
Abstract-Interpretation-based Static
Analysis of Safety-Critical Embedded

Software

Patrick Cousot
Patrick.Cousot@ens.fr www.di.ens.fr/~cousot

Workshop Airbus/partners on formal verification tools strategy

Airbus St Martin, M86, Auditorium Dubaï, Dec. 4–5, 2008

Airbus, 12/04/2008 — 1 — ľ P. Cousot

mailto:Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot
http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Abstract
Static software analysis has known brilliant successes in the small, by proving complex pro-
gram properties of programs of a few dozen or hundreds of lines, either by systematic ex-
ploration of the state space or by interactive deductive methods. To scale up is a definite
problem. Very few static analyzers are able to scale up to millions of lines without sacrificing
automation and/or soundness and/or precision. Unsound static analysis may be useful for
bug finding but is less useless in safety critical applications where the absence of bugs, at
least of some categories of common bugs, should be formally verified.

After recalling the basic principles of abstract interpretation including the notions of
abstraction, approximation, soundness, completeness, false alarm, etc., we introduce the
domain-specific static analyzer ASTRÉE (www.astree.ens.fr) for proving the absence of
runtime errors in safety critical real time embedded synchronous software in the large.

The talk emphasizes soundness (no runtime error is ever omitted), parametrization (the
ability to refine abstractions by options and analysis directives), extensibility (the easy incor-
poration of new abstractions to refine the approximation), precision (few or no false alarms
for programs in the considered application domain) and scalability (the analyzer scales to
millions of lines).

In conclusion, present-day software engineering methodology, which is based on the con-
trol of the design, coding and testing processes should evolve in the near future, to incorporate
a systematic control of final software product thanks to domain-specific analyzers that scale
up.

Airbus, 12/04/2008 — 2 — ľ P. Cousot

http://www.astree.ens.fr
http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

1. Motivation: bugs are everywhere

Airbus, 12/04/2008 — 3 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Example of bug report
Department

Infrastructure Australia
Bureau of Infrastructure, Transport and Regional Economics

Minister | Help | Feedback | Contact Us | Search keyword GO

Transport

Transport Safety

About the ATSB

Newsroom

Aviation Safety

Marine Safety

Rail Safety

Road Safety

Publications and
Investigation Reports

Accident and Incident
Notification Forms

Aviation

Roads

Rail

Maritime

Regional

Local Government

The Department

14 October 2008 - Qantas Airbus A330 accident Media Conference

MEDIA RELEASE
Adjust font size:

2008/43

Qantas Airbus A330 accident Media Conference

14 October 2008

The Australian Transport Safety Bureau's investigation into the accident involving an Airbus A330-300 aircraft
operating as Qantas flight 72 on a flight from Singapore to Perth on 7 October 2008 is progressing well. The ATSB
has scheduled the media conference this evening to coincide with the release of an Operators Information
Telex/Flight Operations Telex, which is being sent by Airbus to operators of all Airbus aircraft. The aim of that telex is
to:

update operators on the factors identified to date that led to the accident involving QF72,
provide operational recommendations to mitigate risk in the event of a reoccurrence of the situation which
occurred on QF72.

To assist in understanding the following information, I would just like to refer you quickly to the diagrams projected
on the screen specifically, the term angle of attack which refers to the difference in angle between the aircraft and its
control surfaces, and the air stream as the aircraft moves through the air.

The next diagram is a simple representation of the aircraft and the components relevant to this explanation, which
include the angle of attack sensors located on the outside of the aircraft, the Air Data Inertial Reference Units
(ADIRUs), of which there are three, located in the avionics compartment inside the aircraft, the Flight Control
Primary Computers of which there are also three located in the avionics compartment, and the elevators, located on
the aircrafts horizontal stabiliser. In the context of this occurrence, the angle of attack sensors send raw data to the
ADIRUs, which provide processed angle of attack information to the Flight Control Primary Computers, which in turn
command the elevator position.

Returning to the circumstances of the 7 October flight, preliminary analysis of the Flight Data Recorder data, Post
Flight Report data and Built-in Test Equipment data has enabled the investigation to establish a preliminary
sequence of events this information is also contained in the Airbus telex.

The aircraft was flying at FL 370 or 37, 000 feet with Autopilot and Auto-thrust system engaged, when an Inertial
Reference System fault occurred within the Number-1 Air Data Inertial Reference Unit (ADIRU 1), which resulted in
the Autopilot automatically disconnecting. From this moment, the crew flew the aircraft manually to the end of the
flight, except for a short duration of a few seconds, when the Autopilot was reengaged. However, it is important to
note that in fly by wire aircraft such as the Airbus, even when being flown with the Autopilot off, in normal operation,
the aircrafts flight control computers will still command control surfaces to protect the aircraft from unsafe conditions
such as a stall.

The faulty Air Data Inertial Reference Unit continued to feed erroneous and spike values for various aircraft
parameters to the aircrafts Flight Control Primary Computers which led to several consequences including:

false stall and overspeed warnings
loss of attitude information on the Captain's Primary Flight Display
several Electronic Centralised Aircraft Monitoring system warnings.

About 2 minutes after the initial fault, ADIRU 1 generated very high, random and incorrect values for the aircrafts
angle of attack.

These very high, random and incorrect values of the angle attack led to:

the flight control computers commanding a nose-down aircraft movement, which resulted in the aircraft
pitching down to a maximum of about 8.5 degrees,
the triggering of a Flight Control Primary Computer pitch fault.

The crew's timely response led to the recovery of the aircraft trajectory within seconds. During the recovery the
maximum altitude loss was 650 ft.

The Digital Flight Data Recorder data show that ADIRU 1 continued to generate random spikes and a second
nose-down aircraft movement was encountered later on, but with less significant values in terms of aircraft's
trajectory.

At this stage of the investigation, the analysis of available data indicates that the ADIRU 1 abnormal behaviour is

Print
Last Updated: 14 October, 2008

Privacy | Copyright | Disclaimer | Linking to the ATSB website | Sitemap

likely as the origin of the event.

The aircraft contains very sophisticated and highly reliable systems. As far as we can understand, this appears to be
a unique event and Airbus has advised that it is not aware of any similar event over the many years of operation of
the Airbus.

Airbus has this evening, Australian time, issued an Operators Information Telex reflecting the above information.
The telex also foreshadows the issue of Operational Engineering Bulletins and provides information relating to
operational recommendations to operators of A330 and A340 aircraft fitted with the type of ADIRU fitted to the
accident aircraft. Those recommended practices are aimed at minimising risk in the unlikely event of a similar
occurrence. That includes guidance and checklists for crew response in the event of an Inertial Reference System
failure.

Meanwhile, the ATSB's investigation is ongoing and will include:

Download of data from the aircraft's three ADIRUs and detailed examination and analysis of that data.
Arrangements are currently being made for the units to be sent to the component manufacturer's facilities
in the US as soon as possible and for ATSB investigators to attend and help with that testing, along with
representatives from the US National Transportation Safety Board, The French Bureau dEnquêtes et
dAnalyses (BEA) and Airbus.
In addition, investigators have been conducting a detailed review of the aircraft's maintenance history,
including checking on compliance with relevant Airworthiness Directives, although initial indications are that
the aircraft met the relevant airworthiness requirements.
Work is also ongoing to progress interviews, which will include with injured passengers to understand what
occurred in the aircraft cabin. The ATSB plans to distribute a survey to all passengers.

There has been close and frequent communication between the ATSB, Qantas, Airbus, the BEA, and CASA. That
close communication will continue as the investigation progresses to ensure that any additional safety action can be
instigated as soon as possible should critical safety factors be identified. The ATSB expects to publish a Preliminary
Factual report in about 30 days from the date of the accident.

Media Contact: David Hope 1800 020 616

Related Documents: | Audio file of media conference, 14 October 2008 (18 MB) |

http://www.atsb.gov.au/newsroom/2008/release/2008_43.aspx,
http://en.wikipedia.org/wiki/Qantas_Flight_72

“The Australian Transport
Safety Bureau (ATSB) found
that the main probable cause
of this incident was a latent
software error which allowed
the ADIRU to use data from a
failed accelerometer”

Airbus, 12/04/2008 — 4 — ľ P. Cousot

http://www.atsb.gov.au/newsroom/2008/release/2008_43.aspx
http://en.wikipedia.org/wiki/Qantas_Flight_72
http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

2. Varieties of Static Analyses

Airbus, 12/04/2008 — 5 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Static Analysis

– In general static analysis means “the fully automatic verifica-
tion of properties of program executions using the program
text only” (excluding running programs)

– But for trivial cases, it is undecidable
– Alternatives to impossible total verification:
- under-verification (testing, bounded model-checking, bug pat-
tern mining, etc): bug finding, misses bugs, never ends

- over-verification (typing, dataflow analysis,etc): no bug missed
but false alarms

– Challenge: total verification for a given category of properties
and a given family of programs (no bug missed, no false alarm
but not for all possible properties of all programs)

Airbus, 12/04/2008 — 6 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Example: Sparrow versus Astrée

– Original program:
- Astrée: signals all errors
- Sparrow: forgets one!

– Corrected program:
- Astrée: no alarm
- Sparrow: still errors!

int any() {
 int x;
 __ASTREE_known_fact(((0<=x)&&(x<=32767)));
 return x;
}

typedef struct _S {
 int arr[10];
 int n;
 int *p;
} S1;

void alias ()
{
// struct _S *s;
// int *p,*q;
// s = (struct _S*)malloc(100);
// p = (int*)malloc(100*sizeof(int));
// q = p; // alias
// s->p = q; // alias
// *(s->p+100) = 1; // buffer overrun : alias
}

// safe usage of library functions
void library_calls()
{
 char buf1[100];
 char buf2[200];
// FILE *fp = NULL;

 int id = 5;
 S1 s;
 s.n = 10;
// memmove (s.arr + id + 1, s.arr + id, sizeof(int) * (s.n - id)); // buffer overrun: LIB2

// strcpy(buf1, buf2); // buffer overrun: LIB3
}

// correct condition check for function parameters
void param_check (int k)
{
 int arr[10];
 if (k > 10) return;
 arr[k] = k; // buffer overrun: PARAM1
}

void loop_test()
{
 int i, j, k, pp, datal, datar;
 int arr[10][20];
 int x[100];
 int tmp[64];
 int triple[3][4][5];
 int *yptr;

 // nested loops
 for (i=0;i<10;i++)
 for (j=0;j<=20;j++)
 arr[i][j] = 0; // buffer overrun: LOOP1

 // stride
 for (i=0;i<100;i+=2)
 {

 x[i] = datal;
 x[i+2] = datar; // buffer overrun: LOOP2
 }
}

int atkbd(int *dev, unsigned int type)
{
 const short period[32] =
 { 33, 37, 42, 46, 50, 54, 58, 63, 67, 75, 83, 92, 100, 109, 116, 125,
 133, 149, 167, 182, 200, 217, 232, 250, 270, 303, 333, 370, 400, 435, 470, 500 };
 const short delay[4] =
 { 250, 500, 750, 1000 };
 unsigned char param[2];
 int i, j;

 switch (type) {
 case 0x09: return 0;
 case 0x11:
 case 0x14:
 i = j = 0;
 while (i < 32 && period[i] < *dev) i++;
 while (j < 4 && delay[j] < *dev) j++;
 *dev = period[i]; // buffer overrun: AFTERLOOP2
 *dev = delay[j]; // buffer overrun: AFTERLOOP3
 param[0] = i | (j << 5);
 return 0;
 }
 return -1;
}

void bo_test()
{
 atkbd((int*)any(), any());
 library_calls ();
 loop_test();
 param_check(any());
}

int main()
{
 bo_test();
 return 1;
}

http://www.spa-arrow.com/

Airbus, 12/04/2008 — 7 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

3. Abstract Interpretation

Airbus, 12/04/2008 — 8 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Example of static analysis

Example after invariant abstraction:

fy > 0g hypothesis
x := y
fI(x; y)g loop invariant
while (x > 0) do

x := x - 1;
od

Abstract fixpoint equation:

I(x; y) = x > 0 ^ (x = y _ I(x+ 1; y)) (i.e. I = F](I) (1))

Equivalent Floyd-Naur-Hoare verification conditions:

(y > 0 ^ x = y) =) I(x; y) initialisation

(I(x; y) ^ x > 0 ^ x0 = x` 1) =) I(x0; y) iteration

(1) We look for the most precise invariant I, implying all others, that is lfp
=)

F].

Airbus, 12/04/2008 — 9 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Accelerated Iterates I =
G
n!1

F]
n
(false)

I0(x; y) = false

y

xI1(x; y) = x > 0 ^ (x = y _ I0(x+ 1; y))
I1(x; y) = 0 6 x = y

0

y

xI2(x; y) = x > 0 ^ (x = y _ I1(x+ 1; y))
I2(x; y) = 0 6 x 6 y 6 x+ 1

1

y

x
I3(x; y) = x > 0 ^ (x = y _ I2(x+ 1; y))
I3(x; y) = 0 6 x 6 y 6 x+ 2

2

y

x

I4(x; y) = I2(x; y)
`
I3(x; y) widening

I4(x; y) = 0 6 x 6 y

I5(x; y) = x > 0 ^ (x = y _ I4(x+ 1; y))
I5(x; y) = I4(x; y) fixed point!

The invariants are computer representable
with octagons!

Airbus, 12/04/2008 — 9 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Examples of abstractions used by Astrée

semantics intervals simple congruences
set of points x 2 [a; b] x ” a[b]

octagons ellipsoids exponentials

˚x˚ y 6 a ax2 + by2 + cxy 6 d x(t) 6 abt

Airbus, 12/04/2008 — 10 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

4. Scaling up

Airbus, 12/04/2008 — 11 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

The difficulty of scaling up

– The abstraction must be coarse enough to be effectively com-
putable with reasonable resources

– The abstraction must be precise enough to avoid false alarms

– Abstractions to infinite domains with widenings are more ex-
pressive than abstractions to finite domains (when considering
the analysis of a programming language) [CC92]

– Abstractions are ultimately incomplete (even intrinsically for
some semantics and specifications [CC00])

Airbus, 12/04/2008 — 12 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

5. Astrée

Airbus, 12/04/2008 — 13 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Abstraction/refinement by tuning the cost/precision ratio in
Astrée

– Approximate reduced product of a choice of coarsenable/refinable
abstractions

– Tune their precision/cost ratio by
- Globally by parametrization
- Locally by (automatic) analysis directives
so that the overall abstraction is not uniform.

Airbus, 12/04/2008 — 14 — ľ P. Cousot

http://www.astree.ens.fr
http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Example of abstract domain choice in Astrée
/* Launching the forward abstract interpreter */
/* Domains: Guard domain, and Boolean packs (based on Absolute
value equality relations, and Symbolic constant propagation
(max_depth=20), and Linearization, and Integer intervals, and
congruences, and bitfields, and finite integer sets, and Float
intervals), and Octagons, and High_passband_domain(10), and
Second_order_filter_domain (with real roots)(10), and
Second_order_filter_domain (with complex roots)(10), and
Arithmetico-geometric series, and new clock, and Dependencies
(static), and Equality relations, and Modulo relations, and
Symbolic constant propagation (max_depth=20), and Linearization,
and Integer intervals, and congruences, and bitfields, and
finite integer sets, and Float intervals. */

Airbus, 12/04/2008 — 15 — ľ P. Cousot

http://www.astree.ens.fr
http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Example of abstract domain functor in Astrée: decision trees

– Code Sample:
/* boolean.c */
typedef enum {F=0,T=1} BOOL;
BOOL B;
void main () {

unsigned int X, Y;
while (1) {

...
B = (X == 0);
...
if (!B) {

Y = 1 / X;
}
...

}
}

The boolean relation abstract do-
main is parameterized by the height
of the decision tree (an analyzer
option) and the abstract domain at
the leafs

Airbus, 12/04/2008 — 16 — ľ P. Cousot

http://www.astree.ens.fr
http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Reduction [CC79, CCF+08]
Example: reduction of intervals by simple congruences

% cat -n congruence.c
1 /* congruence.c */
2 int main()
3 { int X;
4 X = 0;
5 while (X <= 128)
6 { X = X + 4; };
7 __ASTREE_log_vars((X));
8 }

% astree congruence.c –no-relational –exec-fn main |& egrep "(WARN)|(X in)"
direct = <integers (intv+cong+bitfield+set): X in {132} >

Intervals : X 2 [129; 132] + congruences : X = 0 mod 4 =)
X 2 f132g.

Airbus, 12/04/2008 — 17 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Parameterized abstractions
– Parameterize the cost / precision ratio of abstractions in the
static analyzer

– Examples:

- array smashing: --smash-threshold n (400 by default)
! smash elements of arrays of size > n, otherwise individu-
alize array elements (each handled as a simple variable).

- packing in octogons: (to determine which groups of variables
are related by octagons and where)
´ --fewer-oct: no packs at the function level,
´ --max-array-size-in-octagons n: unsmashed array ele-
ments of size > n don’t go to octagons packs

Airbus, 12/04/2008 — 18 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Parameterized widenings
– Parameterize the rate and level of precision of widenings in the
static analyzer

– Examples:
- delayed widenings: --forced-union-iterations-at-beginning n (2
by default)

- thresholds for widening (e.g. for integers):

let widening_sequence =
[of_int 0; of_int 1; of_int 2; of_int 3; of_int 4; of_int 5;

of_int 32767; of_int 32768; of_int 65535; of_int 65536;
of_string "2147483647"; of_string "2147483648";
of_string "4294967295"]

Airbus, 12/04/2008 — 19 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Analysis directives
– Require a local refinement of an abstract domain
– Example:

% cat repeat1.c
typedef enum {FALSE=0,TRUE=1} BOOL;
int main () {

int x = 100; BOOL b = TRUE;
__ASTREE_boolean_pack((b,x));
while (b) {

x = x - 1;
b = (x > 0);

}
}

% astree –exec-fn main repeat1.c |& egrep "WARN"
repeat1.c:5.8-13::[call#main@2:loop@4>=4:]: WARN: signed int arithmetic
range [-2147483649, 2147483646] not included in [-2147483648, 2147483647]
%

Airbus, 12/04/2008 — 20 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Example of directive (cont’d)

% cat repeat2.c
typedef enum {FALSE=0,TRUE=1} BOOL;
int main () {

int x = 100; BOOL b = TRUE;
__ASTREE_boolean_pack((b,x));
while (b) {

x = x - 1;
b = (x > 0);

}
}

% astree –exec-fn main repeat2.c |& egrep "WARN"
%

The insertion of this directive could be automated in Astrée (if the considered family of

programs has “repeat” loops).

Airbus, 12/04/2008 — 21 — ľ P. Cousot

http://www.astree.ens.fr
http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Automatic analysis directives
– The directives can be inserted automatically by static analysis
– Example:

% cat p.c
int clip(int x, int max, int min) {
if (max >= min) {
if (x <= max) {
max = x;

}
if (x < min) {
max = min;

}
}
return max;

}
void main() {
int m = 0; int M = 512; int x, y;
y = clip(x, M, m);
__ASTREE_assert(((m<=y) && (y<=M)));

}
% astree –exec-fn main p.c |& grep WARN
%

% astree –exec-fn main p.c –dump-partition
...
int (clip)(int x, int max, int min)
{

if ((max >= min))
{ __ASTREE_partition_control((0))

if ((x <= max))
{

max = x;
}
if ((x < min))
{

max = min;
}
__ASTREE_partition_merge_last(());

}
return max;

}
...
%

Airbus, 12/04/2008 — 22 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Adding new abstract domains

– The weakest invariant to prove the specification may not be
expressible with the current refined abstractions) false alarms
cannot be solved

– No solution, but adding a new abstract domain:

- representation of the abstract properties

- abstract property transformers for language primitives
- widening
- reduction with other abstractions

– Examples : ellipsoids for filters, exponentials for accumulation
of small rounding errors, quaternions, ...

Airbus, 12/04/2008 — 23 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Abstraction by ellipsoid for filters

x(t)

t

Ellipsoids (x` a)2 + (y ` b)2 » c

Airbus, 12/04/2008 — 23 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Example of analysis by Astrée (suite)

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;

void filter () {
static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] = X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}

void main () { X = 0.2 * X + 5; INIT = TRUE;
while (1) {

X = 0.9 * X + 35; /* simulated filter input */
filter (); INIT = FALSE; }

}

Airbus, 12/04/2008 — 24 — ľ P. Cousot

http://www.astree.ens.fr/
http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Abstraction by exponentials for accumulation of small rounding
errors

x(t)

t

Exponentials ax » y

Airbus, 12/04/2008 — 24 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Example of analysis by Astrée (suite)
% cat retro.c
typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST;
volatile BOOL SWITCH;
volatile float E;
float P, X, A, B;

void dev()
{ X=E;

if (FIRST) { P = X; }
else

{ P = (P - ((((2.0 * P) - A) - B)
* 5.0e-03)); };

B = A;
if (SWITCH) {A = P;}
else {A = X;}

}

void main()
{ FIRST = TRUE;

while (TRUE) {
dev();
FIRST = FALSE;
__ASTREE_wait_for_clock(());

}}
% cat retro.config
__ASTREE_volatile_input((E [-15.0, 15.0]));
__ASTREE_volatile_input((SWITCH [0,1]));
__ASTREE_max_clock((3600000));

astree –exec-fn main –config-sem retro.config
retro.c |& grep "|P|" | tail -n 1
|P| <=1.0000002*((15. +
5.8774718e-39/(1.0000002-1))*(1.0000002)ĉlock -
5.8774718e-39/(1.0000002-1)) + 5.8774718e-39 <=
23.039353

Airbus, 12/04/2008 — 25 — ľ P. Cousot

http://www.astree.ens.fr/
http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

6. Industrial Application of Astrée

Airbus, 12/04/2008 — 26 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Industrial results obtained with Astrée
– Automatic proofs of absence of runtime
errors in Electric Flight Control Soft-
ware:
– A340/600: 132.000 lines of C, 40mn on a PC 2.8 GHz, 300 Mb
(Nov. 2003)

– A380: 1.000.000 lines of C, 34h, 8 Gb (Nov. 2005)
no false alarm, World premières !

– Automatic proofs of absence of runtime
errors in the ATV software (2):
– C version of the automatic docking software: 102.000 lines of
C, 23s on a Quad-Core AMD OpteronŮ processor, 16 Gb (Apr.
2008)

(2) the Jules Vernes Automated Transfer Vehicle (ATV) enabling ESA to transport payloads to the International
Space Station.

Airbus, 12/04/2008 — 27 — ľ P. Cousot

http://www.astree.ens.fr/
http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

7. Other Prototypes Developped by the
Abstraction project/team

Airbus, 12/04/2008 — 28 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Lcertify

– Astrée proves the absence of runtimes errors on C code (with
semantics tailored for a given Intel/PPC 32/64 bits machine)

– In absence of runtime errors, Lcertify proves the semantic
equivalence of the C and machine code

) the certification is on the flying code.

Airbus, 12/04/2008 — 29 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Macro generation

– Most of the control/command code (75%?) is automatically
generated from Scade/SAO, but for the primitives (handcoded
by macros)

– Developed a formal specification language to specify the prim-
itive semantics (close to the gascon specification)

– Developped tools
- to automatically generate C macro code from the specifi-
cation

- to verify manual/automatic code with respect to the spec-
ification

Airbus, 12/04/2008 — 30 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Real code Analysis Analysis

Static analysis of communicating imperfectly clocked

redundant units

REDUNDANT UNIT #2

 α β [;] η κ

Changes
Counting

Changes
Counting

Changes
Counting

Changes
Counting

Changes
Counting

Changes
Counting

Integral bounding

ConstraintsConstraints

[;]

VOTER

 γ δ[;]
 ε φ

Constraints
ACTUATORS ACTUATORS

SENSORS

REDUNDANT UNIT #1

[;]

Specification : no alarm raised with a normal input

2/3 ∆0 ∆
input stability < ∆ : Between 2

3 ×∆ input stability > ∆ : the analyzer
counter-example and ∆ : ? proves the specification

Julien Bertrane, ENS Paris Static analysis of imperfectly-clocked synchronous systems using continuous-time abstract domains 45/49

8. Projects

Airbus, 12/04/2008 — 32 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Static Analysis of Parallel Code

– Some applications make use of parallel code

– Extremely hard to verify, whichever method is chosen!
– Work on static analysis of parallel code is in progress.

Airbus, 12/04/2008 — 33 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Conclusion

– Vision: to understand the numerical world, different levels of
abstraction must be considered

– Theory: abstract interpretation ensures the coherence between
abstractions and offers effective approximation techniques to
cope with infinite systems

– Applications: the choice of effective abstraction which are coarse
enough to be computable and precise enough to be avoid false
alarms is central to master undecidability and complexity in
model and program verification

– Software engineering : Manual validation by control of the
software design process will ultimately be complemented by
the verification of the final product

Airbus, 12/04/2008 — 34 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

THE END

Thank you for your attention

Airbus, 12/04/2008 — 35 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

9. Bibliography

Airbus, 12/04/2008 — 36 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

Short bibliography

[BCC+03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. In Proceedings of the ACM SIGPLAN’2003
Conference on Programming Language Design and Implementation (PLDI), pages 196–207, San
Diego, California, United States, 7–14 June 2003. ACM Press, New York, New York, United States.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Conference Record of the Fourth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
238–252, Los Angeles, California, 1977. ACM Press, New York, New York, United States.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conference Record
of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 269–282, San Antonio, Texas, 1979. ACM Press, New York, New York, United
States.

[CC92] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing approaches to
abstract interpretation, invited paper. In M. Bruynooghe and M. Wirsing, editors, Proceedings of
the Fourth International Symposium on Programming Language Implementation and Logic
Programming, PLILP ’92, Leuven, Belgium, 26–28 August 1992, Lecture Notes in Computer
Science 631, pages 269–295. Springer, Berlin, Germany, 1992.

Airbus, 12/04/2008 — 37 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

[CC00] P. Cousot and R. Cousot. Temporal abstract interpretation. In Conference Record of the Twentysev-
enth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 12–25, Boston, Massachusetts, United States, January 2000. ACM Press, New York, New York,
United States.

[CCF+07] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Varieties of
static analyzers: A comparison with Astrée, invited paper. In M. Hinchey, He Jifeng, and J. Sanders,
editors, Proceedings of the First IEEE & IFIP International Symposium on Theoretical Aspects
of Software Engineering, TASE ’07, pages 3–17, Shanghai, China, 6–8 June 2007. IEEE Computer
Society Press, Los Alamitos, California, United States.

[CCF+08] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Combination of
abstractions in the Astrée static analyzer. In M. Okada and I. Satoh, editors, Eleventh Annual
Asian Computing Science Conference, ASIAN06, pages 272–300, Tokyo, Japan, 6–8 December
2006, 2008. Lecture Notes in Computer Science 4435, Springer, Berlin, Germany.

[DS07] D. Delmas and J. Souyris. Astrée: from research to industry. In G. Filé and H. Riis-Nielson,
editors, Proceedings of the Fourteenth International Symposium on Static Analysis, SAS ’07,
Kongens Lyngby, Denmark, Lecture Notes in Computer Science 4634, pages 437–451. Springer, Berlin,
Germany, 22–24 August 2007.

Airbus, 12/04/2008 — 38 — ľ P. Cousot

http://www.di.ens.fr/~cousot
http://www.cnrs.fr
http://www.di.ens.fr/
http://www.inria.fr/rocquencourt/

	Abstract
	1. Motivation: bugs are everywhere
	Example of bug report

	2. Varieties of Static Analyses
	Static Analysis
	Example: Sparrow versus Astrée

	3. Abstract Interpretation
	Example of static analysis
	Iterates with extrapolation
	Examples of abstractions used by Astree

	4. Scaling up
	The difficulty of scaling up

	5. Astrée
	Abstraction/refinement by tuning the cost/precision ratio in ASTREE
	Example of abstract domain choice in ASTREE
	Example of abstract domain functor in ASTREE
	Reduction
	Parameterized abstractions
	Parameterized widenings
	Analysis directives
	Example of directive
	Automatic analysis directives
	Adding new abstract domains
	Abstraction by ellipsoid for filters
	Example of analysis by ASTREE
	Abstraction by exponentials for accumulation of small rounding errors
	Example of analysis by ASTREE

	6. Industrial Application of Astrée
	Industrial results obtained with ASTREE

	7. Other Prototypes Developped by the Abstraction project/team
	Lcertify
	Macro generation

	8. Projects
	Static Analysis of Parallel Code
	Conclusion
	THE END

	9. Bibliography
	Short bibliography

