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Organization of the talk

• 45 mn: informal introduction to abstract interpre
tation;

• 10 mn: informal sketch of the proceedings paper
content ( “Partial completeness of abstract fixpoint
checking” 1);

• 5 mn: left for questions.

1 May be of interest to specialists only!

An Informal Introduction to
Abstract Interpretation

3

The initial application:
program analysis

• Prove automatically that:
for all programs P of a given programming language L:

for all possible executions of that program P in any con
ceivable environment:
a given specification S is always satisfied.

• Initially the considered specifications S were simple safety
specifications (e.g. absence of runtime errors).

© P. Cousot July 28th , 2000SARA’2000, Austin, TX 2 4 © P. Cousot



The methodology [CC-POPL’77]

• Define formally the program executions by a fixpoint seman
tics of the programs of the language L;

• Since the semantics of a program is not computable , use a
manually designed approximation/abstraction of that seman
tics to check the specification.

Reference

[CC-POPL’77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In Conf. Record of the 4th Annual ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages POPL’77 , Los Angeles, CA, 1977. ACM Press, pp.
238–252.
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Semantics: intuition

• The semantics of a program provides a formal mathematical
model of all possible behaviors of a computer system execut
ing this program (interacting with any possible environment);

• The semantics of a language defines the semantics of any
program written in this language.

Example 1: trace semantics [4 , 6]

Initial states
Final states of the
           finite tracesIntermediate states

Infinite
traces
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Examples of computation traces
• Finite (C1+1=):

• Erroneous (C1+1+1+1…):

… …

• Infinite (C+0+0+0…):

… …
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Example 2: geometric semantics [18]
(deadlock)

[[ Pa.Pb.Va.Vb
|| Pb.Pc.Vb.Vc
|| Pc.Pa.Vc.Va ]]

inaccessible

deadlock

9

Least Fixpoints: intuition [4 , 6]

Behaviors = {• | • is a final state}
∪ {•−−−•−−−. . .−−−• | •−−−• is an elementary step &

•−−−. . .−−−• ∈ Behaviors+}

∪ {•−−−•−−−. . .−−−. . . | •−−−• is an elementary step &

•−−−. . .−−−. . . ∈ Behaviors∞}

In general, the equation has multiple solutions. Choose the
least one for the partial ordering:

« more finite traces & less infinite traces ».

Abstraction: intuition

• Abstract interpretation is a theory of the approximation of
the behavior of discrete systems , including the semantics of
(programming or specification) languages [8 , 9 , 2];

• Abstract interpretation formalizes the intuitive idea that a
semantics is more or less precise according to the considered
observation level.

11

Example 1 of abstraction 2
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2 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).
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Example 2 of abstraction 3
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Example 3 of abstraction 4
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Collecting Semantics

3 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).

4 P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in TCS (2000).

Computable abstractions

• If the approximation is rough enough, the abstraction of a
semantics can lead to a version which is less precise but is
effectively computable by a computer;

• By effective computation of the abstract semantics , the com
puter is able to analyze the behavior of programs and of soft
ware before and without executing them [7].

15

Computable abstractions of an [in]finite set
of points; Example 1: signs

x

y {. . . , 〈19, 88〉, . . . ,
〈19, 99〉, . . .}
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Computable abstractions of an [in]finite set
of points; Example 1: signs [9]

x

y {
x ≥ 0
y ≥ 0
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Computable abstractions of an [in]finite set
of points; Example 2: intervals [7 , 8]

x

y {
x ∈ [19, 88]
y ∈ [19, 99]

Computable abstractions of an [in]finite set
of points; Example 3: octagons

x

y






1 ≤ x ≤ 9
x + y ≤ 88
1 ≤ y ≤ 9
x − y ≤ 99

19

Computable abstractions of an [in]finite set
of points; Example 4: polyhedra [16]

x

y {
19x + 88y ≤ 2000
19x + 99y ≥ 0
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Computable abstractions of an [in]finite set
of points; Example 5: simple congruences [19]

x

y {
x = 19 mod 88
y = 19 mod 99

21

Computable abstractions of an [in]finite set
of points; Example 6: linear congruences [20]

x

y {
1x + 9y = 8 mod 8
1x − 9y = 9 mod 9

Computable abstractions of an [in]finite set
of points; Example 7: trapezoidal linear con-

gruences [22, 23]

x

y {
1x + 9y ∈ [0, 88] mod 10
1x − 9y ∈ [0, 99] mod 11

23

Computable abstractions of symbolic
structures

• Most structures manipulated by programs are symbolic struc
tures such as control structures (call graphs), data structures
(search trees), communication structures (distributed & mo
bile programs), etc;

• It is very difficult to find compact and expressive abstractions
of such sets of objects (languages, automata, trees, graphs,
etc.).
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Example of abstractions of infinite sets of
infinite trees

Binary Decision Graphs: [24]

Tree schemata: [25 , 26]

25

Information loss

• All answers given by the abstract semantics are always correct
with respect to the concrete semantics;

• Because of the information loss, not all questions can be
definitely answered with the abstract semantics;

• The more concrete semantics can answer more questions;
• The more abstract semantics are more simple.

Example of information loss
• Is the operation 1/(x+1-y) well defined at run-time?
• Concrete semantics: yes

x

y
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Example of information loss
• Is the operation 1/(x+1-y) well defined at run-time?
• Abstract semantics 1: I don’t know

x

y
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Example of information loss
• Is the operation 1/(x+1-y) well defined at run-time?
• Abstract semantics 2: yes

x

y
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Program Static Analysis

Objective of program static analysis

• Programming bugs should be eradicated before they lead to
disastrous catastrophes!

• Full automation is necessarily limited (undecidability);
• Program static analysis uses abstract interpretation to derive,

from a standard semantics, an approximate and computable
semantics. This derivation is itself not (fully) mechanizable;

• It follows that the computer is able to analyze the behavior
of software before and without executing it;

• This is essential for computer-based safety-critical systems
(for example: planes, trains, launchers, nuclear plants, etc.).

31

Example: interval analysis (1975) 5

Program to be analyzed:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 5

Equations (abstract interpretation of the semantics):

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

The analyzer reads the program text and produces
(a representation of) the above equations and
then solve them iteratively. The equations are an
abstraction of the trace semantics of the program.
The formal derivation of the algorithm producing
the equation by abstract interpretation of the pro
gram trace semantics is (mainly) manual.






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]

33

Example: interval analysis (1975) 5

Increasing chaotic iteration, initialization:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = ∅
X2 = ∅
X3 = ∅
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

Example: interval analysis (1975) 5

Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = ∅
X3 = ∅
X4 = ∅
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Example: interval analysis (1975) 5

Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 1]
X3 = ∅
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 5

Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 1]
X3 = [2, 2]
X4 = ∅
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Example: interval analysis (1975) 5

Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 2]
X3 = [2, 2]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence?

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 2]
X3 = [2, 3]
X4 = ∅
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Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence??

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 3]
X3 = [2, 3]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence???

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 3]
X3 = [2, 4]
X4 = ∅
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Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 4]
X3 = [2, 4]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence?????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 4]
X3 = [2, 5]
X4 = ∅
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Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence??????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 5]
X3 = [2, 5]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 5

Increasing chaotic iteration: convergence???????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 5]
X3 = [2, 6]
X4 = ∅
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Example: interval analysis (1975) 5

Convergence speed-up by extrapolation:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1,+∞] ⇐ widening
X3 = [2, 6]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

Example: interval analysis (1975) 5

Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1,+∞]
X3 = [2,+∞]
X4 = ∅
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Example: interval analysis (1975) 5

Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 9999]
X3 = [2,+∞]
X4 = ∅

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Example: interval analysis (1975) 5

Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 9999]
X3 = [2, 10000]
X4 = ∅
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Example: interval analysis (1975) 5

Final solution:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 9999]
X3 = [2, 10000]
X4 = [10000, 10000]

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

Example: interval analysis (1975) 5

Result of the interval analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x ∈ [1, 9999]}

x := x + 1
3: {x ∈ [2, 10000]}

od;
4: {x = 10000}






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






X1 = [1, 1]
X2 = [1, 9999]
X3 = [2, 10000]
X4 = [10000, 10000]
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Example: interval analysis (1975) 5

Exploitation of the result of the interval analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x ∈ [1, 9999]}

x := x + 1
3: {x ∈ [2, 10000]}

od;
4: {x = 10000}






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000,+∞]






←− no overflow
X2 = [1, 9999]
X3 = [2, 10000]
X4 = [10000, 10000]

5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
5 P. Cousot & R. Cousot, ISOP’1976, POPL’77.
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Some applications of static analysis
by abstract interpretation

• data flow analysis for program optimization & transformation
(including partial evaluation) [9 , 15];

• type inference (including undecidable systems)/soft typing [5];
• abstract model-checking of infinite systems [14 , 15];
• abstract debugging & testing [2 , 1];
• probabilistic analysis [28];
• …

53

Some other recent applications of
abstract interpretation

• Fundamental applications:
-- design of hierarchies of semantics [13 , 3 , 6] , …;

• Practical applications:
-- communication topology of mobile/distributed code [29];
-- automatic differentiation of numerical programs;
-- security (analysis of cryptographic protocols [27] , mobile
code [17]);

-- semantic tattooing/watermarking of software, ….

Lattice of semantics [6]

Hoare logics
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Denotational semantics

Relational semantics

Trace semantics
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Forthcoming research
A lot of fundamental research remains to be one:

• modularity,

• higher order functions & modules,

• floating point numbers,

• probabilistic analyses,

• liveness properties with fairness,

• …;
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An impressive application (1996/97)
• Abstract interpretation is used (including interval analysis)

for the static analysis of the embedded ADA software of the
Ariane 5 launcher 6; [21]

• Automatic detection of the definiteness , potentiality , impos
sibility or inaccessibility of run-time errors 7;

• Automatic discovery of the 501 flight error;
• Success for the 502 & 503 flights and the ARD 8.

57

Industrialization of static analysis by
abstract interpretation

• Connected Components Corporation (U.S.A.),
L. Harrison, 1993;

• AbsInt Angewandte Informatik GmbH (Germany),
R. Wilhelm, 1998;

• Polyspace Technologies (France),
A. Deutsch & D. Pilaud, 1999.

5 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000 lines of Ada code).
6 such as scalar and floating-point overflows, array index errors, divisions by zero and related arithmetic exceptions,

uninitialized variables, data races on shared data structures, etc.
7 Atmospheric Reentry Demonstrator: module coming back to earth.

An Few Elements of
Abstract Interpretation Theory

Seminal reference

-- P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conf. Record of the 6th Annual
ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages , San Antonio, TX, 1979. ACM Press, pp.
269–282.

See also an introduction in [11] and variants in [12].
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Concrete properties

• The semantic definition S of a program P associates a se
mantics S!P " ∈ D to the program describing its possible
executions (e.g. a set of traces);

• A property is represented by the set of semantics which have
this property;

• The set of properties form a complete boolean lattice:

〈℘(D), ⊆, ∅, D, ∪, ∩, ¬〉 (1)
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Example: state properties of transition
systems

• * is a set of states;
• t ∈ ℘(* × *) is the transition relation between a state and

its possible successors;
• ℘(*) is the set of state properties;
• Example:

I ⊆ * is the set of initial states.

61

Concrete fixpoint semantics

• The concrete semantics S!P " of a given program P is defined
in fixpoint form:

S!P " 1= lfp
⊆

F (2)

• The semantic transformer F is monotonic:

F ∈ ℘(D) mon2−→ ℘(D) (3)

• In general the semantic transformer of a program P is defined
by structural induction on the syntax of P .

Example: reachability analysis

• The reachable states of a transition system 〈*, t, I〉 is
R

1= post[t+](I) (4)
where:
-- t+ is the reflexive transitive closure of the transition rela
tion t ,

-- post[r](X) = {y | ∃x ∈ X : 〈x, y〉 ∈ r} is the right
image of the set X by relation r;

• In fixpoint form:
R = lfp

⊆
F where F (X) = I ∪ post[t](X) . (5)

63

Abstract properties

• The abstract properties form a complete boolean lattice:

〈L, 5, ⊥, ., 7, 8〉 (6)
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Galois connection between concrete
and abstract properties

• The correspondence between concrete and abstract properties
is given by a Galois connection:

〈℘(D), ⊆〉 −−−→←−−−
α

γ
〈L, 5〉 (7)

• α(P ) is the abstraction of the concrete property P ;
• γ(Q) is the concretization of the abstract property Q;

• ∀P,Q : α(P ) 5 Q ⇐⇒ P ⊆ γ(Q).
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Example 1: state abstraction

• If
-- h ∈ D 2→ D̄ ,
-- α(P ) 1= { h(x) | x ∈ P} ,

-- γ(Q) 1= { x | h(x) ∈ Q}.
then:

〈℘(D), ⊆〉 −−−→←−−−
α

γ
〈℘(D̄), ⊆〉 (8)

• Not all abstractions are of that form , a counter-example …/…

Example 2: intervals

• Concrete properties: ℘(Z) (sets of integers);
• Abstract properties: [a, b] (a ≤ b , intervals),

⊥ empty interval;

• Abstraction: α(∅) 1= ⊥ ,
α(P ) 1= [min P, max P ] , P ;= ∅;

• Concretization: γ(⊥) 1= ∅ ,
γ([a, b]) 1= {x ∈ Z | a ≤ x ≤ b}.
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Intuition behind Galois connections

• α(P ) is the best possible approximation of P in the abstract
domain:
-- P ⊆ γ ◦ α(P ) , it’s an upper approximation
-- P ⊆ γ(Q) =⇒ γ ◦ α(P ) ⊆ γ(Q) ,

it’s the best upper approximation

• logical implication is preserved by the abstraction:
-- P ⊆ P ′ =⇒ α(P ) 5 α(P ′) ,
-- Q 5 Q′ =⇒ γ(Q) ⊆ γ(Q′).
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Composing abstractions

• The composition of two Galois connections:

〈℘(D), ⊆〉 −−−→←−−−
α1

γ1 〈L1, 51〉

〈L1, 51〉 −−−→←−−−
α2

γ2 〈L2, 52〉

is a Galois connection:

〈℘(D), ⊆〉 −−−−−→←−−−−−
α2◦α1

γ1◦γ2 〈L2, 52〉 (9)
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Approximating functions
• If:

〈℘(D), ⊆〉 −−−→←−−−
α

γ
〈L, 5〉 (10)

then:
〈℘(D) mon2−→ ℘(D), ⊆̇〉 −−−→←−−−

α̇

γ̇
〈L mon2−→ L, 5̇〉 (11)

where:
f >̇ g ⇐⇒ ∀x : f(x) > g(x) ,

α̇(F ) 1= α ◦ F ◦ γ ,

γ̇(G) 1= γ ◦ G ◦ α.

Approximating fixpoints

• If:
〈℘(D), ⊆〉 −−−→←−−−

α

γ
〈L, 5〉 (12)

then:
lfp

5
F 5 γ (lfp

5
α̇(F )) (13)

• So lfp
5̇

α̇(F ) 5 S implies lfp
⊆

F ⊆ γ(S).
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Computing fixpoints

• The transfinite iteration sequence:
-- X0 1= ⊥ ,
-- Xδ+1 1= F̄ (Xδ) for successor ordinals δ + 1 ,

-- Xλ 1=
⊔

δ<λXδ for limit ordinals λ

converges to lfp
5

F̄ :

∃ε : ∀δ ≥ ε : Xδ = lfp
5

F̄ (14)
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Fixpoint checking algorithm

• Check that lfp
5

F̄ 5 S where F̄
1= α̇(F ):

Algorithm 1
X := ⊥;
repeat

X ′ := F̄ (X);
Stop := (X = X ′) ∨ (X ′ ;5 S);
X := X ′;

until Stop;
return (X 5 S);
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Convergence

• The iterates Xδ, δ ∈ N form an increasing chain;
• The algorithm 1 terminates if the abstract lattice L satisfies

the ascending chain condition (or is finite).

Example: lattice of intervals

[-3,0]

[-2,0]

[-1,0]

[-3,-1]

[-2,-1]

[-2,1]

[-1,1]

[-1,2]

[0,2]

[0,1] [1,2]

[1,3]

[0,3]

[-2,-2] [-1,-1] [0,0] [1,1] [2,2] …

… …

[2,+ ]

…

… …

[1,+ ]

[0,+ ]

[– ,+ ]

[– ,0]

…

…

…

…

… ……… … … …

…… …
…

[– ,-1]

[– ,-2]
…

…

⊥
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Speeding up convergence
• In case of possible divergence use a widening [8 , 10]:

Algorithm 2
X := ⊥; (See more precise algorithm in [9])
repeat

X ′ := X
#

F̄ (X);
Stop := (X = X ′) ∨ (X ′ ;5 S);
X := X ′;

until Stop;
return (X 5 S);

• Example: [1, 1]
#

[1, 2] = [1, +∞].
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Pointers to references

• Starter:

P. Cousot. Abstract interpretation. ACM Computing
Surveys 28 (2), 1996, 324–328.

• On the web:

http://www.di.ens.fr/˜cousot/
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SARA’2000 paper content sketch:

“Partial Completeness of
Abstract Fixpoint Checking”

Approaches to program verification

Deductive methods: The proof size is exponential in
the program size!

Model-checking: Restricted to finite models. Gained
only a factor of 100 in 10 years. The limit seems to be
reached!

Program static analysis: Can analyze large programs
(220 000 lines of C) but specifications are simple and the
abstraction is manual!

Can abstract interpretation be automatized?

79

Abstraction for finite fixpoint checking

• A finite abstraction to prove a given class of specifications
(such as safety specifications) does not exist for a given pro
gramming language;

• However, such a finite abstraction always exists to prove a
given specification for a given program;

• This SARA’2000 paper characterizes all such finite abstrac
tions for a given program and specification.
Reference

-- P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing approaches to abstract interpre
tation. In M. Bruynooghe and M. Wirsing, editors, Proc. Int. Workshop Programming Language Implementation and
Logic Programming, PLILP ’ 92 , Leuven, Belgium, 13–17 Aug. 1992, LNCS 631, p. 269–295. Springer, 1992.
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The problem: abstract fixpoint checking

• The fixpoint checking problem for 〈F, I, S〉:

lfp
≤

λX . I ∨ F (X) ≤ S ?

• Definition: A ∈ L an invariant for 〈F, I, S〉 if and only if
I ≤ A & F (A) ≤ A & A ≤ S;

• In practice, 〈F, I, γ(S)〉 has to be checked in the abstract:

lfp
5

λX . α(I ∨ F (γ(X))) 5 S ?
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Definition: partially complete fixpoint
checking

• An abstract safety specification checking algorithm for check
ing a specification 〈F, I, γ(S)〉 is partially complete if and
only if it misses no positive answer , up to termination;

The two main results
in the SARA’2000 paper

1. The various (abstract) safety specification checking algo
rithms , whether forward (as used in program static analysis)
or backward (as used in model-checking) are all equivalent
(provide the same answers), up to termination;

2. A safety specification checking algorithm is partially com
plete if if and only if the abstract domain contains the image
of an invariant.

Intuition: the design of the abstraction is as difficult
as the design of an invariant.
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