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Obijective

Our objective

® To understand the work of Giorgio Levi on the
semantics of logic programming languages for static
analysis

® By reconstructing the semantics of Resolution-based/
Logic Programming...

...by abstract interpretations of a concrete semantics

...chosen to be a branching-time trace-based
semantics (built from a state transition system)

® |n passing, we get some novel semantics that tackle
impure characteristics of real implementations.
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A Hierarchy of Abstractions and Semantics
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Syntax of logic programs Substitutions
F ' o
/e funFtlon symbols PY,0 €S substitutions (€ )
v eV variable symbols (T licat
U=wy,...,v,  sequences of variables ( €) ( ) application to a term T
T.U,.. et terms builton f and 7 € ¥ 19‘6‘ restriction to variables of expression e
pEP predicate symbols Yoo composition
A, B € A atoms built on pand t :
9 <0 pre-order
B = B,...B, € B sequences of atoms (€ ), body — _ .
C=A« B €C definite clauses (unit clauses B = €) U ~d" equivalence (renaming)
P e P 2 0,nf— C Prolog programs (S° /., =) complete lattice of idempotent
0: n(0) — substitutions up to renaming
t: n(s(@) < nl) . T similarly for terms up to renaming
a"(P)2{P,...,P,} eL abstraction to logic programs
G2 {pv) | p e prvev most general atomic goals
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Unification

mgu(7) = {o} most general unifier of a set .7 of terms
£ not unifiable
mgu (&) most general unifier of a set of

equations £ = {T; = U; | i € A}

parallel composition of

T €SLxSh—SL
idempotent substitutions

Operational semantics
defined by a labelled
transition system

Labelled transition system

StpP) = (6, L, —",

|

Labels
Semantics States Transition
p relation
rogram
o n(0) — — € P x L XE)
1 n(s(r)) < n(x)

)

|

Initial
states

States

statesn € & & S xS
n=(w,)

Stack Substitution

Stacks = e .72 rr2ecun)t

e [F A] Initial stack for goal A

} markers in .4
. [—| |:|] Empty stack final marker

e C £ {[i:A+ B.B']|i:A < B B’ € P} specifying the control state of the
derivation (B has been derived while B’ is still to be derived) or a marker .#
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Initial states
I ELFA,Y | Ae Ay €S

/

goal Y(A) (most often ¥ is chosen as the empty substitution ¢)

Transition labels

e (i:4'—B/o :apply renamed-apart clause i: 4’ — B
to prove goal A, such that A and A’ unify by
o € mgu(Vv(A), A")

* i:A-B| :the proof of B is finished

Labelled transition relation £t ¢ c &

* Start from goal ¥(A), apply clause i: A — B,
prove new goal o T ¥(B):

(F A], 9) i:a—Bo (HO[i: A" — .B], 9')

if i:A"— Be&P,o0ecmgu((A),A),Vecold (2)

* Start from subgoal ¥(B), apply clause j: B" «— B”,
prove new goal o T ¥(B"):

(w]i: A — B.BB, 0) 3:pr=p)o (@[i:A — BB.B'|[j: B — .B"), V')

if i:A« BBB' j:B '« B"&P,oc¢€ mgu(¥(B),B), ¥ ol (3)

Let i: A «+— B & P means that i: A < B is a clause of the PROLOG program P
renamed /standardized apart using fresh Valrsiables

Labelled transition relation £t ¢ c &

* Proof of B is finished, go back to previous goal
on stack:

(wliA— B o) S4B,

b (w, V) if i:A—BeP. (4)




Example: [o a0~

1: n(s(z)) < n(z)

(IFn(s(s(0))], &) {initial state§
(1:n(s(@)—n(@)/{z—s(0)} Iby (2)3
(HE][1:n(s(2)) < n(2)], {z < s(0)})
(1:n(s(2"))—n(2)/{a'—0} by (3)5

(HOI[Ln(s(2)) — n(e)I[L:a(s() — @), {o — s(0),a’ — O})
q 0:n(0)—/e t

by (3)5
(Ol n(s(e)) — (e[t n(s(e)) — n@)][0:n(0) —
i 5(0), 4" — O}y

020D by ()3

(HBE[1:n(s(x)) < n(z).][1:n(s(2)) < n(2)], {z — s(0),2" — 0})
Lin(s(@))—n(@))

by (4)§
([H0][1:n(s(@)) < n(x).], {z < s(0),2" - 0})
Lin(s(z)—n(z)) Iby (4)§
([H0], {z < s(0),2" < 0}) o
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Most general maximal
terminal derivation

semantics of logic programs

d
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Transitional Most General Maximal Derivation Semantics

* Maximal traces generated by the transition system
starting from most general goals:

Sdﬂpﬂé{ﬂoﬂm---%—l %—_1>77n€®[n+1]|n>0/\
no=([Fp)],e) A\pepAveEvAYI€[0,n—1]:n Lt i A
Vne.s Ve —~(n, >t )},
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Final states

e answer substitution states in &5 £ {([HO], ¥) | ¥ € S} for successful traces,
or

e finite failure states in & £ {(w[i: A « B.BB'], ¥) |V j:B' « B" € P :
mgu(9(B), B") = @} for failing traces.
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Most general maximal
terminal derivation
semantics of logic programs
in fixpoint form

round

::::::::::

©P. Cousot, R. Cousot, and R. Giacobazzi

Abstractions of the trace
semantics
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Transitional Most General Maximal Derivation Semantics in
Fixpoint Form

Theorem 20 S[P] = ifp- FI[P] .

FI[P] € p(®) — p(®)

(i:A<B/w
B

FI[P] 2 X6~ U (@), e Fili:A —.B]9O (9

1:A—BeP,pep,veY, vemgu(p(v),A)
Fi[i:A «— B.B] € S — p(0) — ¢(O)

Fé[i:A — B.BB'| £ A0+ AO- (10)
{({HO][i: A — B.BB'], [HO][i: A — BB.B'], 9) 1% n 4, (@, 9")) 50 |
n N (w,¥) € ©.B'No € mgu(B, B)AO € Fi[i:A — BB.B|(¢ 10 193)0}

i :/L—BD

Fali:A — B 2 A0+ AOQ - {([HO][1: A — B.], 9) ==L, ([40], 9)} . (11)
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| st dimension: Partial correctness Abstractions

S[P] success

S4[P] most general

The success abstraction eliminates finite failures
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2nd dimension: Instantiation Abstractions
o SE[P] ground

o8

¢ SY[P] instantiated/non-ground

o SY[P] most general

The derivation ground instantiation abstraction maps derivations for non-
ground goals to derivations for ground instantiations of these goals.

ground

3rd dimension: Computational Information Abstractions

e Abstract away the information provided by a
computation

Sl del

breadth- 1 [P models

lazy cut first PRroOLOG

am

L I N b L e

SP[P] call patterns

ap

SK[P] SLD-trees

aK

S4[P] derivations
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SLD trees
0: n(0) « a(s(s(x)))/¢
1:n(s(z1)) < n(21)
1: n(s(z)) < n(z) {m = s(a)}
a(s(21)/{z1 — s(@)}

1:10(s(22)) < n(an)
{xg — 0 — 32}

SLD-derivation {
n(ze)/{z1 — s(z), w0 — 2,0 — T)}‘

\
0:1n(0) — 1:n(s(z3)) < n(x3)
{zy — 0} {xy — s(z3)}

: {2y — 2,0 — a3, n(zz)/{z1 — s(z), 29 — z,
failure/success 0} e s 5(rs)}

0:n(0) « 1:n(s(x4)) — n(zq)
{3 < 0} {os — s(zg)}

{1 — s(x), 29 — x,2 — x3,
2y — s(w3),x3 < O}
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SLD abstraction

e The SLD-abstraction collects the nodes of the SLD-tree from the states of
traces.

o The SLD-trees are built from traces by grouping their common prefixes in the
order of the PROLOG program clauses.

0O I neEE AL <. o <inA
On=|JOrAVkel,n]:0,={01]n Mt 0eOnt#o}tU
k=1

i:c)

({8 | n —=t 0 e O U {139 (-], v) € O}

28

i's Festschrift workshop, Pisa, Italy, October 23, 2009




Call-patterns abstractions

e The call-patterns abstraction collects the goal, call-patterns and the answer
substitution for each derivation, including those leading to finite failures

SLD derivation forest

"p( [i1: Ay« By/01 &5 5in s Ay — B /9, 6]) 2 SLD tree

(— Afo|[i1: A1 — B1/91 &5 5in s Ay — B, /9, 6.])(0(A))

(
““’< [i1: 4 ;Bm)lw ..... vin A, — B, /0, A 2

”/p( A 2o failure
“/p( A" 2 {(o(4), [Ha))} success.
29

The model abstraction

e The model abstraction collects answers in the call patterns

a™(K) 2 {Aen| (A [HO) € K}
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The PROLOG abstraction

e The PROLOG abstraction abstracts a forest (&;, i € A) of SLD-trees §;, i € A
into the set of execution traces corresponding to a depth-first traversal of these
SLD-trees &; (as in the PROLOG interpreter ).

. SLD-trees may have infinite
branches so the execution sequence, defined by transfinite recursion, may be
transfinite (and is truncated to w by PROLOG interpreters, which is a further

abstraction).

aC((&, i€ A)) 2 <(1C(5,). i € A)

‘#B/(T‘ I|i |<7B/I/\g ..... 1”‘73///’)//{1:}]
‘H B/”"l P A — Bl/f)l“ (61) - CAp < B,,/z),luc(f,,)
Kl Bl 2
a([o]|[h) £ o
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Fixpoint abstract semantics
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Abstract semantics Computational design of the abstract fixpoint semantics

* The trace semantics is in fixpoint form s¢[P] = 15~ FU[P]

* So, by abstraction, the abstract fixpoint semantics
2. Constructively derive the abstract semantics in also have a fixpoint definition

|. Define an abstraction of the trace semantics

fixpoint form (by proving commutation and * Example: Fizpoint s-semantics

applying the exact fixpoint transfer theorem) Theorem 24 (G. Levi et al.)  S°[P] = ifp F5[P] .

Let us define the bottom-up call-patterns transformer ﬁs[[/—’]] € p(A) — p(A)
for a PROLOG program P € P as

PlPI2Xxea- | {9(A)|0ePFi:A—.B]o {c}} (12)
i:A—BeP

where the clause transformer !Ef[i::l — B.B'| € p(©) — o(S) — ¢(S) is
defined as

l:’f[i:;l —B.BB| 2 XA NIV |B €A NocmguB,B)YNIE€.SN (13)
9 € FSli:A— BB.B'|.«/ (91 0)}

FlitA— B2 Ad - AS T . (14)
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Conclusion Conclusion (cont'd)

minimal Herbrand-model se-

mantics (logical consequences) 2 Llfe is hard|

of Maarten van Emden and
Robert Kowalski

round breadth-

|. The joy of research
c-semantics (correct answer sub-
stitutions) of Keith Clark

—

Herbrand lazy cut first PrOLOG
, asd S ‘1Pl s"[P] se[P] s¢[P]
s-semantics (computed answer .

correct

substitutions) of Giorgio Levi

answers

c-models ground
computed sm[P] call g}atterns
answers S [[P]]
correct call patterns of Maur- s-models .
izio Gabbrielli and Roberto Gia- sm[P] instantiated |~
cobazzi call patterns 4
SP[P] groun
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most general Sgg [Hf]l“
call patterns
SPIF] ok most general
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S e . . d
brielli, Giorgio Levi and Maria st goneral dcg;g:t?ons S°[P]
Chiara Meo [47] SLD-trees Sed[ )
SK[F]
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de;},’*ﬁgi"“ maximal SLD-trees of Robert
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s1P]
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Conclusion

3. Future work for Giorgio

(cont’d)

ground
Herbrand
models
Sem[P]
m
correct @
. answers
c-models llgmutrt‘d
m call patterr
computed sim[P] P
answers Ser[P]
s-models o
S™P] instantiated
call patterns
ip ground
most general Sgg—[f}raeﬂes
call patterns
Sp [[P]] (!K
of instantiated
SLD-trees
SiK [P gl_rour_xd
most general dergéatmns
SLD-trees sed[P]

sK1P]

instantiated
derivations
S[P]
most general
derivations
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Thank you
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