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Static analysis of probabilistic programs. What? Why?

INTRODUCTION
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Goals

1. Verify properties of probabilistic programs
2. Predict probabilities, e.g.:

— Branching probabilities

— Outputs distributions
3. Seamlessly lift non-probabilistic analyses

Provide a formal basis for probabilistic static analysis
& Design actual analyses



The mathematics behind probabilities

PROBABILITY THEORY

Probabilistic Abstract Interpretation - Patrick Cousot, Michael Monerau



Probability theory
Measurable space

(Q, &, u) is called a measurable space when :
— () :set of all possible scenarios
— AneventE € P(Q) is a set of scenarios

— E € P(P(Q)) : set of observable events

e Q€&
e Stable by complementation and countable union

— u: & —[0,1] : measure [ u(E) = Prob(E) ]
e u(@)=0andu(Q)) =1
* (A)); ey countable family of disjoint events, then

n(U; 4;) = Z u(A;)
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Yw € (),
n({w}) =1/8



Probability theory
Event probability

* Probability of an event A € E&: Lhaactenistic

y, function of 4

P(4) = u(4) = f (@) dp(w)

w€E()

W1

EXAMPLE W,

3 throws of non-biased coins W

Q = {tail, heads}? W,

E=P(Q)
Vo €, u({w)) = 1/8 </ 15
@) we uw(C)=1/4

B < coiny = tail > W7
~ \coing = heads

Wg
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Probability theory
Measurable function

(E,E,’) and (F,F,:) measurable spaces.
X:E = F is measurable iff
VB € F, X Y(B)eé&

Meaning:
— Vw € (), an action X(w) happens
— B € F : observable set of actions

— X measurable : if you can observe a set of actions,
then you can observe the “parent” scenarios



Probability theory
Distribution

X: (E, & n) » (F,F,-) measurable. The distribution
X () of Xis a measureon F:

VBEF, X(W(B)=nX1(B))

Meaning:
Probability (actions B)

Probability (“parent” scenarios)



The Main ldea

Probabilistic Program

Probabilistic ! S~
w ARy [} ~ ~ -
Abstract Interpretation 1 TNl -

W Abstraction )‘y
| ' AN )
AN / .-
TR Combine according to
R probabilities



Our concrete probabilistic semantics

PROBABILISTIC
CONCRETE SEMANTICS
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Probabilistic Concrete Semantics
NON-probabilistic case

* |n non-probabilistic setting:
— Semantic domain (D, <)

— Properties of programs are some I' € P(D)
— For a program P, 3F: P(D) — P(D)
SIPI = lf p=F

* Properties are abstracted by a Galois connection
(P(D), <) S (A,E)

Abstract F to F: A — A and find / over-approximate
SIP] = Ufp=F



Probabilistic Concrete Semantics
Probabilistic case

Scenarios space (p

\ ~
00 ® = 1 / \ \\\
i = 0 @9 X / wzl \ .
While (X - 0) S N 4 Non-
=7 D1/z A w; = dy €D wy, »dy €D probabilistic
semantics

/ //
// //
54 1z”

Program semantics  S,[P] : Qp = D

For each scenario,
a non-probabilistic fixpoint semantics:

Vw € (), SplPl(w) = lfp=F, Probabilistic semantics :

LetFy:| % =D) — (9> D) S,[P] = Ifp= Fq
s o we Ey(s(@)]
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Probabilistic Concrete Semantics
Adding probabilities

The semantics has probability information

Given (2p, &, ) S,[P]:Qp > D

 Observable properties

e (Observable events
F € P(D)

£CPQp)

* Sp[PI(w) : F — [0,1]
[ ] ° p
p:€&€—[01] Probability of a property
Probability of an event
S,[[P] cannot say anything on
non-observable properties, ie.
outside F.



Probabilistic Concrete Semantics
Sanity Checker

Many semantics can describe the same situation. So we
quotient by picking only one representation using a :

Sanity Checker V:(Qp —» D) — {True, False}

For instance in the 3 coins flips case :

* Semantics S, [P] : Qp » D. But...

Vo € m(Qp), let ST[P] = S,[P] o o

Sp [P] is acceptable too

Concrete Domain: PD; = P({s:Qp » D | V(s)})



Probabilistic Concrete Semantics
Order of logical implication

Concrete Domain : PDy, = P({s:Qp » D | V(s)})

S S

- S is more precise
S on each scenario

vS,S' € PDy, SE S &©VseS,As'’esS' st s
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“Abstraction is real, probably more real than nature” Josef Albers

ABSTRACTION
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Abstraction
Which way to go?

* 3 abstractions of PDy S Qp » D

Sp[[P]]'Q'PHZ)

1. Abstract Qp 2. Abstract D

3. Abstract functions to distributions



Abstract away probability details

ABSTRACTION
ON THE Qp SIDE

Probabilistic Abstract Interpretation
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1. Abstracting {p

Quotient
Sp[[P]] : 'QP >D
ag,
q ¥ , j; Everything is
Qp >D .
lifted by g
. dudy
, 1 2
q |« “1 L ds e q is measurable
W3 d3 -1
o o, = d, K-> Req
(q-distribution)
Ws w3 ds ds
We Wy de de



1. Abstracting {lp
Expressing non-determinism by quotienting

[x =0 0 x = 1] q “forgets” probabilistic choice for x :

if (z = 0) q:{Lr} » {,r}?
y =2 1/4@3/4 y =4 q(a,b,c) = (b,c)

else * Probabilistic properties depending on X are no
y =1 1/5Bsps y =3 longer observable, but those independent from

X are still observable

w1 ( 0,1] 2) (x=0;y=2)
' x € [0,1],y =
w3 , (x=0;y =4)

(/) x €01,y =4
. 2 +— (x€[01],y =4) =1y =4

Non-determinism = abstraction of probabilistic choice



1. Abstracting (p
Safe-abstraction

* If Op = singleton = {w'}
— Still sound (every scenario
output has been joined)

— No more probabilities

Brings back to the usual Abstract Interpretation
setting



Lift an existing static analysis to the probabilistic setting

ABSTRACTION
ON D SIDE
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2. Abstracting D
Lifting a classical analysis

 Hypothesis :
(P(D),c) S (A,L)

e We have the semantics :
Sp [[P]] . Qp - D

And the semantic domain :

pr;‘o’ ~ P(Qp » D) P(Qp — P(D))

How to make (D) appear ?



2. Abstracting D
Lifting a classical analysis

ap(S,IPD):Qp —  P(D)
© — {S,[Pl(@)}

Xp
PQp > D) < -~ P(Qp > P(D))
L]
In the end, an abstraction saying : fP(QP — c/l)

« In scenario w, abstract

property S[P] () is verified » ay(@-L):Qp — A
w — a(l,)




2. Abstracting D
Example

Control flow estimation

Probabilistic semantics :

{1. =0 2/3@1/3 »*—=1 J

x=0 x=1
o o e
vl B
e b ) TN
Abstraction :
Keep labels only ( 4. ... J

to infer just control flow probabilities



Abstract measurable functions into their distributions

DISTRIBUTION ABSTRACTION
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3. Distribution abstraction
From functions to distributions

e Abstract semantics

SIP] : Qp = (A, F) For Q € A,
10={Q" € A|Q" EQ}
I

e Semantics distribution :

S[PI(w) = F » [0,1] /

01 l (02
Information we want

SIPI(w) (L Q)



3. Distribution abstraction
Example : putting weight on the lattice

A distribution example

0.3 -

0.2 -

0.1 -

=

-

_—

I

I

E__

—

x=0 x=1 x=2 x=3 x=4 x=5 x=6

Probabilistic Abstract Interpretation

A corresponding lattice

_I_
| 1
[0,6]

0.9
0.6 0.6

\03/\04/
\ /
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3. Distribution abstraction
Order on distributions

AN AN
AR « (K

Let [; and [, be two distributions,

L<l, & VY0EALWLQ =L Q




3. Distribution abstraction
Transfer functions

* Transfer functions can be expressed as:

= But: in the abstrac
= |f F does not depe n w, then easy computation with just the
$ distribution
» Otherwise, back to the concretisations (thus the precision of the
sanity checker is important)

* Too hard to compute? Over-approximate



3. Distribution abstraction
Example

X =0 ,/3B13 X =1
if (x = 9)

y =2 1/4@3/4 y =4
else

y =1 1545y =3

Our abstract domain:

The final
distribution




Iteration in the abstract, composing the abstractions

Branching estimation

ON THE WAY TO MAKING
THE ANALYSIS FULLY AUTOMATIC
(INCLUDING INFINITE LATTICES)
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Automatic analysis
The issue of branching

* Branching

Goal : Finding abstract distributions
P(A) — [0,1] automatically

 Transfer functions : OK ( Lf (Cond) J

P(T) =P('n left) + P(T' n right)
=p P |left)+ (1 — p)_P(F | right)_

Computed in D) Computed in 2)

Essential to estimate p



Automatic analysis
Branching analysis

Branching with respect to a condition « Cond »

Let F denote the observable actions in A, and p the
probability of branching left

= Then, 2 cases:

— Cond = true is equivalenttoa C € F
* At the test location, the analysis discovered a distribution v, then
v(C) <p
« If3C € F which is the complement of Cond, then 1 — V(C') > p
* So complements should also be abstracted precisely

— Otherwise, nothing can be said : p € [0,1]



Automatic analysis
|f-Else example

X =0 23013 x =1 P(x=0)=2/3 P(x #0)=1/3
if (x = 9)
Y =2 14P3/4 y = 4
else Tight bound on branching probability :
y =1 1/5@4/5 y =3 2/3 & 1/3
e Attheend:

P(y even) = P(yevennx =0) + P(yevennx # 0)
2 1
=—P(yeven|x =0) +§P(y even|x =1)

The abstract transfer function for If-Else on

3

2

3 3
% the distribution has been computed



Automatic analysis
While

) Same thing with Cond for branching

while (Cond) BUt it g q 3 X g

body But it may depend on the number o
iterations too

Goal: Determine an over-approximating transfer function as precise as
possible

e 2 main cases:

— Known influence of the body on the distribution and on
the branching : mathematical formula for the new
distribution

— Unknown influence : unroll until branching probability is
small (or after N loops) and then over-approximate
possible remaining loop iterations [widening]



Automatic analysis
While example

Probabilities at location 2 :

loop = @ P(x, =0 A loop, =0)=1/3
X =0 1303 x =1

while (x = @) P(x, =1 A loop, =0) =2/3
X =0 1/,@3/4 x =1 P(x, =0 A loop, =1)=1/3x1/4
loop++ P(x, =1 A loop, =1)=1/3+3/4
|

e How to infer that ?

P(xy =bAloop, =i) =P(x,=b A loop,=i—1)
= P(x, =b)-P(loop, =i —1)

Easy recurrence equation



On probabilistic static analysis

CONCLUSION

Probabilistic Abstract Interpretation
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Probabilistic analysis: Related Work

Works towards probabilistic Abstract Interpretation:
— = Abstraction of our Law-abstraction [Monniaux ‘00]
— = Mean behavior abstraction [Wiklicky ‘02]

Probabilistic Model Checking [Kucera ‘10]
Weakest precondition semantics [Mclver ‘97]
Strongest postcondition semantics [Hehner ‘04]

Conjecture:
Abstractions expressible in our framework



Future work

More precise Law-style abstractions (relational
abstractions)

More precise techniques to predict branching

Consider other abstractions for While loops to make
their over-approximation more precise

Implementation & Experimentation

Non-Galois setting



Summing it up

New probabilistic extension of Abstract Interpretation
New way to express probabilistic semantics

New ways to design probabilistic static analyses

Lift classical static analyses to a probabilistic setting

The precision of probabilistic and semantic abstractions are
independent

Very expressive, and precision can be adjusted by modular
abstractions



A quick overview of Abstract Interpretation

ABSTRACT INTERPRETATION
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Getting the idea on a simple example

OVERVIEW OF
THE FRAMEWORK
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