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Introductive Motivations
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Bugs
• Software bugs

-- whether anticipated (Y2K bug)

-- or unforeseen (failure of the 5.01

flight of Ariane V launcher)

are quite frequent;

• Bugs can be very di�cult to discover in

huge software;• Bugs can have catastrophic consequences either very

costly or inadmissible (embedded software in trans≠

portation systems);
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The estimated cost of an overflow

• $ 500 000 000
• Including indirect costs (delays, lost
markets, etc):

$ 2 000 000 000
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Please feal free to ask questions during the talk.
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Present Day
Empirical Debugging

and Formal Verification Methods
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Present day responses to bugs

Use the computer to find/prevent program≠
ming errors.

• Empirical methods: try to execute/simulate the

program in enough representative possible environ≠

ments;

• Formal methods: try to mecanically prove that

program execution is correct in all specified environ≠

ments.
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Formal method based program verification

Deductive methods: The proof size is exponen≠

tial in the program size!

Model-checking: Restricted to finite models. Gained

only a factor of 100 in 10 years. The limit seems

to be reached!

Program static analysis: Can analyze large pro≠

grams (220 000 lines of C) but specifications are

simple and the abstraction hence the design of the

analyzer is manual!
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No single formal method can ultimately
solve the verification problem.
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Current trend: combine formal methods

• User designed abstraction: derive a program finite

abtract model by abstract interpretation , prove the

correctness of the abstraction by deductive meth≠

ods , later verify the abstract model by model-checking;

• Fundamental limitation : finding the appropriate

abstraction and deriving the abstract semantics is as

di�cult as doing the proof!

Reference
[1] P. Cousot. Partial completeness of abstract fixpoint checking, invited paper. In

B.Y. Choueiry and T. Walsh, editors, Proc. 4th Int. Symp. on Abstraction, Re≠
formulations and Approximation, SARA ’ 2000 , Horseshoe Bay, TX, USA, Lecture

Notes in Artificial Intelligence 1864, pages 1–25. Springer-Verlag, 26–29 July 2000.
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No combination of formal methods can ulti≠
mately solve the verification problem either.
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Proposed Alternative:
Abstract Interpretation Based

Program Testing
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Combine empirical and formal methods
• The user provides local formal abstractions of the

program specifications using predefined abstractions
1
;

• The program is evaluated by abstract interpretation

of the formal semantics of the program
2
;

• If the local abstract specification cannot be proved

correct, a more precise abstract domain must be

considered
3
;

• The process is repeated until appropriate coverage

of the specification.

1 thus replacing infinitely many test data.
2 thus replacing program execution on the test data.
3 similarly to di↵erent test data.
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Example of predefined abstraction

n

f
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Example of predefined abstraction: intervals

n

f
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A tiny example
0: { n:[�1 ,+1]?; f:[�1 ,+1]? } static analyzer inference
read(n); definite error

1: { n:[0,+1]; f:[�1 ,+1]? }
f := 1;

2: { n:[0,+1]; f:[�1 ,+1] }
while (n <> 0) do no error

3: { n:[1,+1]; f:[�1 ,+1] }
f := (f * n); potential error

4: { n:[1,+1]; f:[�1 ,+1] }
n := (n - 1)

5: { n:[0,+1]; f:[�1 ,+1] }
od;

6: { n:[�1 ,+1]?; f:[�1 ,+1] } user program
sometime true;; user specification
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A tiny example (cont’d)
0: { n:?; f:? } static analyzer inference
initial (n < 0); user specification

1: { n:[�1 ,-1]; f:⁄ }
f := 1; user program

2: { n:[�1 ,-1]; f:[�1 ,1] }
while (n <> 0) do no error

3: { n:[�1 ,-1]; f:[�1 ,1] }
f := (f * n); potential error

4: { n:[�1 ,-1]; f:[�1 ,0] }
n := (n - 1)

5: { n:[�1 ,-2]; f:[�1 ,0] }
od

6: { n:?; f:? } ? unreachable code
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A tiny example (cont’d)
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A tiny example (cont’d)
0: { n:?; f:? } 4 static analyzer inference
initial (n < 0); user specification

1: { n:[�1 ,-1]; f:⁄ }
f := 1; user program

2: { n:[�1 ,-1]; f:[�1 ,1] }
while (n <> 0) do no error

3: { n:[�1 ,-1]; f:[�1 ,1] }
f := (f * n); potential error

4: { n:[�1 ,-1]; f:[�1 ,0] }
n := (n - 1)

5: { n:[�1 ,-2]; f:[�1 ,0] }
od

6: { n:?; f:? } ? unreachable code

4 If execution is ever started under the initial conditions, an error (* or - overflow) is inevitable.
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Comparing with program debugging

• Similarity: user interaction;

• Essential di↵erences:

-- user provided test data are replaced by abstract

specifications;

-- evaluation of an abstract semantics instead of pro≠

gram execution/simulation;

-- one can prove the absence of (some categories

of) bugs , not only their presence;

-- abstract evaluation can be forward and/or back≠

ward (reverse execution).
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Comparing with abstract model-checking
(cont’d)• Similarities:

-- use of specifications instead of test data sets;

-- hability to automatically produce counter-examples
5
;

5 or specifications of infinitely many such counter-examples in the case of abstract program testing.
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Comparing with abstract model-checking
(cont’d)• Essential di↵erences:

-- reasoning on the concrete program (not on a pro≠

gram model);

-- no attempt to make a one-shot complete formal

proof of the specification;

-- interaction with user repeatedly providing partial

specifications in a form close to conventional de≠

bugging;

-- predefined abstractions (not user defined);

-- finite and infinite abstract domains are allowed.
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A Few Technical Issues
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Paper content

• The paper discusses a few technical issues showing

that:

(abstract) model-checking based techniques are

not adequate

for program abstract testing and that

program analysis based techniques are more

precise

because they take approximation into account.
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Needless limitations of model-checking

• The basic state to state abstraction of model check≠

ing (↵(S) = {h(s) | s 2 S}) is not general enough;

• Finite abstract properties are not expressive enough;

• Abstract predicate transformers are imprecise
6
, be≠

cause no local iteration is performed;

• Fixpoint checking algorithms are imprecise
6
, because

they don’t incorporate all available information;

• Fixpoint combinations approximations are subopti≠

mal
6
, since fixpoint computations are not exact

7
.

6 Although they are optimal in the case of finite abstract property spaces.
7 which is impossible with infinite abstract domains (but is anyway more precise than with any finite domain).
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A single simple illustration
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Naïve fixpoint checking

• In order to check that
6
:

lfp
v

F 7 v I 8

-- Compute J such that F (J) v J by fixpoint approx≠

imation methods;

-- It follows that lfp
v

F v J 9
;

-- Check that J v I.

6 F is a monotonic operator on a complete lattice ordered by v; lfp
v

F is the v-least fixpoint of F .
7 lfp

v
F is the program abstract semantics.

8 I is a user-provided (so-called “safety”) specification.
9 by Tarski’s fixpoint theorem. In general the problem is undecidable so equality is impossible.
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Precise fixpoint checking

• In order to check that
6
:

lfp
v

F v I

-- Compute J such that F (J) u I v J by fixpoint

approximation methods;

-- It follows that lfp
v

�X . F (X) u I v J ;

-- Check that F (J) v I.

• It follows that lfp
v

F v I;

• Correct even if the user specification is erroneous

(i.e. lfp
v

F 6v I).
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Conclusions
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Conclusions

• As an alternative to program debugging, formal meth≠

ods have been developed to prove that a semantics

or model of the program satisfies a specification;

• Because of theoretical and practical limitations, these

formal methods have had more successes for finding

bugs than for proving their absence;

• For complex programs, the basic idea of complete

program verification underlying the deductive and

model checking methods must be abandoned in fa≠

vor of debugging.
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Conclusion (cont’d)

• In the context of debugging, we have shown that

abstract interpretation based program static analysis

can be extended to abstract program testing;

• Abstract interpretation methods o↵er powerful tech≠

niques which, in the presence of approximation , can

be viable alternatives to both the exhaustive search

of model-checking and the partial exploration meth≠

ods of classical debugging.

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 27 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot



THE END, THANK YOU.

QUESTIONS?
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