
Abstract Interpretation:
Achievements and Perspectives

Patrick COUSOT
École Normale Supérieure

45 rue d’Ulm, 75230 Paris cedex 05, France
mailto:Patrick.Cousot@ens.fr , http://www.di.ens.fr/˜cousot

SSGRR-2000, L’Aquila, Italy July 31st – August 6th , 2000

1

Motivations & Introduction

The initial application:
program analysis

• Prove automatically that:
for all programs P of a given programming language L:

for all possible executions of that program P in any con
ceivable environment:
a given specification S is always satisfied.

• Initially the considered specifications S were simple safety
specifications (such as absence of runtime errors).

3

The methodology [CC-POPL’77]

• Define formally the program executions by a fixpoint seman
tics of the programs of the language L;

• Since the semantics of a program is not computable , use a
manually designed approximation/abstraction of that seman
tics to check the specification.

Reference

[CC-POPL’77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In Conf. Record of the 4th Annual ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages POPL’77 , Los Angeles, CA, 1977. ACM Press, pp.
238–252.

© P. Cousot July 31st – August 6th , 2000SSGRR-2000, L’Aquila, Italy 2 4 © P. Cousot

Content

1. Motivations & Introduction . 4

2. Semantics . 8

3. Abstraction . 12

4. Program static analysis . 32

5. Industrialization . 60

6. References . 64

5

Semantics

Semantics: intuition

• The semantics of a language defines the semantics of any
program written in this language;

• The semantics of a program provides a formal mathematical
model of all possible behaviors of a computer system execut
ing this program (interacting with any possible environment);

• Any semantics of a program can be defined as the solution
of a fixpoint equation;

• All semantics of a program can be organized in a hierarchy
by abstraction.

7

Example: trace semantics [4 , 6]

Initial states
Final states of the
 finite tracesIntermediate states

Infinite
traces

0 1 2 3 4 5 6 7 8 9 discrete time

a b c d

e f

g h

i j

k

!

© P. Cousot July 31st – August 6th , 2000SSGRR-2000, L’Aquila, Italy 6 8 © P. Cousot

Examples of computation traces
• Finite (C1+1=):

• Erroneous (C1+1+1+1…):

… …

• Infinite (C+0+0+0…):

… …

9

Least Fixpoints: intuition [4 , 6]

Behaviors = {• | • is a final state}
∪ {•−−−•−−−. . .−−−• | •−−−• is an elementary step &

•−−−. . .−−−• ∈ Behaviors+}

∪ {•−−−•−−−. . .−−−. . . | •−−−• is an elementary step &

•−−−. . .−−−. . . ∈ Behaviors∞}

• In general, the equation has multiple solutions.
• Choose the least one for the partial ordering:

« more finite traces & less infinite traces ».

Abstraction

11

Abstraction: intuition

• Abstract interpretation is a theory of the approximation of the
behavior of discrete dynamic systems , including the seman
tics of (programming or specification) languages [8 , 9 , 2];

• Abstract interpretation formalizes the intuitive idea that a
semantics is more or less precise according to the considered
observation level.

© P. Cousot July 31st – August 6th , 2000SSGRR-2000, L’Aquila, Italy 10 12 © P. Cousot

Example 1 of abstraction 1

a d

e f

g h

i j

k

!

⊥
⊥

a d

e f

g h

i j

α α

0 1 2 3 4 5 6 7 8 9 discrete time

a b c d

e f

g h

i j

k

!

Initial states
Intermediate states Final states of

 finite traces

Infinite
traces

Final states
Initial states

Trace semantics Denotational
semantics

Natural
semantics

13

Example 2 of abstraction 2

Transitions

Initial states Final states

a b c d

e f

g h

i j

k

!

a

e

g

i

k

!

d

f

h

j

b

(Small-Step) Operational Semantics

1 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).

2 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).

Example 3 of abstraction 3

Reachable states

Initial states Final states

a

e

g

i

k

!

d

f

h

j

a b c d

e f

g h

i j

k

!

Collecting Semantics

15

Computable abstractions

• If the approximation is rough enough, the abstraction of a
semantics can lead to a version which is less precise but is
effectively computable by a computer;

• The computation of this abstract semantics amounts to the
effective iterative resolution of fixpoint equations;

• By effective computation of the abstract semantics , the com
puter is able to analyze the behavior of programs and of soft
ware before and without executing them [7].

3 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).

© P. Cousot July 31st – August 6th , 2000SSGRR-2000, L’Aquila, Italy 14 16 © P. Cousot

Computable abstractions of an [in]finite set
of points; Example 1: signs

x

y {. . . , 〈19, 88〉, . . . ,
〈19, 99〉, . . .}

17

Computable abstractions of an [in]finite set
of points; Example 1: signs [9]

x

y {
x ≥ 0
y ≥ 0

Computable abstractions of an [in]finite set
of points; Example 2: intervals [7 , 8]

x

y {
x ∈ [19, 88]
y ∈ [19, 99]

19

Computable abstractions of an [in]finite set
of points; Example 3: octagons

x

y

1 ≤ x ≤ 9
x + y ≤ 88
1 ≤ y ≤ 9
x − y ≤ 99

© P. Cousot July 31st – August 6th , 2000SSGRR-2000, L’Aquila, Italy 18 20 © P. Cousot

Computable abstractions of an [in]finite set
of points; Example 4: polyhedra [13]

x

y {
19x + 88y ≤ 2000
19x + 99y ≥ 0

21

Computable abstractions of an [in]finite set
of points; Example 5: simple congruences [15]

x

y {
x = 19 mod 88
y = 19 mod 99

Computable abstractions of an [in]finite set
of points; Example 6: linear congruences [16]

x

y {
1x + 9y = 8 mod 8
1x − 9y = 9 mod 9

23

Computable abstractions of an [in]finite set
of points; Example 7: trapezoidal linear con-

gruences [18, 19]

x

y {
1x + 9y ∈ [0, 88] mod 10
1x − 9y ∈ [0, 99] mod 11

© P. Cousot July 31st – August 6th , 2000SSGRR-2000, L’Aquila, Italy 22 24 © P. Cousot

Computable abstractions
of symbolic structures

• Most structures manipulated by programs are symbolic struc
tures such as control structures (call graphs), data structures
(search trees), communication structures (distributed & mo
bile programs), etc;

• It is very difficult to find compact and expressive abstractions
of such sets of objects (languages, automata, trees, graphs,
etc.).

25

Example of abstractions of infinite sets of
infinite trees

Binary Decision Graphs: [20]

Tree schemata: [22 , 21]

Information loss

• All answers given by the abstract semantics are always correct
with respect to the concrete semantics;

• Because of the information loss, not all questions can be
definitely answered with the abstract semantics;

• The more concrete semantics can answer more questions;
• The more abstract semantics are more simple.

27

Example of information loss
• Is the operation 1/(x+1-y) well defined at run-time?
• Concrete semantics: yes

x

y

© P. Cousot July 31st – August 6th , 2000SSGRR-2000, L’Aquila, Italy 26 28 © P. Cousot

Example of information loss
• Is the operation 1/(x+1-y) well defined at run-time?
• Abstract semantics 1: I don’t know

x

y

29

Example of information loss
• Is the operation 1/(x+1-y) well defined at run-time?
• Abstract semantics 2: yes

x

y

Program Static Analysis

31

Objective of program static analysis

• Programming bugs should be eradicated before they lead to
disastrous catastrophes!

• Fully automatic bug detection is impossible (undecidability);
• Program static analysis uses abstract interpretation to derive,

from a standard semantics, an approximate and computable
semantics. This derivation is itself not (fully) mechanizable;

• It follows that the computer is able to analyze the behavior
of software before and without executing it;

• This is essential for computer-based safety-critical systems
(for example: planes, trains, launchers, nuclear plants, etc.).

© P. Cousot July 31st – August 6th , 2000SSGRR-2000, L’Aquila, Italy 30 32 © P. Cousot

Example: interval analysis (1975) 4

Program to be analyzed:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

33

Example: interval analysis (1975)
Equations (abstract interpretation of the semantics):

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

The analyzer reads the program text and produces
(a representation of) the above equations and
then solve them iteratively. The equations are an
abstraction of the trace semantics of the program.
The formal derivation of the algorithm producing
the equation by abstract interpretation of the pro
gram trace semantics is (mainly) manual.

4 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

Example: interval analysis (1975)
Constraints (abstract interpretation of the semantics):

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

X1 ⊇ [1, 1]
X2 ⊇ (X1 ∪ X3) ∩ [−∞, 9999]
X3 ⊇ X2 ⊕ [1, 1]
X4 ⊇ (X1 ∪ X3) ∩ [10000,+∞]

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

The analyzer reads the program text and produces
(a representation of) the above constraints and
then solve them iteratively. The constraints are an
abstraction of the trace semantics of the program.
The formal derivation of the algorithm producing
the constraints by abstract interpretation of the
program trace semantics is (mainly) manual.

35

Example: interval analysis (1975)
Increasing chaotic iteration, initialization:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

X1 = ∅
X2 = ∅
X3 = ∅
X4 = ∅

© P. Cousot July 31st – August 6th , 2000SSGRR-2000, L’Aquila, Italy 34 36 © P. Cousot

Example: interval analysis (1975) 4

Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

X1 = [1, 1]
X2 = ∅
X3 = ∅
X4 = ∅

37

Example: interval analysis (1975)
Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

X1 = [1, 1]
X2 = [1, 1]
X3 = ∅
X4 = ∅

Example: interval analysis (1975)
Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

X1 = [1, 1]
X2 = [1, 1]
X3 = [2, 2]
X4 = ∅

39

Example: interval analysis (1975)
Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

X1 = [1, 1]
X2 = [1, 2]
X3 = [2, 2]
X4 = ∅

© P. Cousot July 31st – August 6th , 2000SSGRR-2000, L’Aquila, Italy 38 40 © P. Cousot

Example: interval analysis (1975)
Increasing chaotic iteration: convergence?

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

X1 = [1, 1]
X2 = [1, 2]
X3 = [2, 3]
X4 = ∅

41

Example: interval analysis (1975)
Increasing chaotic iteration: convergence??

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

X1 = [1, 1]
X2 = [1, 3]
X3 = [2, 3]
X4 = ∅

Example: interval analysis (1975)
Increasing chaotic iteration: convergence???

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

X1 = [1, 1]
X2 = [1, 3]
X3 = [2, 4]
X4 = ∅

43

Example: interval analysis (1975)
Increasing chaotic iteration: convergence????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

X1 = [1, 1]
X2 = [1, 4]
X3 = [2, 4]
X4 = ∅

© P. Cousot July 31st – August 6th , 2000SSGRR-2000, L’Aquila, Italy 42 44 © P. Cousot

Example: interval analysis (1975)
Increasing chaotic iteration: convergence?????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

X1 = [1, 1]
X2 = [1, 4]
X3 = [2, 5]
X4 = ∅

45

Example: interval analysis (1975)
Increasing chaotic iteration: convergence??????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

X1 = [1, 1]
X2 = [1, 5]
X3 = [2, 5]
X4 = ∅

Example: interval analysis (1975)
Increasing chaotic iteration: convergence???????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

X1 = [1, 1]
X2 = [1, 5]
X3 = [2, 6]
X4 = ∅

47

Example: interval analysis (1975)
Convergence speed-up by extrapolation:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

X1 = [1, 1]
X2 = [1,+∞] ⇐ widening
X3 = [2, 6]
X4 = ∅

© P. Cousot July 31st – August 6th , 2000SSGRR-2000, L’Aquila, Italy 46 48 © P. Cousot

Widening

[-3,0]

[-2,0]

[-1,0]

[-3,-1]

[-2,-1]

[-2,1]

[-1,1]

[-1,2]

[0,2]

[0,1] [1,2]

[1,3]

[0,3]

[-2,-2] [-1,-1] [0,0] [1,1] [2,2] …

… …

[2,+]

…

… …

[1,+]

[0,+]

[– ,+]

[– ,0]

…

…

…

…

… ……… … … …

…… …
…

[– ,-1]

[– ,-2]
…

…

Ø

49

Example: interval analysis (1975)
Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

X1 = [1, 1]
X2 = [1,+∞]
X3 = [2,+∞]
X4 = ∅

Example: interval analysis (1975)
Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

X1 = [1, 1]
X2 = [1, 9999]
X3 = [2,+∞]
X4 = ∅

51

Example: interval analysis (1975)
Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

X1 = [1, 1]
X2 = [1, 9999]
X3 = [2, 10000]
X4 = ∅

© P. Cousot July 31st – August 6th , 2000SSGRR-2000, L’Aquila, Italy 50 52 © P. Cousot

Example: interval analysis (1975)
Final solution:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

X1 = [1, 1]
X2 = [1, 9999]
X3 = [2, 10000]
X4 = [10000, 10000]

53

Example: interval analysis (1975)
Result of the interval analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x ∈ [1, 9999]}

x := x + 1
3: {x ∈ [2, 10000]}

od;
4: {x = 10000}

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

X1 = [1, 1]
X2 = [1, 9999]
X3 = [2, 10000]
X4 = [10000, 10000]

4 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

Example: interval analysis (1975)
Exploitation of the result of the interval analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x ∈ [1, 9999]}

x := x + 1
3: {x ∈ [2, 10000]}

od;
4: {x = 10000}

X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

←− no overflow
X2 = [1, 9999]
X3 = [2, 10000]
X4 = [10000, 10000]

55

Some applications of static analysis
by abstract interpretation

• data flow and set-based analysis for program optimization &
transformation (including partial evaluation) [9 , 12];

• type inference (including undecidable systems)/soft typing [5];
• abstract model-checking of infinite systems [11 , 12];
• abstract debugging & testing [2 , 1];
• probabilistic analysis [24];
• communication topology analysis for mobile/distributed code [25];
• …

© P. Cousot July 31st – August 6th , 2000SSGRR-2000, L’Aquila, Italy 54 56 © P. Cousot

Some other recent applications of
abstract interpretation

• Fundamental applications:
-- design of hierarchies of semantics [10 , 3 , 6] , …;

• Practical applications:
-- generation of heuristics for search problems in AI;
-- automatic differentiation of numerical programs;
-- security (analysis of cryptographic protocols [23] , mobile
code [14]);

-- semantic tattooing/watermarking of software, …;

57

Present-day and forthcoming
research

A lot of fundamental research remains to be done:

• modularity,

• higher order functions & modules,

• floating point numbers,

• probabilistic analyses,

• liveness properties with fairness,

• …;

Industrialization of
Program Static Analysis

59

An impressive application (1996/97)
• Abstract interpretation has been used (including interval anal

ysis) for the static analysis of the embedded ADA software of
the Ariane 5 launcher 5; [17]

• Automatic detection of the definiteness , potentiality , impos
sibility or inaccessibility of run-time errors 6;

• Automatic discovery of the 501 flight error;
• Success for the 502 & 503 flights and the ARD 7.

4 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
5 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions,

uninitialized variables, data races on shared data structures, etc.
6 Atmospheric Reentry Demonstrator: module coming back to earth.

© P. Cousot July 31st – August 6th , 2000SSGRR-2000, L’Aquila, Italy 58 60 © P. Cousot

Industrialization of static analysis by
abstract interpretation

• Connected Components Corporation (U.S.A.),
L. Harrison, 1993;

• AbsInt Angewandte Informatik GmbH (Germany),
R. Wilhelm & C. Ferdinand, 1998;

• Polyspace Technologies (France),
A. Deutsch & D. Pilaud, 1999.

61

References

Pointers to references

• Starter:

P. Cousot. Abstract interpretation. ACM Computing
Surveys 28 (2), 1996, 324–328.

• On the web:

http://www.di.ens.fr/˜cousot/

63

References
[1] F. Bourdoncle. Abstract debugging of higher-order imperative languages. In Pro

ceedings of the ACM-SIGPLAN Conference on Programming Language Design and
Implementation, pages 46–55. ACM Press, New York, New York, United States,
1993.

[2] P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick and N.D.
Jones, editors, Program Flow Analysis: Theory and Applications , chapter 10,
pages 303–342. Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, United States,
1981.

[3] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Electronic Notes in Theoretical Computer Science , 6,
1997. URL: http://www.elsevier.nl/locate/entcs/volume6.html , 25
pages.

© P. Cousot July 31st – August 6th , 2000SSGRR-2000, L’Aquila, Italy 62 64 © P. Cousot

[4] P. Cousot. Design of semantics by abstract interpretation, invited address. In
Mathematical Foundations of Programming Semantics, Thirteenth Annual Confer
ence (MFPS XIII) , Carnegie Mellon University, Pittsburgh, Pennsylvania, United
States, 23–26 March 1997.

[5] P. Cousot. Types as abstract interpretations, invited paper. In Conference Record
of the Twentyfourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages , pages 316–331, Paris, France, January 1997. ACM
Press, New York, New York, United States.

[6] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theoretical Computer Science , To appear (Preliminary
version in [3]).

[7] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proceedings of the Second International Symposium on Programming , pages
106–130. Dunod, Paris, France, 1976.

65

[8] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages , pages 238–252, Los Angeles, California, 1977. ACM
Press, New York, New York, United States.

[9] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages , pages 269–282, San Antonio, Texas, 1979.
ACM Press, New York, New York, United States.

[10] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre
tation. In Conference Record of the Ninthteenth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 83–94, Albuquerque,
New Mexico, 1992. ACM Press, New York, New York, United States.

[11] P. Cousot and R. Cousot. Refining model checking by abstract interpretation.
Automated Software Engineering , 6:69–95, 1999.

[12] P. Cousot and R. Cousot. Temporal abstract interpretation. In Conference Record
of the Twentyseventh Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages , pages 12–25, Boston, Massachusetts, January 2000.
ACM Press, New York, New York, United States.

[13] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conference Record of the Fifth Annual ACM SIG
PLAN-SIGACT Symposium on Principles of Programming Languages, pages
84–97, Tucson, Arizona, 1978. ACM Press, New York, New York, United States.

[14] J. Feret. Confidentiality analysis for mobiles systems. In J. Palsberg, editor, Pro
ceedings of the Seventh International Symposium on Static Analysis, SAS ’ 2000 ,
Santa Barbara, California, United States, Lecture Notes in Computer Science.
Springer-Verlag, Berlin, Germany, 29 June – 1 July 2000.

[15] P. Granger. Static analysis of arithmetical congruences. Int. J. Comput. Math. ,
30:165–190, 1989.

67

[16] P. Granger. Static analysis of linear congruence equalities among variables of
a program. In S. Abramsky and T.S.E. Maibaum, editors, Proceedings of the
International Joint Conference on Theory and Practice of Software Development,
TAPSOFT ’91, Volume 1 (CAAP ’91) , Brighton, Great Britain, Lecture Notes in
Computer Science 493, pages 169–192. Springer-Verlag, Berlin, Germany, 1991.

[17] P. Lacan, J.N. Monfort, L.V.Q. Ribal, A. Deutsch, and G. Gonthier. The software
reliability verification process: The Ariane 5 example. In Proceedings DASIA 98
– DAta Systems In Aerospace , Athens, Greece. ESA Publications, SP-422, 25–28
May 1998.

[18] F. Masdupuy. Array operations abstraction using semantic analysis of trapezoid
congruences. In Proceedings of the ACM International Conference on Supercom
puting, ICS ’92 , pages 226–235, Washington D.C. , July 1992.

[19] F. Masdupuy. Semantic analysis of interval congruences. In D. Bjørner, M. Broy,
and I.V. Pottosin, editors, Proceedings of the International Conference on Formal
Methods in Programming and their Applications , Academgorodok, Novosibirsk,
Russia, Lecture Notes in Computer Science 735, pages 142–155. Springer-Verlag,
Berlin, Germany, 28 June – 2 July 1993.

© P. Cousot July 31st – August 6th , 2000SSGRR-2000, L’Aquila, Italy 66 68 © P. Cousot

[20] L. Mauborgne. Binary decision graphs. In A. Cortesi and G. Filé, editors, Proceed
ings of the Sixth International Symposium on Static Analysis, SAS ’ 99 , Venice,
Italy, 22–24 september 1999, Lecture Notes in Computer Science 1694, pages
101–116. Springer-Verlag, Berlin, Germany, 1999.

[21] L. Mauborgne. Tree schemata and fair termination. In J. Palsberg, editor, Pro
ceedings of the Seventh International Symposium on Static Analysis, SAS ’ 2000 ,
Santa Barbara, California, United States, Lecture Notes in Computer Science 1824,
pages 302–321. Springer-Verlag, Berlin, Germany, 29 June – 1 July 2000.

[22] L. Mauborgne. Improving the representation of infinite trees to deal with sets of
trees. In G. Smolka, editor, Programming Languages and Systems, Proceedings of
the Ninth European Symposium on Programming, ESOP ’2000 , Berlin, Germany,
Lecture Notes in Computer Science 1782, pages 275–289. Springer-Verlag, Berlin,
Germany, March – April 2000.

[23] D. Monniaux. Abstracting cryptographic protocols with tree automata. In A.
Cortesi and G. Filé, editors, Proceedings of the Sixth International Symposium on
Static Analysis, SAS ’ 99 , Venice, Italy, 22–24 september 1999, Lecture Notes in
Computer Science 1694, pages 149–163. Springer-Verlag, Berlin, Germany, 1999.

69

[24] D. Monniaux. Abstract interpretation of probabilistic semantics. In J. Palsberg,
editor, Proceedings of the Seventh International Symposium on Static Analysis,
SAS ’ 2000 , Santa Barbara, California, United States, Lecture Notes in Computer
Science 1824, pages 322–339. Springer-Verlag, Berlin, Germany, 29 June – 1 July
2000.

[25] A. Venet. Automatic determination of communication topologies in mobile sys
tems. In G. Levi, editor, Proceedings of the Fifth International Symposium on
Static Analysis, SAS ’ 98 , Pisa, Italy, 14–16 september 1998, Lecture Notes in
Computer Science 1503, pages 152–167. Springer-Verlag, Berlin, Germany, 1998.

∫∫

© P. Cousot July 31st – August 6th , 2000SSGRR-2000, L’Aquila, Italy 70 © P. Cousot

