

Our objective

- To understand the work of Giorgio Levi on the semantics of logic programming languages for static analysis
- By reconstructing the semantics of Resolution-based/ Logic Programming...
 - ... by abstract interpretations of a concrete semantics
 - ...chosen to be a branching-time trace-based semantics (built from a state transition system)
- In passing, we get some novel semantics that tackle impure characteristics of real implementations.

Syntax

Syntax of logic programs

$f \in \mathbb{F}$	function symbols
$v \in \mathbf{v}$	variable symbols
$\vec{v} = v_1, \ldots, v_n$	sequences of variables ($ec{\epsilon}$)
$T,U,\ldots\in\mathbb{t}$	terms built on \mathbb{f} and $ec{v}\inec{\mathbb{v}}$
$p \in \mathbb{P}$	predicate symbols
$A,B\in\mathbb{A}$	atoms built on p and t
$\boldsymbol{B}=B_1\ldots B_n \in \mathbb{B}$	sequences of atoms ($arepsilon$), body
$C = A \leftarrow B \in \mathbb{C}$	definite clauses (unit clauses $B = \varepsilon$)
$P \in \mathbb{P}^n \triangleq [0, n[\mapsto \mathbb{C}$	Prolog programs
0:	$n(0) \leftarrow$
1: $\mathbf{n}(\mathbf{s}(x)) \leftarrow \mathbf{n}(x)$	
$\alpha^{\mathbb{L}}(P) \triangleq \{P_1, \dots, P_n\} \in \mathbb{L}$ abstraction to logic programs	
$\mathbb{G} \triangleq \{ p(v) \mid p \in \mathbb{p} \land v \in \mathbb{N} \}$	> most general atomic goals
	7

Substitutions

substitutions ($arepsilon$)
application to a term T
restriction to variables of expression e
composition
pre-order
equivalence (renaming)
complete lattice of idempotent substitutions up to renaming
similarly for terms up to renaming

8

© P Cousot R Cousot and R Gi

Unification

Operational semantics defined by a labelled transition system

Labelled transition relation $\xrightarrow{\ell}^{t}$, $\ell \in \mathscr{L}$

• Start from goal $\vartheta(A)$, apply clause $i: A \leftarrow B$, prove new goal $\sigma \uparrow \vartheta(B)$:

$$\langle [\vdash A], \vartheta \rangle \xrightarrow{\left(i: A' \leftarrow B/\sigma \right)^{\mathsf{t}}} \langle [\dashv \Box] [i: A' \leftarrow \mathbf{B}], \vartheta' \rangle$$

if $i: A' \leftarrow \mathbf{B} \in P, \sigma \in mgu(\vartheta(A), A'), \vartheta' \in \sigma \uparrow \vartheta$ (2)

• Start from subgoal $\vartheta(B)$, apply clause $j: B' \leftarrow B''$, prove new goal $\sigma \uparrow \overline{\vartheta}(B'')$:

$$\langle \boldsymbol{\varpi}[\mathbf{i}: A \leftarrow \boldsymbol{B}.\boldsymbol{B}\boldsymbol{B}'], \vartheta \rangle \xrightarrow{(\mathbf{j}: B' \leftarrow \boldsymbol{B}''/\sigma)^{\mathsf{t}}} \langle \boldsymbol{\varpi}[\mathbf{i}: A \leftarrow \boldsymbol{B}B.\boldsymbol{B}'][\mathbf{j}: B' \leftarrow \boldsymbol{B}''], \vartheta' \rangle$$

if $\mathbf{i}: A \leftarrow \boldsymbol{B}B\boldsymbol{B}', \mathbf{j}: B' \leftarrow \boldsymbol{B}'' \in P, \sigma \in mgu(\vartheta(B), B'), \vartheta' \in \sigma \uparrow \vartheta$ (3)

Let $i: A \leftarrow B \in P$ means that $i: A \leftarrow B$ is a clause of the PROLOG program P renamed/standardized apart using fresh variables

Labelled transition relation $\xrightarrow{\ell}^{t}$, $\ell \in \mathscr{L}$

• Proof of $\, B \,$ is finished, go back to previous goal on stack:

$$\langle \varpi[\mathbf{i}: A \leftarrow \mathbf{B}, \vartheta \rangle \xrightarrow{\mathbf{i}: A \leftarrow \mathbf{B}} \mathsf{t} \langle \varpi, \vartheta \rangle \quad \text{if } \mathbf{i}: A \leftarrow \mathbf{B} \in P .$$
 (4)

Transitional Most General Maximal Derivation Semantics

• Maximal traces generated by the transition system starting from most general goals:

$$\begin{split} \mathsf{S}^{\mathsf{d}}\llbracket P \rrbracket &\triangleq \{\eta_0 \xrightarrow{\ell_0} \eta_1 \dots \eta_{n-1} \xrightarrow{\ell_{n-1}} \eta_n \in \mathbf{\Theta}[n+1] \mid n \geqslant 0 \land \\ \eta_0 &= \langle [\vdash p(v)], \varepsilon \rangle \land p \in \mathfrak{p} \land v \in \mathfrak{v} \land \forall i \in [0, n-1] : \eta_i \xrightarrow{\ell_i} \mathfrak{t} \eta_{i+1} \land \\ \forall \eta \in \mathscr{S} : \forall \ell \in \mathscr{L} : \neg (\eta_n \xrightarrow{\ell} \mathfrak{t} \eta) \} \:. \end{split}$$

Most general maximal terminal derivation semantics of logic programs

Final states

- answer substitution states in $\mathscr{E}^{AS} \triangleq \{ \langle [\dashv \Box], \vartheta \rangle \mid \vartheta \in \mathbb{S} \}$ for successful traces, or
- finite failure states in $\mathscr{E}^{\text{FF}} \triangleq \{ \langle \varpi[i:A \leftarrow B.BB'], \vartheta \rangle | \forall j:B' \leftarrow B'' \in P : mgu(\vartheta(B), B') = \varnothing \} \text{ for failing traces.}$

Transitional Most General Maximal Derivation Semantics in Fixpoint Form

Theorem 20
$$\mathbf{S}^{d}\llbracket P \rrbracket = \mathcal{U}p^{\subseteq} \hat{\mathbf{F}}^{d}\llbracket \overline{P} \rrbracket$$
.
 $\hat{\mathbf{F}}^{d}\llbracket P \rrbracket \in \wp(\Theta) \mapsto \wp(\Theta)$
 $\hat{\mathbf{F}}^{d}\llbracket P \rrbracket \triangleq \lambda \Theta \cdot \bigcup_{i:A \leftarrow B \in P, p \in \mathbb{P}, v \in \mathbb{V}, \vartheta \in mgu(p(v), A)} \langle [\vdash p(v)], \varepsilon \rangle \xrightarrow{(1:A \leftarrow B/\vartheta)} \hat{\mathbf{F}}^{d}[1:A \leftarrow B] \vartheta \Theta$ (9)
 $\hat{\mathbf{F}}^{d}_{\cdot}[1:A \leftarrow B.BB'] \in \mathbb{S} \mapsto \wp(\Theta) \mapsto \wp(\Theta)$
 $\hat{\mathbf{F}}^{d}_{\cdot}[1:A \leftarrow B.BB'] \triangleq \lambda \vartheta \cdot \lambda \Theta \cdot$ (10)
 $\{(\langle [\dashv \Box] [1:A \leftarrow B.BB'] \triangleq \lambda \vartheta \cdot \lambda \Theta \cdot (\Theta) \in \widehat{\mathbf{F}}^{d}[1:A \leftarrow BB.B'], \vartheta \uparrow^{d} \eta \xrightarrow{\ell} \langle \varpi, \vartheta' \rangle) \sharp \theta \mid \eta \xrightarrow{\ell} \langle \varpi, \vartheta' \rangle \in \Theta.B' \land \sigma \in mgu(B, B') \land \theta \in \widehat{\mathbf{F}}^{d}[1:A \leftarrow BB.B'] (\vartheta \uparrow \sigma \uparrow \vartheta'^{3}) \Theta \}$
 $\hat{\mathbf{F}}^{d}_{\cdot}[1:A \leftarrow B_{\cdot}] \triangleq \lambda \vartheta \cdot \lambda \Theta \cdot \{\langle [\dashv \Box] [1:A \leftarrow B_{\cdot}], \vartheta \rangle \xrightarrow{1:A \leftarrow B} \langle [\dashv \Box], \vartheta \rangle\} .$ (11)

Ist dimension: Partial correctness Abstractions

The *derivation ground instantiation abstraction* maps derivations for nonground goals to derivations for ground instantiations of these goals.

3rd dimension: Computational Information Abstractions

• Abstract away the information provided by a computation

SLD abstraction

- The SLD-abstraction collects the nodes of the SLD-tree from the states of traces.
- The SLD-trees are built from traces by grouping their common prefixes in the order of the PROLOG program clauses.

Call-patterns abstractions

• The *call-patterns abstraction* collects the goal, call-patterns and the answer substitution for each derivation, including those leading to finite failures

The model abstraction

• The *model abstraction* collects answers in the call patterns

The PROLOG abstraction

• The PROLOG abstraction abstracts a forest $\langle \xi_i, i \in \Delta \rangle$ of SLD-trees $\xi_i, i \in \Delta$ into the set of execution traces corresponding to a depth-first traversal of these SLD-trees ξ_i (as in the PROLOG interpreter).

SLD-trees may have infinite

branches so the execution sequence, defined by transfinite recursion, may be transfinite (and is truncated to ω by PROLOG interpreters, which is a further abstraction).

$$\alpha^{\mathsf{C}}(\langle \xi_{i}, i \in \Delta \rangle) \triangleq \langle \alpha^{\mathsf{C}}(\xi_{i}), i \in \Delta \rangle$$

$$\alpha^{\mathsf{C}}(\overleftarrow{-B/\sigma} \llbracket i_{1} : A_{1} \leftarrow B_{1}/\vartheta_{1}\xi_{1}; \dots; i_{n} : A_{n} \leftarrow B_{n}/\vartheta_{n}\xi_{n} \rrbracket) \triangleq$$

$$\overleftarrow{-B/\sigma} i_{1} : A_{1} \leftarrow B_{1}/\vartheta_{1}\alpha^{\mathsf{C}}(\xi_{1}) \dots i_{n} : A_{n} \leftarrow B_{n}/\vartheta_{n}\alpha^{\mathsf{C}}(\xi_{n})$$

$$\alpha^{\mathsf{C}}(\overleftarrow{-B/\sigma} \rrbracket) \triangleq \epsilon$$

$$\alpha^{\mathsf{C}}(\overleftarrow{\sigma} \rrbracket) \triangleq \sigma \quad .$$

Fixpoint abstract semantics

Abstract semantics

- I. Define an abstraction of the trace semantics
- 2. Constructively derive the abstract semantics in

fixpoint form (by proving commutation and applying the exact fixpoint transfer theorem)

33

evi's Festschrift workshop. Pisa. Italv. Oct

Computational design of the abstract fixpoint semantics

- The trace semantics is in fixpoint form $S^d[\![P]\!] = lfp^{\subseteq} \hat{F}^d[\![\overline{P}]\!]$
- So, by abstraction, the abstract fixpoint semantics also have a fixpoint definition
- Example: *Fixpoint s-semantics*

Theorem 24 (G. Levi et al.) $S^{s}\llbracket P \rrbracket = lfp^{\subseteq} \hat{F}^{s}\llbracket P \rrbracket$.

34

Let us define the *bottom-up call-patterns transformer* $\hat{\mathsf{F}}^{\mathsf{s}}[\![P]\!] \in \wp(\mathbb{A}) \mapsto \wp(\mathbb{A})$ for a PROLOG program $P \in \mathbb{P}$ as

$$\hat{\mathsf{F}}^{\mathsf{s}}\llbracket P \rrbracket \triangleq \boldsymbol{\lambda} \mathscr{A} \cdot \bigcup_{\mathbf{i}: A \leftarrow \boldsymbol{B} \in P} \{ \vartheta(A) \mid \vartheta \in \hat{\mathsf{F}}^{\mathsf{s}}_{\boldsymbol{\cdot}}[\mathbf{i}: A \leftarrow \boldsymbol{B}] \mathscr{A} \{ \varepsilon \} \}$$
(12)

where the clause transformer $\hat{\mathsf{F}}^{\mathsf{s}}[\mathfrak{i}: A \leftarrow B \cdot B'] \in \wp(\Theta) \mapsto \wp(\mathbb{S}) \mapsto \wp(\mathbb{S})$ is defined as

 $\hat{\mathsf{F}}^{\mathsf{s}}_{\boldsymbol{\cdot}}[\mathbf{i}:A \leftarrow \boldsymbol{B}_{\boldsymbol{\cdot}}\boldsymbol{B}\boldsymbol{B}'] \triangleq \boldsymbol{\lambda}\mathscr{A} \boldsymbol{\cdot} \boldsymbol{\lambda}\mathscr{S} \boldsymbol{\cdot} \{\vartheta' \mid B' \in \mathscr{A} \land \sigma \in mgu(B,B') \land \vartheta \in \mathscr{S} \land \quad (13)$ $\vartheta' \in \hat{\mathsf{F}}^{\mathsf{s}}_{\boldsymbol{\cdot}}[\mathbf{i}:A \leftarrow \boldsymbol{B}\boldsymbol{B}_{\boldsymbol{\cdot}}\boldsymbol{B}'] \mathscr{A} (\vartheta \uparrow \sigma)\}$

```
\hat{\mathsf{F}}^{\mathsf{s}}_{\boldsymbol{\cdot}}[\mathfrak{i}:A\leftarrow B_{\boldsymbol{\cdot}}]\triangleq\lambda\,\mathscr{A}\cdot\lambda\,\mathscr{S}\cdot\mathscr{S} .
```

© P. Cousot R. Cousot and R. Giacoh

(14)

