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Static analysis of probabilistic programs. What? Why?
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1. Verify properties of probabilistic programs
2. Predict probabilities, e.g.:
– Branching probabilities
– Outputs distributions

3. Seamlessly lift non-probabilistic analyses
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Provide a formal basis for probabilistic static analysis
& Design actual analyses



The mathematics behind probabilities
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• Ω, ℰ, 𝜇 is	called	a	measurable space when :

– Ω : set of all possible scenarios

– An event 𝐸 ∈ 𝒫(Ω) is a set of scenarios

– ℰ ∈ 𝒫(𝒫 Ω ) : set of observable events
• Ω ∈ ℰ
• Stable by complementation and countable union

– µ ∶ ℰ ⟶ [0,1] : measure [ 𝜇 𝐸 = 𝑃𝑟𝑜𝑏(𝐸) ]
• 𝜇 ∅ = 0 and 𝜇 Ω = 1
• (𝐴!)! ∈ ℕ countable family of disjoint events, then

𝜇 ∪! 𝐴! =-
!

𝜇(𝐴!)
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§ Ω = 𝑡𝑎𝑖𝑙, ℎ𝑒𝑎𝑑𝑠 !

§ ℰ = 𝒫 Ω

§ ∀𝜔 ∈ Ω,
𝜇 {𝜔} = 1/8



• Probability of an event 𝐴 ∈ ℰ:

𝑃 𝐴 = 𝜇 𝐴 = '
!∈#

𝜒$ 𝜔 𝑑𝜇 𝜔
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EXAMPLE
§ 3 throws of non-biased coins
▪ Ω = 𝑡𝑎𝑖𝑙, ℎ𝑒𝑎𝑑𝑠 !

▪ ℰ = 𝒫 Ω
▪ ∀𝜔 ∈ Ω, 𝜇 {𝜔} = 1/8

§ 𝐸 = 𝑐𝑜𝑖𝑛$ = 𝑡𝑎𝑖𝑙
𝑐𝑜𝑖𝑛% = ℎ𝑒𝑎𝑑𝑠

𝜔!
𝜔"
𝜔#
𝜔$
𝜔%
𝜔&
𝜔'
𝜔(

𝜇 = 1/4

Characteristic 
function of 𝐴



𝐸, ℰ,- and 𝐹, ℱ,- measurable spaces. 
𝑋: 𝐸 ↣ 𝐹 is measurable iff

∀𝐵 ∈ ℱ, 𝑋%& 𝐵 ∈ ℰ

Meaning:
– ∀𝜔 ∈ Ω, an action 𝑋(𝜔) happens
– 𝐵 ∈ ℱ : observable set of actions
– 𝑋 measurable : if you can observe a set of actions, 

then you can observe the “parent” scenarios
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Meaning:
Probability (actions 𝑩)

=
Probability (“parent” scenarios)
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X: E, ℰ, µ ↣ F, ℱ,* measurable. The distribution 
𝑿(𝝁) of X is a measure on F :

∀𝐵 ∈ ℱ, X µ 𝐵 = µ XDE 𝐵
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Program

𝜔!

...

𝜔"

Combine according to 
probabilities

Abstraction

Abstract Interpretation



Our concrete probabilistic semantics
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• In non-probabilistic setting:
– Semantic domain 𝒟,≼
– Properties of programs are some  Γ ∈ 𝒫(𝒟)
– For a program 𝑃, ∃𝐹:𝒫 𝒟 ⟶ 𝒫 𝒟

𝑆 𝑃 = 𝑙𝑓𝑝⊆𝐹

• Properties are abstracted by a Galois connection
𝒫 𝒟 ,⊆ ⇆ 𝒜,⊑
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Abstract 𝐹 to "𝐹:𝒜 ⟶ 𝒜 and find / over-approximate
̅𝑆 𝑃 = 𝑙𝑓𝑝⊑ "𝐹



∀𝜔 ∈ Ω, 𝑆" 𝑃 𝜔 = 𝑙𝑓𝑝⊑𝐹$
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Program semantics      𝑺𝒑 𝑷 ∶ 𝛀𝑷↣ 𝓓

𝜔! ↦ 𝑑! ∈ 𝒟

Scenarios space Ω$

𝜔" ↦ 𝑑" ∈ 𝒟 ... ...

𝜔! 𝜔"

Non-
probabilistic
semantics

Probabilistic	semantics	:
𝑺𝒑 𝑷 = 𝒍𝒇𝒑⊑̇ 𝑭𝛀Ω) → 𝒟 ⟶ Ω) → 𝒟

𝑠 ⟼ 𝜔 ↦ 𝐹*(𝑠 𝜔 )
Let 𝐹+ ∶

For each scenario,
a non-probabilistic fixpoint semantics:



• Observable events
ℰ ⊆ 𝒫 Ω:

• 𝜇 ∶ ℰ ⟶ [0,1]
Probability of an event

• Observable properties
ℱ ⊆ 𝒫(𝒟)

• 𝑆" 𝑃 𝜇 ∶ ℱ ⟶ [0,1]
Probability of a property

𝑆" 𝑃 cannot say anything on 
non-observable properties, ie.
outside ℱ.
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𝑺𝒑 𝑷 ∶ 𝛀𝑷↣ 𝓓

The semantics has probability information

Given	 𝜴𝑷, 𝓔, 𝝁



𝑆%& 𝑃 is acceptable too

• Semantics 𝑆" 𝑃 ∶ Ω% ↣ 𝒟. But...

∀𝜎 ∈ 𝝅 Ω% , 𝑙𝑒𝑡 𝑆"& 𝑃 = 𝑆" 𝑃 ∘ 𝜎
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Sanity Checker     𝑉: Ω$ → 𝒟 ⟶ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}

Concrete	Domain: 𝒫𝒟MN = 𝒫 𝑠:ΩO ↣ 𝒟 𝑉 𝑠 }

Many semantics can describe the same situation. So we 
quotient by picking only one representation using a :

For instance in the 3 coins flips case :



𝑺′
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Concrete Domain : 𝒫𝒟MN = 𝒫 𝑠:ΩO ↣ 𝒟 𝑉 𝑠 }

∀𝑆, 𝑆[ ∈ 𝒫𝒟\], 𝑆 ⊑̈ 𝑆[ ⟺ ∀𝑠 ∈ 𝑆, ∃𝑠[ ∈ 𝑆[, 𝑠 ⊑̇ 𝑠′

𝑺
⊑̇

�̂� is more precise
on each scenario

⊑̈



“Abstraction is real, probably more real than nature” Josef Albers
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• 3 abstractions of  𝒫𝒟'( ⊆ Ω) ↣ 𝒟
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𝑺𝒑 𝑷 ∶ 𝛀𝑷 ↣ 𝓓

1. Abstract 𝛀𝑷 2. Abstract  𝓓

3. Abstract functions to distributions



Abstract away probability details

Probabilistic Abstract Interpretation    - Patrick Cousot,  Michael Monerau 18



Probabilistic Abstract Interpretation    - Patrick Cousot,  Michael Monerau 19

𝜔!
𝜔"
𝜔#
𝜔$
𝜔%
𝜔&
𝜔'

⟼

𝑑!
𝑑"
𝑑#
𝑑$
𝑑%
𝑑&
𝑑'

𝑑$
𝑑%
𝑑&
𝑑'

𝒅𝟏 ⊔ 𝒅𝟐
⊔ 𝒅𝟑

𝜔"′
𝜔#′
𝜔$′
𝜔%′

𝝎𝟏′

𝛀𝑷′ 𝒟

𝜶𝛀
𝛀𝑷 𝒟𝑺𝒑 𝑷 ∶

𝒒
↠

Everything is
lifted by 𝒒

§ 𝒒 is measurable
§ 𝝁 ⇢ 𝝁 ∘ 𝒒A𝟏
(𝒒-distribution)



§ 𝑞 “forgets” probabilistic choice for x :
§ 𝑞 ∶ 𝑙, 𝑟 % ↣ 𝑙, 𝑟 &

§ 𝑞 𝑎, 𝑏, 𝑐 = (𝑏, 𝑐)
• Probabilistic properties depending on x are no 

longer observable, but those independent from 
x are still observable
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x = 0 "/#⊕!/# x = 1
if (z = 0)
y = 2 !/$⊕#/$ y = 4

else
y = 1 !/%⊕$/% y = 3

[x = 0 □ x = 1]
if (z = 0)
y = 2 !/$⊕#/$ y = 4

else
y = 1 !/%⊕$/% y = 3

Non-determinism = abstraction of probabilistic choice

𝜔!
𝜔"
𝜔#
𝜔$

𝝎𝟐′

𝝎𝟏′
𝑥 = 0 ; 𝑦 = 2
𝑥 = 1 ; 𝑦 = 2

𝑥 = 0 ; 𝑦 = 4

𝑥 = 1 ; 𝑦 = 4

𝑥 ∈ 0,1 , 𝑦 = 2

𝑥 ∈ 0,1 , 𝑦 = 4

⟼

⟼



• If Ω)* = singleton = {𝜔*}
– Still sound (every scenario 

output has been joined)
– No more probabilities
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Brings back to the usual Abstract Interpretation
setting

…

𝜔!
𝜔"
𝜔#
𝜔$
𝜔%

𝜔′

𝑞



Lift an existing static analysis to the probabilistic setting
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• Hypothesis :
𝒫 𝒟 ,⊆ ⇆ 𝒜,⊑

• We have the semantics :
𝑆" 𝑃 ∶ Ω% ↣ 𝒟

And the semantic domain :
𝒫𝒟"3 ≈ 𝒫(Ω% ↣ 𝒟)
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How to make 𝓟(𝓓) appear ?

𝒫(𝛀𝑷 ⟶𝓟(𝓓))
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𝛀𝑷 ⟶ 𝓓
𝝎 ⟼ 𝑺𝒑 𝑷 (𝝎)

𝑺𝒑 𝑷 ∶ 𝛀𝑷 ⟶ 𝓟(𝓓)
𝝎 ⟼ {𝑺𝒑 𝑷 𝝎 }

𝜶𝒫(𝑺𝒑 𝑷 ) ∶

𝛀𝑷 ⟶ 𝒜
𝝎 ⟼ 𝜶(𝚪𝝎)

𝜶𝓐 𝝎 ↦ 𝚪𝝎 ∶

𝓟(𝛀𝑷 ↣ 𝓓)

In the end, an abstraction saying :

« In scenario 𝝎, abstract 
property 𝑺 𝑷 (𝝎) is verified »

𝓟(𝛀𝑷 ↣ 𝓟(𝓓))
𝜶𝒫

𝓟(𝛀𝑷 ↣ 𝓐)

𝜶𝓐



Control flow estimation
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2. y = 0,
z = 0 

3. y = 1,
z = 1

1.

4. ...

𝑥 = 0 𝑥 = 1

Probabilistic semantics :

𝜔! ↦ 1, 𝑥 = 0 2,
𝑥 = 0
𝑦 = 0
𝑧 = 0

4,
𝑥 = 0
𝑦 = 0
𝑧 = 0

𝜔" ↦ 1, 𝑥 = 1 3,
𝑥 = 1
𝑦 = 1
𝑧 = 1

4,
𝑥 = 1
𝑦 = 1
𝑧 = 1

x = 0 𝟐/𝟑⊕𝟏/𝟑 x = 1

Abstraction :
Keep labels only

to infer just control flow probabilities



Abstract measurable functions into their distributions
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• Abstract semantics  
𝑆 𝑃 ∶ Ωb ↣ 𝒜,ℱ

• Semantics distribution :
𝑆 𝑃 𝜇 ∶ ℱ ↣ [0,1]
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For 𝑄 ∈ 𝒜,
↓ 𝑄 = 𝑄X ∈ 𝒜 𝑄X ⊑ 𝑄}

Information we want
𝑺 𝑷 𝝁 (↓ 𝑸)

𝓐

↓ 𝑸

𝜶𝓛

0.1 0.2

0.6

1

0.1 0.2



0

0.1

0.2

0.3

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5 x = 6

A distribution example
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1,2 4,6

1,60,3

0,6

⊤

⊥

3,6

0.6
0.9

0.6

0.3 0.4

1

A corresponding lattice
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𝓐

≼

Let 𝑙E and 𝑙c be two distributions,
𝑙& ≼ 𝑙+ ⟺ ∀𝑄 ∈ 𝒜, 𝑙& ↓ 𝑄 ≥ 𝑙+(↓ 𝑄)

𝓐



• Transfer functions can be expressed as:
(𝐹 ∶ Ω: ⟶ (𝒜 → 𝒜)

• For �̂� ∶ Ω: → 𝒜, and Λ ∈ 𝒫(𝒜)

𝑃 (𝐹(�̂�) ∈ Λ = 6
[∈\*

𝜒] (𝐹[(�̂� 𝜔 ) 𝑑𝜇(𝜔)

§ But: in the abstract, just the distribution of �̂�
§ If T𝐹 does not depend on 𝜔, then easy computation with just the 
�̂� distribution

§ Otherwise, back to the concretisations (thus the precision of the 
sanity checker is important)

§ Too hard to compute? Over-approximate
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x  value

Pr (x=..)
x++
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⊤

Our abstract domain :

The final 
distribution

x = 0 x = 1y even y odd

x = 0
y even

x = 0
y odd

x = 1
y even

x = 1
y odd

2/3 1/3

1/32/3

1

⊥

2/3 1/3

x = 0 "/#⊕!/# x = 1
if (x = 0)
y = 2 !/$⊕#/$ y = 4

else
y = 1 !/%⊕$/% y = 3



Iteration in the abstract, composing the abstractions
Branching estimation
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Essential to estimate 𝒑

Goal : Finding abstract distributions
𝒫 𝒜 ⟶ [0,1] automatically

• Transfer functions : OK

• Branching
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1 2

If (Cond)

...

p 1-p

𝑃 Γ = 𝑃(Γ ∩ 𝑙𝑒𝑓𝑡) + 𝑃(Γ ∩ 𝑟𝑖𝑔ℎ𝑡)

= 𝑝 𝑃 Γ 𝑙𝑒𝑓𝑡) + 1 − 𝑝 𝑃 Γ 𝑟𝑖𝑔ℎ𝑡)

Computed in 1 Computed in 2



Branching with respect to a condition « Cond »

Let ℱ denote the observable actions in 𝒜, and 𝑝 the 
probability of branching left

§ Then, 2 cases :
– Cond = true is equivalent to a 𝐶 ∈ ℱ

• At the test location, the analysis discovered a distribution 𝜈, then 
𝜈 𝐶 ≤ 𝑝

• If ∃ i𝐶 ∈ ℱ which is the complement of Cond, then 1 − 𝜈 i𝐶 ≥ 𝑝
• So complements should also be abstracted precisely

– Otherwise, nothing can be said : 𝑝 ∈ [0,1]
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• At the end :
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𝑃 𝑥 = 0 = 2/3 𝑃 𝑥 ≠ 0 = 1/3

Tight bound on branching probability :
2/3     &     1/3

𝑃 𝑦 𝑒𝑣𝑒𝑛 = 𝑃 𝑦 𝑒𝑣𝑒𝑛 ∩ 𝑥 = 0 + 𝑃(𝑦 𝑒𝑣𝑒𝑛 ∩ 𝑥 ≠ 0)

=
2
3𝑃 𝑦 𝑒𝑣𝑒𝑛 𝑥 = 0) +

1
3𝑃 𝑦 𝑒𝑣𝑒𝑛 𝑥 = 1)

=
2
3 o 1 +

1
3 o 0

=
2
3

The abstract transfer function for If-Else on 
the distribution has been computed

x = 0 "/#⊕!/# x = 1
if (x = 0)
y = 2 !/$⊕#/$ y = 4

else
y = 1 !/%⊕$/% y = 3



• 2 main cases :
– Known influence of the body on the distribution and on 

the branching : mathematical formula for the new 
distribution

– Unknown influence : unroll until branching probability is 
small (or after N loops) and then over-approximate 
possible remaining loop iterations [widening]
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while (Cond)
body

§ Same thing with Cond for branching
§ But it may depend on the number of 

iterations too

Goal: Determine an over-approximating transfer function as precise as 
possible



• How to infer that ?
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0. 𝑙𝑜𝑜𝑝 = 0
1. x = 0 !/#⊕"/# x = 1
2. while (x = 0)
3. x = 0 !/$⊕#/$ x = 1
4. 𝑙𝑜𝑜𝑝++

𝑃 𝑥" = 0 ∧ 𝑙𝑜𝑜𝑝" = 0 = 1/3
𝑃 𝑥" = 1 ∧ 𝑙𝑜𝑜𝑝" = 0 = 2/3
𝑃 𝑥" = 0 ∧ 𝑙𝑜𝑜𝑝" = 1 = ⁄1 3 ∗ ⁄1 4
𝑃 𝑥" = 1 ∧ 𝑙𝑜𝑜𝑝" = 1 = ⁄1 3 ∗ 3/4

Probabilities at location 2 :

𝑃 𝑥+ = 𝑏 ∧ 𝑙𝑜𝑜𝑝+ = 𝑖 = 𝑃(𝑥, = 𝑏 ∧ 𝑙𝑜𝑜𝑝, = 𝑖 − 1)

= 𝑃 𝑥, = 𝑏 o 𝑃(𝑙𝑜𝑜𝑝+ = 𝑖 − 1)

Easy recurrence equation



On probabilistic static analysis
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• Works towards probabilistic Abstract Interpretation:
– ≈ Abstraction of our Law-abstraction [Monniaux ‘00]
– ≈Mean behavior abstraction [Wiklicky ‘02]

• Probabilistic Model Checking [Kucera ‘10]
• Weakest precondition semantics [McIver ‘97]
• Strongest postcondition semantics [Hehner ‘04]
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Conjecture:
Abstractions expressible in our framework



• More precise Law-style abstractions (relational 
abstractions)

• More precise techniques to predict branching

• Consider other abstractions for While loops to make 
their over-approximation more precise

• Implementation & Experimentation

• Non-Galois setting

Probabilistic Abstract Interpretation    - Patrick Cousot,  Michael Monerau 40



• New probabilistic extension of Abstract Interpretation

• New way to express probabilistic semantics

• New ways to design probabilistic static analyses

• Lift classical static analyses to a probabilistic setting

• The precision of probabilistic and semantic abstractions are 
independent

• Very expressive, and precision can be adjusted by modular 
abstractions
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A quick overview of Abstract Interpretation
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Getting the idea on a simple example
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