: 10 years later: still no error found;

• Abstract Interpretation: true/� (i.e. I don’t know).

– 5/29–

Main Characteristics of Abstract Interpretation

• Automatic: no human intervention during the analysis (as opposed
e.g. to interactive proof methods);

• Static/compile-time: without running the program for specific input
data (as opposed e.g. to profiling);

• Safe/sound/correct/conservative: without omitting the effect of some
runs (as opposed e.g. to debugging);

• Dynamic properties: semantic properties of the runtime behaviors
(as opposed e.g. to program metrology);

• Infinite-state: no (finiteness) limitation on the cardinality of the set
of states (as opposed e.g. to model-checking).

Principle of Abstract Interpretation

• Syntax;

• Standard semantics;

• Concrete properties;

• Collecting semantics;

• Abstract Properties;

• Abstraction/concretization;

• Abstract semantics.

The abstract semantics is a safe approximation of the collecting seman-
tics so that all run-time behaviors (specified by the standard semantics)
of programs (specified by the syntax) satisfy the abstract properties
specified by the abstract semantics.

– 7/29–

Syntax

• The syntax defines a set of valid programs;

• Polynomial systems:

S → ES | E polynomial system,
E → x = P equation,

| x = Ω void equation,
P → M [d] + P | M [d] labeled polynomial,
M → x | f (M1, . . . ,Mn) monomial (n ≥ 0).

• Example of syntactically valid polynomial system:

A = b(A,A) [d1]
+ a [d2]

P. Cousot & R. Cousot – 6/29– – 8/29– AMAST’97



Standard Semantics

• The standard semantics specifies the set of possible runtime behaviors
of programs;

• An example of possible parallel derivation tree execution sequence
for

A = b(A,A) [d1]
+ a [d2]

is
〈A〉

=⇒ A[d1]b(〈A〉, 〈A〉)
=⇒ A[d1]b(A[d1]b(〈A〉, A), A[d2]a)
=⇒ A[d1]b(A[d1](A[d2]a, 〈A〉), A[d2]a)
=⇒ A[d1]b(A[d1]b(A[d2]a,A[d2]a), A[d2]a) .

– 9/29–

Standard Semantics (continued)

• The standard semantics of a polynomial system is (e.g.) the set of
finite and infinite parallel derivation tree execution sequences for all
variables;

• For a polynomial system P , we define:

-- The semantic domain D[[P ]] : the set of derivation tree sequences
for the signature of P ;

-- The standard semantics S [[P ]] ∈ ℘(D[[P ]]) : the set of derivation
tree execution sequences for P .

Concrete Properties

• A concrete property of a program is a set of possible program stan-
dard semantics;

• The set of concrete properties of a polynomial system P is a complete
boolean lattice:

〈℘(℘(D[[P ]])),⊆, ∅, ℘(D[[P ]]),∪,∩,¬〉

for subset inclusion ⊆, that is logical implication.

– 11/29–

Collecting Semantics

• A collecting semantics associates a concrete property (of a given class
e.g. safety, liveness, . . . ) to each program:

C[[P ]] ∈ ℘(℘(D[[P ]]))

• The standard collecting semantics:

C[[P ]]
def
= {S [[P ]]}

is the strongest concrete property.

P. Cousot & R. Cousot – 10/29– – 12/29– AMAST’97



Abstract Properties

• The abstract properties correspond to a well-chosen and conveniently
encoded subset of the concrete properties;

• The set of abstract properties is a complete lattice〈
D�[[P ]],≤, 0, 1,∨,∧

〉
for the approximation ordering ≤, corresponding to concrete subset
inclusion/logical implication.

– 13/29–

Abstraction/Concretization

• The correspondence between concrete and abstract properties is de-
fined by a Galois connection 1:

〈℘(℘(D[[P ]])),⊆, ∅, ℘(D[[P ]]),∪,∩〉 −→←−
α

γ
〈
D�[[P ]],≤, 0, 1,∨,∧

〉

-- α: abstraction (α(P ) is the best/strongest/most precise ap-
proximation of P in the abstract domain);

-- γ: concretization (γ(Q) is the concrete meaning of the abstract
property Q).

1 For weaker models, see P. Cousot & R. Cousot. “Abstract interpretation frameworks”. J. Logic and Comp., 2(4):511–547, 1992.

Galois Connection

• By definition:

〈℘(℘(D[[P ]])),⊆, ∅, ℘(D[[P ]]),∪,∩〉 −→←−
α

γ
〈
D�[[P ]],≤, 0, 1,∨,∧

〉
means:

∀P : ∀Q : α(P ) ≤ Q ⇐⇒ P ⊆ γ(Q)

• If α is surjective, we write:

〈℘(℘(D[[P ]])),⊆, ∅, ℘(D[[P ]]),∪,∩〉 →−→←−
α

γ
〈
D�[[P ]],≤, 0, 1,∨,∧

〉

– 15/29–

The Intuition Behind Galois Connections

• Functional approximation : all properties P have a most precise
approximation γ(α(P ));

• Loss of information: the approximation of property P is less precise
than P ;

• Monotonicity: if P is more precise than Q then the approximation
of P is more precise than the approximation of Q;

• Idempotence: The approximation of the approximation of P is just
the approximation of P .

P. Cousot & R. Cousot – 14/29– – 16/29– AMAST’97



Example of Abstraction for Polynomial Systems

I. Disjunctive Approximation

• A powerset is approximated by the elements in the subsets:

α1 : ℘(℘(D[[P ]])) �→ ℘(D[[P ]])

α1(P ) =
⋃

P

• Disjunctive properties are lost.

– 17/29–

II. Safety Analysis

• A set of finite and infinite derivation tree sequences is approximated
by the set of derivation trees found along these sequences:

α2(P ) = {d | ∃σ ∈ P : ∃σ′, σ′′ : σ = σ′dσ′′}

• Liveness properties (fairness, termination, . . . ) are lost.

III. Generated Terminal Language

• A set of derivation trees is approximated by the generated terminal
language;

• For the polynomial system:

A = b(A,A) [d1]
+ a [d2]

we get:

@(〈A〉) = @(A)
@(A[d1]b(X,Y )) = @(X)@(Y )

@(A[d2]a) = a
α3(P ) = {@(t) | t ∈ P}

• Structural properties are lost. ��
– 19/29–

Composing Abstractions

• The composition of Galois connections is a Galois connection;

• Example: for the powerset of finite and infinite parallel derivation
tree execution sequences to the generated terminal language abstrac-
tion:

〈℘(℘(D[[P ]])),⊆〉 →−→←−
α3◦α2◦α1

γ1◦γ2◦γ3 〈℘(T 2),⊆〉

• The abstraction can be decomposed according to the structure of
program semantics hence program properties;

• A great variety of abstractions has been designed to approximate
the mathematical structures involved in defining the semantics of
programming languages.

2 T is the set of constants of the signature of the polynomial system

P. Cousot & R. Cousot – 18/29– – 20/29– AMAST’97



Abstract Semantics

• An abstract semantics associates an abstract property to each pro-
gram P :

S�[[P ]] ∈ D�[[P ]]

• The abstract semantics is a safe approximation of the collecting se-
mantics:

C[[P ]] ⊆ γ(S�[[P ]])

– 21/29–

The Abstract Interpretation Design Methodology

• Define the abstract semantics S�[[P ]] by calculation, simplifying the
expression α(C[[P ]]), using ≤-approximations for simplification pur-
poses;

• The soundness

S [[P ]] ∈ γ(S�[[P ]])

of the abstract semantics is then by construction.

Denotational Generic Abstract Interpreters

• Abstract semantics can be presented in

-- denotational (fixpoint, compositional) style, by induction on the
syntactic structure of programs;

-- generic style, by parameterization with basic abstract algebras;

• The compositional presentation is preserved by abstraction, hence
can be used as a generic abstract interpreter.

– 23/29–

Example: Generic Bottom-up Abstract Semantics

of Polynomial Systems

• 〈Ds,�,⊥,�〉, polynomial system semantic domain (cpo);

• 〈Dp,≤,�〉 , polynomial semantic domain (poset);

• S [[P ]] = lfp�B[[P ]], fixpoint semantics where B[[P ]] is monotonic and
defined compositionally as:

B[[ES]]r = B[[E]]r � B[[S]]r
B[[x = P ]]r = 〈1〉 � 〈x ◦→ B[[P ]]r〉r

B[[Ω]]r = 〈Ω〉
B[[M + P ]]r = B[[M ]]r � B[[P ]]r

B[[x]]r = x〈r〉
B[[f (L)]]r = f〈r〉(B[[L]]r)
B[[M,L]]r = B[[M ]]r ⊕ B[[L]]r

B[[c]]r = c〈r〉

P. Cousot & R. Cousot – 22/29– – 24/29– AMAST’97



Generated Terminal Language Semantics

• 〈X �→ ℘(T �), ⊆̇, ∅̇, ∪̇〉, language generated by each variable x ∈ X ;

• 〈℘(T �),⊆,∪〉, language generated by a polynomial;

• Basic abstract operations:

� 〈1〉x 〈x ◦→ L〉ry 〈Ω〉 � x〈r〉 f〈r〉(L) ⊕ c〈r〉
∪̇ 3 ∅ (x = y ? L ¿ ∅) ∅ ∪ r(x) L · 4 {c}

• A straightforward generalization of Ginsburg & Rice and Schützen-
berger theorem on the fixpoint characterization of the language gen-
erated by a context free grammar.

– 25/29–

Generated Terminal Language Semantics (bis)

• 〈X �→ ℘(T �), ⊆̇, ∅̇, ∪̇〉, language generated by each variable x ∈ X
(complete lattice);

• 〈℘(T �),⊆,∪〉, language generated by a polynomial (complete lat-
tice);

• S [[P ]] = lfp⊆̇ B[[P ]], language generated by polynomial system P
where B[[P ]] is ⊆̇-monotonic and defined compositionally as:

B[[ES]]r = B[[E]]r ∪̇ B[[S]]r
B[[x = P ]]ry = (x = y ? B[[P ]]r ¿ ∅)

B[[Ω]]r = ∅
B[[M + P ]]r = B[[M ]]r ∪ B[[P ]]r

B[[x]]r = r(x)
B[[f (L)]]r = B[[L]]r
B[[M,L]]r = B[[M ]]r · B[[L]]r

B[[c]]r = {c}

3 ∪̇: pointwise language join, for each variable x ∈ X .
4 ·: set of strings concatenation.

Composing Homomorphic/Approximate Abstractions

If

〈Ds,�〉 →−→←−
α

γ 〈D�
s,��〉

〈Dp,≤〉 →−→←−
α′
γ′ 〈D�

p,≤�〉
α(〈Ω〉) =/�� 〈Ω〉�
α(〈1〉) =/�� 〈1〉�

α(〈x ◦→ L〉r) =/�� 〈x ◦→ α′(L)〉�α(r)

α′(L1 ⊕ L2) =/≤� α′(L1) ⊕� α′(L2)

α′(f〈L〉) =/≤� f〈α′(L)〉�

α′(c〈L〉) =/≤� c〈α′(L)〉�

then

S�[[P ]] = lfp�
� B�[[P ]] =/�� α(lfp� B[[P ]]) = α(S [[P ]]) .

12 bottom/up or top/down abstract semantics are given in the paper.

– 27/29–

Difficulty of Abstract Interpretation

• The semantics of programming languages is complex;

• The task of designing and constructing a program analyzer is there-
fore also extremely complex (typically much more complex than a
compiler);

• Very few specialists are available who are able to develop and main-
tain a static analyzer for realistic practical languages.

How can we help in the design and construction of program analyzers?

P. Cousot & R. Cousot – 26/29– – 28/29– AMAST’97



Tools for Constructing Static Analyzers

• Static analyzer generators (akin to compiler generator)?

• Use of intermediate languages:

-- (Typed) lambda-calculi: too expressive? too few general purpose
abstractions?

-- Polynomial systems: many possible language-theoretic abstrac-
tions, not enough expressive?

• Use of general purpose abstract domains:

-- Polynomial systems can be used for a natural generalization of set
based/grammar based program analysis [3].

References

[3] P. Cousot and R. Cousot. Formal language, grammar and set-constraint-based program analysis by abstract interpretation. In
Proc. 7th ACM Conference on Functional Programming Languages and Computer Architecture, pages 170–181, La Jolla, California,
25–28 June 1995. ACM Press.

P. Cousot & R. Cousot – 29/29– AMAST’97


