Giorgio Levi’s Festschrift Workshop

Abstract Interpretation of
Resolution-Based Semantics

Patrick Cousot, Radhia Cousot, and Roberto Giacobazzi
ENS & NYU CNRS & ENS Universita di Verona

October 23,2009

Obijective

Our objective

® To understand the work of Giorgio Levi on the
semantics of logic programming languages for static
analysis

® By reconstructing the semantics of Resolution-based/
Logic Programming...

...by abstract interpretations of a concrete semantics

...chosen to be a branching-time trace-based
semantics (built from a state transition system)

® |n passing, we get some novel semantics that tackle
impure characteristics of real implementations.

3

Result

A Hierarchy of Abstractions and Semantics
(2" & 3rd dimensions) gownd
Sem[P]
correct an
C&?Irlnszvgéfs ground
computed S™[P] callsgpel[[tlgcﬂrns
s-models .
la[fy]] cwﬁt ! br(feig;[[(sltt ; PR(ﬁL(}]G STIFT cl;glslt?)r:tlti?ri “
s‘[p s Se[pP serp P[P ground S
SLD-trees
i e S yntax
SP[P] oK
o instantiated
SLD-trees
S*171 dcgr;?;tr;gns
i Sl
SK[P]
instantiated
derivations
sd[P]
g e dertvations.
I/y 2" dimension s [l
I o 5 6
Syntax of logic programs Substitutions
F ' o
/e funFtlon symbols PY,0 €S substitutions (€)
v eV variable symbols (T licat
U=wy,...,v, sequences of variables (€) () application to a term T
T.U,.. et terms builton f and 7 € ¥ 19‘6‘ restriction to variables of expression e
pEP predicate symbols Yoo composition
A, B € A atoms built on pand t :
9 <0 pre-order
B = B,...B, € B sequences of atoms (€), body — _ .
C=A« B €C definite clauses (unit clauses B = €) U ~d" equivalence (renaming)
P e P 2 0,nf— C Prolog programs (S° /., =) complete lattice of idempotent
0: n(0) — substitutions up to renaming
t: n(s(@) < nl) . T similarly for terms up to renaming
a"(P)2{P,...,P,} eL abstraction to logic programs
G2 {pv) | p e prvev most general atomic goals
7 8

Unification

mgu(7) = {o} most general unifier of a set .7 of terms
£ not unifiable
mgu (&) most general unifier of a set of

equations £ = {T; = U; | i € A}

parallel composition of

T €SLxSh—SL
idempotent substitutions

Operational semantics
defined by a labelled
transition system

Labelled transition system

StpP) = (6, L, —",

|

Labels
Semantics States Transition
p relation
rogram
o n(0) — — € P x L XE)
1 n(s(r)) < n(x)

)

|

Initial
states

States

statesn € & & S xS
n=(w,)

Stack Substitution

Stacks = e .72 rr2ecun)t

e [F A] Initial stack for goal A

} markers in .4
. [—| |:|] Empty stack final marker

e C £ {[i:A+ B.B']|i:A < B B’ € P} specifying the control state of the
derivation (B has been derived while B’ is still to be derived) or a marker .#

12

Initial states
I ELFA,Y | Ae Ay €S

/

goal Y(A) (most often ¥ is chosen as the empty substitution ¢)

Transition labels

e (i:4'—B/o :apply renamed-apart clause i: 4’ — B
to prove goal A, such that A and A’ unify by
o € mgu(Vv(A), A")

* i:A-B| :the proof of B is finished

Labelled transition relation £t ¢ c &

* Start from goal ¥(A), apply clause i: A — B,
prove new goal o T ¥(B):

(F A], 9) i:a—Bo (HO[i: A" — .B], 9')

if i:A"— Be&P,o0ecmgu((A),A),Vecold (2)

* Start from subgoal ¥(B), apply clause j: B" «— B”,
prove new goal o T ¥(B"):

(w]i: A — B.BB, 0) 3:pr=p)o (@[i:A — BB.B'|[j: B — .B"), V')

if i:A« BBB' j:B '« B"&P,oc¢€ mgu(¥(B),B), ¥ ol (3)

Let i: A «+— B & P means that i: A < B is a clause of the PROLOG program P
renamed /standardized apart using fresh Valrsiables

Labelled transition relation £t ¢ c &

* Proof of B is finished, go back to previous goal
on stack:

(wliA— B o) S4B,

b (w, V) if i:A—BeP. (4)

Example: [o a0~

1: n(s(z)) < n(z)

(IFn(s(s(0))], &) {initial state§
(1:n(s(@)—n(@)/{z—s(0)} Iby (2)3
(HE][1:n(s(2)) < n(2)], {z < s(0)})
(1:n(s(2"))—n(2)/{a'—0} by (3)5

(HOI[Ln(s(2)) — n(e)I[L:a(s() — @), {o — s(0),a’ — O})
q 0:n(0)—/e t

by (3)5
(Ol n(s(e)) — (e[t n(s(e)) — n@)][0:n(0) —
i 5(0), 4" — O}y

020D by ()3

(HBE[1:n(s(x)) < n(z).][1:n(s(2)) < n(2)], {z — s(0),2" — 0})
Lin(s(@))—n(@))

by (4)§
([H0][1:n(s(@)) < n(x).], {z < s(0),2" - 0})
Lin(s(z)—n(z)) Iby (4)§
([H0], {z < s(0),2" < 0}) o
17

Most general maximal
terminal derivation

semantics of logic programs

d

rift workshop. Pisa, Italy, October 23, 2009 ©P. Cousot, R. Cousot, and R. Giacobazzi

Transitional Most General Maximal Derivation Semantics

* Maximal traces generated by the transition system
starting from most general goals:

Sdﬂpﬂé{ﬂoﬂm---%—l %—_1>77n€®[n+1]|n>0/\
no=([Fp)],e) A\pepAveEvAYI€[0,n—1]:n Lt i A
Vne.s Ve —~(n, >t)},

i's Festschrift workshop. Pisa, Italy. October 23, 2009 ©P. Cousot, R. Cousot. and R. Giacobazzi

Final states

e answer substitution states in &5 £ {([HO], ¥) | ¥ € S} for successful traces,
or

e finite failure states in & £ {(w[i: A « B.BB'], ¥) |V j:B' « B" € P :
mgu(9(B), B") = @} for failing traces.

20

i's Festschrift workshop. Pisa, Italy. October 23, 2009 ©P. Cousot, R. Cousot, and R. Giacobazzi

Most general maximal
terminal derivation
semantics of logic programs
in fixpoint form

round

::::::::::

©P. Cousot, R. Cousot, and R. Giacobazzi

Abstractions of the trace
semantics

23

Giorgio Levi's Festschrift workshop, Pisa, taly. October 23, 2009 ©P. Cousot, R. Cousot, and R. Giacobazzi

Transitional Most General Maximal Derivation Semantics in
Fixpoint Form

Theorem 20 S[P] = ifp- FI[P] .

FI[P] € p(®) — p(®)

(i:A<B/w
B

FI[P] 2 X6~ U (@), e Fili:A —.B]9O (9

1:A—BeP,pep,veY, vemgu(p(v),A)
Fi[i:A «— B.B] € S — p(0) — ¢(O)

Fé[i:A — B.BB'| £ A0+ AO- (10)
{({HO][i: A — B.BB'], [HO][i: A — BB.B'], 9) 1% n 4, (@, 9")) 50 |
n N (w,¥) € ©.B'No € mgu(B, B)AO € Fi[i:A — BB.B|(¢ 10 193)0}

i :/L—BD

Fali:A — B 2 A0+ AOQ - {([HO][1: A — B.], 9) ==L, ([40], 9)} . (11)

22

©P. Cousot, R. Cousot, and R. Giacobazzi

Giorgio Levi's Festschrift workshop, Pisa, taly. October 23, 2009

| st dimension: Partial correctness Abstractions

S[P] success

S4[P] most general

The success abstraction eliminates finite failures

24

©P. Cousot, R. Cousot, and R. Giacobazzi

2nd dimension: Instantiation Abstractions
o SE[P] ground

o8

¢ SY[P] instantiated/non-ground

o SY[P] most general

The derivation ground instantiation abstraction maps derivations for non-
ground goals to derivations for ground instantiations of these goals.

ground

3rd dimension: Computational Information Abstractions

e Abstract away the information provided by a
computation

Sl del

breadth- 1 [P models

lazy cut first PRroOLOG

am

L I N b L e

SP[P] call patterns

ap

SK[P] SLD-trees

aK

S4[P] derivations

i's Festschrift workshop, Pisa, Italy, October 23, 2009

SLD trees
0: n(0) « a(s(s(x)))/¢
1:n(s(z1)) < n(21)
1: n(s(z)) < n(z) {m = s(a)}
a(s(21)/{z1 — s(@)}

1:10(s(22)) < n(an)
{xg — 0 — 32}

SLD-derivation {
n(ze)/{z1 — s(z), w0 — 2,0 — T)}‘

\
0:1n(0) — 1:n(s(z3)) < n(x3)
{zy — 0} {xy — s(z3)}

: {2y — 2,0 — a3, n(zz)/{z1 — s(z), 29 — z,
failure/success 0} e s 5(rs)}

0:n(0) « 1:n(s(x4)) — n(zq)
{3 < 0} {os — s(zg)}

{1 — s(x), 29 — x,2 — x3,
2y — s(w3),x3 < O}

27

i's Festschrift workshop, Pisa, Italy, October 23, 2009

SLD abstraction

e The SLD-abstraction collects the nodes of the SLD-tree from the states of
traces.

o The SLD-trees are built from traces by grouping their common prefixes in the
order of the PROLOG program clauses.

0O I neEE AL <. o <inA
On=|JOrAVkel,n]:0,={01]n Mt 0eOnt#o}tU
k=1

i:c)

({8 | n —=t 0 e O U {139 (-], v) € O}

28

i's Festschrift workshop, Pisa, Italy, October 23, 2009

Call-patterns abstractions

e The call-patterns abstraction collects the goal, call-patterns and the answer
substitution for each derivation, including those leading to finite failures

SLD derivation forest

"p([i1: Ay« By/01 &5 5in s Ay — B /9, 6]) 2 SLD tree

(— Afo|[i1: A1 — B1/91 &5 5in s Ay — B, /9, 6.])(0(A))

(
““’< [i1: 4 ;Bm)lw vin A, — B, /0, A 2

”/p(A 2o failure
“/p(A" 2 {(o(4), [Ha))} success.
29

The model abstraction

e The model abstraction collects answers in the call patterns

a™(K) 2 {Aen| (A [HO) € K}

30

The PROLOG abstraction

e The PROLOG abstraction abstracts a forest (&;, i € A) of SLD-trees §;, i € A
into the set of execution traces corresponding to a depth-first traversal of these
SLD-trees &; (as in the PROLOG interpreter).

. SLD-trees may have infinite
branches so the execution sequence, defined by transfinite recursion, may be
transfinite (and is truncated to w by PROLOG interpreters, which is a further

abstraction).

aC((&, i€ A)) 2 <(1C(5,). i € A)

‘#B/(T‘ I|i |<7B/I/\g 1”‘73///’)//{1:}]
‘H B/”"l P A — Bl/f)l“ (61) - CAp < B,,/z),luc(f,,)
Kl Bl 2
a([o]|[h) £ o
31

rgio Levi's Festschrift workshop. Pisa, Italy, October 23, 2009

Fixpoint abstract semantics

32

rgio Levi's Festschrift workshop. Pisa, Italy, October 23, 2009

Abstract semantics Computational design of the abstract fixpoint semantics

* The trace semantics is in fixpoint form s¢[P] = 15~ FU[P]

* So, by abstraction, the abstract fixpoint semantics
2. Constructively derive the abstract semantics in also have a fixpoint definition

|. Define an abstraction of the trace semantics

fixpoint form (by proving commutation and * Example: Fizpoint s-semantics

applying the exact fixpoint transfer theorem) Theorem 24 (G. Levi et al.) S°[P] = ifp F5[P] .

Let us define the bottom-up call-patterns transformer ﬁs[[/—’]] € p(A) — p(A)
for a PROLOG program P € P as

PlPI2Xxea- | {9(A)|0ePFi:A—.B]o {c}} (12)
i:A—BeP

where the clause transformer !Ef[i::l — B.B'| € p(©) — o(S) — ¢(S) is
defined as

l:’f[i:;l —B.BB| 2 XA NIV |B €A NocmguB,B)YNIE€.SN (13)
9 € FSli:A— BB.B'|.«/ (91 0)}

FlitA— B2 Ad - AS T . (14)
33 34

op. Pisa, Italy. October 23, 2009 Cousot, R. Cousot, and R. Giacobazzi Giorgio Levi's Festschrift workshop, Pisa. ltaly, October 23, 2009

Conclusion Conclusion (cont'd)

minimal Herbrand-model se-

mantics (logical consequences) 2 Llfe is hard|

of Maarten van Emden and
Robert Kowalski

round breadth-

|. The joy of research
c-semantics (correct answer sub-
stitutions) of Keith Clark

—

Herbrand lazy cut first PrOLOG
, asd S ‘1Pl s"[P] se[P] s¢[P]
s-semantics (computed answer .

correct

substitutions) of Giorgio Levi

answers

c-models ground
computed sm[P] call g}atterns
answers S [[P]]
correct call patterns of Maur- s-models .
izio Gabbrielli and Roberto Gia- sm[P] instantiated |~
cobazzi call patterns 4
SP[P] groun
e SLD-trees
most general Sgg [Hf]l“
call patterns
SPIF] ok most general
call patterns of Maurizio Gab- SL[K)—treeS
S e . . d
brielli, Giorgio Levi and Maria st goneral dcg;g:t?ons S°[P]
Chiara Meo [47] SLD-trees Sed[)
SK[F]
instantiated
de;},’*ﬁgi"“ maximal SLD-trees of Robert
most general Kowalski most general
derivations . .
By derivations
s1P]

35 36

0p. Pisa, Italy, October 23, 2009 Cousot, R. Cousot. and R. Giacobazzi Giorgio Levi's Festschrift workshop, Pisa, ltaly. Octc

Conclusion

3. Future work for Giorgio

(cont’d)

ground
Herbrand
models
Sem[P]
m
correct @
. answers
c-models llgmutrt‘d
m call patterr
computed sim[P] P
answers Ser[P]
s-models o
S™P] instantiated
call patterns
ip ground
most general Sgg—[f}raeﬂes
call patterns
Sp [[P]] (!K
of instantiated
SLD-trees
SiK [P gl_rour_xd
most general dergéatmns
SLD-trees sed[P]

sK1P]

instantiated
derivations
S[P]
most general
derivations

37 sd[P]

op. Pisa, Italy, October 23, 200

ot and R

Giacobazzi

s, Ita!

. October 23, 2

Thank you

38

