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Motivations & Introduction

The initial application:
program analysis

• Prove automatically that:
for all programs P of a given programming language L:

for all possible executions of that program P in any con
ceivable environment:
a given specification S is always satisfied.

• Initially the considered specifications S were simple safety
specifications (such as absence of runtime errors).

3

The methodology [CC-POPL’77]

• Define formally the program executions by a fixpoint seman
tics of the programs of the language L;

• Since the semantics of a program is not computable , use a
manually designed approximation/abstraction of that seman
tics to check the specification.

Reference

[CC-POPL’77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In Conf. Record of the 4th Annual ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages POPL’77 , Los Angeles, CA, 1977. ACM Press, pp.
238–252.

© P. Cousot July 31st – August 6th , 2000SSGRR-2000, L’Aquila, Italy 2 4 © P. Cousot



Content

1. Motivations & Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4. Program static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5. Industrialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5

Semantics

Semantics: intuition

• The semantics of a language defines the semantics of any
program written in this language;

• The semantics of a program provides a formal mathematical
model of all possible behaviors of a computer system execut
ing this program (interacting with any possible environment);

• Any semantics of a program can be defined as the solution
of a fixpoint equation;

• All semantics of a program can be organized in a hierarchy
by abstraction.

7

Example: trace semantics [4 , 6]
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Examples of computation traces
• Finite (C1+1=):

• Erroneous (C1+1+1+1…):

… …

• Infinite (C+0+0+0…):

… …

9

Least Fixpoints: intuition [4 , 6]

Behaviors = {• | • is a final state}
∪ {•−−−•−−−. . .−−−• | •−−−• is an elementary step &

•−−−. . .−−−• ∈ Behaviors+}

∪ {•−−−•−−−. . .−−−. . . | •−−−• is an elementary step &

•−−−. . .−−−. . . ∈ Behaviors∞}

• In general, the equation has multiple solutions.
• Choose the least one for the partial ordering:

« more finite traces & less infinite traces ».

Abstraction

11

Abstraction: intuition

• Abstract interpretation is a theory of the approximation of the
behavior of discrete dynamic systems , including the seman
tics of (programming or specification) languages [8 , 9 , 2];

• Abstract interpretation formalizes the intuitive idea that a
semantics is more or less precise according to the considered
observation level.
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Example 1 of abstraction 1
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Example 2 of abstraction 2
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1 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).

2 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).

Example 3 of abstraction 3
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Collecting Semantics
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Computable abstractions

• If the approximation is rough enough, the abstraction of a
semantics can lead to a version which is less precise but is
effectively computable by a computer;

• The computation of this abstract semantics amounts to the
effective iterative resolution of fixpoint equations;

• By effective computation of the abstract semantics , the com
puter is able to analyze the behavior of programs and of soft
ware before and without executing them [7].

3 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).
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Computable abstractions of an [in]finite set
of points; Example 1: signs

x

y {. . . , 〈19, 88〉, . . . ,
〈19, 99〉, . . .}
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Computable abstractions of an [in]finite set
of points; Example 1: signs [9]

x

y {
x ≥ 0
y ≥ 0

Computable abstractions of an [in]finite set
of points; Example 2: intervals [7 , 8]

x

y {
x ∈ [19, 88]
y ∈ [19, 99]

19

Computable abstractions of an [in]finite set
of points; Example 3: octagons

x

y






1 ≤ x ≤ 9
x + y ≤ 88
1 ≤ y ≤ 9
x − y ≤ 99
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Computable abstractions of an [in]finite set
of points; Example 4: polyhedra [13]

x

y {
19x + 88y ≤ 2000
19x + 99y ≥ 0
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Computable abstractions of an [in]finite set
of points; Example 5: simple congruences [15]

x

y {
x = 19 mod 88
y = 19 mod 99

Computable abstractions of an [in]finite set
of points; Example 6: linear congruences [16]

x

y {
1x + 9y = 8 mod 8
1x − 9y = 9 mod 9

23

Computable abstractions of an [in]finite set
of points; Example 7: trapezoidal linear con-

gruences [18, 19]

x

y {
1x + 9y ∈ [0, 88] mod 10
1x − 9y ∈ [0, 99] mod 11
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Computable abstractions
of symbolic structures

• Most structures manipulated by programs are symbolic struc
tures such as control structures (call graphs), data structures
(search trees), communication structures (distributed & mo
bile programs), etc;

• It is very difficult to find compact and expressive abstractions
of such sets of objects (languages, automata, trees, graphs,
etc.).

25

Example of abstractions of infinite sets of
infinite trees

Binary Decision Graphs: [20]

Tree schemata: [22 , 21]

Information loss

• All answers given by the abstract semantics are always correct
with respect to the concrete semantics;

• Because of the information loss, not all questions can be
definitely answered with the abstract semantics;

• The more concrete semantics can answer more questions;
• The more abstract semantics are more simple.

27

Example of information loss
• Is the operation 1/(x+1-y) well defined at run-time?
• Concrete semantics: yes

x

y
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Example of information loss
• Is the operation 1/(x+1-y) well defined at run-time?
• Abstract semantics 1: I don’t know

x

y
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Example of information loss
• Is the operation 1/(x+1-y) well defined at run-time?
• Abstract semantics 2: yes

x

y



Program Static Analysis

31

Objective of program static analysis

• Programming bugs should be eradicated before they lead to
disastrous catastrophes!

• Fully automatic bug detection is impossible (undecidability);
• Program static analysis uses abstract interpretation to derive,

from a standard semantics, an approximate and computable
semantics. This derivation is itself not (fully) mechanizable;

• It follows that the computer is able to analyze the behavior
of software before and without executing it;

• This is essential for computer-based safety-critical systems
(for example: planes, trains, launchers, nuclear plants, etc.).
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Example: interval analysis (1975) 4

Program to be analyzed:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

33

Example: interval analysis (1975)
Equations (abstract interpretation of the semantics):

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

The analyzer reads the program text and produces
(a representation of) the above equations and
then solve them iteratively. The equations are an
abstraction of the trace semantics of the program.
The formal derivation of the algorithm producing
the equation by abstract interpretation of the pro
gram trace semantics is (mainly) manual.

4 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

Example: interval analysis (1975)
Constraints (abstract interpretation of the semantics):

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 ⊇ [1, 1]
X2 ⊇ (X1 ∪ X3) ∩ [−∞, 9999]
X3 ⊇ X2 ⊕ [1, 1]
X4 ⊇ (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

The analyzer reads the program text and produces
(a representation of) the above constraints and
then solve them iteratively. The constraints are an
abstraction of the trace semantics of the program.
The formal derivation of the algorithm producing
the constraints by abstract interpretation of the
program trace semantics is (mainly) manual.

35

Example: interval analysis (1975)
Increasing chaotic iteration, initialization:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = ∅
X2 = ∅
X3 = ∅
X4 = ∅
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Example: interval analysis (1975) 4

Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = ∅
X3 = ∅
X4 = ∅

37

Example: interval analysis (1975)
Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 1]
X3 = ∅
X4 = ∅

Example: interval analysis (1975)
Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 1]
X3 = [2, 2]
X4 = ∅
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Example: interval analysis (1975)
Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 2]
X3 = [2, 2]
X4 = ∅
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Example: interval analysis (1975)
Increasing chaotic iteration: convergence?

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 2]
X3 = [2, 3]
X4 = ∅
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Example: interval analysis (1975)
Increasing chaotic iteration: convergence??

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 3]
X3 = [2, 3]
X4 = ∅

Example: interval analysis (1975)
Increasing chaotic iteration: convergence???

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 3]
X3 = [2, 4]
X4 = ∅
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Example: interval analysis (1975)
Increasing chaotic iteration: convergence????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 4]
X3 = [2, 4]
X4 = ∅
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Example: interval analysis (1975)
Increasing chaotic iteration: convergence?????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 4]
X3 = [2, 5]
X4 = ∅
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Example: interval analysis (1975)
Increasing chaotic iteration: convergence??????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 5]
X3 = [2, 5]
X4 = ∅

Example: interval analysis (1975)
Increasing chaotic iteration: convergence???????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 5]
X3 = [2, 6]
X4 = ∅
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Example: interval analysis (1975)
Convergence speed-up by extrapolation:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1,+∞] ⇐ widening
X3 = [2, 6]
X4 = ∅
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Widening

[-3,0]

[-2,0]

[-1,0]

[-3,-1]

[-2,-1]

[-2,1]

[-1,1]

[-1,2]

[0,2]

[0,1] [1,2]

[1,3]

[0,3]

[-2,-2] [-1,-1] [0,0] [1,1] [2,2] …

… …

[2,+ ]

…

… …

[1,+ ]

[0,+ ]

[– ,+ ]

[– ,0]

…

…

…

…

… ……… … … …

…… …
…

[– ,-1]

[– ,-2]
…

…

Ø
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Example: interval analysis (1975)
Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1,+∞]
X3 = [2,+∞]
X4 = ∅

Example: interval analysis (1975)
Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 9999]
X3 = [2,+∞]
X4 = ∅
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Example: interval analysis (1975)
Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 9999]
X3 = [2, 10000]
X4 = ∅
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Example: interval analysis (1975)
Final solution:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 9999]
X3 = [2, 10000]
X4 = [10000, 10000]
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Example: interval analysis (1975)
Result of the interval analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x ∈ [1, 9999]}

x := x + 1
3: {x ∈ [2, 10000]}

od;
4: {x = 10000}






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 9999]
X3 = [2, 10000]
X4 = [10000, 10000]

4 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

Example: interval analysis (1975)
Exploitation of the result of the interval analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x ∈ [1, 9999]}

x := x + 1
3: {x ∈ [2, 10000]}

od;
4: {x = 10000}






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






←− no overflow
X2 = [1, 9999]
X3 = [2, 10000]
X4 = [10000, 10000]
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Some applications of static analysis
by abstract interpretation

• data flow and set-based analysis for program optimization &
transformation (including partial evaluation) [9 , 12];

• type inference (including undecidable systems)/soft typing [5];
• abstract model-checking of infinite systems [11 , 12];
• abstract debugging & testing [2 , 1];
• probabilistic analysis [24];
• communication topology analysis for mobile/distributed code [25];
• …
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Some other recent applications of
abstract interpretation

• Fundamental applications:
-- design of hierarchies of semantics [10 , 3 , 6] , …;

• Practical applications:
-- generation of heuristics for search problems in AI;
-- automatic differentiation of numerical programs;
-- security (analysis of cryptographic protocols [23] , mobile
code [14]);

-- semantic tattooing/watermarking of software, …;

57

Present-day and forthcoming
research

A lot of fundamental research remains to be done:

• modularity,

• higher order functions & modules,

• floating point numbers,

• probabilistic analyses,

• liveness properties with fairness,

• …;

Industrialization of
Program Static Analysis

59

An impressive application (1996/97)
• Abstract interpretation has been used (including interval anal

ysis) for the static analysis of the embedded ADA software of
the Ariane 5 launcher 5; [17]

• Automatic detection of the definiteness , potentiality , impos
sibility or inaccessibility of run-time errors 6;

• Automatic discovery of the 501 flight error;
• Success for the 502 & 503 flights and the ARD 7.

4 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
5 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions,

uninitialized variables, data races on shared data structures, etc.
6 Atmospheric Reentry Demonstrator: module coming back to earth.
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Industrialization of static analysis by
abstract interpretation

• Connected Components Corporation (U.S.A.),
L. Harrison, 1993;

• AbsInt Angewandte Informatik GmbH (Germany),
R. Wilhelm & C. Ferdinand, 1998;

• Polyspace Technologies (France),
A. Deutsch & D. Pilaud, 1999.
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