
Systematic Design of
Program Transformation Frameworks

by Abstract Interpretation

Patrick COUSOT
École normale supérieure
Patrick.Cousot@ens.fr
www.di.ens.fr/˜cousot

Radhia COUSOT
CNRS & École polytechnique

Radhia.Cousot@lix.polytechnique.fr
lix.polytechnique.fr/˜rcousot

POPL’02, Portland 16–18 Jan 2002

Motivations

xxx§xxxxx

Program Transformation & Abstract Interpretation

In semantics-based (offline) program transformation , such as:

• constant propagation ,
• partial evaluation ,
• slicing ,

abstract interpretation is classically used in a preliminary
program static analysis phase:

• to collect the information about the program runtime be
haviors,

• and determine which transformations are applicable.

— 3 —

Present Objective

Our present goal is quite different:
• Formalize the program transformation itself;

With two objectives:
-- a program transformation correctness proof method;

-- a program transformation design methodology.

• Abstract interpretation is the appropriate framework to reach
these objectives.

© P. Cousot & R. Cousot 16–18 Jan 2002POPL’02, Portland — 2 — — 4 — © P. Cousot & R. Cousot

mailto:Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot
mailto:rcousot@lix.polytechnique.fr
http://lix.polytechnique.fr/~radhia

Abstract Interpretation

— 5 —

Abstract Interpretation

• Abstract interpretation formalizes the conservative ap
proximation of the semantics of computer systems.

Approximation: observation of the behavior of a com
puter system at some level of abstraction, ignoring irrele
vant details;

Conservative: the approximation cannot lead to any erro
neous conclusion.

Abstract Interpretation (Cont’d)

• Thinking tool: the idea of abstraction by conservative ap
proximation is central to reasoning (in particular on computer
systems);

• Mechanical tools: the idea of effective approximation leads
to automatic semantics-based program manipulation tools.

— 7 —

A Few Applications of Abstract Interpretation

Techniques involving approximations are naturally formalized
by abstract interpretation:
• Static Program Analysis [POPL 77,78,79]

• Hierarchies of Semantics (including Proofs) [POPL 92, TCS

02]

• Typing [POPL 97]

• Model Checking [POPL 00]

• Program Transformation [POPL 02]

© P. Cousot & R. Cousot 16–18 Jan 2002POPL’02, Portland — 6 — — 8 — © P. Cousot & R. Cousot

Very Basic Elements of
Abstract Interpretation Theory

— 9 —

Abstraction α

x

y

{x : [1, 99], y : [2, 77]}

Concretization γ

x

y

{x : [1, 99], y : [2, 77]}

— 11 —

The Abstraction α is Monotone

x

y

{x : [33, 89], y : [48, 61]}
�

{x : [1, 99], y : [2, 90]}

X ⊆ Y ⇒ α(X) � α(Y)

© P. Cousot & R. Cousot 16–18 Jan 2002POPL’02, Portland — 10 — — 12 — © P. Cousot & R. Cousot

The Concretization γ is Monotone

x

y

{x : [33, 89], y : [48, 61]}
�

{x : [1, 99], y : [2, 90]}

X � Y ⇒ γ(X) ⊆ γ(Y)

— 13 —

The γ ◦ α Composition

x

y

{x : [1, 99], y : [2, 77]}

X ⊆ γ ◦ α(X)

The α ◦ γ Composition

x

y

{x : [1, 99], y : [2, 77]}
=

{x : [1, 99], y : [2, 77]}

α ◦ γ(Y) = Y

— 15 —

Galois Connection 1, 2

〈P, ⊆〉 −−−→←−−−
α

γ
〈Q, �〉

is defined as
• α is monotone
• γ is monotone
• X ⊆ γ ◦ α(X)
• α ◦ γ(Y) � Y

iff

α(X) � Y iff X ⊆ γ(Y)

1 for short, more precisely “semi-dual Galois connections”.
2 see [POPL 79] for equivalent formalizations using closure operators, ideals, etc. and [JLC 92] for weaker hypotheses

if no best approximation.

© P. Cousot & R. Cousot 16–18 Jan 2002POPL’02, Portland — 14 — — 16 — © P. Cousot & R. Cousot

Function Abstraction

F �

F

Abstract domain

Concrete domain

F� = α ◦ F ◦ γ

〈P, ⊆〉 −−−→←−−−
α

γ
〈Q, �〉 ⇒

〈P mon	−→ P, ⊆̇〉 −−−−−−−−−−→←−−−−−−−−−−
λF . α◦F ◦γ

λF� . γ◦F�◦α
〈Q mon	−→ Q, �̇〉

— 17 —

Approximate Fixpoint Abstraction

F

F
�

Concrete domain

Abstract domain

F F F F F
F

F
� F

� F
�

F
�

Approximation
relation

⊥

⊥�

�

F� = α ◦ F ◦ γ ⇒ α(lfp F) � lfp F�

Online Program Transformation

— 19 —

(1) Online Program Transformation

• Program transformation is a syntactic process;
• maps a subject program into a transformed program;
• Both subject and transformed programs are syntactic objects.

Subject
program P

Syntactic

transformation t
→

Transformed
program

t�P�

© P. Cousot & R. Cousot 16–18 Jan 2002POPL’02, Portland — 18 — — 20 — © P. Cousot & R. Cousot

(2) Online Program Transformation

• Program transformations refer to the semantics of the subject
and transformed programs:
-- Online program transformations use values manipulated
during program execution, hence directly refer to the source
concrete semantics;

-- Offline program transformations use a preliminary static
analysis of the source program, hence refer to its abstract
semantics;

— 21 —

(2) Online Program Transformation

Subject
program P

Syntactic

transformation t
→

Transformed
program

t�P�

Subject pro-
gram seman-
tics S�P�

S↓ p

↑↑

Semantic

transformation t
→

Transformed pro-
gram semantics

S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O

←

α O

γ O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�]) = αO(S�t�P��)

(3) Online Program Transformation

• The subject semantics and transformed semantics are differ
ent in general;

• However they should be equivalent , at some level of observa
tion.

— 23 —

(3) Online Program Transformation

Subject
program P

Syntactic

transformation t
→

Transformed
program

t�P�

Subject pro-
gram seman-
tics S�P�

S↓ p

↑↑

≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡
Observational

equivalence

Transformed pro-
gram semantics

S�t�P��

S↓ p

↑↑

α
O

→
γ O

→

←

α O

γ O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�]) = αO(S�t�P��)

© P. Cousot & R. Cousot 16–18 Jan 2002POPL’02, Portland — 22 — — 24 — © P. Cousot & R. Cousot

(3) Online Program Transformation

• The observational equivalence gets rids of irrelevant details
about the subject and transformed program semantics;

• Hence it is an abstract interpretation of the subject and trans
formed program semantics!

— 25 —

(3) Example: Partial Evaluation

Subject program: Y := 1 Transformed program: Y := 1
X := Y - 1 X := 0

Subject Transformed
αO−→ Observational

semantics semantics semantics
[X:� ,Y:�] [X:� ,Y:�]

αO−→ [X:� ,Y:�]
↓ Y := 1 ↓ Y := 1

αO−→ ↓
[X:� ,Y:1] [X:� ,Y:1]

αO−→ [X:� ,Y:1]
↓ X := Y - 1 ↓ X := 0

αO−→ ↓
[X:0 ,Y:1] [X:0 ,Y:1]

αO−→ [X:0 ,Y:1]

(3) Online Program Transformation

Subject
program P

Syntactic

transformation t
→

Transformed
program

t�P�

Subject pro-
gram seman-
tics S�P�

S↓ p

↑↑

Semantic

transformation t
→

Transformed pro-
gram semantics

S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O

←

α O

γ O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�])= αO(S�t�P��)

— 27 —

(4) Online Program Transformation

• The syntactic transformation induces a semantic transforma
tion:

The subject semantics is mapped to the transformed
semantics;

• The subject semantics and the transformed semantics should
be observationally equivalent;

• The semantic transformation is in general more precise than
the algorithmic syntactic transformation (e.g. infinite behav
iors).

© P. Cousot & R. Cousot 16–18 Jan 2002POPL’02, Portland — 26 — — 28 — © P. Cousot & R. Cousot

(4) Online Program Transformation

Subject
program P

Syntactic

transformation t
→

Transformed
program

t�P�

Subject pro-
gram seman-
tics S�P�

S↓ p

↑↑

Semantic

transformation t
→

Transformed pro-
gram semantics

t[S�P�] � S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O

←

α O

γ O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�]) = αO(S�t�P��)

— 29 —

(5) Correspondence Between
Syntax and Semantics , Cont’d

• The program syntax forgets details about the program execu
tion semantics:
-- The sequence of values of variables during execution is
forgotten, but:
-- their existence and maybe their type are recorded;
-- the sequence (partial order, …) of (denotations of) ac
tions performed on these variables is recorded;

-- Program execution times are completely abstracted (but
might be included in the operational semantics);

(5) Correspondence Between
Syntax and Semantics , Cont’d

• The correspondence between syntax and semantics is an ab
straction:

po〈D; �〉 −−−→−→←−−−−
p

S
po〈P/≡; �〉

• The concretization S is the semantics of the program;
• The abstraction p is the “decompilation” of the semantics.

— 31 —

(5) Online Program Transformation

Subject
program P

Syntactic

transformation t
→

Transformed
program

t�P�

Subject pro-
gram seman-
tics S�P�

S↓ p

↑↑

Semantic

transformation t
→

Transformed pro-
gram semantics

t[S�P�] � S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O

←

α O

γ O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�]) = αO(S�t�P��)

© P. Cousot & R. Cousot 16–18 Jan 2002POPL’02, Portland — 30 — — 32 — © P. Cousot & R. Cousot

(6) Semantic Transformations as Approximations

• A semantic program transformation is a loss of information
on the semantics of the subject program;
−→ The semantic program transformation is an abstraction;

— 33 —

(6) Example: Partial Evaluation

S�Y := 1;
X := 0;�

S�Y := 1;
X := Y - 1;�

S�Y := 1;
X := 2 * Y - 2;�

S�Y := 1;
X := Y * (Y - 1);�

S� . . .�

−−−−−−−−−−−−−−−−−→−→←−−−−−−−−−−−−−−−−−−
Semantic transformation t

γt
S�Y := 1;

X := 0;�

(6) Online Program Transformation

Subject
program P

Syntactic

transformation t
→

Transformed
program

t�P�

Subject pro-
gram seman-
tics S�P�

S↓ p

↑↑

−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−
Semantic

transformation t

γt
Transformed pro-
gram semantics

t[S�P�] � S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O

←

α O

γ O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�]) = αO(S�t�P��)

— 35 —

(7) Syntactic Transformations as Approximations

• By composition, the syntactic program transformation is also
a loss of information on subject program;
−→ The syntactic program transformation is an abstraction;

© P. Cousot & R. Cousot 16–18 Jan 2002POPL’02, Portland — 34 — — 36 — © P. Cousot & R. Cousot

(7) Online Program Transformation (Done)

Subject
program P −−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−

Syntactic
transformation t

γt

Transformed
program

t�P�

Subject pro-
gram seman-
tics S�P�

S↓ p

↑↑

−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−
Semantic

transformation t

γt
Transformed pro-
gram semantics

t[S�P�] � S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O

←

α O

γ O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�]) = αO(S�t�P��)

— 37 —

Formalization of
Program Transformation

Correctness
by Abstract Interpretation

Correctness of an Online Program Transformation

Subject
program P −−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−

Syntactic
transformation t

γt

Transformed
program

t�P�

Subject pro-
gram seman-
tics S�P�

S↓ p

↑↑

−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−
Semantic

transformation t

γt
Transformed pro-
gram semantics

t[S�P�] � S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O

←

α O

γ O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�])= αO(S�t�P��)

— 39 —

Design of
Program Transformations
by Abstract Interpretation

© P. Cousot & R. Cousot 16–18 Jan 2002POPL’02, Portland — 38 — — 40 — © P. Cousot & R. Cousot

Design of an Online Program Transformation

Subject
program P −−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−

Syntactic
transformation t

γt

Transformed
program

t�P� � p[t[S�P�]]

Subject pro-
gram seman-
tics S�P�

S↓ p

↑↑

−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−
Semantic

transformation t

γt
Transformed pro-
gram semantics

t[S�P�] � S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O

←

α O

γ O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�]) = αO(S�t�P��)

— 41 —

Design of Program Transformation Algorithms

t�P� � p[t[S�P�]]

= p[t[lfp
�

F�P�]]

� . . . ← apply fixpoint transfer
/approximation theorems
(with widening)

= lfp
��

F
��P�

We obtain an iterative program transformation algorithm;
This algorithm is classical or new!

Principle of
Offline Program Transformation

— 43 —

Principle of Offline Program Transformation

Subject
program

P
Static program

analysis S
→〈P, S�P�〉

Syntactic trans-

formation t
→

Transformed program
t�P� � p[t[S�P�, α(S�P�)]]

Subject
program
semantics
S�P�

S↓ p

↑↑

Semantic

abstraction α
→〈S�P�, α(S�P�)〉

p

↑↑
S

↓
�......

�.....

Semantic trans-

formation t
→

Transformed
program semantics

t[S�P�, α(S�P�)] � S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O γ O

→

α O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�] ,α(S�P�)) = αO(S�t�P��)

αO

↓

γO

↑

Program
Static

Analysis

Program
Transformation

© P. Cousot & R. Cousot 16–18 Jan 2002POPL’02, Portland — 42 — — 44 — © P. Cousot & R. Cousot

Principle of Offline Program Transformation

Subject
program

P
Static program

analysis S
→〈P, S�P�〉

Syntactic trans-

formation t
→

Transformed program
t�P� � p[t[S�P�, α(S�P�)]]

Subject
program
semantics
S�P�

S↓ p

↑↑

Semantic

abstraction α
→〈S�P�, α(S�P�)〉

p

↑↑
S

↓
�......

�.....

Semantic trans-

formation t
→

Transformed
program semantics

t[S�P�, α(S�P�)] � S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O γ O

→

α O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�] ,α(S�P�)) = αO(S�t�P��)

αO

↓

γO

↑

— 45 —

Illustrative Examples

Program Transformations Formalized in the Paper

• Constant propagation;
• Online & offline partial evaluation;
• Mixline partial evaluation (with widening);
• Static program monitoring S�t�P, M�� = S�P� ∩ S�M�:

-- Example 1: run-time checks elimination ,
-- Example 2: security ,
-- Example 3: proof by transformation (P ≡ t�P, M�).

— 47 —

Conclusion

© P. Cousot & R. Cousot 16–18 Jan 2002POPL’02, Portland — 46 — — 48 — © P. Cousot & R. Cousot

Conclusion

• Program transformation is formalized as an abstraction of a
semantic transformation of run-time execution;

• Leads to a unified framework for semantics-based program
analysis and transformation;

• The benefit is presently purely foundational and conceptual;

• Pave the way to:
-- machine-checked program transformations ,
-- a formalization of compilation.

© P. Cousot & R. Cousot 16–18 Jan 2002POPL’02, Portland — 49 — © P. Cousot & R. Cousot

	MOTIVATIONS
	Program transformation and abstract interpretation
	Present objective
	ABSTRACT INTERPRETATION
	Abstract interpretation
	Abstract Interpretation (Cont'd)
	A few applications of Abstract Interpretation
	VERY BASIC ELEMENTS OF ABSTRACT INTERPRETATION THEORY
	Abstraction
	Concretization
	The abstraction is monotone
	The concretization is monotone
	The abstraction-concretization composition
	The concretization-abstraction composition
	Galois Connection
	Function abstraction
	Fixpoint abstraction
	ONLINE PROGRAM TRANSFORMATION
	(1) Online program transformation
	(2.0) Online program transformation
	(2.1) Online program transformation
	(3.0) Online program transformation
	(3.1) Online program transformation
	(3.2) Online program transformation
	(3.3) Example: partial evaluation
	(3.4) Online program transformation
	(4.0) Online program transformation
	(4.1) Online program transformation
	(5.1) Correspondence between syntax and semantics
	(5.2) Correspondence between syntax and semantics, cont'd
	(5.3) Online program transformation
	(6.0) Semantic transformations as approximations
	(6.1) Example: partial evaluation
	(6.2) Online program transformation
	(7.0) Syntactic transformations as approximations
	(7.1) Online program transformation (Done)
	FORMALIZATION OF PROGRAM TRANSFORMATION CORRECTNESS BY ABSTRACT INTERPRETATION
	Correctness of an online program transformation
	DESIGN OF PROGRAM TRANSFORMATIONS BY ABSTRACT INTERPRETATION
	Design of online program transformation
	Design of program transformation algorithms
	PRINCIPLE OF OFFLINE PROGRAM TRANSFORMATION
	Principle of offline program transformation (2)
	Principle of offline program transformation (1)
	ILLUSTRATIVE EXAMPLES
	Program transformations formalized in the paper
	CONCLUSION
	Conclusion

