
Progress on Abstract Interpretation
Based Formal Methods
and Future Challenges

Patrick COUSOT
École Normale Supérieure

45 rue d’Ulm, 75230 Paris cedex 05, France
mailto:Patrick.Cousot@ens.fr , http://www.di.ens.fr/˜cousot

Dagstuhl’s 10th Anniversary Conf., Saarbrücken, Aug. 28–31, 2000

�J�

mailto:Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot

Abstract
In order to contribute to the software reliability problem, tools have been designed in order to

analyze statically the run-time behavior of programs. Because the correctness problem is undecidable,
some form of approximation is needed. The whole purpose of abstract interpretation is to formalize
this idea of approximation. We illustrate informally the application of abstraction to the semantics of
programming languages as well as to program static analysis. The main point is that in order to reason or
compute about a complex system, some information must be lost, that is the observation of executions
must be at a high level of abstraction.

In the second part of the talk, we compare program static analysis with deductive methods,
model-checking and type inference. Their foundational ideas are shortly reviewed, and the shortcomings
of these four tools are discussed, including when they are combined. Alternatively, since program debug
ging is still the main program verification method used in industry, we suggest to combine formal with
informal methods.

Finally, the grand challenge for all formal methods and tools is to solve the software reliability,
trustworthiness or robustness problems. Few challenges more specific to program analysis by abstract
interpretation are shortly discussed.

The published slides slightly extend those of the presentation and include a shortened bibliography,
mainly restricted to result obtained in our research group.

�J�

Motivations and Overview

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 2 — [] �— ���I © P. Cousot

The Software Reliability Problem

• The evolution of hardware by a factor of 106 over the past
25 years has lead to the explosion of the program sizes;
• The scope of application of very large softwares is likely to

widen rapidly in the next decade;
• These big programs will have to be modified and maintained

during their lifetime (often over 20 years);
• The size and efficiency of the programming and maintenance

teams in charge of their design and follow-up cannot grow up
in similar proportions;

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 3 — [] �— ���I © P. Cousot

The Software Reliability Problem (Cont’d)

• At a not so uncommon (and often optimistic) rate of one bug
per thousand lines such huge programs might rapidly become
hardly manageable in particular for safety critical systems;
• Therefore in the next 10 years, the software reliability problem

is likely to become a major concern and challenge to modern
highly computer-dependent societies.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 4 — [] �— ���I © P. Cousot

What Can We Do About It?

• Use our head (Thinking/intellectual tools , this morning ses
sion);
• Use our computer (Mechanical tools , this afternoon session).

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 5 — [] �— ���I © P. Cousot

Computer Aided Program Verification

• Empirical program verification methods (execute/simulate the
program in enough representative possible environments):

-- Debugging ,
-- Simulation;

• Formal program verification methods (mecanically prove that
program execution is correct in all specified environments):

-- Deductive methods ,
-- Model checking ,
-- Program typing ,
-- Program analysis.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 6 — [] �— ���I © P. Cousot

Undecidability and Approximation

• Since program verification is undecidable , computer aided
program verification methods are all partial/incomplete;
• They all involve some form of approximation:

-- practical complexity limitations ,
-- required user interaction ,
-- semi-algorithms or finiteness hypotheses ,
-- restricted specifications or programs;

• Most of these approximations are formalized by Abstract In
terpretation.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 7 — [] �— ���I © P. Cousot

Abstract Interpretation

• Abstract Interpretation is a theory of approximation of the
behavior of dynamic discrete systems (such as the formal
semantics of programs);
• Since such behaviors can be characterized by fixpoints , the

theory essentially provides constructive and effective methods
for fixpoint approximation and checking by abstraction.

Seminal reference

-- P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction
or approximation of fixpoints. In Conf. Record of the 4th Annual ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages POPL’77 , Los Angeles, CA, 1977. ACM Press, pp. 238–252.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 8 — [] �— ���I © P. Cousot

Semantics

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 9 — [] �— ���I © P. Cousot

Semantics: Intuition

• The semantics of a language defines the semantics of any
program written in this language;
• The semantics of a program provides a formal mathematical

model of all possible behaviors of a computer system execut
ing this program (interacting with any possible environment);
• Any semantics of a program can be defined as the solution

of a fixpoint equation;
• All semantics of a program can be organized in a hierarchy

by abstraction.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 10 — [] �— ���I © P. Cousot

Example: Trace Semantics [7 , 9]

Initial states
Final states of the
 finite tracesIntermediate states

Infinite
traces

0 1 2 3 4 5 6 7 8 9 discrete timeÉ

a b c d

e f

g h

i j

k

`

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 11 — [] �— ���I © P. Cousot

Fixpoints

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 12 — [] �— ���I © P. Cousot

Least Fixpoints: Intuition [7 , 9]

Behaviors = {• | • is a final state}
∪ {•−−−•−−−. . .−−−• | •−−−• is an elementary step &

•−−−. . .−−−• ∈ Behaviors+}
∪ {•−−−•−−−. . .−−−. . . | •−−−• is an elementary step &

•−−−. . .−−−. . . ∈ Behaviors∞}

• In general, the equation has multiple solutions.
• Choose the least one for the partial ordering:

« more finite traces & less infinite traces ».

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 13 — [] �— ���I © P. Cousot

Abstraction

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 14 — [] �— ���I © P. Cousot

Abstraction: Intuition

• Abstract interpretation formalizes the intuitive idea that a
semantics is more or less precise according to the considered
observation level of the program executions;

• Abstract interpretation theory formalizes this notion of ap
proximation/abstraction in a mathematical setting which is
independent of particular applications.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 15 — [] �— ���I © P. Cousot

Lattice of Semantics [9]
Hoare logics

Weakest precondition
semantics

Denotational semantics

Relational semantics

Trace semantics

equivalence
abstraction-

restriction
infinite

demoniac
determinist
naturalangelic

τ�!

τ ∂

τ EM

τD

τPτ S τ♦τ]τ [

τ>
τwp

τ tHτ pH

τwlp

τ ~+

τ+ τ ω

τ ~ω

τ gH

τ gwp

τ�?

τ \

τ∞

τ ~∞
τ

��
�* v

���
���

���
���

�: v

v

v

�
v v v v

v

6

6 6��
�1

v

v

v�����
�*

��
��
��*

��
��
��*

HH
HH

HHY

HH
HH

HHY

HH
HH

HHY

HH
HH

HHY

HH
HH

HHY
v

vv

v

v

vv

v

v

v

v
��
��
��
��
��

��
��
��
��
��1

��
��
��1v

v

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 16 — [] �— ���I © P. Cousot

Example 1 of Abstraction 1

a d

e f

g h

i j

k

`

⊥
⊥

a d

e f

g h

i j

α α

0 1 2 3 4 5 6 7 8 9 discrete time

a b c d

e f

g h

i j

k

`

Initial states
Intermediate states Final states of

 finite traces

Infinite
traces

Final states

É

Initial states

Trace semantics Denotational
semantics

Natural
semantics

1 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 17 — [] �— ���I © P. Cousot

Example 2 of Abstraction 2

Transitions

Initial states Final states

a b c d

e f

g h

i j

k

`

a

e

g

i

k

`

d

f

h

j

b

(Small-Step) Operational Semantics

2 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 18 — [] �— ���I © P. Cousot

Example 3 of Abstraction 3

Reachable states

Initial states Final states

a

e

g

i

k

`

d

f

h

j

a b c d

e f

g h

i j

k

`

Partial Correctness / Invariance Semantics

3 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 19 — [] �— ���I © P. Cousot

Effective Abstractions

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 20 — [] �— ���I © P. Cousot

Effective Abstractions

• If the approximation is rough enough, the abstraction of a
semantics can lead to a version which is less precise but is
effectively computable by a computer;

• The computation of this abstract semantics amounts to the
effective iterative resolution of fixpoint equations;

• By effective computation of the abstract semantics , the com
puter is able to analyze the behavior of programs and of soft
ware before and without executing them [10].

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 21 — [] �— ���I © P. Cousot

Effective Abstractions of an [In]finite Set of
Points;

x

y {. . . , 〈19, 88〉, . . . ,
〈19, 99〉, . . .}

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 22 — [] �— ���I © P. Cousot

Effective Abstractions of an [In]finite Set of
Points; Example 1: Signs [12]

x

y {
x ≥ 0
y ≥ 0

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 23 — [] �— ���I © P. Cousot

Effective Abstractions of an [In]finite Set of
Points; Example 2: Intervals [10 , 11]

x

y {
x ∈ [19, 88]
y ∈ [19, 99]

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 24 — [] �— ���I © P. Cousot

Effective Abstractions of an [In]finite Set of
Points; Example 3: Octagons

x

y

1 ≤ x ≤ 9
x + y ≤ 88
1 ≤ y ≤ 9
x− y ≤ 99

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 25 — [] �— ���I © P. Cousot

Effective Abstractions of an [In]finite Set of
Points; Example 4: Polyhedra [15]

x

y {
19x + 88y ≤ 2000
19x + 99y ≥ 0

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 26 — [] �— ���I © P. Cousot

Effective Abstractions of an [In]finite Set of
Points; Example 5: Simple Congruences [17]

x

y {
x = 19 mod 88
y = 19 mod 99

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 27 — [] �— ���I © P. Cousot

Effective Abstractions of an [In]finite Set of
Points; Example 6: Linear Congruences [18]

x

y {
1x + 9y = 8 mod 8
1x− 9y = 9 mod 9

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 28 — [] �— ���I © P. Cousot

Effective Abstractions of an [In]finite Set of
Points; Example 7: Trapezoidal Linear Con-

gruences [20 , 21]

x

y {
1x + 9y ∈ [0, 88] mod 10
1x− 9y ∈ [0, 99] mod 11

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 29 — [] �— ���I © P. Cousot

Effective Abstractions
of Symbolic Structures

• Most structures manipulated by programs are symbolic struc
tures such as control structures (call graphs), data structures
(search trees), communication structures (distributed & mo
bile programs), etc;
• It is very difficult to find compact and expressive abstractions

of such sets of objects (languages, automata, trees, graphs,
etc.).

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 30 — [] �— ���I © P. Cousot

Example of Abstractions of Infinite Sets of
Infinite Trees

Binary Decision Graphs: [22]

Tree schemata: [24 , 23]

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 31 — [] �— ���I © P. Cousot

Information Loss

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 32 — [] �— ���I © P. Cousot

Information Loss

• All answers given by the abstract semantics are always correct
with respect to the concrete semantics;
• Because of the information loss, not all questions can be

definitely answered with the abstract semantics;
• The more concrete semantics can answer more questions;
• The more abstract semantics are more simple.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 33 — [] �— ���I © P. Cousot

Example of Information Loss
• Is the operation 1/(x+1-y) well defined at run-time?
• Concrete semantics: yes

x

y

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 34 — [] �— ���I © P. Cousot

Example of Information Loss
• Is the operation 1/(x+1-y) well defined at run-time?
• Abstract semantics 1: I don’t know

x

y

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 35 — [] �— ���I © P. Cousot

Example of Information Loss
• Is the operation 1/(x+1-y) well defined at run-time?
• Abstract semantics 2: yes

x

y

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 36 — [] �— ���I © P. Cousot

Fixpoint Abstraction

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 37 — [] �— ���I © P. Cousot

Function Abstraction

F

F

Concrete domain

Abstract domain
]

α F] = α ◦ F ◦ γ

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 38 — [] �— ���I © P. Cousot

Fixpoint Abstraction

F

F
]

Concrete domain

Abstract domain

α

F F F F F
FF

F

F
] F

] F
]

F
]

F
F

α α α α Approximation
relation v

⊥

⊥]

lfpF v γ(lfpF])

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 39 — [] �— ���I © P. Cousot

Program Analysis

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 40 — [] �— ���I © P. Cousot

Objective of Program Analysis

• Program analysis is the automatic static determination of
dynamic run-time properties of programs;
• The principle is to compute an approximate semantics of the

program to check a given specification;
• Abstract interpretation is used to derive, from a standard

semantics, the approximate and computable abstract seman
tics;
• This derivation is itself not (fully) mechanizable.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 41 — [] �— ���I © P. Cousot

Objective of Program Analysis

Program analyzer

Program Specification

Diagnosis

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 42 — [] �— ���I © P. Cousot

Principle of Program Analysis

(Approximate) solution

Diagnoser

Diagnosis

Solver

Generator

Program Specification

Program
analyzer

System of fixpoint equations/constraints

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 43 — [] �— ���I © P. Cousot

A Few Applications …

• Data flow and set-based analysis for program optimization &
transformation (including partial evaluation) [12 , 14];
• Type inference (including undecidable systems)/soft typing [8];
• Abstract model-checking of infinite systems [13 , 14];
• Abstract debugging & testing [5 , 2];
• Probabilistic analysis [26];
• Communication topology analysis for mobile/distributed code [28];
• Automatic differentiation of numerical programs;
• Semantic tattooing/watermarking of software; …;

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 44 — [] �— ���I © P. Cousot

An Impressive Application (1996/97)
• Abstract interpretation has been used (including interval anal

ysis) for the static analysis of the embedded ADA software of
the Ariane 5 launcher 4; [19]
• Automatic detection of the definiteness • , potentiality • ,

impossibility • or inaccessibility • of run-time errors 5;
• Automatic discovery of the 501 flight error;
• Success for the 502 & 503 flights and the ARD 6.

4 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
5 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions,

uninitialized variables, data races on shared data structures, etc.
6 Atmospheric Reentry Demonstrator: module coming back to earth.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 45 — [] �— ���I © P. Cousot

Industrialization of Static Analysis by
Abstract Interpretation

• Connected Components Corporation (U.S.A.),
L. Harrison, 1993;
• AbsInt Angewandte Informatik GmbH (Germany),

R. Wilhelm & C. Ferdinand, 1998;
• Polyspace Technologies (France),

A. Deutsch & D. Pilaud, 1999.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 46 — [] �— ���I © P. Cousot

http://www.concmp.com/index.html
http://www.absint.com
http://www.polyspace.com

Abstract Formal Methods

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 47 — [] �— ���I © P. Cousot

The Ultimate Verification Problem

• Find the last error in a software system;
• Can abstract formal methods solve the ultimate verification

problem?

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 48 — [] �— ���I © P. Cousot

Program Analysis: Shortcomings

• Can analyze large programs (220 000 lines of C) without user
interaction but specifications are simple;
• Programming language semantics is very complex whence so

is their abstraction;
• The abstraction hence the design of the analyzer is manual

(and beyond the hability of casual programmers);
• Errors can be explained by abstract counter-examples (but

hardly concrete ones);
• The 5 to 10 % cases of uncertainty must be handle with other

empirical or formal methods.
Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 49 — [] �— ���I © P. Cousot

Deductive Methods: Foundational Ideas

• Use a (manually designed abstraction of the) program se
mantics to obtain minimal verification conditions to prove
program correctness;
• Use a theorem prover or proof assistant to check the verifica

tion conditions.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 50 — [] �— ���I © P. Cousot

Deductive Methods: Shortcomings (Cont’d)

• An inductive argument (e.g. invariant, variant function) has
to be discovered, generally by the user;
• Only the proof verification can be (partially) automatized;
• Verification conditions sometimes unsound , essentially to make

verifier simpler (e.g. modular airthmetic);
• The size of the proof is often exponential in the size of the

program;
• Debugging an unsuccessful proof is as complex as (if not

much more complex than) debugging the program; …/…

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 51 — [] �— ���I © P. Cousot

Deductive Methods: Shortcomings (Cont’d)

• Interaction with the prover is hard if not despairing;
• Theorem provers are unstable over time (e.g. proof strategies

get changed so that old proof no longer work);
• Uniform encoding of properties as syntactical terms/formulæ

(so that e.g. BBDs are hardly efficiently encodable);
• Not good at fixpoint computation (only checking);
• No tool for mechanizing abstraction.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 52 — [] �— ���I © P. Cousot

Model Checking: Foundational Ideas
[3 , 4 , 27]

• Use a model of the program (i.e. manually designed abstrac
tion of the program semantics);
• Use a user-provided specification of the program (in a very

expressive temporal logic);
• Check the specification by exhaustive search/exploration of

the state space;
• Success by designing clever data structures (e.g. BDDs) and

algorithms (e.g. SAT) for representing very large sets of booleans
and their transformations.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 53 — [] �— ���I © P. Cousot

Model Checking: Shortcomings

• Does not scale up (gained only a factor of 100 in 10 years);
• The abstraction of the program semantics into a model is

often manual and/or left informal;
• The model is ultimately finite (to allow for exhaustive search);
• The method is complete but the program specific abstraction

is not reusable;
• Most often used as debugging rather than a verification tool;

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 54 — [] �— ���I © P. Cousot

Typing: Foundational Ideas [16 , 25]

• Consider decidable analyses only, by restricting both on spec
ifications (allowed types) and on programs;
• Clean presentation of the type analysis (inference algorithm)

through an equivalent logical formal system (type verifica
tion);
• Extended to complex data structures, polymorphism, excep

tions and separate modules in a way that scales up for large
programs;
• Integrated in the compiler , the certification can go down to

the generated code (proof-carrying code, certified compiler);

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 55 — [] �— ���I © P. Cousot

Typing: Shortcomings (Cont’d)

• Type system (e.g. with subtle subtyping) can be very complex
to understand for the casual user;
• Compositional but not fully abstract (same polymorphic code

types differently in different contexts);
• Crude interaction with the user (no hint is given to under

stand why wrong programs do not type well, difficult for the
user to provide hints to help the typing process);
• Considered programs are both complex (higher-order) and

too restricted (mainly functional languages);

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 56 — [] �— ���I © P. Cousot

Typing: Shortcomings (Cont’d)

• Severe restrictions on considered properties (arithmetic, out
of range, null pointer dereferencing, … errors are checked at
run-time, all liveness properties are ignored);
• Encoding of types as terms/formulæ and one iterate fixpoint

approximation make generalization to more expressive prop
erties very difficult;
• The logical specification of the type system is often inexistent

in the reference manual, not equivalent to the type inference
algorithm or so inextricable that it is useless both to the
programmer and compiler designer.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 57 — [] �— ���I © P. Cousot

No single formal method can ultimately
solve the verification problem.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 58 — [] �— ���I © P. Cousot

Current Trend: Combine Formal Methods

• User designed abstraction: derive a program finite ab
tract model by abstract interpretation , prove the correctness
of the abstraction by deductive methods , later verify the ab
stract model by model-checking;
• Fundamental limitation [1]: 1◦) abstraction discovery and

2◦) abstract semantics derivation is as difficult as doing the
proof! (resp. 1◦) invariant discovery & 2◦) invariant verification)

Reference

[1] P. Cousot. Partial completeness of abstract fixpoint checking, invited paper. In
B.Y. Choueiry and T. Walsh, eds, Proc. 4th Int. Symp. on Abstraction, Reformu
lations and Approximation, SARA ’ 2000 , Horseshoe Bay, TX, USA, LNAI 1864,
pp. 1–25. Springer-Verlag, 26–29 July 2000.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 59 — [] �— ���I © P. Cousot

No combination of formal methods can ulti
mately solve the verification problem either.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 60 — [] �— ���I © P. Cousot

Possible Alternative: Combine
Empirical and Formal Methods

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 61 — [] �— ���I © P. Cousot

Example: Abstract Program Testing

Debugging Abstract testing
Run the program Compute the abstract semantics
On test data Choosing a predefined abstraction
Checking if all right Checking user-provided abstract

assertions
Providing more tests With more refined abstractions
Until coverage Until enough assertions proved or

no predefined abstraction can do.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 62 — [] �— ���I © P. Cousot

Conclusions and Challenges

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 63 — [] �— ���I © P. Cousot

Conclusions

• Full program verification by formal methods (model check
ing/deductive methods) is very costly since it ultimately re
quires user interaction hence is not widely applicable;
• Abstraction is mandatory for program verification but diffi

cult , hardly automatizable and beyond the common capabil
ities of most programmers;
• Program analysis is cost-effective 7 since no user intervention

is mandatory and universal abstractions are reusable hence
commercializable;

7 Less than 0.25$ per program line costing 50 to 80$.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 64 — [] �— ���I © P. Cousot

Conclusion (Cont’d)

• For large and complex programs, complete verification by for
mal methods is not viable at low cost;
• Program debugging is still the prominent industrial program

“verification” method;
• In this context, abstract interpretation based program static

analysis can be extended to abstract program testing;
• Abstract interpretation methods offer powerful techniques

which, in the presence of approximation , can be viable al
ternatives to both the exhaustive search of model-checking
and the partial exploration methods of classical debugging.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 65 — [] �— ���I © P. Cousot

Grand Challenge for Computer Scientists

Software reliability 8

8 other suggestions were “trustworthiness” (C. Jones) and “robustness” (R. Leino).

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 66 — [] �— ���I © P. Cousot

Challenges for Abstract Interpretation (Cont’d)

• Large scale industrialization;
• Fundamental research:

-- Cost-effective & expressive abstractions:
∗ Floating point numbers,
∗ Dependence analyses,
∗ Liveness properties with fairness (extending finite-state

model-checking),
∗ Probabilistic analyses,
∗ …;

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 67 — [] �— ���I © P. Cousot

Challenges for Abstract Interpretation (Cont’d)

• Fundamental research (cont’d):
-- Higher-order compositional modular analyses;
-- (Automatic) combination/refinement of abstractions;
-- Interaction with users, other (in)formal methods, …;
-- New programming paradigms (threads, mobile/network
programming);

-- Integrate analysis by abstract interpretation in the full soft
ware development process.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 68 — [] �— ���I © P. Cousot

Short Bibliography

[2] F. Bourdoncle. Abstract debugging of higher-order imper
ative languages. In Proc. PLDI , pages 46–55. ACM Press,
1993.

[3] E.M. Clarke and E.A. Emerson. Synthesis of synchro
nization skeletons for branching time temporal logic.
In IBM Workshop on Logics of Programs, LNCS 131.
Springer-Verlag, May 1981.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 69 — [] �— ���I © P. Cousot

[4] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic
verification of finite state concurrent systems using tem
poral logic specifications: A practical approach. In 10th

POPL , pages 117–126. ACM Press, Jan. 1983.

[5] P. Cousot. Semantic foundations of program analysis. In
S.S. Muchnick and N.D. Jones, editors, Program Flow
Analysis: Theory and Applications, chapter 10, pages
303–342. Prentice-Hall, 1981.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 70 — [] �— ���I © P. Cousot

[6] P. Cousot. Constructive design of a hierar
chy of semantics of a transition system by ab
stract interpretation. ENTCS , 6, 1997. URL:
http://www.elsevier.nl/locate/entcs/volume6.html ,
25 pages.

[7] P. Cousot. Design of semantics by abstract interpretation,
invited address. In Mathematical Foundations of Program
ming Semantics, 30th Annual Conf. (MFPS XIII) , Carnegie
Mellon University, Pittsburgh, PA, US, 23–26 Mar. 1997.

[8] P. Cousot. Types as abstract interpretations, invited paper.
In 24th POPL , pages 316–331, Paris, FR, Jan. 1997. ACM
Press.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 71 — [] �— ���I © P. Cousot

http://www.elsevier.nl/locate/entcs/volume6.html

[9] P. Cousot. Constructive design of a hierarchy of semantics
of a transition system by abstract interpretation. Theoret.
Comput. Sci. , To appear (Preliminary version in [6]).

[10] P. Cousot and R. Cousot. Static determination of dynamic
properties of programs. In Proc. 2nd Int. Symp. on Pro
gramming, pages 106–130. Dunod, 1976.

[11] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construc
tion or approximation of fixpoints. In 4th POPL , pages
238–252, Los Angeles, CA, 1977. ACM Press.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 72 — [] �— ���I © P. Cousot

[12] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In 6th POPL , pages 269–282, San
Antonio, TX, 1979. ACM Press.

[13] P. Cousot and R. Cousot. Refining model checking by
abstract interpretation. Aut . Soft . Eng. , 6:69–95, 1999.

[14] P. Cousot and R. Cousot. Temporal abstract interpreta
tion. In 27th POPL , pages 12–25, Boston, MA, Jan. 2000.
ACM Press.

[15] P. Cousot and N. Halbwachs. Automatic discovery of linear
restraints among variables of a program. In 5th POPL ,
pages 84–97, Tucson, AZ, 1978. ACM Press.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 73 — [] �— ���I © P. Cousot

[16] L. Damas and R. Milner. Principal type-schemes for func
tional programs. In 9th POPL , pages 207–212, Albu
querque, NM, Jan. 1982. ACM Press.

[17] P. Granger. Static analysis of arithmetical congruences.
Int. J. Comput. Math. , 30:165–190, 1989.

[18] P. Granger. Static analysis of linear congruence equalities
among variables of a program. In S. Abramsky and T.S.E.
Maibaum, editors, Proc. Int. J. Conf. TAPSOFT ’91, Vol
ume 1 (CAAP ’91) , Brighton, GB, LNCS 493, pages
169–192. Springer-Verlag, 1991.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 74 — [] �— ���I © P. Cousot

[19] P. Lacan, J.N. Monfort, L.V.Q. Ribal, A. Deutsch, and
G. Gonthier. The software reliability verification process:
The Ariane 5 example. In Proceedings DASIA 98 –
DAta Systems In Aerospace , Athens, GR. ESA Publica
tions, SP-422, 25–28 May 1998.

[20] F. Masdupuy. Array operations abstraction using semantic
analysis of trapezoid congruences. In Proc. ACM Int. Conf.
on Supercomputing, ICS ’92 , pages 226–235, Washington
D.C. , Jul. 1992.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 75 — [] �— ���I © P. Cousot

[21] F. Masdupuy. Semantic analysis of interval congruences.
In D. Bjørner, M. Broy, and I.V. Pottosin, editors, Proc.
FMPA , Academgorodok, Novosibirsk, RU, LNCS 735,
pages 142–155. Springer-Verlag, 28 June – 2 Jul. 1993.

[22] L. Mauborgne. Binary decision graphs. In A. Cortesi
and G. Filé, editors, Proc. 6th Int. Symp. SAS ’ 99 ,
Venice, IT, 22–24 Sep. 1999, LNCS 1694, pages 101–116.
Springer-Verlag, 1999.

[23] L. Mauborgne. Tree schemata and fair termination. In
J. Palsberg, editor, Proc. 7th Int. Symp. SAS ’ 2000 ,
Santa Barbara, CA, US, LNCS 1824, pages 302–321.
Springer-Verlag, 29 June – 1 Jul. 2000.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 76 — [] �— ���I © P. Cousot

[24] L. Mauborgne. Improving the representation of infinite
trees to deal with sets of trees. In G. Smolka, ed
itor, Programming Languages and Systems, Proc. 9th

ESOP ’ 2000 , Berlin, DE, LNCS 1782, pages 275–289.
Springer-Verlag, Mar. – Apr. 2000.

[25] R. Milner. A theory of polymorphism in programming. J.
Comput. System Sci. , 17(3):348–375, Dec. 1978.

[26] D. Monniaux. Abstract interpretation of probabilistic se
mantics. In J. Palsberg, editor, Proc. 7th Int. Symp.
SAS ’ 2000 , Santa Barbara, CA, US, LNCS 1824, pages
322–339. Springer-Verlag, 29 June – 1 Jul. 2000.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 77 — [] �— ���I © P. Cousot

[27] J.-P. Queille and J. Sifakis. Verification of concurrent sys
tems in Cesar. In Proc. Int. Symp. on Programming,
LNCS 137, pages 337–351. Springer-Verlag, 1982.

[28] A. Venet. Automatic determination of communication
topologies in mobile systems. In G. Levi, editor, Proc.
5th Int. Symp. SAS ’ 98 , Pisa, IT, 14–16 Sep. 1998, LNCS
1503, pages 152–167. Springer-Verlag, 1998.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 78 — [] �— ���I © P. Cousot

THE END, THANK YOU FOR
YOUR ATTENTION.

Dagstuhl’s 10th Anniversary Conf., Saarbrücken , Aug. 28–31, 2000 J��� — 78 — [] �— ���I © P. Cousot

	Abstract
	Motivations and overview
	The software reliability problem
	Computer aided program verification
	Computer aided program verification
	Undecidability and approximation
	Abstract interpretation
	Semantics
	Semantics: intuition
	Example: trace semantics
	Fixpoints
	Abstraction
	Abstraction: Intuition
	Lattice of semantics
	Example 1 of abstraction
	Example 2 of abstraction
	Example 3 of abstraction
	Effective Abstractions
	Examples of effective abstractions of an [in]finite set of points
	Example 1: signs
	Example 2: intervals
	Example 3: octagons
	Example 4: polyhedra
	Example 5: simple congruences
	Example 6: linear congruences
	Example 7: trapezoidal linear congruences
	Effective abstractions of symbolic structures
	Example of abstractions of infinite sets of infinite trees
	Information loss
	Example of information loss
	Function abstraction
	Fixpoint abstraction
	Program analysis
	Objective of program analysis
	Principle of program analysis
	A few applications …
	An impressive application (1996/97)
	Industrialization of static analysis by abstract interpretation
	Abstract formal methods
	The Ultimate Verification Problem
	Program analysis: shortcomings
	Deductive methods: foundational ideas
	Deductive methods: shortcomings
	Model checking: foundational ideas
	Model checking: shortcomings
	Typing: foundational ideas
	Typing: shortcomings
	Typing: shortcomings
	On formal methods
	Current trend: combine formal methods
	On the combination of formal methods
	Combination of empirical and formal methods
	Example: abstract program testing
	Conclusions and challenges
	Conclusions
	Conclusion (cont'd)
	Grand challenge for computer scientists
	Challenges for abstract interpretation
	Challenges for abstract interpretation (cont'd)
	Short bibliography

