Unifying proof theoretic/logical and algebraic abstractions for inference and verification

Patrick Cousot

NYU

pcousot@cs.nyu.edu cs.nyu.edu/~pcousot
Objective
Algebraic abstractions

• Used in abstract interpretation, model-checking,...

• System properties and specifications are abstracted as an algebraic lattice (abstraction-specific encoding of properties)

• Fully automatic: system properties are computed as fixpoints of algebraic transformers

• Several separate abstractions can be combined with the reduced product
Proof theoretic/logical abstractions

• Used in **deductive methods**

• System properties and specifications are expressed with formulæ of **first-order theories** (universal encoding of properties)

• **Partly automatic**: system properties are provided manually by end-users and automatically checked to satisfy **verification conditions** (with implication defined by the theories)

• Various theories can be combined by **Nelson-Oppen procedure**
Objective

• Show that proof-theoretic/logical abstractions are a particular case of algebraic abstractions

• Show that Nelson-Oppen procedure is a particular case of reduced product

• Use this unifying point of view to propose a new combination of logical and algebraic abstractions

⇒ Convergence of proof theoretic/logical and algebraic property-inference and verification methods
Concrete semantics
Programs (syntax)

- **Expressions** *(on a signature $\langle \mathbf{f}, \mathbf{p} \rangle$)*

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x, y, z, \ldots \in x$</td>
<td>variables</td>
</tr>
<tr>
<td>$a, b, c, \ldots \in f^0$</td>
<td>constants</td>
</tr>
<tr>
<td>$f, g, h, \ldots \in f^n$, $f = \bigcup_{n \geq 0} f^n$</td>
<td>function symbols of arity $n \geq 1$</td>
</tr>
<tr>
<td>$t \in \mathbb{T}(x, f)$</td>
<td>terms</td>
</tr>
<tr>
<td>$t ::= x</td>
<td>c</td>
</tr>
<tr>
<td>$p, q, r, \ldots \in p^n$, $p^0 = { \mathsf{ff}, \mathsf{tt} }$, $p = \bigcup_{n \geq 0} p^n$</td>
<td>predicate symbols of arity $n \geq 0$,</td>
</tr>
<tr>
<td>$a \in A(x, f, p)$</td>
<td>atomic formulae</td>
</tr>
<tr>
<td>$a ::= \mathsf{ff}</td>
<td>p(t_1, \ldots, t_n)</td>
</tr>
<tr>
<td>$e \in E(x, f, p) \triangleq \mathbb{T}(x, f) \cup A(x, f, p)$</td>
<td>program expressions</td>
</tr>
<tr>
<td>$\varphi \in C(x, f, p)$</td>
<td>clauses in simple conjunctive normal form</td>
</tr>
<tr>
<td>$\varphi ::= a</td>
<td>\varphi \land \varphi$</td>
</tr>
</tbody>
</table>

- **Programs** *(including assignment, guards, loops, ...)*

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P, \ldots \in P(x, f, p)$</td>
<td>programs</td>
</tr>
<tr>
<td>$P ::= x := e</td>
<td>\varphi</td>
</tr>
</tbody>
</table>
Programs (interpretation)

- **Interpretation** \(I \in \mathcal{I} \) for a signature \(\langle f, p \rangle \) is such that

 - \(I_V \) is a non-empty set of values,
 - \(\forall c \in f^0 : I_V(c) \in I_V \), \(\forall n \geq 1 : \forall f \in f^n : I_V(f) \in I_V^n \rightarrow I_V \),
 - \(\forall n \geq 0 : \forall p \in p^n : I_V(p) \in I_V^n \rightarrow \mathcal{B} \).

- **Environments**

\[\eta \in \mathcal{R}_I \overset{\triangle}{=} x \rightarrow I_V \text{ environments} \]

- **Expression evaluation**

\[[a], \eta \in \mathcal{B} \text{ of an atomic formula } a \in \mathcal{A}(x, f, p) \]
\[[t], \eta \in I_V \text{ of the term } t \in \mathcal{T}(x, f) \]
Programs (concrete semantics)

• The program semantics is usually specified relative to a standard interpretation

• The concrete semantics is given in post-fixpoint form (in case the least fixpoint which is also the least post-fixpoint does not exist, e.g. inexpressibility in Hoare logic)

\[
\begin{align*}
R_\mathcal{I} & \quad \text{concrete observables}^5 \\
P_\mathcal{I} & \triangleq \varphi(R_\mathcal{I}) \quad \text{concrete properties}^6 \\
F_\mathcal{I}[P] & \in P_\mathcal{I} \rightarrow P_\mathcal{I} \quad \text{concrete transformer of program } P \\
C_\mathcal{I}[P] & \triangleq \text{postfp} \subseteq F_\mathcal{I}[P] \in \varphi(P_\mathcal{I}) \quad \text{concrete semantics of program } P
\end{align*}
\]

where \(\text{postfp} \triangleq \{ x \mid f(x) \leq x \} \)

\(^5\)Examples of observables are set of states, set of partial or complete execution traces, infinite/transfinite execution trees, etc.

\(^6\)A property is understood as the set of elements satisfying this property.
Example of program concrete semantics

- **Program**
 \[P \triangleq x=1; \text{while true } \{x=\text{incr}(x)\} \]

- **Arithmetic interpretation**
 \[\mathcal{I} \text{ on integers } \mathbb{Z} \]

- **Loop invariant**
 \[\text{lfp} \subseteq F_{\mathcal{I}}[P] = \{\eta \in \mathcal{R}_{\mathcal{I}} \mid 0 < \eta(x)\} \]

 where
 \[\mathcal{R}_{\mathcal{I}} \triangleq x \rightarrow \mathcal{I}_\mathbb{Z} \] concrete environments
 \[F_{\mathcal{I}}[P](X) \triangleq \{\eta \in \mathcal{R}_{\mathcal{I}} \mid \eta(x) = 1\} \cup \{\eta[x \leftarrow \eta(x) + 1] \mid \eta \in X\} \]

- **The strongest invariant is**
 \[\text{lfp} \subseteq F_{\mathcal{I}}[P] = \bigcap \text{postfp} \subseteq F_{\mathcal{I}}[P] \]

- **Expressivity**: the lfp may not be expressible in the abstract in which case we use the set of possible invariants
 \[C_{\mathcal{I}}[P] \triangleq \text{postfp} \subseteq F_{\mathcal{I}}[P] \]
Concrete domains

- The **standard semantics** describes computations of a system formalized by elements of a domain of observables $\mathcal{R}_\mathcal{J}$ (e.g., set of traces, states, etc).

 The properties $\mathcal{P}_\mathcal{J} \triangleq \varphi(\mathcal{R}_\mathcal{J})$ (a property is the set of elements with that property) form a complete lattice $\langle \mathcal{P}_\mathcal{J}, \subseteq, \emptyset, \mathcal{R}_\mathcal{J}, \cup, \cap \rangle$.

- The **concrete semantics** $C_\mathcal{J}[P] \triangleq \text{postfp} \subseteq F_\mathcal{J}[P]$ defines the system properties of interest for the verification.

- The **transformer** $F_\mathcal{J}[P]$ is defined in terms of primitives, e.g.,

 $$f_\mathcal{J}[x := e]P \triangleq \{ \eta[x \leftarrow [e]_\mathcal{J}\eta] \mid \eta \in P \}$$
 Floyd’s assignment post-condition

 $$p_\mathcal{J}[\varphi]P \triangleq \{ \eta \in P \mid [\varphi]_\mathcal{J}\eta = \text{true} \}$$
 test
Extension to multi-interpretations

- Programs have many interpretations \(\mathcal{I} \in \wp(\mathfrak{S}) \).
- Multi-interpreted semantics

\[
\begin{align*}
\mathcal{R}_I &\triangleq I \in \mathcal{I} \not\rightarrow \wp(\mathcal{R}_I) \\
\mathcal{P}_I &\triangleq \wp(\{\langle I, \eta \rangle \mid I \in \mathcal{I} \land \eta \in \mathcal{R}_I\})^8
\end{align*}
\]

\[
\begin{align*}
F_I[P] &\in \mathcal{P}_I \rightarrow \mathcal{P}_I \\
&\triangleq \lambda P \in \mathcal{P}_I \cdot \lambda I \in \mathcal{I} \cdot F_I[P](P(I)) \\
C_I[P] &\in \wp(\mathcal{P}_I) \\
&\triangleq \text{postfp}^\subset F_I[P]
\end{align*}
\]

\[\text{where } \subset \text{ is the pointwise subset ordering.}\]

\[8\text{A partial function } f \in A \rightarrow B \text{ with domain } \text{dom}(f) \in \wp(A) \text{ is understood as the relation } \{\langle x, f(x) \rangle \in A \times B \mid x \in \text{dom}(f)\}\text{ and maps } x \in A \text{ to } f(x) \in B, \text{ written } x \in A \not\rightarrow f(x) \in B \text{ or } x \in A \not\rightarrow B_x \text{ when } \forall x \in A : f(x) \in B_x \subseteq B.\]
Algebraic Abstractions
Abstract domains

\[\langle A, \sqsubseteq, \bot, \top, \sqcup, \sqcap, \bigtriangleup, \bar{f}, \bar{b}, \bar{p}, \ldots \rangle\]

where

\[\bar{P}, \bar{Q}, \ldots \in A\]
\[\sqsubseteq \in A \times A \to \mathcal{B}\]
\[\bot, \top \in A\]
\[\sqcup, \sqcap, \bigtriangleup \in A \times A \to A\]
\[\ldots\]
\[\bar{f} \in (x \times \mathcal{E}(x, f, p)) \to A \to A\]
\[\bar{b} \in (x \times \mathcal{E}(x, f, p)) \to A \to A\]
\[\bar{p} \in \mathcal{C}(x, f, p) \to A \to A\]

abstract properties
abstract partial order
infimum, supremum
abstract join, meet, widening, narrowing

abstract forward assignment transformer
abstract backward assignment transformer
abstract condition transformer.
Abstract semantics

- \(A \) abstract domain
- \(\subseteq \) abstract logical implication
- \(\bar{F}[P] \in A \rightarrow A \) abstract transformer defined in terms of abstract primitives
 - \(\bar{f} \in (x \times E(x, f, p)) \rightarrow A \rightarrow A \) abstract forward assignment transformer
 - \(\bar{b} \in (x \times E(x, f, p)) \rightarrow A \rightarrow A \) abstract backward assignment transformer
 - \(\bar{p} \in C(x, f, p) \rightarrow A \rightarrow A \) abstract condition transformer
- \(\bar{C}[P] \triangleq \{ lfp \subseteq \bar{F}[P] \} \) least fixpoint semantics, if any
- \(\bar{C}[P] \triangleq \{ \bar{P} \mid \bar{F}[P](\bar{P}) \subseteq \bar{P} \} \) or else, post-fixpoint abstract semantics
Soundness of the abstract semantics

- **Concretization**
 \[\gamma \in A \xrightarrow{\gamma} \mathcal{P}_\gamma \]

- **Soundness** of the abstract semantics
 \[\forall \overline{P} \in A : (\exists \overline{C} \in \overline{C}[P] : \overline{C} \subseteq \overline{P}) \Rightarrow (\exists C \in C[P] : C \subseteq \gamma(\overline{P})) \]

- **Sufficient local soundness conditions:**
 \[\begin{align*}
 (\overline{P} \subseteq \overline{Q}) & \Rightarrow (\gamma(\overline{P}) \subseteq \gamma(\overline{Q})) & \text{order} \\
 \gamma(\overline{P} \sqcup \overline{Q}) & \supseteq (\gamma(\overline{P}) \cup \gamma(\overline{Q})) & \text{join} \\
 \gamma(\overline{f}[x := e][\overline{P}]) & \supseteq f_{\mathcal{P}}[x := e]\gamma(\overline{P}) & \text{assignment} \text{ post-condition} \\
 \gamma(\overline{b}[x := e][\overline{P}]) & \supseteq b_{\mathcal{P}}[x := e]\gamma(\overline{P}) & \text{assignment} \text{ pre-condition} \\
 \gamma(\overline{p}[\varphi][\overline{P}]) & \supseteq p_{\mathcal{P}}[\varphi]\gamma(\overline{P}) & \text{test} \\
 \end{align*} \]

 implying
 \[\forall \overline{P} \in A : F [P] \circ \gamma(\overline{P}) \subseteq \gamma \circ F [P](\overline{P}) \]
Beyond bounded verification: Widening

- **Definition of widening:**

 Let \(\langle A, \sqsubseteq \rangle \) be a poset. Then an over-approximating widening \(\triangledown \in A \times A \mapsto A \) is such that

 \[(a) \quad \forall x, y \in A : x \sqsubseteq x \triangledown y \land y \leq x \triangledown y^{14}.\]

 A terminating widening \(\triangledown \in A \times A \mapsto A \) is such that

 \[(b) \quad \text{Given any sequence } \langle x^n, n \geq 0 \rangle, \text{ the sequence } y^0 = x^0, \ldots, y^{n+1} = y^n \triangledown x^n, \ldots \text{ converges (i.e. } \exists \ell \in \mathbb{N} : \forall n \geq \ell : y^n = y^\ell \text{ in which case } y^\ell \text{ is called the limit of the widened sequence } \langle y^n, n \geq 0 \rangle).\]

 Traditionally a widening is considered to be both over-approximating and terminating.\[\square\]
Beyond bounded verification: Widening

- **Iterations with widening**

 The iterates of a transformer $\overline{F}[P] \in A \mapsto A$ from the infimum $\bot \in A$ with widening $\triangledown \in A \times A \mapsto A$ in a poset $\langle A, \sqsubseteq \rangle$ are defined by recurrence as $\overline{F}^0 = \bot$, $\overline{F}^{n+1} = \overline{F}^n$ when $\overline{F}[P](\overline{F}^n) \sqsubseteq \overline{F}^n$ and $\overline{F}^{n+1} = \overline{F}^n \triangledown \overline{F}[P](\overline{F}^n)$ otherwise.

- **Soundness** of iterations with widening

 The iterates in a poset $\langle A, \sqsubseteq, \bot \rangle$ of a transformer $\overline{F}[P]$ from the infimum \bot with widening \triangledown converge and their limit is a post-fixpoint of the transformer.
Implementation notes

• Each abstract domain \(\langle A, \sqsubseteq, \bot, \top, \sqcup, \sqcap, \bigvee, \bigwedge, \bar{f}, \bar{b}, \bar{p}, \ldots \rangle \)
is implemented separately by hand, by providing a specific computer representation of properties in \(A \)
and algorithms for the logical operations \(\sqsubseteq, \bot, \top, \sqcup, \sqcap, \) and transformers \(\bar{f}, \bar{b}, \bar{p}, \ldots \)

• Different abstract domains are combined into a reduced product

• Very efficient but implemented manually (requires skilled specialists)
First-order logic
First-order logical formulæ & satisfaction

• **Syntax**

$$\Psi \in F(x, f, p) \quad \Psi ::= a \mid \neg \Psi \mid \Psi \land \Psi \mid \exists x : \Psi$$

quantified first-order formulæ

a distinguished predicate $= (t_1, t_2)$ which we write $t_1 = t_2$

• **Free variables** \bar{x}_Ψ

• **Satisfaction**

$$I \models_\eta \Psi,$$

interpretation I and an environment η satisfy a formula Ψ

• **Equality**

$$I \models_\eta t_1 = t_2 \equiv [t_1], \eta =_I [t_2], \eta$$

where $=_I$ is the unique reflexive, symmetric, antisymmetric, and transitive relation on $I.\Psi$.
Extension to multi-interpretations

• Property described by a formula for multiple interpretations

\[\mathcal{I} \in \wp(\Theta) \]

• Semantics of first-order formulæ

\[
\gamma^a_{\mathcal{I}} \in \mathbb{F}(x, f, p) \rightarrow \mathcal{P}_{\mathcal{I}} \\
\gamma^a_{\mathcal{I}}(\Psi) \triangleq \{ \langle I, \eta \rangle \mid I \in \mathcal{I} \land I \models_{\eta} \Psi \}
\]

• But how are we going to describe sets of interpretations \(\mathcal{I} \in \wp(\Theta) \)?
Defining multiple interpretations as models of theories

- **Theory**: set \mathcal{T} of theorems (closed sentences without any free variable)

- **Models** of a theory (interpretations making true all theorems of the theory)

\[
M(\mathcal{T}) \triangleq \{ I \in \mathfrak{I} | \forall \Psi \in \mathcal{T} : \exists \eta : I \models_{\eta} \Psi \} \\
= \{ I \in \mathfrak{I} | \forall \Psi \in \mathcal{T} : \forall \eta : I \models_{\eta} \Psi \}
\]
Classical properties of theories

- **Decidable theories:** \(\forall \Psi \in F(x, f, p) : \text{decide}_\mathcal{T}(\Psi) \equiv (\Psi \in \mathcal{T}) \) is computable

- **Deductive theories:** closed by deduction
 \[\forall \Psi \in \mathcal{T} : \forall \Psi' \in F(x, f, p), \text{if } \Psi \Rightarrow \Psi' \text{ implies } \Psi' \in \mathcal{T} \]

- **Satisfiable theory:**
 \[M(\mathcal{T}) \neq \emptyset \]

- **Complete theory:**
 for all sentences \(\Psi \) in the language of the theory, either \(\Psi \) is in the theory or \(\neg \Psi \) is in the theory.
Checking satisfiability modulo theory

- **Validity modulo theory**

\[
\text{valid}_T(\Psi) \triangleq \forall I \in \mathcal{M}(T) : \forall \eta : I \models_\eta \Psi
\]

- **Satisfiability modulo theory (SMT)**

\[
\text{satisfiable}_T(\Psi) \triangleq \exists I \in \mathcal{M}(T) : \exists \eta : I \models_\eta \Psi
\]

- **Checking satisfiability** for decidable theories

\[
\text{satisfiable}_T(\Psi) \iff \neg (\text{decide}_T(\forall \overrightarrow{x} \psi : \neg \Psi)) \quad \text{(when } T \text{ is decidable and deductive)}
\]

\[
\text{satisfiable}_T(\Psi) \iff (\text{decide}_T(\exists \overrightarrow{x} \psi : \psi)) \quad \text{(when } T \text{ is decidable and complete)}
\]

- **Most SMT solvers support only quantifier-free formulæ**
Logical Abstractions
Logical abstract domains

- \(\langle A, \mathcal{T} \rangle : A \in \wp(\mathcal{F}(x, f, p)) \) abstract properties
 \(\mathcal{T} \) theory of \(\mathcal{F}(x, f, p) \)

- Abstract domain \(\langle A, \sqsubseteq, \mathbb{F}, \mathtt{tt}, \lor, \land, \neg, f_a, b_a, p_a, \ldots \rangle \)

- Logical implication \((\Psi \sqsubseteq \Psi') \triangleq (\forall \bar{x}_\Psi \cup \bar{x}_{\Psi'} : \Psi \Rightarrow \Psi') \in \mathcal{T} \)

- A lattice but in general not complete

- The concretization is

\[
\gamma^a_\mathcal{T}(\Psi) \triangleq \{ \langle I, \eta \rangle \mid I \in \mathcal{M}(\mathcal{T}) \land I \models_\eta \Psi \}
\]
Logical abstract semantics

- Logical abstract semantics

 \[\overline{C}^a[P] \triangleq \{ \psi \mid \overline{F}_a[P](\psi) \subseteq \psi \} \]

- The **logical abstract transformer** is defined in terms of primitives

 \[
 \overline{f}_a \in (x \times T(x, f)) \rightarrow A \rightarrow A
 \]

 \[
 \overline{b}_a \in (x \times T(x, f)) \rightarrow A \rightarrow A
 \]

 \[
 \overline{p}_a \in \mathbb{L} \rightarrow A \rightarrow A
 \]

 abstract forward assignment transformer

 abstract backward assignment transformer

 condition abstract transformer
Implementation notes ...

- Universal representation of abstract properties by logical formulæ
- Trival implementations of logical operations \(\& \&, \&\&, \lor, \land, \)
- Provers or SMT solvers can be used for the abstract implication \(\subseteq \)
- Concrete transformers are purely syntactic

\[
\begin{align*}
 f_a \in (x \times T(x, f)) &\rightarrow F(x, f, p) \rightarrow F(x, f, p) \\
 f_a[x := t]\Psi &\triangleq \exists x' : \Psi[x \leftarrow x'] \wedge x = t[x \leftarrow x'] \ \\
 b_a \in (x \times T(x, f)) &\rightarrow F(x, f, p) \rightarrow F(x, f, p) \\
 b_a[x := t]\Psi &\triangleq \Psi[x \leftarrow t] \ \\
 p_a \in C(x, f, p) &\rightarrow F(x, f, p) \rightarrow F(x, f, p) \\
 p_a[\varphi]\Psi &\triangleq \Psi \wedge \varphi
\end{align*}
\]

axiomatic forward assignment transformer

axiomatic backward assignment transformer

axiomatic transformer for program test of condition \(\varphi \).
but ...

.../... so the abstract transformers follows by abstraction

\[\tilde{f}_a[x := t] \Psi \triangleq \alpha^T_A(f_a[x := t] \Psi) \]

abstract forward assignment transformer

\[\overline{b}_a[x := t] \Psi \triangleq \alpha^T_A(b_a[x := t] \Psi) \]

abstract backward assignment transformer

\[\overline{p}_a[\varphi] \Psi \triangleq \alpha^T_A(p_a[\varphi] \Psi) \]

abstract transformer for program test of condition

- The abstraction algorithm to abstract properties in \(A \) may be non-trivial (e.g. quantifiers elimination)

- A widening \(\triangledown \) is needed to ensure convergence of the fixpoint iterates (or else ask the end-user)
Example I of widening: \textbf{thresholds}

- Choose a subset \(W \) of \(A \) satisfying the ascending chain condition for \(\sqsubseteq \).
- Define \(X \sqcap Y \) to be (one of) the strongest \(\Psi \in W \) such that \(Y \Rightarrow \Psi \).

Example II of bounded widening: \textbf{Craig interpolation}

- Use Craig interpolation (knowing a bound e.g. the specification)
- Move to thresholds to enforced convergence after \(k \) widenings with Craig interpolation
Reduced Product
Cartesian product

- Definition of the Cartesian product:

Let \(\langle A_i, \sqsubseteq_i \rangle, i \in \Delta, \Delta \text{ finite} \), be abstract domains with increasing concretization \(\gamma_i \in A_i \rightarrow \Psi^\Sigma_I \). Their Cartesian product is \(\langle \tilde{A}, \sqsubseteq \rangle \) where \(\tilde{A} \triangleq \times_{i \in \Delta} A_i \), \((\tilde{P} \sqsubseteq \tilde{Q}) \triangleq \bigwedge_{i \in \Delta}(\tilde{P}_i \sqsubseteq_i \tilde{Q}_i) \) and \(\tilde{\gamma} \in \tilde{A} \rightarrow \Psi^\Sigma_I \) is \(\tilde{\gamma}(\tilde{P}) \triangleq \bigcap_{i \in \Delta} \gamma_i(\tilde{P}_i) \).
Reduced product

- **Definition of the Reduced product:**

 Let \(\langle A_i, \sqsubseteq_i \rangle, i \in \Delta, \Delta \) finite, be abstract domains with increasing concretization \(\gamma_i \in A_i \rightarrow \Psi_{\sum_0}^\Delta \) where \(\overline{A} \triangleq \prod_{i \in \Delta} A_i \) is their Cartesian product. Their reduced product is \(\langle \overline{A}/\equiv, \sqsubseteq \rangle \) where \((\overline{P} \equiv \overline{Q}) \triangleq (\overline{\gamma}(\overline{P}) = \overline{\gamma}(\overline{Q})) \) and \(\overline{\gamma} \) as well as \(\sqsubseteq \) are naturally extended to the equivalence classes \([\overline{P}]/\equiv \), \(\overline{P} \in \overline{A} \), of \(\equiv \) by \(\overline{\gamma}([\overline{P}]/\equiv) = \overline{\gamma}(\overline{P}) \) and \([\overline{P}]/\equiv \sqsubseteq [\overline{Q}]/\equiv \triangleq \exists \overline{P}' \in [\overline{P}]/\equiv : \exists \overline{Q}' \in [\overline{Q}]/\equiv : \overline{P}' \sqsubseteq \overline{Q}' \). □

- In practice, the reduced product may be complex to compute but we can use approximations such as the iterated pairwise reduction of the Cartesian product
Reduction

- **Example:** intervals x congruences

\[
\rho(x \in [-1,5] \land x = 2 \mod 4) \equiv x \in [2,2] \land x = 2 \mod 0
\]

are equivalent

- **Meaning-preserving reduction:**

\[
\text{Let } \langle A, \sqsubseteq \rangle \text{ be a poset which is an abstract domain with concretization } \gamma \in A \rightarrow C \text{ where } \langle C, \leq \rangle \text{ is the concrete domain. A meaning-preserving map is } \rho \in A \rightarrow A \text{ such that } \forall \overline{P} \in A : \gamma(\rho(\overline{P})) = \gamma(\overline{P}). \text{ The map is a reduction if and only if it is reductive that is } \forall \overline{P} \in A : \rho(\overline{P}) \sqsubseteq \overline{P}. \quad \square
\]
Iterated reduction

- Definition of iterated reduction:

Let \(\langle A, \subseteq \rangle \) be a poset which is an abstract domain with concretization \(\gamma \in A \rightarrow C \) where \(\langle C, \subseteq \rangle \) is the concrete domain and \(\rho \in A \rightarrow A \) be a meaning-preserving reduction.

The iterates of the reduction are \(\rho^0 = \lambda \overline{P} \cdot \overline{P} \), \(\rho^{\lambda+1} = \rho(\rho^\lambda) \) for successor ordinals and \(\rho^\lambda = \bigcap_{\beta < \lambda} \rho^\beta \) for limit ordinals.

The iterates are well-defined when the greatest lower bounds \(\prod (\text{glb}) \) do exist in the poset \(\langle A, \subseteq \rangle \). \(\square \)
Finite versus infinite iterated reduction

- **Finite iterations** of a meaning preserving reduction are meaning preserving (and more precise)

- **Infinite iterations**, limits of meaning-preserving reduction, may not be meaning-preserving (although more precise). It is when \(\gamma \) preserves glbs.
Pairwise reduction

Definition of pairwise reduction

Let \(\langle A_i, \sqsubseteq_i \rangle \) be abstract domains with increasing concretization \(\gamma_i \in A_i \rightarrow L \) into the concrete domain \(\langle L, \leq \rangle \).

For \(i, j \in \Delta, i \neq j \), let \(\rho_{ij} \in \langle A_i \times A_j, \sqsubseteq_{ij} \rangle \mapsto \langle A_i \times A_j, \sqsubseteq_{ij} \rangle \) be pairwise meaning-preserving reductions (so that \(\forall \langle x, y \rangle \in A_i \times A_j : \rho_{ij}(\langle x, y \rangle) \sqsubseteq_{ij} \langle x, y \rangle \) and \((\gamma_i \times \gamma_j) \circ \rho_{ij} = (\gamma_i \times \gamma_j)^{24} \)).

Define the pairwise reductions \(\tilde{\rho}_{ij} \in \langle \tilde{A}, \sqsubseteq \rangle \mapsto \langle \tilde{A}, \sqsubseteq \rangle \) of the Cartesian product as

\[
\tilde{\rho}_{ij}(\tilde{P}) \triangleq \text{let } \langle \tilde{P}', \tilde{P}' \rangle \triangleq \rho_{ij}(\langle \tilde{P}_i, \tilde{P}_j \rangle) \text{ in } \tilde{P}[i \leftarrow \tilde{P}_i][j \leftarrow \tilde{P}_j]
\]

where \(\tilde{P}[i \leftarrow x]_i = x \) and \(\tilde{P}[i \leftarrow x]_j = \tilde{P}_j \) when \(i \neq j \).

24 We define \((f \times g)(\langle x, y \rangle) \triangleq \langle f(x), g(y) \rangle \).
Define the iterated pairwise reductions $\bar{\rho}^n$, $\bar{\rho}^\lambda$, $\bar{\rho}^*$ $\in \langle \hat{\mathcal{A}}, \hat{\mathcal{C}} \rangle \mapsto \langle \hat{\mathcal{A}}, \hat{\mathcal{C}} \rangle$, $n \geq 0$ of the Cartesian product for

$$\bar{\rho} \triangleq \bigodot_{i,j \in \Delta, i \neq j} \bar{\rho}_{ij}$$

where $\bigodot_{i=1}^n f_i \triangleq f_{\pi_1} \circ \ldots \circ f_{\pi_n}$ is the function composition for some arbitrary permutation π of $[1, n]$. \hfill \square
Iterated pairwise reduction

- The iterated pairwise reduction of the Cartesian product is meaning preserving

If the limit ρ^* of the iterated reductions is well defined then the reductions are such that $\forall \tilde{P} \in \tilde{A} : \forall n \in \mathbb{N}_+ : \rho^*(\tilde{P}) \subseteq \rho^n(\tilde{P}) \subseteq \rho_{ij}(\tilde{P}) \subseteq \tilde{P}$, $i, j \in \Delta$, $i \neq j$ and meaning-preserving since $\rho^\lambda(\tilde{P})$, $\rho_{ij}(\tilde{P})$, $\tilde{P} \in [\tilde{P}]/\equiv$.

If, moreover, γ preserves greatest lower bounds then $\rho^*(\tilde{P}) \in [\tilde{P}]/\equiv$. □
Iterated pairwise reduction

- In general, the iterated pairwise reduction of the Cartesian product is **not as precise as the reduced product**

- **Sufficient conditions** do exist for their equivalence
Counter-example

- $L = \emptyset(\{a, b, c\})$
- $A_1 = \emptyset, \{a\}, \top$
- $A_2 = \emptyset, \{a, b\}, \top$
- $A_3 = \emptyset, \{a, c\}, \top$
- $\langle \top, \{a, b\}, \{a, c\}\rangle / \equiv = \langle \{a\}, \{a, b\}, \{a, c\}\rangle$
- $\vec{\rho}_{ij}(\langle \top, \{a, b\}, \{a, c\}\rangle) = \langle \top, \{a, b\}, \{a, c\}\rangle$
 \hspace{1cm} for $\Delta = \{1, 2, 3\}, i, j \in \Delta, i \neq j$
- $\vec{\rho}^*(\langle \top, \{a, b\}, \{a, c\}\rangle) = \langle \top, \{a, b\}, \{a, c\}\rangle$ is not a minimal element of $[\langle \top, \{a, b\}, \{a, c\}\rangle]/\equiv$
Nelson–Oppen combination procedure
The Nelson-Oppen combination procedure

- **Prove** satisfiability in a combination of theories by exchanging equalities and disequalities

- **Example:** \(\varphi \overset{\triangle}{=} (x = a \lor x = b) \land f(x) \neq f(a) \land f(x) \neq f(b) \) \(^{22}\).

- **Purify:** introduce auxiliary variables to separate alien terms and put in conjunctive form

\[
\varphi \overset{\triangle}{=} \varphi_1 \land \varphi_2 \text{ where } \\
\varphi_1 \overset{\triangle}{=} (x = a \lor x = b) \land y = a \land z = b \\
\varphi_2 \overset{\triangle}{=} f(x) \neq f(y) \land f(x) \neq f(z)
\]

\(^{22}\)where \(a, b\) and \(f\) are in different theories
The Nelson-Oppen combination procedure

\[\varphi \triangleq \varphi_1 \land \varphi_2 \text{ where} \]
\[\varphi_1 \triangleq (x = a \lor x = b) \land y = a \land z = b \]
\[\varphi_2 \triangleq f(x) \neq f(y) \land f(x) \neq f(z) \]

- **Reduce** \(\bar{\rho}(\varphi) \): each theory \(T_i \) determines \(E_{ij} \), a (disjunction) of conjunctions of variable (dis)equalities implied by \(\varphi_j \) and propagate it in all other components \(\varphi_i \)

\[E_{12} \triangleq (x = y) \lor (x = z) \]
\[E_{21} \triangleq (x \neq y) \land (x \neq z) \]

- **Iterate** \(\bar{\rho}^*(\varphi) \): until satisfiability is proved in each theory or stabilization of the iterates
The Nelson-Oppen combination procedure

Under appropriate hypotheses (disjointness of the theory signatures, stably-infiniteness/shininess, convexity to avoid disjunctions, etc), the Nelson-Oppen procedure:

- **Terminates** (finitely many possible (dis)equalities)
- **Is sound** (meaning-preserving)
- **Is complete** (always succeeds if formula is satisfiable)
- Similar techniques are used in theorem provers

Program static analysis/verification is **undecidable** so requiring completeness is useless. Therefore the hypotheses can be lifted, the procedure is then sound and incomplete. No change to SMT solvers is needed.
The Nelson-Oppen procedure is an iterated pairwise reduced product
Observables in Abstract Interpretation

• (Relational) **abstracts of values** \((v_1,...,v_n)\) of
program variables \((x_1,...,x_n)\) is often too **imprecise**.

Example: when analyzing **quaternions** \((a,b,c,d)\) we
need to observe the evolution of \(\sqrt{a^2+b^2+c^2+d^2}\)
during execution to get a precise analysis of the
normalization

• **An observable** is specified as the value of a function \(f\)
of the values \((v_1,...,v_n)\) of the program variables
\((x_1,...,x_n)\) assigned to a fresh auxiliary variable \(x_0\)

\[x_0 == f(v_1,...,v_n) \]

(with a precise abstraction of \(f\))
Purification = Observables in A.I.

• The purification phase consists in introducing new observables

• The program can be purified by introducing auxiliary assignments of pure sub-expressions so that forward/backward transformers of purified formulæ always yield purified formulæ

• Example (f and a,b are in different theories):

\[y = f(x) == f(a+1) \land f(x) == f(2*\text{b}) \]

becomes

\[z = a+1; t = 2*\text{b}; y = f(x) == f(z) \land f(x) = f(t) \]
Reduction

- The transfer of a (disjunction of) conjunctions of variable (dis-)equalities is a **pairwise iterated reduction**

- This can be *incomplete* when the signatures are not disjoint
Static analysis combining logical and algebraic abstractions
When checking satisfiability of $\varphi_1 \land \varphi_2 \land ... \land \varphi_n$, the Nelson-Oppen procedure generates (dis)-equalities that can be propagated by ρ_{la} to reduce the P_i, $i=1,...,m$, or $\alpha_i(\varphi_1 \land \varphi_2 \land ... \land \varphi_n)$ can be propagated by ρ_{la} to reduce the P_i, $i=1,...,m$.

The purification to theory \mathcal{T}_i of $\gamma_i(P_i)$ can be propagated to φ_i by ρ_{al} in order to reduce it to $\varphi_i \land \gamma_i(P_i)$ (in \mathcal{T}_i).
Advantages

• No need for completeness hypotheses on theories
• Bidirectional reduction between logical and algebraic abstraction
• No need for end-users to provide inductive invariants (discovered by static analysis) (*)
• Easy interaction with end-user (through logical formulæ)
• Easy introduction of new abstractions on either side

⟹ Extensible expressive static analyzers / verifiers

(*) may need occasionally to be strengthened by the end-user
Future work

• Still at a conceptual stage
• More experimental work on a prototype is needed to validate the concept

References

Conclusion

- **Convergence** between logic-based proof-theoretic deductive methods using SMT solvers/theorem provers and algebraic methods using model-checking/abstract interpretation for infinite-state systems

Garrett Birkhoff (1911–1996) abstracted *logic/set theory* into *lattice theory*

The End,

Thank You