
Abstract Interpretation Based
Program Testing

Patrick COUSOT

École Normale Supérieure
45 rue d’Ulm

75230 Paris cedex 05, France
mailto:Patrick.Cousot@ens.fr

http://www.di.ens.fr/˜cousot

Radhia COUSOT

École Polytechnique
91128 Palaiseau cedex, France

mailto:Radhia.Cousot@polytechnique.fr

http://lix.polytechnique.fr/˜radhia

SSGRR’2000, L’Aquila, Italy July 31st – August 6th , 2000

⌅ J ⇤

mailto:Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot
mailto:Radhia.Cousot@polytechnique.fr
http://lix.polytechnique.fr/~radhia

Introductive Motivations

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 1 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Bugs
• Software bugs

-- whether anticipated (Y2K bug)

-- or unforeseen (failure of the 5.01

flight of Ariane V launcher)

are quite frequent;

• Bugs can be very di�cult to discover in

huge software;• Bugs can have catastrophic consequences either very

costly or inadmissible (embedded software in trans≠

portation systems);

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 2 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Bugs
• Software bugs

-- whether anticipated (Y2K bug)

-- or unforeseen (failure of the 5.01

flight of Ariane V launcher)

are quite frequent;

• Bugs can be very di�cult to discover in

huge software;

• Bugs can have catastrophic consequences either very

costly or inadmissible (embedded software in trans≠

portation systems);

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 2 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Bugs
• Software bugs

-- whether anticipated (Y2K bug)

-- or unforeseen (failure of the 5.01

flight of Ariane V launcher)

are frequent;

• Bugs can be very di�cult to discover in

huge software;

• Bugs can have catastrophic consequences
either very costly or inadmissible (embed≠
ded software in transportation systems);

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 2 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

The estimated cost of an overflow

• $ 500 000 000
• Including indirect costs (delays, lost
markets, etc):

$ 2 000 000 000

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 3 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Overview

1. Introductive motivations . 1

2. Present day empirical debugging and formal

verification methods . 5

3. Proposed alternative: abstract interpretation

based program testing . 11

4. A few technical issues . 20

5. Conclusions . 25

Please feal free to ask questions during the talk.

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 4 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Present Day
Empirical Debugging

and Formal Verification Methods

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 5 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Present day responses to bugs

Use the computer to find/prevent program≠
ming errors.

• Empirical methods: try to execute/simulate the

program in enough representative possible environ≠

ments;

• Formal methods: try to mecanically prove that

program execution is correct in all specified environ≠

ments.

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 6 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Formal method based program verification

Deductive methods: The proof size is exponen≠

tial in the program size!

Model-checking: Restricted to finite models. Gained

only a factor of 100 in 10 years. The limit seems

to be reached!

Program static analysis: Can analyze large pro≠

grams (220 000 lines of C) but specifications are

simple and the abstraction hence the design of the

analyzer is manual!

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 7 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

No single formal method can ultimately
solve the verification problem.

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 8 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Current trend: combine formal methods

• User designed abstraction: derive a program finite

abtract model by abstract interpretation , prove the

correctness of the abstraction by deductive meth≠

ods , later verify the abstract model by model-checking;

• Fundamental limitation : finding the appropriate

abstraction and deriving the abstract semantics is as

di�cult as doing the proof!

Reference
[1] P. Cousot. Partial completeness of abstract fixpoint checking, invited paper. In

B.Y. Choueiry and T. Walsh, editors, Proc. 4th Int. Symp. on Abstraction, Re≠
formulations and Approximation, SARA ’ 2000 , Horseshoe Bay, TX, USA, Lecture

Notes in Artificial Intelligence 1864, pages 1–25. Springer-Verlag, 26–29 July 2000.

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 9 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Current trend: combine formal methods

• User designed abstraction: derive a program finite

abtract model by abstract interpretation , prove the

correctness of the abstraction by deductive meth≠

ods , later verify the abstract model by model-checking;

• Fundamental limitation [1]: finding the appropriate

abstraction and deriving the abstract semantics is as

di�cult as doing the proof!

Reference
[1] P. Cousot. Partial completeness of abstract fixpoint checking, invited paper. In

B.Y. Choueiry and T. Walsh, editors, Proc. 4th Int. Symp. on Abstraction, Re≠
formulations and Approximation, SARA ’ 2000 , Horseshoe Bay, TX, USA, Lecture

Notes in Artificial Intelligence 1864, pages 1–25. Springer-Verlag, 26–29 July 2000.

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 9 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

No combination of formal methods can ulti≠
mately solve the verification problem either.

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 10 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Proposed Alternative:
Abstract Interpretation Based

Program Testing

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 11 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Combine empirical and formal methods
• The user provides local formal abstractions of the

program specifications using predefined abstractions
1
;

• The program is evaluated by abstract interpretation

of the formal semantics of the program
2
;

• If the local abstract specification cannot be proved

correct, a more precise abstract domain must be

considered
3
;

• The process is repeated until appropriate coverage

of the specification.

1 thus replacing infinitely many test data.
2 thus replacing program execution on the test data.
3 similarly to di↵erent test data.

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 12 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Example of predefined abstraction

n

f

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 13 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Example of predefined abstraction: intervals

n

f

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 14 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

A tiny example
0: { n:[�1 ,+1]?; f:[�1 ,+1]? } static analyzer inference
read(n); definite error

1: { n:[0,+1]; f:[�1 ,+1]? }
f := 1;

2: { n:[0,+1]; f:[�1 ,+1] }
while (n <> 0) do no error

3: { n:[1,+1]; f:[�1 ,+1] }
f := (f * n); potential error

4: { n:[1,+1]; f:[�1 ,+1] }
n := (n - 1)

5: { n:[0,+1]; f:[�1 ,+1] }
od;

6: { n:[�1 ,+1]?; f:[�1 ,+1] } user program
sometime true;; user specification

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 15 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

A tiny example
0: { n:[�1 ,+1]?; f:[�1 ,+1]? } static analyzer inference
read(n); definite error

1: { n:[0,+1]; f:[�1 ,+1]? }
f := 1;

2: { n:[0,+1]; f:[�1 ,+1] }
while (n <> 0) do no error

3: { n:[1,+1]; f:[�1 ,+1] }
f := (f * n); potential error

4: { n:[1,+1]; f:[�1 ,+1] }
n := (n - 1)

5: { n:[0,+1]; f:[�1 ,+1] }
od;

6: { n:[�1 ,+1]?; f:[�1 ,+1] } user program
sometime true;; user specification

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 15 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

A tiny example
0: { n:[�1 ,+1]?; f:[�1 ,+1]? } static analyzer inference
read(n); definite error

1: { n:[0,+1]; f:[�1 ,+1]? }
f := 1;

2: { n:[0,+1]; f:[�1 ,+1] }
while (n <> 0) do no error

3: { n:[1,+1]; f:[�1 ,+1] }
f := (f * n); potential error

4: { n:[1,+1]; f:[�1 ,+1] }
n := (n - 1)

5: { n:[0,+1]; f:[�1 ,+1] }
od;

6: { n:[�1 ,+1]?; f:[�1 ,+1] } user program
sometime true;; user specification

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 15 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

A tiny example
0: { n:[�1 ,+1]?; f:[�1 ,+1]? } static analyzer inference
read(n); definite error

1: { n:[0,+1]; f:[�1 ,+1]? }
f := 1;

2: { n:[0,+1]; f:[�1 ,+1] }
while (n <> 0) do no error

3: { n:[1,+1]; f:[�1 ,+1] }
f := (f * n); potential error

4: { n:[1,+1]; f:[�1 ,+1] }
n := (n - 1)

5: { n:[0,+1]; f:[�1 ,+1] }
od;

6: { n:[�1 ,+1]?; f:[�1 ,+1] } user program
sometime true;; user specification

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 15 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

A tiny example (cont’d)
0: { n:?; f:? } static analyzer inference
initial (n < 0); user specification

1: { n:[�1 ,-1]; f:⁄ }
f := 1; user program

2: { n:[�1 ,-1]; f:[�1 ,1] }
while (n <> 0) do no error

3: { n:[�1 ,-1]; f:[�1 ,1] }
f := (f * n); potential error

4: { n:[�1 ,-1]; f:[�1 ,0] }
n := (n - 1)

5: { n:[�1 ,-2]; f:[�1 ,0] }
od

6: { n:?; f:? } ? unreachable code

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 16 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

A tiny example (cont’d)
0: { n:?; f:? } static analyzer inference
initial (n < 0); user specification

1: { n:[�1 ,-1]; f:⁄ }
f := 1; user program

2: { n:[�1 ,-1]; f:[�1 ,1] }
while (n <> 0) do no error

3: { n:[�1 ,-1]; f:[�1 ,1] }
f := (f * n); potential error

4: { n:[�1 ,-1]; f:[�1 ,0] }
n := (n - 1)

5: { n:[�1 ,-2]; f:[�1 ,0] }
od

6: { n:?; f:? } ? unreachable code

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 16 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

A tiny example (cont’d)
0: { n:?; f:? } 4 static analyzer inference
initial (n < 0); user specification

1: { n:[�1 ,-1]; f:⁄ }
f := 1; user program

2: { n:[�1 ,-1]; f:[�1 ,1] }
while (n <> 0) do no error

3: { n:[�1 ,-1]; f:[�1 ,1] }
f := (f * n); potential error

4: { n:[�1 ,-1]; f:[�1 ,0] }
n := (n - 1)

5: { n:[�1 ,-2]; f:[�1 ,0] }
od

6: { n:?; f:? } ? unreachable code

4 If execution is ever started under the initial conditions, an error (* or - overflow) is inevitable.

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 16 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Comparing with program debugging

• Similarity: user interaction;

• Essential di↵erences:

-- user provided test data are replaced by abstract

specifications;

-- evaluation of an abstract semantics instead of pro≠

gram execution/simulation;

-- one can prove the absence of (some categories

of) bugs , not only their presence;

-- abstract evaluation can be forward and/or back≠

ward (reverse execution).

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 17 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Comparing with abstract model-checking
(cont’d)• Similarities:

-- use of specifications instead of test data sets;

-- hability to automatically produce counter-examples
5
;

5 or specifications of infinitely many such counter-examples in the case of abstract program testing.

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 18 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Comparing with abstract model-checking
(cont’d)• Essential di↵erences:

-- reasoning on the concrete program (not on a pro≠

gram model);

-- no attempt to make a one-shot complete formal

proof of the specification;

-- interaction with user repeatedly providing partial

specifications in a form close to conventional de≠

bugging;

-- predefined abstractions (not user defined);

-- finite and infinite abstract domains are allowed.

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 19 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

A Few Technical Issues

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 20 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Paper content

• The paper discusses a few technical issues showing

that:

(abstract) model-checking based techniques are

not adequate

for program abstract testing and that

program analysis based techniques are more

precise

because they take approximation into account.

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 20 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Needless limitations of model-checking

• The basic state to state abstraction of model check≠

ing (↵(S) = {h(s) | s 2 S}) is not general enough;

• Finite abstract properties are not expressive enough;

• Abstract predicate transformers are imprecise
6
, be≠

cause no local iteration is performed;

• Fixpoint checking algorithms are imprecise
6
, because

they don’t incorporate all available information;

• Fixpoint combinations approximations are subopti≠

mal
6
, since fixpoint computations are not exact

7
.

6 Although they are optimal in the case of finite abstract property spaces.
7 which is impossible with infinite abstract domains (but is anyway more precise than with any finite domain).

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 21 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

A single simple illustration

• The basic state to state abstraction of model check≠

ing (↵(S) = {h(s) | s 2 S}) is not general enough;

• Finite abstract properties are not expressive enough;

• Abstract predicate transformers are imprecise
6
, be≠

cause no local iteration is performed;

• Fixpoint checking algorithms are imprecise
6
, because

they don’t incorporate all available information;

• Fixpoint combinations approximations are subopti≠

mal
6
, since fixpoint computations are not exact

7
.

6 Although they are optimal in the case of finite abstract property spaces.
7 which is impossible with infinite abstract domains (but is anyway more precise than with any finite domain).

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 22 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Naïve fixpoint checking

• In order to check that
6
:

lfp
v

F 7 v I 8

-- Compute J such that F (J) v J by fixpoint approx≠

imation methods;

-- It follows that lfp
v

F v J 9
;

-- Check that J v I.

6 F is a monotonic operator on a complete lattice ordered by v; lfp
v

F is the v-least fixpoint of F .
7 lfp

v
F is the program abstract semantics.

8 I is a user-provided (so-called “safety”) specification.
9 by Tarski’s fixpoint theorem. In general the problem is undecidable so equality is impossible.

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 23 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Precise fixpoint checking

• In order to check that
6
:

lfp
v

F v I

-- Compute J such that F (J) u I v J by fixpoint

approximation methods;

-- It follows that lfp
v

�X . F (X) u I v J ;

-- Check that F (J) v I.

• It follows that lfp
v

F v I;

• Correct even if the user specification is erroneous

(i.e. lfp
v

F 6v I).

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 24 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Precise fixpoint checking

• In order to check that
6
:

lfp
v

F v I

-- Compute J such that F (J) u I v J by fixpoint

approximation methods;

-- It follows that lfp
v

�X . F (X) u I v J ;

-- Check that F (J) v I.

• It follows that lfp
v

F v I;

• Correct even if the user specification is erroneous

(i.e. lfp
v

F 6v I).

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 24 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Conclusions

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 25 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Conclusions

• As an alternative to program debugging, formal meth≠

ods have been developed to prove that a semantics

or model of the program satisfies a specification;

• Because of theoretical and practical limitations, these

formal methods have had more successes for finding

bugs than for proving their absence;

• For complex programs, the basic idea of complete

program verification underlying the deductive and

model checking methods must be abandoned in fa≠

vor of debugging.

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 26 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

Conclusion (cont’d)

• In the context of debugging, we have shown that

abstract interpretation based program static analysis

can be extended to abstract program testing;

• Abstract interpretation methods o↵er powerful tech≠

niques which, in the presence of approximation , can

be viable alternatives to both the exhaustive search

of model-checking and the partial exploration meth≠

ods of classical debugging.

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 27 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

THE END, THANK YOU.

QUESTIONS?

SSGRR’2000, L’Aquila, Italy , July 31st – August 6th , 2000 J��� — 28 — [] ⌅ — ⇤⇤⇤I © P. Cousot & R. Cousot

	redThe estimated cost of an overflow
	Overview
	Overview
	Present day responses to bugs
	Present day responses to bugs
	Present day responses to bugs
	Formal method based program verification
	Current trend: combine formal methods
	Combine empirical and formal methods
	Combine empirical and formal methods
	Combine empirical and formal methods
	Combine empirical and formal methods
	Example of predefined abstraction: intervals
	A tiny example (cont'd)
	Comparing with program debugging
	Comparing with abstract model-checking
	Comparing with abstract model-checking (cont'd)
	Paper content
	Paper content
	Needless limitations of model-checking
	A single simple illustration
	Naïve fixpoint checking
	Naïve fixpoint checking
	Precise fixpoint checking
	Precise fixpoint checking
	Precise fixpoint checking
	Precise fixpoint checking
	Conclusions
	Conclusion (cont'd)
	Conclusion (cont'd)

