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Algebraic abstractions

Used in abstract interpretation, model-checking,...

System properties and specifications are abstracted
as an algebraic lattice (abstraction-specific encoding
of properties)

Fully automatic: system properties are computed as
fixpoints of algebraic transformers

Several separate abstractions can be combined with
the reduced product



Proof theoretic/logical abstractions
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Used in deductive methods

System properties and specifications are expressed
with formule of first-order theories (universal
encoding of properties)

Partly automatic: system properties are provided
manually by end-users and automatically checked to
satisfy verification conditions (with implication
defined by the theories)

Various theories can be combined by Nelson-Oppen
procedure



Objective

® Show that proof-theoretic/logical abstractions are a
particular case of algebraic abstractions

® Show that Nelson-Oppen procedure is a particular
case of reduced product

® Use this unifying point of view to propose a new
combination of logical and algebraic abstractions

w Convergence of proof theoretic/
logical and algebraic property-
inference and verification methods

T




Concrete semantics

NSF CMACS expedition, Pl meeting, University of Maryland, College Park, MD, 04/28-29/201 | 6

© P Cousot

W




Programs (syntax)

® Expressions (on a signature (f, p))

X,V,Z,... € X variables
a,b,c,... € fY constants
f,g,h,... e ", £ = U " function symbols of arity n > 1
>0
t € T(x,1t) t = x|c|f(t,...,t,) terms
p,q,T,... € p*, p'2{ff, ), P2 Usop" predicate symbols of arity n > 0,
a € Ax,ft,p) a = f£|p(t,....t,) | ~a atomic formulae
e € Ex,f,p) £ T(x,f)UAx,f,p) program expressions
¢ € Cx,f,p) 0 =aleNg clauses in simple conjunctive nor-
mal form

® Programs (including assignment, guards, loops, ...)

P,... € P(x,f,p) Pi=xi=el|lgp]|... programs

/)
[((/]
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Programs (interpretation)

~

® |nterpretation [ € § for a signature (f, p) is {lv, I,)
such that

— I+ 1s a non-empty set of values,

— Veetf’: L(c)ely, Yn>1:VEetf": L(f)ell,—>ly,

— Vn2>20:Y¥pep":L(p)€eli—B8. B = {false, true}
® Environments

A

neR = x—Ily environments

® Expression evaluation
lal|,n € B of an atomic formula a € A(x, f, p)

|t] . n € Iy of the term ¢ € T'(x, )

= —
93 @
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Programs (concrete semantics)

The program semantics is usually specified relative to

a standard interpretation J € J

The concrete semantics is given in post-fixpoint form

(in case the least fixpoint which is also the least post-
fixpoint does not exist, e.g. inexpressibility in Hoare

logic)
Ry
Py =
Fq|P| €
Cy[P] = postfp- Fy[P] €

P(Ry)
Pg— P

©P(Pg)

where postfp= f £ {x‘ f(x) < x}

concrete observables?

concrete properties 0

concrete transformer of program P

concrete semantics of program P

5Examples of observables are set of states, set of partial or complete execution traces, infinite/transfinite execution trees, etc.
%A property is understood as the set of elements satisfying this property.
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Example of program concrete semantics

® Program P £ x=1; while true {x=incr(x)}
® Arithmetic interpretation 3 on integers Jq = 7
® |oop invariant Ifp< F,[P] = (n € Ry | 0 < n(x)

A

where Ry £ x—Jq concrete environments

Fy[PI(X) = {n € Ry | n(x) = 1} U {n[x < nx) + 11| n € X}

® The strongest invariant is Ifp= F4[P] = () postfp~ F;[P]

® [xpressivity: the lfp may not be expressible in the
abstract in which case we use the set of possible
invariants Cy[P] = postfp~ F[P]

o
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Concrete domains

® The standard semantics describes computations of a
system formalized by elements of a domain of
observables Ry (e.g., set of traces, states, etc)

The properties Py = 9(Ry) (a property is the set of
elements with that property) form a complete lattice

(P3, S, 0, Ry, U, N)

® The concrete semantics Cy[P] = postfp= F5[P] defines the
system properties of interest for the verification

® The transformer F4[P] is defined in terms of primitives,

e.g.
fg[x :=e]P = {nlx < [e],n]l |n € P)} Floyd’s assignment post-condition
Psle]|P = {ne P||¢l|n =true}  test

\ : (¢
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Extension to multi-interpretations

® Programs have many interpretations 1 € ().

® Multi-interpreted semantics

Ry program observables for interpretation / € 1
Pr = 1elh p(R) interpreted properties for the set of interpretations 7

~ oI, 1€ T AneR}®

F;[P] € Pr—Pr multi-interpreted concrete transformer of program P
= AP e Py Al € 1« F[P](P())

C:[P] € o*r) multi-interpreted concrete semantics
2 postfp~ F, [P]

where C is the pointwise subset ordering.

8A partial function f € A - B with domain dom(f) € ¢p(A) is understood as the relation {{x, f(x)) € A X B | x € dom(f)}
». and maps x € Ato f(x) € B, writtetn x € A > f(x) e Borx€ A By whenVxe A: f(x) € By CB. o
) @
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Abstract domains

<A9 I;9 J" T’ U’ |_|9 v, A? f’ b? ﬁ’ c '>

where
P,O,... € A abstract properties
C e AXA—>SB abstract partial order’
1, T € A infimum, supremum
LILM,V,A € AXA—>A abstract join, meet, widening, narrowing

f e (xxE(x f,p)—>A—A abstract forward assignment transformer

b € (xxE(x,f,p))>A—A abstract backward assignment transformer
p € Cx,f,poA—A abstract condition transformer.
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Abstract semantics

o A abstract domain

o L abstract logical implication

e F[P] € A > A abstract transformer defined in term

of abstract primitives
fe xxExf,p)—A—A a
b e (xXxExf,p)—A—>A a

pstract forward assignment transformer

pstract backward assignment transformer

p e Cxt,p)—A—-A a

bstract condition transformer.

o C[P] = {ifp= F[P]} |east fixpoint semantics, if any

® E[P]] = {ﬁ | fﬂPﬂ(ﬁ) C ﬁ} or else, post-fixpoint

abstract semantics

I | 5 © P.Cousot
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Soundness of the abstract semantics

® Concretization
y € AL Py

® Soundness of the abstract semantics
VPeA:(ACeC[P]: Cc P)= 3AC eC[P]: C C y(P))

® Sufficient local soundness conditions:

(PC Q) = (y(ﬁ) C 'y(a)) order v(L) =10 infimum
?’(ﬁ L @) » (Y(ﬁ) U 7/(@)) join ¥(T) = Ty supremum

y(f[x := €] P) 2 fg [x := e]]”y(ﬁ) assignment post-condition
y(b[x := e]P) 2 bg[x :=e]y(P) assignment pre-condition
yPlelP) 2 psle]y(P) test

implying ‘B e A Fp] - y(P) € v - EP](P)



Beyond bounded verification: Widening

® Definition of widening:

Let (A, T) be a poset. Then an over-approximating widening V €
A XA — A is such that

(a) Vx,y € A: xCxVyAy< xVy*
A terminating widening V € A X A — A is such that

(b) Given any sequence {x", n > 0), the sequence Y’ =
O y”” = V'V X", ...converges (i.e. 3¢ € N :
Vn > € : y* = y' in which case y' is called the limit

of the widened sequence (y", n = 0)).

Traditionally a widening is considered to be both over-approximating
and terminating.

| B NSF CMACS expedition, Pl meeting, University of Maryland, College Park, MD, 04/28-29/201 | |7 © P Cousot



Beyond bounded verification: Widening

® |terations with widening

The iterates of a transformer F[P] € A — A from the infimum
1 € A with widening V € A XA — A in a poset (A, C) are defined

—0 —n+l  —n — —n
by recurrence as F = L, F~ = F when F [P[(F) E F and
—n+1

F' =F VF[P|(F) otherwise.

® Soundness of iterations with widening

The iterates in a poset (A, C, L) of a transformer F[P] from the
infimum L with widening N converge and their limit is a post-fixpoint

of the transformer.

@ as
|8 © P Cousot Eﬁ”
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Implementation notes

® Each abstract domain (A4,C, L, T,U,M,V,A,f,b,p,...)
is implemented separately by hand, by providing a
specific computer representation of properties in A ,
and algorithms for the logical operations C, L, T,u,m,

and transformers f,b,p,...

® Different abstract domains are combined into a
reduced product

® Very efficient but implemented manually (requires
skilled specialists)

.3 %
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First-order logic
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First-order logical formule & satisfaction
® Syntax
Y e F(x, f,p) Y :i=a| Y |IYAY|Jdx:Y¥Y quantified first-order formula
a distinguished predicate = (¢1, t,) which we write | =
® Free variables Xy

® Satisfaction
1 |:77 Y, interpretation / and an environment 77 satisfy a formula W

® Equality
IEyn=06 = |u]n=&]n
where =; 1s the unique reflexive, symmetric, antisymmetric, and transitive relation on /.

@
| |
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Extension to multi-interpretations

® Property described by a formula for multiple
Interpretations

1 € p(3)

® Semantics of first-order formulae

a

Yr S 41(Xia fa Ip)L)PI
YiP) = KLy leI AlE, Y}

® But how are we going to describe sets of
interpretations 7 € p(3) !
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Defining multiple interpretations as models of theories

® Theory: set 4 of theorems (closed sentences
without any free variable)

® Models of a theory (interpretations making true all
theorems of the theory)

WMT) = {l €
= {I €

YWe7 :dn: 1k, ¥}

3
S|V eT :Vp: 1k, V)

g —‘“ I
@ or W
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Classical properties of theories

® Decidable theories: V¥ € F(x, f, p) : decide~(¥) = (¥ € 7) is
computable

® Deductive theories: closed by deduction
VW € T : V¥ € F(x,f,p), if ¥ = ¥ implies ¥ € T

® Satisfiable theory:
M(T) + 0

® Complete theory:

for all sentences W in the language of the theory, either ' is in the
theory or =¥ 1s 1n the theory.

.
|
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Checking satisfiability modulo theory

® Validity modulo theory
validr (W) £ VI e M(T) : VY : I, P

® Satisfiability modulo theory (SMT)
satisfiabler(Y) = 31 e M(T) : An: I |, ¥

® Checking satisfiability for decidable theories

satisfiable 7(¥) & - (decides(VXy : =¥)) (when 7 is decidable and deductive)

satisfiable 7(¥) < (decides+(3xy : V) (when 7 1s decidable and complete)

® Most SMT solvers support only quantifier-free

formulze
. &
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Logical Abstractions
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Logical abstract domains
® (A, T):A e p(F(x,f,p)) abstract properties

T theory of F(x.f,p)

® Abstract domain {(A,C, ff, tt, V, A, V, A, fy, by, Py . . .)
® | ogical implication WCY¥) 2 (VX UXp : ¥ =>¥P)eT)
® A lattice but in general not complete

® [he concretization is

Yo () = (L )| L e MT) AL, P
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Logical abstract semantics

® | ogical abstract semantics

CIPl = ¥ | FIFlon C v

® The logical abstract transformer F.[P] € A—A is
defined in terms of primitives

f, € (xxT(x,f)—>A—>A

b, € (xXT(x,f)—>A—>A

p, € LoA—>A

T

abstract forward assignment trans-
former
abstract backward  assignment

transformer
condition abstract transformer
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Implementation notes ...

® Universal representation of abstract properties by

logical formulae

® Trival implementations of logical operations f£ff,tt,V, A,

® Provers or SMT solvers can be used for the abstract

implication L.

® Concrete transformers are purely syntactic

fo € (xxXT(x,1)->F,1,p)>F(x, I, p)
fo[x =¥ £ Ax" : P[x « X' TAx =1[x « X]

b, € (x X T(x,1))->F(x,f,p)>F(x, 1, p)
bo[x:=t]¥ = P[x « 1]
P, € Ux, 1, p)-F(x, i, p)->F(x, 1, p)
Pole]¥ = ¥ A g

NSF CMACS expedition, Pl meeting, University of Maryland, College Park, MD, 04/28-29/201 |

axiomatic forward assignment trans-
former

axiomatic backward assignment trans-
former

axiomatic transformer for program test
of condition ¢.
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but ...

...[...so the abstract transformers follows by abstraction

fo[x = ]¥ 2 ol(f[x :=f]¥) abstract forward assignment transformer

bo[x := {]¥ £ a(b.[x :=]¥) abstract backward assignment transformer

P.le]¥ = a'i P, lel?P) abstract transformer for program test of condition

® The abstraction algorithm a3 € F(x, f,p)—A to
abstract properties in A may be non-trivial (e.s.
quantifiers elimination)

e A widening V is needed to ensure convergence of
the fixpoint iterates (or else ask the end-user)
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Example | of widening: thresholds

® Choose a subset W of A satisfying the
ascending chain condition for L.

® Define XV Y tobe (one of) the strongest ¥ € W

such that ¥ =2 ¥

Example Il of bounded widening: Craig interpolation

® Use Craig interpolation (knowing a bound e.g.
the specification)

® Move to thresholds to enforced convergence
after k widenings with Craig interpolation
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Reduced Product
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Cartesian product

® Definition of the Cartesian product:

Let (A;, C,), i € A, A finite, be abstract domains with
. . .. S .
increasing concretization y; € A; 5 13 IO. Their Carte-

-2 - =2

sian product is (A, C) where A = X,z A, (P E Q) =
- - 5 - >n . o, 2 4 -
Niea(Pi i Q) andy € A= B2 is Y(P) = (Niea Vi(Py).
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Reduced product

® Definition of the Reduced product:

Let (A;, C;), 1 € A, A finite, be abstract domains with in-
creasing concretization y; € A; = EB?) where A = Xicp A
is their Cartesian product. Their reduced product is (ff /=2
C) where (ﬁ = Q) — ()7(13) = )7(Q_>)) and y as well as C
are natumlly extended to the equivalence classes [ﬁ]/ 2,
P e A of 2by7(Pl/2) = y(P) and [P]/= € [0]/= %
AP € [P]/=: A0 €[Q]/=: P E Q.

N o

® |n practice, the reduced product may be complex to
compute but we can use approximations such as the
iterated pairwise reduction of the Cartesian product
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Reduction

® Example:intervals x congruences
p(xe[-,5] Ax=2mod4) = xe€[22] AXx=2mod0
are equivalent

® Meaning-preserving reduction:

Let (A, C) be a poset which is an abstract domain with
concretization y € A - C where (C, <) is the concrete
domain. A meaning preserving map is p € A — A such
that VP € A : y(p(P)) = v(P). The map is a reduction if
and only if it is reductive that is VP € A : p(P) C P.
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Iterated reduction

® Definition of iterated reduction:

Let (A, C) be a poset which is an abstract domain with
concretizationy € A C where (C, C) is the concrete do-
main and p € A — A be a meaning-preserving reduction.

The iterates of the reduction are p° = AP+ P, p™! =
o(p) for successor ordinals and p' = ﬂﬁ PP for limit
ordinals.

The iterates are well-defined when the greatest lower
bounds | | (glb) do exist in the poset (A, C).
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Finite versus infinite iterated reduction

® Finite iterations of a meaning preserving reduction
are meaning preserving (and more precise)

e Infinite iterations, limits of
meaning-preserving
reduction, may not be
meaning-preserving
(although more precise). It is
when ¥ preserves glbs.

w N - O

e @ |
‘-:' ‘A(:": NSF CMACS expedition, Pl meeting, University of Maryland, College Park, MD, 04/28-29/201 | 37 © P.Cousot 1



Pairwise reduction

® Definition of pairwise reduction
Let (A;, C;) be abstract domains with increasing con-

cretization y; € A; > L into the concrete domain (L, <).
Fori,je A i # j, letp;; € (AiXA;, C;j) = (AiXAj, 5;j)
be pairwise meaning-preserving reductions (so that Y(x,
V) € Ai X Aj: piiKx, y)) 5ij <x, ¥) and (y; X y)) o pij =
(vi x¥))**). .
Define the pairwise reductions p;; € (A, C) (/Y, C) of
the Cartesian product as

Gij(P) £ let (P, Py 2 p;;((P;, Pp))in Pli « P]][j « P’]

where ﬁ[i — x|. = x and ﬁ[i — x]; = ﬁj when i # j.

% * We define (f x g)((x, y)) = (f(x), gO)).
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Pairwise reduction (contd)

L .. : A o
Define the iterated pairwise reductions g g 0 ,p T e (A,

) 5 (A, B), n >0 of the Cartesian product for

=2 A =g
P=0, .\ Pij
I#]

n
where O fi = fr, © ... © [z, IS the function composition
i=1

for some arbitrary permutation m of [1, n].
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Iterated pairwise reduction

® The iterated pairwise reduction of the Cartesian
product is meaning preserving

If the limit p : of the iterated reductions is well defined

then the reductions are such that VP € A : ¥n ¢ N,
* -2 n 2 2 =2
g (P)LC

(P) = p,](P) _ P, i,je A i # jand meaning-
preserving since g (P), 0; j(P), Pe [P] /z.

If, moreover, vy preserves greatest lower bounds then
S = —>
p (P)e€[P]/=
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Iterated pairwise reduction

® |n general, the iterated pairwise reduction of the
Cartesian product is not as precise as the reduced

product

® Sufficient conditions do exist for their equivalence
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Counter-example
o L = p(a,b,c})
o A = {0{a),T) where T = {a, b, c}
o Ay =1{0,{a,b}, T}
o A3z={0.{a,c}, T}
o (T, {ab}, {a,ch)/z = a}, {a,b}, {a,c})

o F;(T, {a,b}, {a,c})) = (T, {a,b}, {a,c})
for A = {1,2,3},i,j € A,i # J

® ﬁ*(<T9 {Cl, b}a {Cl, C}>) — <T9 {Cl, b}a {d,C}) IS hot
a minimal element of [(T, {a, b}, {a,c})]/=z

(7
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Nelson—Oppen

combination procedure
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The Nelson-Oppen combination procedure

® Prove satisfiability in a combination of theories by
exchanging equalities and disequalities

® Example: ¢ = (x =aVx=b)A £f(x) # £f(a) A £(x) # £(b) >

® Purify: introduce auxiliary variables to separate

alien terms and put in conjunctive form
¢ = @1 A ¢ where
o1 =(x=aVvx=b)Ay=aAz=Db
pr = £(x) # £ A E(x) # £()

= 22where a, b and f are in different theories S
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The Nelson-Oppen combination procedure

© = @1 N @y Where
o1 =(x=aVvVx=Db)Ay=aAz=Db
pr = £(0) # £ A £(x) # £(2)
® Reduce p(¢): each theory 7; determines E;; , a (dis-
junction) of conjunctions of variable (dis)equalities
implied by ¢; and propagate it in all other compo-
hants &;

Epn=x=y)V(x=2)
E21é(x7&y)/\(x¢2)

® |[terate O (¢) : until satisfiability is proved in each
theory or stabilization of the iterates

g —~“ —_—
@ W
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The Nelson-Oppen combination procedure

Under appropriate hypotheses (disjointness of the
theory signatures, stably-infiniteness/shininess,
convexity to avoid disjunctions, etc), the Nelson-
Oppen procedure:

® [erminates (finitely many possible (dis)equalities)
® |s sound (meaning-preserving)
® |s complete (always succeeds if formula is satisfiable)

Program static analysis/verification is undecidable so
requiring completeness is useless. Therefore the
hypotheses can be lifted, the procedure is then sound
aand incomplete. No change to SMT solve46rs is needed.
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The Nelson-Oppen
procedure is an iterated
pairwise reduced
product




Observables in Abstract Interpretation

® (Relational) abstractions of values (vi,...,vn) of
program variables (x,...,%Xn) is often too imprecise.

Example : when analyzing quaternions (a,b,c,d) we
need to observe the evolution of Va?+b2+c2+d?
during execution to get a precise analysis of the
normalization

® An observable is specified as the value of a function f

of the values (vi,.,va) of the program variables
(X1,...,Xn) assigned to a fresh auxiliary variable x,

Xo == f(Vi,...,Vn)

(with a precise abstraction of {)
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Purification = Observables in A.l.

® The purification phase consists in introducing new
observables

® The program can be purified by introducing auxiliary
assignments of pure sub-expressions so that forward/
backward transformers of purified formule always
yield purified formulae

® Example (f and ag,b are in different theories):

y = f(x) == fa+1) & f(x) == f(2*b)

becomes
z=a+1;t=2%b;y = f(x) == f(z) & f(x) = f(t)

49



Reduction

® The transfer of a (disjunction of) conjunctions of
variable (dis-)equalities is a pairwise iterated
reduction

® This can be incomplete when the signatures are not
disjoint
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Static analysis combining
logical and algebraic
abstractions




Reduced product of logical and algebraic domains

Logical theories Algebraic domains
7: 7; _____________ 77@ Al Az _____________ Am
D, Q. O, P, P, P,
L 4 AA ) 4 ? ® A A
| l | | |
P Pai Olu P

® When checking satisfiability of @@, A ©, A .. A ©,, the

Nelson-Oppen procedure generates (dis)-equalities that
can be propagated by p;, to reduce the P, i=1I,...,m, or

® (P, A Y, A ... A @,) can be propagated by p;, to
reduce the P, i=1,....m
® The purification to theory /; of y;(F,;) can be propagated

to @; by p,; in order to reduce it to P; A y(F) (in T;) ¢
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Advantages
® No need for completeness hypotheses on theories

® Bidirectional reduction between logical and algebraic
abstraction

® No need for end-users to provide inductive
invariants (discovered by static analysis)(")

® Easy interaction with end-user (through Ilogical
formulz)

® Easy introduction of new abstractions on either side

— Extensible expressive static analyzers / verifiers

. ) may need occasionally to be strengthened by the end-user —



Future work

® Still at a conceptual stage

® More experimental work on a prototype is needed
to validate the concept
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Conclusion

® Convergence between logic-based proof-theoretic
deductive methods using SMT solvers/theorem
provers and algebraic methods using model-
checking/abstract interpretation for infinite-state
systems

Garrett Birkhoff (1911-1996)

abstracted logic/set theory
into lattice theory

1967 (1940). Lattice Theory, 3rd ed.
American Mathematical Society.
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The End,
Thank You
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