

Syntax of logic programs

$f \in \mathbb{G}$	function symbols
$v \in \mathbb{v}$	variable symbols
$\vec{v}=v_{1}, \ldots, v_{n}$	sequences of variables $(\vec{\epsilon})$
$T, U, \ldots \in \mathbb{E}$	terms built on \mathbb{G} and $\vec{v} \in \overrightarrow{\mathrm{v}}$
$p \in \mathbb{P}$	predicate symbols
$A, B \in \mathbb{A}$	atoms built on \mathbb{p} and \mathbb{E}
$\boldsymbol{B}=B_{1} \ldots B_{n} \in \mathbb{B}$	sequences of atoms $(\boldsymbol{\varepsilon})$, body
$C=A \leftarrow \boldsymbol{B} \in \mathbb{C}$	definite clauses (unit clauses $\boldsymbol{B}=\boldsymbol{\varepsilon}$)
$P \in \mathbb{P}^{n} \triangleq[0, n[\mapsto \mathbb{C}$	Prolog programs
$0:$	$\mathrm{n}(0) \leftarrow$
$1:$	$\mathrm{n}(\mathrm{s}(x)) \leftarrow \mathrm{n}(x)$

$\alpha^{\perp}(P) \triangleq\left\{P_{1}, \ldots, P_{n}\right\} \in \mathbb{L} \quad$ abstraction to logic programs
$\mathbb{G} \triangleq\{p(v) \mid p \in \mathbb{p} \wedge v \in \mathbb{v}\} \quad$ most general atomic goals

Syntax

Substitutions

$\vartheta, \sigma \in \mathbb{S}$	substitutions (ε)
$\vartheta(T)$	application to a term T
$\left.\vartheta\right\|_{e}$.	restriction to variables of expression e
$\vartheta \circ \sigma$	composition
$\vartheta \preceq \sigma$	pre-order
$\vartheta \simeq \vartheta^{\prime}$	equivalence (renaming)
$\left\langle\mathbb{S}^{\circ} / \simeq \preceq\right\rangle$	complete lattice of idempotent substitutions up to renaming
\mathscr{T}^{0} / \simeq	similarly for terms up to renaming

Unification

```
mgu(\mathscr{T})={\sigma}.\quad most general unifier of a set }\mathscr{T}\mathrm{ of terms
    \otimes
mgu(\mathcal{E})\quadmost general unifier of a set of
    equations }\mathcal{E}={\mp@subsup{T}{i}{}=\mp@subsup{U}{i}{}|i\in\Delta
\uparrow\in\mathbb{S}%/~\times\mp@subsup{\mathbb{S}}{0}{0}/~\mapsto\mathbb{S}%/~
parallel composition of
    idempotent substitutions
```

9

Labelled transition system

Operational semantics defined by a labelled transition system

10

States

states $\eta \in \mathscr{E} \triangleq \mathscr{S} \times \mathbb{S}$

Stacks $\omega \in \mathscr{I} \triangleq \mathscr{K}+\triangleq(\mathbb{C} \cup \mathscr{A})^{+}$

- $[\vdash A]$ Initial stack for goal A
- [-†ロ] Empty stack final marker $\}$
- $\mathbb{C}^{\cdot} \triangleq\left\{\left[\mathrm{i}: A \leftarrow \boldsymbol{B} \cdot \boldsymbol{B}^{\prime}\right] \mid\right.$ i: $\left.A \leftarrow \boldsymbol{B} \boldsymbol{B}^{\prime} \in P\right\}$ specifying the control state of the derivation (\boldsymbol{B} has been derived while \boldsymbol{B}^{\prime} is still to be derived) or a marker \mathscr{M}

Initial states

```
I}\triangleq{\langle[\vdashA],\vartheta\rangle|A\in\mathbb{A}\wedge\vartheta\in\mathbb{S}
    goal \vartheta(A) (most often \vartheta is chosen as the empty substitution }\varepsilon\mathrm{ )
```

Labelled transition relation $\xrightarrow{\ell}, \ell \in \mathscr{L}$

- Start from goal $\vartheta(A)$, apply clause i: $A \leftarrow \boldsymbol{B}$, prove new goal $\sigma \uparrow \vartheta(\boldsymbol{B})$:

$$
\begin{align*}
& \langle[\vdash A], \vartheta\rangle \xrightarrow{\ \mathrm{i}: A^{\prime} \leftarrow \boldsymbol{B} / \sigma} \mathrm{t}^{\mathrm{t}}\left\langle[-\neg \square]\left[\mathrm{i}: A^{\prime} \leftarrow \cdot \boldsymbol{B}\right], \vartheta^{\prime}\right\rangle \\
& \quad \text { if } \quad \mathrm{i}: A^{\prime} \leftarrow \boldsymbol{B} \in P, \sigma \in \operatorname{mgu}\left(\vartheta(A), A^{\prime}\right), \vartheta^{\prime} \in \sigma \uparrow \vartheta \tag{2}
\end{align*}
$$

- Start from subgoal $\vartheta(B)$, apply clause $\mathrm{j}: B^{\prime} \leftarrow \boldsymbol{B}^{\prime \prime}$, prove new goal $\sigma \uparrow \vartheta\left(\boldsymbol{B}^{\prime \prime}\right)$:

$$
\begin{align*}
& \left\langle\varpi\left[\mathrm{i}: A \leftarrow \boldsymbol{B} \cdot B \boldsymbol{B}^{\prime}\right], \vartheta\right\rangle \xrightarrow{0 \mathrm{j}: B^{\prime} \leftarrow \boldsymbol{B}^{\prime \prime} / \sigma}{ }^{\mathrm{t}}\left\langle\varpi\left[\mathrm{i}: A \leftarrow \boldsymbol{B} B \cdot \boldsymbol{B}^{\prime}\right]\left[\mathrm{j}: B^{\prime} \leftarrow \cdot \boldsymbol{B ^ { \prime \prime }}\right], \vartheta^{\prime}\right\rangle \\
& \text { if } \quad \mathrm{i}: A \leftarrow \boldsymbol{B} B \boldsymbol{B}^{\prime}, \mathrm{j}: B^{\prime} \leftarrow \boldsymbol{B}^{\prime \prime} \oplus P, \sigma \in \operatorname{mgu}\left(\vartheta(B), B^{\prime}\right), \vartheta^{\prime} \in \sigma \uparrow \vartheta \tag{3}
\end{align*}
$$

Let i: $A \leftarrow \boldsymbol{B} \oplus P$ means that i : $A \leftarrow \boldsymbol{B}$ is a clause of the Prolog program P renamed/standardized apart using fresh variables

Transition labels

- $1 \mathrm{i}: A^{\prime} \leftarrow B / \sigma$: apply renamed-apart clause $\mathrm{i}: A^{\prime} \leftarrow \boldsymbol{B}$ to prove goal A, such that A and A^{\prime} unify by $\sigma \in \operatorname{mgu}\left(\vartheta(A), A^{\prime}\right)$
- i: $A \leftarrow B \mid$: the proof of B is finished

14

Labelled transition relation $\xrightarrow{\ell}, \ell \in \mathscr{L}$

- Proof of \boldsymbol{B} is finished, go back to previous goal on stack:

$$
\begin{equation*}
\langle\varpi[\mathrm{i}: A \leftarrow \boldsymbol{B} .], \vartheta\rangle \xrightarrow{\mathrm{i}: A \leftarrow B\rangle} \mathrm{t} \quad\langle\varpi, \vartheta\rangle \quad \text { if } \quad \mathrm{i}: A \leftarrow \boldsymbol{B} \oplus P . \tag{4}
\end{equation*}
$$

$\langle[\vdash \mathrm{n}(\mathrm{s}(\mathrm{s}(0)))], \varepsilon\rangle$
¿initial state $\}$
$\xrightarrow{\text { (1:n(s(x))} \leftarrow \mathrm{n}(x) /\{x \leftarrow \mathrm{~s}(0)\}} \mathrm{t}$
2 by (2) 5
$\langle[-\square \square][1: \mathrm{n}(\mathrm{s}(x)) \leftarrow \mathrm{n}(x)],\{x \leftarrow \mathrm{~s}(0)\}\rangle$
$\xrightarrow{\text { (1: } \mathrm{n}\left(\mathbf{s}\left(x^{\prime}\right)\right) \leftarrow \mathrm{n}\left(x^{\prime}\right) /\left\{x^{\prime} \leftarrow 0\right\}}$
$\left\langle[-\square \square][1: \mathrm{n}(\mathrm{s}(x)) \leftarrow \mathrm{n}(x)].\left[1: \mathrm{n}\left(\mathrm{s}\left(x^{\prime}\right)\right) \leftarrow \mathrm{n}\left(x^{\prime}\right)\right],\left\{x \leftarrow \mathrm{~s}(0), x^{\prime} \leftarrow 0\right\}\right\rangle$
$\xrightarrow{00: n(0) \leftarrow / \varepsilon} \mathrm{t}$
2 by (3) S
$\left\langle[-\square][1: \mathrm{n}(\mathrm{s}(x)) \leftarrow \mathrm{n}(x) \cdot]\left[1: \mathrm{n}\left(\mathrm{s}\left(x^{\prime}\right)\right) \leftarrow \mathrm{n}\left(x^{\prime}\right) \cdot\right][0: \mathrm{n}(0) \leftarrow],\right.$.
$\left.\left\{x \leftarrow \mathbf{s}(0), x^{\prime} \leftarrow 0\right\}\right\rangle$
$\xrightarrow{0: \mathrm{n}(0) \leftarrow)} \mathrm{t}$
2 by (4) S
$\left\langle[-\square][1: \mathrm{n}(\mathrm{s}(x)) \leftarrow \mathrm{n}(x) \cdot]\left[1: \mathrm{n}\left(\mathrm{s}\left(x^{\prime}\right)\right) \leftarrow \mathrm{n}\left(x^{\prime}\right) \cdot\right],\left\{x \leftarrow \mathrm{~s}(0), x^{\prime} \leftarrow 0\right\}\right\rangle$
$\xrightarrow{\left.\text { 1: } \mathrm{n}\left(\mathrm{s}\left(x^{\prime}\right)\right) \leftarrow \mathrm{n}\left(x^{\prime}\right)\right)} \mathrm{t}$
2 by (4) S
$\left\langle[-\neg][1: \mathrm{n}(\mathrm{s}(x)) \leftarrow \mathrm{n}(x) \cdot],\left\{x \leftarrow \mathbf{s}(0), x^{\prime} \leftarrow 0\right\}\right\rangle$
$\xrightarrow{\text { 1: } \mathrm{n}(\mathrm{s}(x)) \leftarrow \mathrm{n}(x))} \mathrm{t}$
2 by (4) \mathcal{S}
$\left\langle[-\square \square],\left\{x \leftarrow \mathrm{~s}(0), x^{\prime} \leftarrow 0\right\}\right\rangle$

Transitional Most General Maximal Derivation Semantics

- Maximal traces generated by the transition system starting from most general goals:

$$
\begin{aligned}
S^{\mathrm{d}}[P \rrbracket \triangleq & \left\{\eta_{0} \xrightarrow{\ell_{0}} \eta_{1} \ldots \eta_{n-1} \xrightarrow{\ell_{n-1}} \eta_{n} \in \boldsymbol{\Theta}[n+1] \mid n \geqslant 0 \wedge\right. \\
& \left.\left.\eta_{0}=\langle |-p(v)\right], z\right\rangle \wedge p \in \mathbb{P} \wedge v \in \vee \wedge \forall i \in[0, n-1]: \eta_{i} \stackrel{\ell_{i}, \mathrm{t}}{ } \eta_{i+1} \wedge \\
& \left.\forall \eta \in \mathscr{S}: \forall \ell \in \mathscr{L}: \neg\left(\eta_{n} \xrightarrow{\ell} \rightarrow \eta\right)\right\} .
\end{aligned}
$$

Most general maximal terminal derivation semantics of logic programs

Final states

- answer substitution states in $\mathscr{E}^{\text {AS }} \triangleq\{\langle[-\mid \square], \vartheta\rangle \mid \vartheta \in \mathbb{S}\}$ for successful traces,
- finite failure states in $\mathscr{E}^{\text {FF }} \triangleq\left\{\left\langle\varpi\left[\mathrm{i}: A \leftarrow \boldsymbol{B} \cdot B \boldsymbol{B}^{\prime}\right], \vartheta\right\rangle \mid \forall \mathrm{j}: B^{\prime} \leftarrow \boldsymbol{B}^{\prime \prime} \oplus P\right.$: $\left.\operatorname{mgu}\left(\vartheta(B), B^{\prime}\right)=\varnothing\right\}$ for failing traces.

Most general maximal terminal derivation semantics of logic programs in fixpoint form

Abstractions of the trace semantics

Transitional Most General Maximal Derivation Semantics in
Fixpoint Form
Theorem $20 \quad \mathrm{~S}^{\mathrm{d}} \llbracket P \rrbracket=l f p^{\complement} \hat{\mathrm{F}}^{\mathrm{d}} \llbracket \bar{P} \rrbracket$.
$\hat{\mathrm{F}}^{\mathrm{d}} \llbracket P \rrbracket \in \wp(\boldsymbol{\Theta}) \mapsto \wp(\boldsymbol{\Theta})$
$\hat{\mathrm{F}}^{\mathrm{d}} \llbracket P \rrbracket \triangleq \boldsymbol{\lambda} \Theta \cdot \quad \bigcup\langle[\vdash p(v)], \varepsilon\rangle \xrightarrow{\| \mathrm{i}: A \leftarrow B / \vartheta} \hat{\mathrm{F}}^{\mathrm{d}}[\mathrm{i}: A \leftarrow . \boldsymbol{B}] \vartheta \Theta$
i: $A \leftarrow B € P, p \in \mathbb{P}, v \in \mathbb{V}, \vartheta \in \operatorname{mgu}(p(v), A)$
$\hat{\mathrm{F}}^{\mathrm{d}}\left[\mathrm{i}: A \leftarrow \boldsymbol{B} \cdot \boldsymbol{B}^{\prime}\right] \in \mathbb{S} \mapsto \wp(\boldsymbol{\Theta}) \mapsto \wp(\boldsymbol{\Theta})$
$\hat{F}^{\mathrm{d}}\left[\mathrm{i}: A \leftarrow \boldsymbol{B} \cdot \boldsymbol{B} \boldsymbol{B}^{\prime}\right] \triangleq \boldsymbol{\lambda} \vartheta \cdot \boldsymbol{\lambda} \Theta \cdot$
(10)
$\left\{\left(\left\langle[-\square]\left[\mathrm{i}: A \leftarrow \boldsymbol{B} \cdot \boldsymbol{B} \boldsymbol{B}^{\prime}\right],[-\mid \square]\left[\mathrm{i}: A \leftarrow B B \cdot \boldsymbol{B}^{\prime}\right], \vartheta\right\rangle \Uparrow^{\mathrm{d}} \eta \xrightarrow{\ell}\left\langle\omega, \vartheta^{\prime}\right\rangle\right) ; \theta \mid\right.$
$\left.\eta \xrightarrow{\ell}\left\langle\varpi, \vartheta^{\prime}\right\rangle \in \Theta \cdot B^{\prime} \wedge \sigma \in \operatorname{mgu}\left(B, B^{\prime}\right) \wedge \theta \in \hat{F}^{d}\left[\mathrm{i}: A \leftarrow B B \cdot B^{\prime}\right]\left(\vartheta \uparrow \sigma \uparrow \vartheta^{\prime 3}\right) \Theta\right\}$
$\hat{\mathrm{F}}_{.}^{\mathrm{d}}[\mathrm{i}: A \leftarrow \boldsymbol{B} \cdot] \triangleq \boldsymbol{\lambda} \vartheta \cdot \boldsymbol{\lambda} \Theta \cdot\{\langle[-\square][\mathrm{i}: A \leftarrow \boldsymbol{B} \cdot], \vartheta\rangle \xrightarrow{\mathrm{i}: A \leftarrow B\rangle}\langle[-\square \square], \vartheta\rangle\} \cdot(11)$
22
$\|^{\text {st }}$ dimension: Partial correctness Abstractions

- $\mathrm{S}^{\text {sd }} \llbracket P \rrbracket$ success $~\left(\mathrm{~S}^{\mathrm{d}} \llbracket P \rrbracket\right.$ most general

The success abstraction eliminates finite failures

$2^{\text {nd }}$ dimension: Instantiation Abstractions

The derivation ground instantiation abstraction maps derivations for nonground goals to derivations for ground instantiations of these goals.

SLD trees

$3^{\text {rd }}$ dimension: Computational Information Abstractions

- Abstract away the information provided by a computation

26

SLD abstraction

- The SLD-abstraction collects the nodes of the SLD-tree from the states of traces.
- The SLD-trees are built from traces by grouping their common prefixes in the order of the Prolog program clauses.

$$
\begin{gathered}
\alpha^{\mathrm{K}}(\langle[\mid-A], \vartheta\rangle) \triangleq \leftarrow \vartheta(A) / \vartheta \\
\alpha^{\mathrm{K}}(\langle\varpi, \vartheta\rangle) \triangleq \leftarrow\left\langle\alpha^{\prime \mathrm{K}}(\langle\varpi, \vartheta\rangle), \vartheta\right\rangle \\
\alpha^{\prime \mathrm{K}}\left(\left\langle\varpi\left[\mathrm{i}: A \leftarrow \boldsymbol{B} \cdot B \boldsymbol{B}^{\prime}\right], \vartheta\right\rangle\right) \triangleq \vartheta\left(B \boldsymbol{B}^{\prime}\right) \alpha^{\prime \mathrm{K}}(\langle\varpi, \vartheta\rangle) \\
\alpha^{\prime \mathrm{K}}(\langle[-\square], \vartheta\rangle) \triangleq \varepsilon \\
\alpha^{\mathrm{K}}(\Theta) \triangleq\left\{\alpha^{\mathrm{K}}(\eta) \llbracket \mathrm{i}_{1}: \ell_{1} \alpha^{\mathrm{K}}\left(\Theta_{1}\right) ; \ldots ; \mathrm{i}_{n}: \ell_{n} \alpha^{\mathrm{K}}\left(\Theta_{n}\right) \rrbracket \mid \eta \in \mathscr{E} \wedge \mathrm{i}_{1}<\ldots<\mathrm{i}_{n} \wedge\right. \\
\left.\Theta \cdot \eta=\bigcup_{k=1}^{n} \Theta_{k} \wedge \forall k \in[1, n]: \Theta_{k}=\left\{\theta \mid \eta \xrightarrow{\text { i } \mathrm{i}_{k}: \ell_{k}}{ }^{\mathrm{t}} \theta \in \Theta \cdot \eta\right\} \neq \varnothing\right\} \cup \\
\alpha^{\mathrm{K}}\left(\left\{\theta \mid \eta \xrightarrow{\mathrm{i}: C)}{ }^{\mathrm{t}} \theta \in \Theta\right\}\right) \cup\{\vartheta \square \mid \exists \vartheta:\langle[-\square], \vartheta\rangle \in \Theta\} .
\end{gathered}
$$

Call-patterns abstractions

- The call-patterns abstraction collects the goal, call-patterns and the answer substitution for each derivation, including those leading to finite failures

```
\alpha
SLD derivation forest
\(\alpha^{\mathrm{p}}\left(\leftarrow A / \sigma \llbracket \mathrm{i}_{1}: A_{1} \leftarrow \boldsymbol{B}_{1} / \vartheta_{1} \xi_{1} ; \ldots ; \mathrm{i}_{n}: A_{n} \leftarrow B_{n} / \vartheta_{n} \xi_{n} \rrbracket\right) \triangleq \quad\) SLD tree \(\alpha^{\text {P }}\left(\leftarrow A / \sigma \llbracket \mathrm{i}_{1}: A_{1} \leftarrow \boldsymbol{B}_{1} / \vartheta_{1} \xi_{1} ; \ldots ; \mathrm{i}_{n}: A_{n} \leftarrow \boldsymbol{B}_{n} / \vartheta_{n} \xi_{n} \rrbracket\right)(\sigma(A))\) \(\alpha^{\prime \text { P }}\left(\leftarrow B \boldsymbol{B} / \sigma \llbracket \mathrm{i}_{1}: A_{1} \leftarrow \boldsymbol{B}_{1} / \vartheta_{1} \xi_{1} ; \ldots ; \mathrm{i}_{n}: A_{n} \leftarrow \boldsymbol{B}_{n} / \vartheta_{n} \xi_{n} \rrbracket\right) A^{\prime} \triangleq\) \(\left\{\left\langle\sigma\left(A^{\prime}\right), \sigma(B)\right\rangle\right\} \cup \bigcup_{i=1}^{n} \alpha^{\prime \mathrm{P}}\left(\xi_{i}\right)\left(A^{\prime}\right)\)
```

```
\alpha'p}(\leftarrowB/\sigma\mathbb{\square})\mp@subsup{A}{}{\prime}\triangleq\varnothing\quad\quad\mathrm{ failure
```

\alpha'p}(\leftarrowB/\sigma\mathbb{\square})\mp@subsup{A}{}{\prime}\triangleq\varnothing\quad\quad\mathrm{ failure
\mp@subsup{\prime}{}{\primeP}(|\sigma|\mathbb{\square\})\mp@subsup{A}{}{\prime}\triangleq{\langle\sigma(\mp@subsup{A}{}{\prime}),[\dashv\square]\rangle}} success.

```

\section*{The PROLOG abstraction}
- The Prolog abstraction abstracts a forest \(\left\langle\xi_{i}, i \in \Delta\right\rangle\) of SLD-trees \(\xi_{i}, i \in \Delta\) into the set of execution traces corresponding to a depth-first traversal of these SLD-trees \(\xi_{i}\) (as in the Prolog interpreter ).
-
SLD-trees may have infinite branches so the execution sequence, defined by transfinite recursion, may be transfinite (and is truncated to \(\omega\) by Prolog interpreters, which is a further abstraction).
\[
\alpha^{\mathrm{C}}\left(\left\langle\xi_{i}, i \in \Delta\right\rangle\right) \triangleq\left\langle\alpha^{\mathrm{C}}\left(\xi_{i}\right), i \in \Delta\right\rangle
\]
\[
\begin{array}{r}
\alpha^{\mathrm{C}}\left(\overleftarrow{\leftarrow \boldsymbol{B} / \sigma} \llbracket i_{1}: A_{1} \leftarrow \boldsymbol{B}_{1} / \vartheta_{1} \xi_{1} ; \ldots ; i_{n}: A_{n} \leftarrow \boldsymbol{B}_{n} / \vartheta_{n} \xi_{n} \rrbracket\right) \triangleq \\
\leftarrow \boldsymbol{B} / \sigma i_{1}: A_{1} \leftarrow \boldsymbol{B}_{1} / \vartheta_{1} \alpha^{\mathrm{C}}\left(\xi_{1}\right) \ldots i_{n}: A_{n} \leftarrow \boldsymbol{B}_{n} / \vartheta_{n} \alpha^{\mathrm{C}}\left(\xi_{n}\right) \\
\alpha^{\mathrm{c}}(\leftarrow \boldsymbol{B} / \sigma \mathbb{\leftarrow}) \triangleq \epsilon \\
\alpha^{\mathrm{C}}(\boxed{\sigma} \mathbb{\square}) \triangleq \sigma .
\end{array}
\]

\section*{The model abstraction}
- The model abstraction collects answers in the call patterns
\[
\alpha^{\mathrm{m}}(K) \triangleq\{A \in \mathbb{A} \mid\langle A,[\neg \square]\rangle \in K\}
\]

\section*{Fixpoint abstract semantics}

\section*{Abstract semantics}
I. Define an abstraction of the trace semantics
2. Constructively derive the abstract semantics in fixpoint form (by proving commutation and applying the exact fixpoint transfer theorem)

\section*{Conclusion}


Computational design of the abstract fixpoint semantics
- The trace semantics is in fixpoint form \(\varsigma^{d} \llbracket P \rrbracket=l f_{p}{ }^{\complement} \hat{F}^{d} \llbracket P \rrbracket\)
- So, by abstraction, the abstract fixpoint semantics
also have a fixpoint definition
- Example: Fixpoint s-semantics

Theorem 24 (G. Levi et al.) \(\quad \mathrm{S}^{s} \llbracket P \rrbracket=l f p^{\complement} \hat{\mathrm{F}}^{\mathrm{s}} \llbracket P \rrbracket\).
Let us define the bottom-up call-patterns transformer \(\hat{F}^{s} \llbracket P \rrbracket \in \wp(\mathbb{A}) \mapsto \wp(\mathbb{A})\) for a Prolog program \(P \in \mathbb{P}\) as
```

\mp@subsup{\hat{F}}{}{\textrm{s}}\llbracketP]\triangleq\lambda\mathscr{A}\cdot\mp@subsup{\bigcup}{i:A\leftarrowB\mpP}{\bigcup}{\vartheta(A)|\vartheta\in\mp@subsup{\hat{\textrm{F}}}{.}{\textrm{s}}[\textrm{i}:A\leftarrow.B]\mathscr{A}{\varepsilon}}

```
where the clause transformer \(\hat{\mathrm{F}}_{.}^{\mathrm{s}}\left[\mathrm{i}: A \leftarrow \boldsymbol{B} \cdot \boldsymbol{B}^{\prime}\right] \in \wp(\boldsymbol{\Theta}) \mapsto \wp(\mathbb{S}) \mapsto \wp(\mathbb{S})\) is defined as
\(\hat{\mathrm{F}}_{.}^{\mathrm{s}}\left[\mathrm{i}: A \leftarrow \boldsymbol{B} \cdot B \boldsymbol{B}^{\prime}\right] \triangleq \boldsymbol{\lambda} \mathscr{A} \cdot \boldsymbol{\lambda} \mathscr{S} \cdot\left\{\vartheta^{\prime} \mid B^{\prime} \in \mathscr{A} \wedge \sigma \in m g u\left(B, B^{\prime}\right) \wedge \vartheta \in \mathscr{S} \wedge \quad\right.\) (13) \(\left.\vartheta^{\prime} \in \hat{\mathrm{F}}^{\mathrm{s}}\left[\mathrm{i}: A \leftarrow \boldsymbol{B} B \cdot \boldsymbol{B}^{\prime}\right] \mathscr{A}(\vartheta \uparrow \sigma)\right\}\)
\(\hat{\mathrm{F}}_{\cdot}^{\mathrm{s}}[\mathrm{i}: A \leftarrow B.] \triangleq \lambda \mathscr{A} \cdot \lambda \mathscr{S} \cdot \mathscr{S}\).
(14)

\section*{Conclusion (cont’d)}
2. Life is hard!


36

Conclusion (cont'd)
3. Future work for Giorgio


Thank you


38```

