An Abstract Interpretation

Framework for Refactoring

P. Cousot, NYU, ENS, CNRS, INRIA
R. Cousot, ENS, CNRS, INRIA

F. Logozzo, M. Barnett, Microsoft Research

Example: extract method

public int Decrement(int x) public int Decrement(int x)
Contract.Requires(x >= 5); Contract.Requires(x >= 5);
Contract.Ensures(Contract.Result<int>() >= 0); Contract.Ensures(Contract.Result<int>() >= 0);
while (x != @) x--; x = NewMethod(x);
return x; return x;

} }

private static int NewMethod(int x)
while (x != @) x--;

return x;

¥

The problem

Refactoring is a very common programmer activity
Useful to maintain the code, avoid code bloats, etc.
Examples: rename, re-order parameters, extract method, etc.
IDEs guarantee that the refactored program is:
1. asyntactically valid program
2. asemantically equivalent program
There is no guarantee about the
1. Preservation of the correctness proof
2. Interaction with the static analysis

and the (modular) proof?

public int Decrement(int x) public int Decrement(int x)

Contract.Requires(x >= 5);
Contract.Ensures(Contract.Result<is

Contract.Requires(x >= 5);
Contract.Ensures(Contract.Result<int>

while (x != 0

) X--o x = NewMethod(x);
return x;
}

private static int NewMethod(int x)

return x;

while (x != @) x--3

return x;

¥

Simple solutions?

Method inlining: the reverse of extract method
May not scale up, how many levels should we inline?

Extract method with
contracts:

Isolated analysis: infer pre- and postconditions of the extracted method
Too imprecise, without the context inferred contracts may be too generic

Requi ts
Invariant projection: project the pre/post-states on the parameters and return value q

Too specific, cannot refactor unreached code
User assistance: User provides the contracts

Impractical, too many contracts to write
State of the art (before this paper ;-)

Contribution Validity

An abstract interpretation framework for proof-preserving method refactoring
A new set theoretic version of Hoare logic

The inferred contract should be valid
With some surprising results!

Counterexample:
public int Decrement(int x) private static int NewMethod(int x)
Definition of the problem of extract method with contracts {) {
X A X Contract.Requires(x >= 5); Contract.Requires(x >= 5);
Solution in the concrete and in the abstract Contract.Ensures(Contract.Result<int>() >=0); Contract.Ensures(Contract.Result<int>()==12345);
Implementation on a real system x = NewMethod(x); while (x != @) x--;
Using the CodeContracts static verifier (Clousot) and the Roslyn CTP
return x; return x;
Performance comparable to the “usual” extract method }

}

Safety

The precondition of the extracted method should advertise possible errors
Counterexample:

public int Decrement(int x) private static int NewMethod(int x)

Contract.Requires(x >= 5);
Contract.Ensures(Contract.Result<int>() >=0); Contract.Ensures(Contract.Result<int>() == @);

x = NewMethod(x); while (x != @) x--;

Possible

overflow
return x; return x;

} ¥

Generality

The inferred contract is the most general satisfying Validity, Safety, and Completeness

Counterexample: Valid, Safe, Complete but not General contract

public int Decrement(int x) private static int NewMethog

Requires
too strong

Contract.Requires(x >= 5); Contract.Requires(x >= 5);
Contract.Ensures(Contract.Result<int>() >=0); Contract.Ensures(Contract.Result<int>() == @);
x = NewMethod(x); while (x != @) x--;
return x; return x;
} ¥

Completeness

The verification of the callee should still go through
Counterexample: Valid and safe contract, but not complete

public int Decrement(int x) private static int NewMethod(int x)

Contract.Requires(x >= 5); Contract.Requires(x >= 5);
Contract.Ensures(Contract.Result<int>() >=0); Contract.Ensures(Contract.Result<int>() <= x);

x = NewMethod(x); while (x != @) x--;

return x;

} ¥

return x;

Our solution

Valid, Safe, Complete, and General contract

public int Decrement(int x) private static int NewMethod(int x)
Contract.Requires(x >= 5); Contract.Requires(x >= 0);
Contract.Ensures(Contract.Result<int>() >=0); Contract.Ensures(Contract.Result<int>() == @);
x = NewMethod(x); while (x != @) x--;
return x; return x;

} ¥

Formalization

Orders on contracts

Covariant order =
Intuition: a stronger precondition is better for the callee
PQ=P,QiffPES P andQ & Q
Controvariant order >
Intuition: a —>-stronger contract is more general (better for the caller)
PQ->P,QiffPP S PandQ E Q

Note: formal (and more correct) definition in the paper

Algebraic Hoare Logic

We need to formalize what a static analyzer does, in particular method calls

Hoare Logic is the natural candidate
However, it is already an abstraction of the concrete semantics

We define a concrete Hoare logic where predicates are replaced by sets
{P}S{Q} PEeg(F)andQ E w(zx3)
The deduction rules are as usual
Details in the paper

Some notation...

m is the refactored (extracted) method
S denotes the selected code (to be extracted)
Itis the body of the extracted method m
P Q. is the most precise safety contract for a method m
See Cousot, Cousot & Logozzo VMCAI'11
P, Q,is the projection of the abstract state
before the selection, P,
after the selection, Q,

Extract method with contracts problem

The refactored contract P, O, is a solution to the problem if it satisfies
Validity
{Prls{Qg}
Safety

PRIQR= I:)m' Qm
Completeness
{Pm(.){Q,}
Generality
V P, Q; satisfying validity, safety, and completeness: Pg,Qp = P, Q'5

Theorem: The 4 requirements above are mutually independent

lterative Solution

Idea: give an iterative characterization of the declarative solution
It is easier to abstract and compensates for the lose of precision

Theorem: Define
FISIKX, ¥» =<P,, N pre’[S]¥ Q,, N post[S]X>
Then
PeQn={ Py} 'S { pOStISIP,, } = &fpjp, o FIS]
The order for the greatest fixpoint computation is -
Intuition: generalize the contract at each iteration step

Declarative Solution

Theorem: There exists a unique solution for the problem:
PaQp={P,}S { post[SIP}
Drawback: It is not a feasible solution
Pm and post[.] are not computable (only for trivial cases of finite domains)
We need to perform some abstraction to make it tractable

The formulation above is ill-suited for abstraction

Abstraction

Abstract Hoare triples

Given abstract domains A approximating (2) and B approximating #(2 x)
Define abstract Hoare triples

(Pis{ale {vP@Is{vlQ)
Idea: replace the concrete set operations with the abstract counterparts

Abstract Hoare triples generalize usual Hoare logic
Example: Fix A, B to be first order logic predicates

Question: Are the usual rules of Hoare logic valid in the general case?

We are in trouble?

A similar result holds for the disjunction rule ®

We need some hypotheses on the abstract domains and the concretizations y

Theorem: The abstract Hoare triples without the conjunction and disjunction are sound

But we need conjunction to model method call, product of analyses, etc.!
Theorem: If yg is finite-meet preserving the conjunction rule is sound
A dual result holds for y, and the disjunction rule

Details on the paper: formalization and some extra technical details

Counterexample: conjunction rule

true

false

{x20}x = -x{x<0 and {x<0}x = -x{x20}
But
{x>20Nx<0}x = -x{x<0x>0}
{x=0}x = -x{false}

And now?

We can define the problem of the extract method with contracts in the abstract
Define abstract contracts, the rule for abstract method call, etc.
Theorem: The abstract counterparts for validity, safety, and completeness are sound
However, abstraction introduces new problems
Itis impossible to have a complete abstract refactoring in general
It did not manifest in our experiments
The iterated gfp computation balances for the loss of information

Details in the paper (or come to see me after the talk!)

Inference Algorithm

Use the Roslyn refactoring service to detect the extracted method m

Use Clousot to infer P, Q.
Project the entry state on the beginning of the selection(P,). Similarly for Q,

E X p e r i m e n tS Annotate the extracted method with P,, Q,

Use Clousot to infer P, Q|

Add P, Q. to the extracted method and start the gfp computation
Weaken the precondition, strengthen the postcondition
Do not go below P, Q,

Implementation Results

Test Extraction Step 1 Steps 2/3 | Total

. . . Decrement 0.18 0.10 0.12 | 042

We use the CodeContracts static checker (aka Clousot) as underlying static analyzer Generalize 020 0.0 o1a | o0as
Based on abstract interpretation BinarySearch 023 0.4 032 0.70

. - . . Abs 0.23 0.07 0.12 | 043

More then 75K downloads, widely used in industrial environments Arithmetic 020 007 028 | 056

. i X . Rem 020 0.09 0.20 | 049

We use the Roslyn CTP for C# language services and basic engine refactoring Guard 017 007 0.14 | 040
: H : H z Loop 0.18 0.07 0.10 | 0.37
Industrial strength C# compiler and services implementation Exp 031 o8 02 | 07
Integrates in Visual Studio Main 020 0.4 020 | 0.56
Karr 0.35 0.09 0.14 | 071

Loop-2 0.28 0.18 1.99 243

Loop-3 0.21 0.10 0.14 | 046

SankaEtAl [40] 0.24 0.09 0.00 | 035

McMillan [33] 0.24 0.18 043 | 093

BeyerEtAl [5] 0.34 0.18 028 | 0.82

PeronHalbwachs [28] 0.47 0.33 0.31 1.13

Conclusions

Conclusions?

Have an abstract interpretation framework to define proof-preserving refactorings
En passant, generalized Hoare logic
Found counterintuitive examples
Instantiated to the problem of refactoring with contracts
In the concrete: One solution, two formulations
In the abstract: Completeness and generality only under some conditions
Implementation on the top of industrial strength tools

Come see our demo!!!

