
λ

Andromeda:
Accurate and Scalable Security
Analysis of Web Applications

Omer Tripp
Tel Aviv University & IBM

omert@il.ibm.com

Patrick Cousot
New York University
pcousot@cs.nyu.edu

Radhia Cousot
École Normale Supérieure
radhia.cousot@ens.fr

Salvatore Guarnieri
University of Washington & IBM

sguarni@us.ibm.com

Marco Pistoia
IBM T. J. Watson Research Center

pistoia@us.ibm.com

λ

2

OWASP* Top Ten Security
Vulnerabilities

1.  Cross-site scripting (XSS)
2.  Injection flaws
3.  Malicious file executions
4.  Insecure direct object reference
5.  Cross site request forgery (CSRF)
6.  Information leakage and improper error handling
7.  Broken authentication and improper session management
8.  Unsecure cryptographic storage
9.  Unsecure communications
10. Failure to restrict URL accesses

* Open Web Application Security Project (OWASP): http://www.owasp.org

λ

3

XSS

Attacker Victim

Attacker’s
evil script

Attacker’s evil script
executed using

victim’s credentials

Web Application <SCRIPT>...</SCRIPT>

λ

4

SQL Injection

SELECT * FROM users WHERE name='jsmith' AND pwd='Demo1234'

SELECT * FROM users WHERE name='foo';drop table custid;--' AND pwd=''

String query = “SELECT * FROM users WHERE name=‘” +
userName + “’ AND pwd=‘” + pwd + “’”;

Ouch!

λ

5

Malicious File Executions

  Web application manage files in the file system
  The name or contents of such files are often

obtained from user input
  Maliciously crafted user inputs could cause the

execution or deletion of security-sensitive files

λ

6

Information Leakage and
Improper Error Handling

λ

7

Existing Static-Analysis Solutions

  Type systems:
  Complex, conservative, require code annotations

  Classic slicing:
  Has not been shown to scale to large applications while

maintaining sufficient accuracy

λ
Motivation

  Web applications are large and complex
  Sound analyses

  If too precise, do not scale well
  If too imprecise, have too many false positives

  Unsound analyses
  Have false negatives
  Are often unstable (extra-sensitivity to program

changes)

λ
Intuition behind Andromeda
  Taint analysis can be

treated as a demand-
driven problem

  This enables lazy
computation of vulnerable
information flows, instead
of eagerly computing a
complete data-flow
solution

λ
Publications on Andromeda
  FASE 2013 – Andromeda algorithm

  Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, Salvatore Guarnieri,
“Andromeda: Accurate and Scalable Security Analysis of Web Applications”

  OOPSLA 2011 – Integration with Framework for Frameworks (F4F)
  Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer Tripp, Ryan Berg,

“F4F: Taint Analysis of Framework-based Web Applications”
  ISSTA 2011 (1) – Andromeda for JavaScript

  Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen Teilhet, Ryan
Berg, “Saving the World Wide Web from Vulnerable JavaScript”

  ISSTA 2011 (2) – Andromeda as the basis for String Analysis (ACM SIGSOFT
Distinguished Paper Award)
  Takaaki Tateishi, Marco Pistoia, Omer Tripp, “Path- and Index-sensitive String Analysis

based on Monadic Second-order Logic”
  IBM Journal on Research and Development 2013 – Permission analysis for

Android applications

  Dragoș Sbîrlea, Michael G. Burke, Salvatore Guarnieri, Marco Pistoia, Vivek Sarkar, “Automatic
Detection of Inter-application Permission Leaks in Android Applications”

λ
Motivating Example
public class Aliasing5 extends HttpServlet {
 protected void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {
 StringBuffer buf = new StringBuffer("abc");
 foo(buf, buf, resp, req);
 }

 void foo(StringBuffer buf, StringBuffer buf2, ServletResponse resp,
 ServletRequest req) throws IOException {
 String name = req.getParameter("name");
 buf.append(name);
 PrintWriter writer = resp.getWriter();
 writer.println(buf2.toString()); /* BAD */
 }
}

λ
Contributions of Andromeda

  Scalable and sound demand-driven taint analysis
  Modular analysis
  Incremental analysis
  Framework and library support
  Multiple language support (Java, .NET,

JavaScript)
  Inclusion in an IBM product: IBM Security

AppScan Source

λ
High-level Algorithm

  Input: Web application plus supporting rules
  {(Sources, Sinks, Sanitizers)}

  Build class hierarchy
  Construct CHA-based call graph with intra-

procedural type-inference optimization
  Perform data-flow analysis (explained next)
  Report any flow from a source to a sink not

intercepted by a sanitizer in the same rule

λ
Abstract Domain
  Consists of triplets:

  Method where Static Single Assignment (SSA) variable is
defined

  SSA variable ID
  Access path

  Inputs form a lattice according to subsumption relation defined
on access paths, e.g.:

 o.* ≥ o.f.* ≥ o.f.g
  The * symbol represents any feasible sub-path
  Array load/store semantics is applied to arrays, maps, session

objects, etc.

λ
Modularity of the Analysis

  Runs on data flow (def-to-use)
  Produces and uses pre-compiled models

  Format:
 <method, entry> <method, exit>

  Example:
 <m, v2.f.g> <m, v1.h>

λ A Novel Approach to
Taint Analysis
  Start from taint sources
  Propagate taint intra-

procedurally through def-to-use
  Inter-procedurally propagate

taint forward and record
constraints in callees

  Record constraints on call sites,
recursively (allows for
polymorphism)

  Resolve aliasing by going back
to allocation sites

  In the final constraint-
propagation graph, detect paths
between sources and sinks not
intercepted by sanitizers

m1()

m2(p1, p2, p3)

m3(q1, q2)

λ
Modular Analysis
  Persist constraint edges at

library entrypoints
  Constraint edges are

mapped to contexts
  During analysis time, the

constraint edges specific
to a particular context are
used

  Summaries are source-,
sink- and sanitizer-
specific

Library

m3(q1, q2)

Application

m1()

m2(p1, p2, p3)

λ
Backward Propagation

  Pushes constraints back to callers
  Infinite context sensitivity
  Polymorphism with respect to taint

  The constraint p1.f.g p2.h in m3 is
propagated to m1 and m2 (and, recursively, to
their callers)
  x1.f.g x2.h
  y1.f.g y2.h

m1() m2()

m3(p1,p2)

// ...
m3(x1,x2);
// ...

// ...
m3(y1,y2);
// ...

λ
Incremental Analysis
  A taint constraint is an edge in

the constraint-propagation
graph

  The support graph records
how constraints were learned
(i.e., based on which other
constraints)

  Facts learned in a scope that
underwent change are
transitively invalidated

  Preconditions recomputed
  Fixed-point analysis

recommenced

λ
Integration with F4F

  F4F (OOPSLA 2011) analyzes code and metadata
of frameworks and represents them in artifacts
written in an XML-like language

  Andromeda translates those artifacts into legal
Java code that – from a data-flow perspective – is
equivalent to the original framework code

  New code is human-readable and reusable by
other analyzers

  New code is compiled and added to the analysis
scope

λ
Experimental Results*

* More details in paper

λ
Conclusion

  The notorious scalability barrier finally lifted
without compromising soundness

  Incremental analysis is a great promise for
developers

  Production summaries already generated

λ

Thank You!

pistoia@us.ibm.com

