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Abstract
In order to contribute to the software reliability problem, tools have been designed in order to

analyze statically the run-time behavior of programs. Because the correctness problem is undecidable,
some form of approximation is needed. The whole purpose of abstract interpretation is to formalize
this idea of approximation. We illustrate informally the application of abstraction to the semantics of
programming languages as well as to program static analysis. The main point is that in order to reason or
compute about a complex system, some information must be lost, that is the observation of executions
must be at a high level of abstraction.

In the second part of the talk, we compare program static analysis with deductive methods,
model-checking and type inference. Their foundational ideas are shortly reviewed, and the shortcomings
of these four tools are discussed, including when they are combined. Alternatively, since program debug
ging is still the main program verification method used in industry, we suggest to combine formal with
informal methods.

Finally, the grand challenge for all formal methods and tools is to solve the software reliability,
trustworthiness or robustness problems. Few challenges more specific to program analysis by abstract
interpretation are shortly discussed.

The published slides slightly extend those of the presentation and include a shortened bibliography,
mainly restricted to result obtained in our research group.
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Motivations and Overview
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The Software Reliability Problem

• The evolution of hardware by a factor of 106 over the past
25 years has lead to the explosion of the program sizes;
• The scope of application of very large softwares is likely to

widen rapidly in the next decade;
• These big programs will have to be modified and maintained

during their lifetime (often over 20 years);
• The size and efficiency of the programming and maintenance

teams in charge of their design and follow-up cannot grow up
in similar proportions;
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The Software Reliability Problem (Cont’d)

• At a not so uncommon (and often optimistic) rate of one bug
per thousand lines such huge programs might rapidly become
hardly manageable in particular for safety critical systems;
• Therefore in the next 10 years, the software reliability problem

is likely to become a major concern and challenge to modern
highly computer-dependent societies.
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What Can We Do About It?

• Use our head (Thinking/intellectual tools , this morning ses
sion);
• Use our computer (Mechanical tools , this afternoon session).

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 5 — [] �— ���I © P. Cousot



Computer Aided Program Verification

• Empirical program verification methods (execute/simulate the
program in enough representative possible environments):

-- Debugging ,
-- Simulation;

• Formal program verification methods (mecanically prove that
program execution is correct in all specified environments):

-- Deductive methods ,
-- Model checking ,
-- Program typing ,
-- Program analysis.
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Undecidability and Approximation

• Since program verification is undecidable , computer aided
program verification methods are all partial/incomplete;
• They all involve some form of approximation:

-- practical complexity limitations ,
-- required user interaction ,
-- semi-algorithms or finiteness hypotheses ,
-- restricted specifications or programs;

• Most of these approximations are formalized by Abstract In
terpretation.
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Abstract Interpretation

• Abstract Interpretation is a theory of approximation of the
behavior of dynamic discrete systems (such as the formal
semantics of programs);
• Since such behaviors can be characterized by fixpoints , the

theory essentially provides constructive and effective methods
for fixpoint approximation and checking by abstraction.

Seminal reference

-- P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction
or approximation of fixpoints. In Conf. Record of the 4th Annual ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages POPL’77 , Los Angeles, CA, 1977. ACM Press, pp. 238–252.
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Semantics
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Semantics: Intuition

• The semantics of a language defines the semantics of any
program written in this language;
• The semantics of a program provides a formal mathematical

model of all possible behaviors of a computer system execut
ing this program (interacting with any possible environment);
• Any semantics of a program can be defined as the solution

of a fixpoint equation;
• All semantics of a program can be organized in a hierarchy

by abstraction.
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Example: Trace Semantics [7 , 9]
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Fixpoints
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Least Fixpoints: Intuition [7 , 9]

Behaviors = {• | • is a final state}
∪ {•−−−•−−−. . .−−−• | •−−−• is an elementary step &

•−−−. . .−−−• ∈ Behaviors+}
∪ {•−−−•−−−. . .−−−. . . | •−−−• is an elementary step &

•−−−. . .−−−. . . ∈ Behaviors∞}

• In general, the equation has multiple solutions.
• Choose the least one for the partial ordering:

« more finite traces & less infinite traces ».
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Abstraction
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Abstraction: Intuition

• Abstract interpretation formalizes the intuitive idea that a
semantics is more or less precise according to the considered
observation level of the program executions;

• Abstract interpretation theory formalizes this notion of ap
proximation/abstraction in a mathematical setting which is
independent of particular applications.
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Lattice of Semantics [9]
Hoare logics

Weakest precondition
semantics

Denotational semantics

Relational semantics

Trace semantics

equivalence
abstraction-

restriction
infinite

demoniac
determinist
naturalangelic

τ�!

τ ∂

τ EM

τD

τPτ S τ♦τ ]τ [

τ>
τwp

τ tHτ pH

τwlp

τ ~+

τ+ τ ω

τ ~ω

τ gH

τ gwp

τ�?

τ \

τ∞

τ ~∞
τ

��
�* v

���
���

���
���

�: v

v

v








�
v v v v

v

6

6 6��
�1

v

v

v�����
�*

��
��
��*

��
��
��*

HH
HH

HHY

HH
HH

HHY

HH
HH

HHY

HH
HH

HHY

HH
HH

HHY
v

vv

v

v

vv

v

v

v

v
��
��
��
��
��

��
��
��
��
��1

��
��
��1v

v

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 16 — [] �— ���I © P. Cousot



Example 1 of Abstraction 1
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1 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).
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Example 2 of Abstraction 2

Transitions
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2 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 18 — [] �— ���I © P. Cousot



Example 3 of Abstraction 3
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Partial Correctness / Invariance Semantics

3 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).
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Effective Abstractions
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Effective Abstractions

• If the approximation is rough enough, the abstraction of a
semantics can lead to a version which is less precise but is
effectively computable by a computer;

• The computation of this abstract semantics amounts to the
effective iterative resolution of fixpoint equations;

• By effective computation of the abstract semantics , the com
puter is able to analyze the behavior of programs and of soft
ware before and without executing them [10].
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Effective Abstractions of an [In]finite Set of
Points;

x

y {. . . , 〈19, 88〉, . . . ,
〈19, 99〉, . . .}
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Effective Abstractions of an [In]finite Set of
Points; Example 1: Signs [12]

x

y {
x ≥ 0
y ≥ 0
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Effective Abstractions of an [In]finite Set of
Points; Example 2: Intervals [10 , 11]

x

y {
x ∈ [19, 88]
y ∈ [19, 99]
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Effective Abstractions of an [In]finite Set of
Points; Example 3: Octagons

x

y





1 ≤ x ≤ 9
x + y ≤ 88
1 ≤ y ≤ 9
x− y ≤ 99
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Effective Abstractions of an [In]finite Set of
Points; Example 4: Polyhedra [15]

x

y {
19x + 88y ≤ 2000
19x + 99y ≥ 0
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Effective Abstractions of an [In]finite Set of
Points; Example 5: Simple Congruences [17]

x

y {
x = 19 mod 88
y = 19 mod 99
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Effective Abstractions of an [In]finite Set of
Points; Example 6: Linear Congruences [18]

x

y {
1x + 9y = 8 mod 8
1x− 9y = 9 mod 9
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Effective Abstractions of an [In]finite Set of
Points; Example 7: Trapezoidal Linear Con-

gruences [20 , 21]

x

y {
1x + 9y ∈ [0, 88] mod 10
1x− 9y ∈ [0, 99] mod 11
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Effective Abstractions
of Symbolic Structures

• Most structures manipulated by programs are symbolic struc
tures such as control structures (call graphs), data structures
(search trees), communication structures (distributed & mo
bile programs), etc;
• It is very difficult to find compact and expressive abstractions

of such sets of objects (languages, automata, trees, graphs,
etc.).
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Example of Abstractions of Infinite Sets of
Infinite Trees

Binary Decision Graphs: [22]

Tree schemata: [24 , 23]
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Information Loss
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Information Loss

• All answers given by the abstract semantics are always correct
with respect to the concrete semantics;
• Because of the information loss, not all questions can be

definitely answered with the abstract semantics;
• The more concrete semantics can answer more questions;
• The more abstract semantics are more simple.
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Example of Information Loss
• Is the operation 1/(x+1-y) well defined at run-time?
• Concrete semantics: yes

x

y
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Example of Information Loss
• Is the operation 1/(x+1-y) well defined at run-time?
• Abstract semantics 1: I don’t know

x

y
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Example of Information Loss
• Is the operation 1/(x+1-y) well defined at run-time?
• Abstract semantics 2: yes

x

y
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Fixpoint Abstraction
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Function Abstraction

F

F

Concrete domain

Abstract domain
]

α F ] = α ◦ F ◦ γ
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Fixpoint Abstraction

F

F
]

Concrete domain

Abstract domain

α

F F F F F
FF

F

F
] F

] F
]

F
]

F
F

α α α α Approximation
relation v

⊥

⊥]

lfpF v γ(lfpF ])

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 39 — [] �— ���I © P. Cousot



Program Analysis
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Objective of Program Analysis

• Program analysis is the automatic static determination of
dynamic run-time properties of programs;
• The principle is to compute an approximate semantics of the

program to check a given specification;
• Abstract interpretation is used to derive, from a standard

semantics, the approximate and computable abstract seman
tics;
• This derivation is itself not (fully) mechanizable.
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Objective of Program Analysis

Program analyzer

Program Specification

Diagnosis
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Principle of Program Analysis

(Approximate) solution

Diagnoser

Diagnosis

Solver

Generator

Program Specification

Program
analyzer

System of fixpoint equations/constraints
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A Few Applications …

• Data flow and set-based analysis for program optimization &
transformation (including partial evaluation) [12 , 14];
• Type inference (including undecidable systems)/soft typing [8];
• Abstract model-checking of infinite systems [13 , 14];
• Abstract debugging & testing [5 , 2];
• Probabilistic analysis [26];
• Communication topology analysis for mobile/distributed code [28];
• Automatic differentiation of numerical programs;
• Semantic tattooing/watermarking of software; …;
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An Impressive Application (1996/97)
• Abstract interpretation has been used (including interval anal

ysis) for the static analysis of the embedded ADA software of
the Ariane 5 launcher 4; [19]
• Automatic detection of the definiteness • , potentiality • ,

impossibility • or inaccessibility • of run-time errors 5;
• Automatic discovery of the 501 flight error;
• Success for the 502 & 503 flights and the ARD 6.

4 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
5 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions,

uninitialized variables, data races on shared data structures, etc.
6 Atmospheric Reentry Demonstrator: module coming back to earth.
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Industrialization of Static Analysis by
Abstract Interpretation

• Connected Components Corporation (U.S.A.),
L. Harrison, 1993;
• AbsInt Angewandte Informatik GmbH (Germany),

R. Wilhelm & C. Ferdinand, 1998;
• Polyspace Technologies (France),

A. Deutsch & D. Pilaud, 1999.
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Abstract Formal Methods
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The Ultimate Verification Problem

• Find the last error in a software system;
• Can abstract formal methods solve the ultimate verification

problem?
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Program Analysis: Shortcomings

• Can analyze large programs (220 000 lines of C) without user
interaction but specifications are simple;
• Programming language semantics is very complex whence so

is their abstraction;
• The abstraction hence the design of the analyzer is manual

(and beyond the hability of casual programmers);
• Errors can be explained by abstract counter-examples (but

hardly concrete ones);
• The 5 to 10 % cases of uncertainty must be handle with other

empirical or formal methods.
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Deductive Methods: Foundational Ideas

• Use a (manually designed abstraction of the) program se
mantics to obtain minimal verification conditions to prove
program correctness;
• Use a theorem prover or proof assistant to check the verifica

tion conditions.
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Deductive Methods: Shortcomings (Cont’d)

• An inductive argument (e.g. invariant, variant function) has
to be discovered, generally by the user;
• Only the proof verification can be (partially) automatized;
• Verification conditions sometimes unsound , essentially to make

verifier simpler (e.g. modular airthmetic);
• The size of the proof is often exponential in the size of the

program;
• Debugging an unsuccessful proof is as complex as (if not

much more complex than) debugging the program; …/…
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Deductive Methods: Shortcomings (Cont’d)

• Interaction with the prover is hard if not despairing;
• Theorem provers are unstable over time (e.g. proof strategies

get changed so that old proof no longer work);
• Uniform encoding of properties as syntactical terms/formulæ

(so that e.g. BBDs are hardly efficiently encodable);
• Not good at fixpoint computation (only checking);
• No tool for mechanizing abstraction.
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Model Checking: Foundational Ideas
[3 , 4 , 27]

• Use a model of the program (i.e. manually designed abstrac
tion of the program semantics);
• Use a user-provided specification of the program (in a very

expressive temporal logic);
• Check the specification by exhaustive search/exploration of

the state space;
• Success by designing clever data structures (e.g. BDDs) and

algorithms (e.g. SAT) for representing very large sets of booleans
and their transformations.
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Model Checking: Shortcomings

• Does not scale up (gained only a factor of 100 in 10 years);
• The abstraction of the program semantics into a model is

often manual and/or left informal;
• The model is ultimately finite (to allow for exhaustive search);
• The method is complete but the program specific abstraction

is not reusable;
• Most often used as debugging rather than a verification tool;
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Typing: Foundational Ideas [16 , 25]

• Consider decidable analyses only, by restricting both on spec
ifications (allowed types) and on programs;
• Clean presentation of the type analysis (inference algorithm)

through an equivalent logical formal system (type verifica
tion);
• Extended to complex data structures, polymorphism, excep

tions and separate modules in a way that scales up for large
programs;
• Integrated in the compiler , the certification can go down to

the generated code (proof-carrying code, certified compiler);
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Typing: Shortcomings (Cont’d)

• Type system (e.g. with subtle subtyping) can be very complex
to understand for the casual user;
• Compositional but not fully abstract (same polymorphic code

types differently in different contexts);
• Crude interaction with the user (no hint is given to under

stand why wrong programs do not type well, difficult for the
user to provide hints to help the typing process);
• Considered programs are both complex (higher-order) and

too restricted (mainly functional languages);
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Typing: Shortcomings (Cont’d)

• Severe restrictions on considered properties (arithmetic, out
of range, null pointer dereferencing, … errors are checked at
run-time, all liveness properties are ignored);
• Encoding of types as terms/formulæ and one iterate fixpoint

approximation make generalization to more expressive prop
erties very difficult;
• The logical specification of the type system is often inexistent

in the reference manual, not equivalent to the type inference
algorithm or so inextricable that it is useless both to the
programmer and compiler designer.
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No single formal method can ultimately
solve the verification problem.
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Current Trend: Combine Formal Methods

• User designed abstraction: derive a program finite ab
tract model by abstract interpretation , prove the correctness
of the abstraction by deductive methods , later verify the ab
stract model by model-checking;
• Fundamental limitation [1]: 1◦) abstraction discovery and

2◦) abstract semantics derivation is as difficult as doing the
proof! (resp. 1◦) invariant discovery & 2◦) invariant verification)

Reference

[1] P. Cousot. Partial completeness of abstract fixpoint checking, invited paper. In
B.Y. Choueiry and T. Walsh, eds, Proc. 4th Int. Symp. on Abstraction, Reformu
lations and Approximation, SARA ’ 2000 , Horseshoe Bay, TX, USA, LNAI 1864,
pp. 1–25. Springer-Verlag, 26–29 July 2000.
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No combination of formal methods can ulti
mately solve the verification problem either.
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Possible Alternative: Combine
Empirical and Formal Methods
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Example: Abstract Program Testing

Debugging Abstract testing
Run the program Compute the abstract semantics
On test data Choosing a predefined abstraction
Checking if all right Checking user-provided abstract

assertions
Providing more tests With more refined abstractions
Until coverage Until enough assertions proved or

no predefined abstraction can do.
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Conclusions and Challenges
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Conclusions

• Full program verification by formal methods (model check
ing/deductive methods) is very costly since it ultimately re
quires user interaction hence is not widely applicable;
• Abstraction is mandatory for program verification but diffi

cult , hardly automatizable and beyond the common capabil
ities of most programmers;
• Program analysis is cost-effective 7 since no user intervention

is mandatory and universal abstractions are reusable hence
commercializable;

7 Less than 0.25$ per program line costing 50 to 80$.
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Conclusion (Cont’d)

• For large and complex programs, complete verification by for
mal methods is not viable at low cost;
• Program debugging is still the prominent industrial program

“verification” method;
• In this context, abstract interpretation based program static

analysis can be extended to abstract program testing;
• Abstract interpretation methods offer powerful techniques

which, in the presence of approximation , can be viable al
ternatives to both the exhaustive search of model-checking
and the partial exploration methods of classical debugging.
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Grand Challenge for Computer Scientists

Software reliability 8

8 other suggestions were “trustworthiness” (C. Jones) and “robustness” (R. Leino).
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Challenges for Abstract Interpretation (Cont’d)

• Large scale industrialization;
• Fundamental research:

-- Cost-effective & expressive abstractions:
∗ Floating point numbers,
∗ Dependence analyses,
∗ Liveness properties with fairness (extending finite-state

model-checking),
∗ Probabilistic analyses,
∗ …;
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Challenges for Abstract Interpretation (Cont’d)

• Fundamental research (cont’d):
-- Higher-order compositional modular analyses;
-- (Automatic) combination/refinement of abstractions;
-- Interaction with users, other (in)formal methods, …;
-- New programming paradigms (threads, mobile/network
programming);

-- Integrate analysis by abstract interpretation in the full soft
ware development process.
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THE END, THANK YOU FOR
YOUR ATTENTION.
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