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Motivations

xxx§xxxxx

Program Transformation & Abstract Interpretation

In semantics-based (offline) program transformation , such as:

• constant propagation ,
• partial evaluation ,
• slicing ,

abstract interpretation is classically used in a preliminary
program static analysis phase:

• to collect the information about the program runtime be
haviors,

• and determine which transformations are applicable.
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Present Objective

Our present goal is quite different:
• Formalize the program transformation itself;

With two objectives:
-- a program transformation correctness proof method;

-- a program transformation design methodology.

• Abstract interpretation is the appropriate framework to reach
these objectives.
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Abstract Interpretation
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Abstract Interpretation

• Abstract interpretation formalizes the conservative ap
proximation of the semantics of computer systems.

Approximation: observation of the behavior of a com
puter system at some level of abstraction, ignoring irrele
vant details;

Conservative: the approximation cannot lead to any erro
neous conclusion.

Abstract Interpretation (Cont’d)

• Thinking tool: the idea of abstraction by conservative ap
proximation is central to reasoning (in particular on computer
systems);

• Mechanical tools: the idea of effective approximation leads
to automatic semantics-based program manipulation tools.
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A Few Applications of Abstract Interpretation

Techniques involving approximations are naturally formalized
by abstract interpretation:
• Static Program Analysis [POPL 77,78,79]

• Hierarchies of Semantics (including Proofs) [POPL 92, TCS

02]

• Typing [POPL 97]

• Model Checking [POPL 00]

• Program Transformation [POPL 02]
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Very Basic Elements of
Abstract Interpretation Theory
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Abstraction α

x

y







{x : [1, 99], y : [2, 77]}

Concretization γ

x

y







{x : [1, 99], y : [2, 77]}
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The Abstraction α is Monotone

x

y













{x : [33, 89], y : [48, 61]}
�

{x : [1, 99], y : [2, 90]}

X ⊆ Y ⇒ α(X) � α(Y )
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The Concretization γ is Monotone

x

y

 









{x : [33, 89], y : [48, 61]}
�

{x : [1, 99], y : [2, 90]}

X � Y ⇒ γ(X) ⊆ γ(Y )
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The γ ◦ α Composition

x

y







{x : [1, 99], y : [2, 77]}

X ⊆ γ ◦ α(X)

The α ◦ γ Composition

x

y







{x : [1, 99], y : [2, 77]}
=

{x : [1, 99], y : [2, 77]}

α ◦ γ(Y ) = Y
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Galois Connection 1, 2

〈P, ⊆〉 −−−→←−−−
α

γ
〈Q, �〉

is defined as
• α is monotone
• γ is monotone
• X ⊆ γ ◦ α(X)
• α ◦ γ(Y ) � Y

iff

α(X) � Y iff X ⊆ γ(Y )

1 for short, more precisely “semi-dual Galois connections”.
2 see [POPL 79] for equivalent formalizations using closure operators, ideals, etc. and [JLC 92] for weaker hypotheses

if no best approximation.
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Function Abstraction

F �

F

Abstract domain

Concrete domain

F� = α ◦ F ◦ γ

〈P, ⊆〉 −−−→←−−−
α

γ
〈Q, �〉 ⇒

〈P mon	−→ P, ⊆̇〉 −−−−−−−−−−→←−−−−−−−−−−
λF . α◦F ◦γ

λF� . γ◦F�◦α
〈Q mon	−→ Q, �̇〉
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Approximate Fixpoint Abstraction

F

F
�

Concrete domain

Abstract domain

F F F F F
F

F
� F

� F
�

F
�

Approximation
relation

⊥

⊥�

�

F� = α ◦ F ◦ γ ⇒ α(lfp F ) � lfp F�

Online Program Transformation
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(1) Online Program Transformation

• Program transformation is a syntactic process;
• maps a subject program into a transformed program;
• Both subject and transformed programs are syntactic objects.

Subject
program P

Syntactic

transformation t
→

Transformed
program

t�P�
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(2) Online Program Transformation

• Program transformations refer to the semantics of the subject
and transformed programs:
-- Online program transformations use values manipulated
during program execution, hence directly refer to the source
concrete semantics;

-- Offline program transformations use a preliminary static
analysis of the source program, hence refer to its abstract
semantics;
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(2) Online Program Transformation

Subject
program P

Syntactic

transformation t
→

Transformed
program

t�P�

Subject pro-
gram seman-
tics S�P�

S↓ p

↑↑

Semantic

transformation t
→

Transformed pro-
gram semantics

S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O

←

α O

γ O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�]) = αO(S�t�P��)

(3) Online Program Transformation

• The subject semantics and transformed semantics are differ
ent in general;

• However they should be equivalent , at some level of observa
tion.
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(3) Online Program Transformation

Subject
program P

Syntactic

transformation t
→

Transformed
program

t�P�

Subject pro-
gram seman-
tics S�P�

S↓ p

↑↑

≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡
Observational

equivalence

Transformed pro-
gram semantics

S�t�P��

S↓ p

↑↑

α
O

→
γ O

→

←

α O

γ O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�]) = αO(S�t�P��)
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(3) Online Program Transformation

• The observational equivalence gets rids of irrelevant details
about the subject and transformed program semantics;

• Hence it is an abstract interpretation of the subject and trans
formed program semantics!
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(3) Example: Partial Evaluation

Subject program: Y := 1 Transformed program: Y := 1
X := Y - 1 X := 0

Subject Transformed
αO−→ Observational

semantics semantics semantics
[X:� ,Y:�] [X:� ,Y:�]

αO−→ [X:� ,Y:�]
↓ Y := 1 ↓ Y := 1

αO−→ ↓
[X:� ,Y:1] [X:� ,Y:1]

αO−→ [X:� ,Y:1]
↓ X := Y - 1 ↓ X := 0

αO−→ ↓
[X:0 ,Y:1] [X:0 ,Y:1]

αO−→ [X:0 ,Y:1]

(3) Online Program Transformation

Subject
program P

Syntactic

transformation t
→

Transformed
program

t�P�

Subject pro-
gram seman-
tics S�P�

S↓ p

↑↑

Semantic

transformation t
→

Transformed pro-
gram semantics

S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O

←

α O

γ O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�])= αO(S�t�P��)
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(4) Online Program Transformation

• The syntactic transformation induces a semantic transforma
tion:

The subject semantics is mapped to the transformed
semantics;

• The subject semantics and the transformed semantics should
be observationally equivalent;

• The semantic transformation is in general more precise than
the algorithmic syntactic transformation (e.g. infinite behav
iors).

© P. Cousot & R. Cousot 16–18 Jan 2002POPL’02, Portland — 26 — — 28 — © P. Cousot & R. Cousot



(4) Online Program Transformation

Subject
program P

Syntactic

transformation t
→

Transformed
program

t�P�

Subject pro-
gram seman-
tics S�P�

S↓ p

↑↑

Semantic

transformation t
→

Transformed pro-
gram semantics

t[S�P�] � S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O

←

α O

γ O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�]) = αO(S�t�P��)
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(5) Correspondence Between
Syntax and Semantics , Cont’d

• The program syntax forgets details about the program execu
tion semantics:
-- The sequence of values of variables during execution is
forgotten, but:
-- their existence and maybe their type are recorded;
-- the sequence (partial order, …) of (denotations of) ac
tions performed on these variables is recorded;

-- Program execution times are completely abstracted (but
might be included in the operational semantics);

(5) Correspondence Between
Syntax and Semantics , Cont’d

• The correspondence between syntax and semantics is an ab
straction:

po〈D; �〉 −−−→−→←−−−−
p

S
po〈P/≡; �〉

• The concretization S is the semantics of the program;
• The abstraction p is the “decompilation” of the semantics.
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(5) Online Program Transformation

Subject
program P

Syntactic

transformation t
→

Transformed
program

t�P�

Subject pro-
gram seman-
tics S�P�

S↓ p

↑↑

Semantic

transformation t
→

Transformed pro-
gram semantics

t[S�P�] � S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O

←

α O

γ O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�]) = αO(S�t�P��)
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(6) Semantic Transformations as Approximations

• A semantic program transformation is a loss of information
on the semantics of the subject program;
−→ The semantic program transformation is an abstraction;
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(6) Example: Partial Evaluation

S�Y := 1;
X := 0;�

S�Y := 1;
X := Y - 1;�

S�Y := 1;
X := 2 * Y - 2;�

S�Y := 1;
X := Y * (Y - 1);�

S� . . .�




−−−−−−−−−−−−−−−−−→−→←−−−−−−−−−−−−−−−−−−
Semantic transformation t

γt
S�Y := 1;

X := 0;�

(6) Online Program Transformation

Subject
program P

Syntactic

transformation t
→

Transformed
program

t�P�

Subject pro-
gram seman-
tics S�P�

S↓ p

↑↑

−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−
Semantic

transformation t

γt
Transformed pro-
gram semantics

t[S�P�] � S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O

←

α O

γ O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�]) = αO(S�t�P��)
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(7) Syntactic Transformations as Approximations

• By composition, the syntactic program transformation is also
a loss of information on subject program;
−→ The syntactic program transformation is an abstraction;
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(7) Online Program Transformation (Done)

Subject
program P −−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−

Syntactic
transformation t

γt

Transformed
program

t�P�

Subject pro-
gram seman-
tics S�P�

S↓ p

↑↑

−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−
Semantic

transformation t

γt
Transformed pro-
gram semantics

t[S�P�] � S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O

←

α O

γ O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�]) = αO(S�t�P��)
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Formalization of
Program Transformation

Correctness
by Abstract Interpretation

Correctness of an Online Program Transformation

Subject
program P −−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−

Syntactic
transformation t

γt

Transformed
program

t�P�

Subject pro-
gram seman-
tics S�P�

S↓ p

↑↑

−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−
Semantic

transformation t

γt
Transformed pro-
gram semantics

t[S�P�] � S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O

←

α O

γ O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�])= αO(S�t�P��)
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Design of
Program Transformations
by Abstract Interpretation
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Design of an Online Program Transformation

Subject
program P −−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−−

Syntactic
transformation t

γt

Transformed
program

t�P� � p[t[S�P�]]

Subject pro-
gram seman-
tics S�P�

S↓ p

↑↑

−−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−
Semantic

transformation t

γt
Transformed pro-
gram semantics

t[S�P�] � S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O

←

α O

γ O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�]) = αO(S�t�P��)
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Design of Program Transformation Algorithms

t�P� � p[t[S�P�]]

= p[t[lfp
�

F�P�]]

� . . . ← apply fixpoint transfer
/approximation theorems
(with widening)

= lfp
��

F
��P�

We obtain an iterative program transformation algorithm;
This algorithm is classical or new!

Principle of
Offline Program Transformation
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Principle of Offline Program Transformation

Subject
program

P
Static program

analysis S
→〈P, S�P�〉

Syntactic trans-

formation t
→

Transformed program
t�P� � p[t[S�P�, α(S�P�)]]

Subject
program
semantics
S�P�

S↓ p

↑↑

Semantic

abstraction α
→〈S�P�, α(S�P�)〉

p

↑↑
S

↓
�......

�.....

Semantic trans-

formation t
→

Transformed
program semantics

t[S�P�, α(S�P�)] � S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O γ O

→

α O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�] ,α(S�P�)) = αO(S�t�P��)

αO

↓

γO

↑

Program
Static

Analysis

Program
Transformation
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Principle of Offline Program Transformation

Subject
program

P
Static program

analysis S
→〈P, S�P�〉

Syntactic trans-

formation t
→

Transformed program
t�P� � p[t[S�P�, α(S�P�)]]

Subject
program
semantics
S�P�

S↓ p

↑↑

Semantic

abstraction α
→〈S�P�, α(S�P�)〉

p

↑↑
S

↓
�......

�.....

Semantic trans-

formation t
→

Transformed
program semantics

t[S�P�, α(S�P�)] � S�t�P��

S↓ p

↑↑

α
O

→

←
γ
O γ O

→

α O

→
Observational
abstraction

αO(S�P�) = αO(t[S�P�] ,α(S�P�)) = αO(S�t�P��)

αO

↓

γO

↑
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Illustrative Examples

Program Transformations Formalized in the Paper

• Constant propagation;
• Online & offline partial evaluation;
• Mixline partial evaluation (with widening);
• Static program monitoring S�t�P, M�� = S�P� ∩ S�M�:

-- Example 1: run-time checks elimination ,
-- Example 2: security ,
-- Example 3: proof by transformation (P ≡ t�P, M�).
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Conclusion
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Conclusion

• Program transformation is formalized as an abstraction of a
semantic transformation of run-time execution;

• Leads to a unified framework for semantics-based program
analysis and transformation;

• The benefit is presently purely foundational and conceptual;

• Pave the way to:
-- machine-checked program transformations ,
-- a formalization of compilation.
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