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Weak consistency models (WCM)
• Sequential consistency:  

reads read(p,x) are implicitly coordinated with writes 
w(q,x) 

• WCM: 
No implicit coordination (depends on architecture, 
program dependencies, and explicit fences)
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is observed by communication events. The initial write event w(start, x) denotes the
initialization of shared variable x before starting the program execution.

— Read events r(p, x), r′(p, x), . . . ∈ R(p, x) record the launching of a read of shared
variable x ∈ X by process p ∈ Pi ∪ {finish}, finish ̸∈ Pi ∪ {start}. The effect of this read
event is observed by a communication event. The final read event r(finish, x) denotes
the final read of the value of shared variable x upon program termination.

— Communication events rf(q, p, x), rf′(q, p, x), . . . ∈ K(q, p, x) ! {rf(w(q, x), r(p, x)) |
w(q, x) ∈ W(p, x) ∧ r(p, x) ∈ R(p, x)} record the assignment of the value generated
by the write event w(q, x) of process q to the variable x read by process p as re-
corded by the read event r(p, x). The case q = start corresponds to the assignment
of the initial value of the shared variable x. The case p = finish corresponds to the
reading of the final value of the shared variable x. The observation of the execution
of read/write events r(p, x)/w(q, x) is separate from the observation of their effect
rf(w(q, x), r(p, x)) and can happen at any time, see Fig. 1. Note that by definition
communication events relate a read and a write event on the same variable (but
maybe in different processes).
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— The set of all events e(p), e′(p), . . . ∈ E(p) of process p include read, write, and com-
munication events. p . . . ∈ Pi,

(⋃

x∈X

W(p, x) ∪
⋃

x∈X

R(p, x) ∪
⋃

x∈X,q∈Pi∪{start}

K(q, p, x
)
⊆ E(p) .

E(p) also can contain computation events (register events such as assignments or
tests), marker events (fences, beginning and end of read-modify-write instructions),
etc. We let e, e′, . . . ∈ E ! ⋃

p∈Pi∪{start,finish} E(p) be all possible events.

3.1.4. Finite and infinite sequences

— S+ is the set of finite non-empty sequences s of elements sk, k ∈ [1, n], of length
n " 1 of set S (written s = ⟨sk | k ∈ [1, n]⟩);

— S∞ is the set of infinite sequences s of elements of S (written s = ⟨sk | k ∈ N+⟩,
where N+ is the set of strictly positive naturals);

3.1.5. Event traces t, t′, . . . ∈ H ! E+ ∪ E∞ are non-empty finite sequences of events in
E+ or infinite sequences of events in E∞. t1, t2, . . . ∈ H∗ ! H ∪ {ε} may be the empty
sequence ε. Concatenation is denoted by juxtaposition, ε is the neutral element.

3.1.6. Computational semantics S ,S ′, . . . ∈ ℘(H) are possibly infinite sets of finite or in-
finite event traces satisfying the following well-formedness conditions Wf1(S) toWf7(S).

— Events are unique in any event trace t of the semantics S (for brevity, we leave the
quantification ∀t1, t2, t3 ∈ E∗ . ∀e, e′ ∈ E . ... implicit).

∀t ∈ S . (t = t1 e t2 e
′ t3) =⇒ (e ̸= e′) . (Wf1(S))

— All shared variables x ∈ X are assumed to be initialized once and only once as
recorded by initialization write events w(start, x) (which can be read from as recorded
by an event rf(w(start, x), r(p, x))).

∀t ∈ S . ∀x ∈ X .(∃t1, t2 = t1 w(start, x) t2) ∧ (Wf2(S))
(!t1, t2, t3 . t = t1 w(start, x) t2 w′(start, x) t3) .

— Finite event traces t of S are maximal (i.e. describe terminated executions where no
further event can occur).

∀t ∈ S ∩ E+ . !t′ ∈ H . t t′ ∈ S . (Wf3(S))
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of the initial value of the shared variable x. The case p = finish corresponds to the
reading of the final value of the shared variable x. The observation of the execution
of read/write events r(p, x)/w(q, x) is separate from the observation of their effect
rf(w(q, x), r(p, x)). Note that by definition communication events relate a read and a
write event on the same variable (but maybe in different processes).

— The set of all events e(p), e′(p), . . . ∈ E(p) of process p include read, write, and com-
munication events. p . . . ∈ Pi,

(⋃

x∈X

W(p, x) ∪
⋃

x∈X

R(p, x) ∪
⋃

x∈X,q∈Pi∪{start}

K(q, p, x
)
⊆ E(p) .

E(p) also can contain computation events (register events such as assignments or
tests), marker events (fences, beginning and end of read-modify-write instructions),
etc. We let e, e′, . . . ∈ E ! ⋃

p∈Pi∪{start,finish} E(p) be all possible events.

3.1.4. Finite and infinite sequences

— S+ is the set of finite non-empty sequences s of elements sk, k ∈ [1, n], of length
n " 1 of set S (written s = ⟨sk | k ∈ [1, n]⟩);

— S∞ is the set of infinite sequences s of elements of S (written s = ⟨sk | k ∈ N+⟩,
where N+ is the set of strictly positive naturals);

3.1.5. Event traces t, t′, . . . ∈ H ! E+ ∪ E∞ are non-empty finite sequences of events in
E+ or infinite sequences of events in E∞. t1, t2, . . . ∈ H∗ ! H ∪ {ε} may be the empty
sequence ε. Concatenation is denoted by juxtaposition, ε is the neutral element.

3.1.6. Computational semantics S ,S ′, . . . ∈ ℘(H) are possibly infinite sets of finite or in-
finite event traces satisfying the following well-formedness conditions Wf1(S) toWf7(S).

— Events are unique in any event trace t of the semantics S (for brevity, we leave the
quantification ∀t1, t2, t3 ∈ E∗ . ∀e, e′ ∈ E . ... implicit).

∀t ∈ S . (t = t1 e t2 e
′ t3) =⇒ (e ̸= e′) . (Wf1(S))

— All shared variables x ∈ X are assumed to be initialized once and only once as
recorded by initialization write events w(start, x) (which can be read from as recorded
by an event rf(w(start, x), r(p, x))).

∀t ∈ S . ∀x ∈ X .(∃t1, t2 = t1 w(start, x) t2) ∧ (Wf2(S))
(!t1, t2, t3 . t = t1 w(start, x) t2 w′(start, x) t3) .

— Finite event traces t of S are maximal (i.e. describe terminated executions where no
further event can occur).

∀t ∈ S ∩ E+ . !t′ ∈ H . t t′ ∈ S . (Wf3(S))
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— The set of all events e(p), e′(p), . . . ∈ E(p) of process p include read, write, and com-
munication events. p . . . ∈ Pi,
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K(q, p, x
)
⊆ E(p) .

E(p) also can contain computation events (register events such as assignments or
tests), marker events (fences, beginning and end of read-modify-write instructions),
etc. We let e, e′, . . . ∈ E ! ⋃

p∈Pi∪{start,finish} E(p) be all possible events.

3.1.4. Finite and infinite sequences

— S+ is the set of finite non-empty sequences s of elements sk, k ∈ [1, n], of length
n " 1 of set S (written s = ⟨sk | k ∈ [1, n]⟩);

— S∞ is the set of infinite sequences s of elements of S (written s = ⟨sk | k ∈ N+⟩,
where N+ is the set of strictly positive naturals);
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is observed by communication events. The initial write event w(start, x) denotes the
initialization of shared variable x before starting the program execution.

— Read events r(p, x), r′(p, x), . . . ∈ R(p, x) record the launching of a read of shared
variable x ∈ X by process p ∈ Pi ∪ {finish}, finish ̸∈ Pi ∪ {start}. The effect of this read
event is observed by a communication event. The final read event r(finish, x) denotes
the final read of the value of shared variable x upon program termination.

— Communication events rf(q, p, x), rf′(q, p, x), . . . ∈ K(q, p, x) ! {rf(w(q, x), r(p, x)) |
w(q, x) ∈ W(p, x) ∧ r(p, x) ∈ R(p, x)} record the assignment of the value generated
by the write event w(q, x) of process q to the variable x read by process p as re-
corded by the read event r(p, x). The case q = start corresponds to the assignment
of the initial value of the shared variable x. The case p = finish corresponds to the
reading of the final value of the shared variable x. The observation of the execution
of read/write events r(p, x)/w(q, x) is separate from the observation of their effect
rf(w(q, x), r(p, x)) and can happen at any time, see Fig. 1. Note that by definition
communication events relate a read and a write event on the same variable (but
maybe in different processes).
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E(p) also can contain computation events (register events such as assignments or
tests), marker events (fences, beginning and end of read-modify-write instructions),
etc. We let e, e′, . . . ∈ E ! ⋃

p∈Pi∪{start,finish} E(p) be all possible events.

3.1.4. Finite and infinite sequences

— S+ is the set of finite non-empty sequences s of elements sk, k ∈ [1, n], of length
n " 1 of set S (written s = ⟨sk | k ∈ [1, n]⟩);

— S∞ is the set of infinite sequences s of elements of S (written s = ⟨sk | k ∈ N+⟩,
where N+ is the set of strictly positive naturals);

3.1.5. Event traces t, t′, . . . ∈ H ! E+ ∪ E∞ are non-empty finite sequences of events in
E+ or infinite sequences of events in E∞. t1, t2, . . . ∈ H∗ ! H ∪ {ε} may be the empty
sequence ε. Concatenation is denoted by juxtaposition, ε is the neutral element.

3.1.6. Computational semantics S ,S ′, . . . ∈ ℘(H) are possibly infinite sets of finite or in-
finite event traces satisfying the following well-formedness conditions Wf1(S) toWf7(S).

— Events are unique in any event trace t of the semantics S (for brevity, we leave the
quantification ∀t1, t2, t3 ∈ E∗ . ∀e, e′ ∈ E . ... implicit).

∀t ∈ S . (t = t1 e t2 e
′ t3) =⇒ (e ̸= e′) . (Wf1(S))

— All shared variables x ∈ X are assumed to be initialized once and only once as
recorded by initialization write events w(start, x) (which can be read from as recorded
by an event rf(w(start, x), r(p, x))).

∀t ∈ S . ∀x ∈ X .(∃t1, t2 = t1 w(start, x) t2) ∧ (Wf2(S))
(!t1, t2, t3 . t = t1 w(start, x) t2 w′(start, x) t3) .

— Finite event traces t of S are maximal (i.e. describe terminated executions where no
further event can occur).

∀t ∈ S ∩ E+ . !t′ ∈ H . t t′ ∈ S . (Wf3(S))

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Hierarchy of Computational Semantics of Parallel Programs with Weak Consistency (DRAFT of Sunday 27th March 2016 10:22am GMT)A:7

is observed by communication events. The initial write event w(start, x) denotes the
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reading of the final value of the shared variable x. The observation of the execution
of read/write events r(p, x)/w(q, x) is separate from the observation of their effect
rf(w(q, x), r(p, x)). Note that by definition communication events relate a read and a
write event on the same variable (but maybe in different processes).
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E(p) also can contain computation events (register events such as assignments or
tests), marker events (fences, beginning and end of read-modify-write instructions),
etc. We let e, e′, . . . ∈ E ! ⋃

p∈Pi∪{start,finish} E(p) be all possible events.
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where N+ is the set of strictly positive naturals);
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3.1.6. Computational semantics S ,S ′, . . . ∈ ℘(H) are possibly infinite sets of finite or in-
finite event traces satisfying the following well-formedness conditions Wf1(S) toWf7(S).

— Events are unique in any event trace t of the semantics S (for brevity, we leave the
quantification ∀t1, t2, t3 ∈ E∗ . ∀e, e′ ∈ E . ... implicit).
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′ t3) =⇒ (e ̸= e′) . (Wf1(S))

— All shared variables x ∈ X are assumed to be initialized once and only once as
recorded by initialization write events w(start, x) (which can be read from as recorded
by an event rf(w(start, x), r(p, x))).

∀t ∈ S . ∀x ∈ X .(∃t1, t2 = t1 w(start, x) t2) ∧ (Wf2(S))
(!t1, t2, t3 . t = t1 w(start, x) t2 w′(start, x) t3) .

— Finite event traces t of S are maximal (i.e. describe terminated executions where no
further event can occur).

∀t ∈ S ∩ E+ . !t′ ∈ H . t t′ ∈ S . (Wf3(S))
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is observed by communication events. The initial write event w(start, x) denotes the
initialization of shared variable x before starting the program execution.

— Read events r(p, x), r′(p, x), . . . ∈ R(p, x) record the launching of a read of shared
variable x ∈ X by process p ∈ Pi ∪ {finish}, finish ̸∈ Pi ∪ {start}. The effect of this read
event is observed by a communication event. The final read event r(finish, x) denotes
the final read of the value of shared variable x upon program termination.

— Communication events rf(q, p, x), rf′(q, p, x), . . . ∈ K(q, p, x) ! {rf(w(q, x), r(p, x)) |
w(q, x) ∈ W(p, x) ∧ r(p, x) ∈ R(p, x)} record the assignment of the value generated
by the write event w(q, x) of process q to the variable x read by process p as re-
corded by the read event r(p, x). The case q = start corresponds to the assignment
of the initial value of the shared variable x. The case p = finish corresponds to the
reading of the final value of the shared variable x. The observation of the execution
of read/write events r(p, x)/w(q, x) is separate from the observation of their effect
rf(w(q, x), r(p, x)). Note that by definition communication events relate a read and a
write event on the same variable (but maybe in different processes).
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E(p) also can contain computation events (register events such as assignments or
tests), marker events (fences, beginning and end of read-modify-write instructions),
etc. We let e, e′, . . . ∈ E ! ⋃

p∈Pi∪{start,finish} E(p) be all possible events.

3.1.4. Finite and infinite sequences

— S+ is the set of finite non-empty sequences s of elements sk, k ∈ [1, n], of length
n " 1 of set S (written s = ⟨sk | k ∈ [1, n]⟩);

— S∞ is the set of infinite sequences s of elements of S (written s = ⟨sk | k ∈ N+⟩,
where N+ is the set of strictly positive naturals);

3.1.5. Event traces t, t′, . . . ∈ H ! E+ ∪ E∞ are non-empty finite sequences of events in
E+ or infinite sequences of events in E∞. t1, t2, . . . ∈ H∗ ! H ∪ {ε} may be the empty
sequence ε. Concatenation is denoted by juxtaposition, ε is the neutral element.

3.1.6. Computational semantics S ,S ′, . . . ∈ ℘(H) are possibly infinite sets of finite or in-
finite event traces satisfying the following well-formedness conditions Wf1(S) toWf7(S).

— Events are unique in any event trace t of the semantics S (for brevity, we leave the
quantification ∀t1, t2, t3 ∈ E∗ . ∀e, e′ ∈ E . ... implicit).

∀t ∈ S . (t = t1 e t2 e
′ t3) =⇒ (e ̸= e′) . (Wf1(S))

— All shared variables x ∈ X are assumed to be initialized once and only once as
recorded by initialization write events w(start, x) (which can be read from as recorded
by an event rf(w(start, x), r(p, x))).

∀t ∈ S . ∀x ∈ X .(∃t1, t2 = t1 w(start, x) t2) ∧ (Wf2(S))
(!t1, t2, t3 . t = t1 w(start, x) t2 w′(start, x) t3) .

— Finite event traces t of S are maximal (i.e. describe terminated executions where no
further event can occur).

∀t ∈ S ∩ E+ . !t′ ∈ H . t t′ ∈ S . (Wf3(S))
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Fig. 1. Time-travel communication
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— The set of all events e(p), e′(p), . . . ∈ E(p) of process p include read, write, and com-
munication events. p . . . ∈ Pi,

(⋃

x∈X

W(p, x) ∪
⋃

x∈X

R(p, x) ∪
⋃

x∈X,q∈Pi∪{start}

K(q, p, x
)
⊆ E(p) .

E(p) also can contain computation events (register events such as assignments or
tests), marker events (fences, beginning and end of read-modify-write instructions),
etc. We let e, e′, . . . ∈ E ! ⋃

p∈Pi∪{start,finish} E(p) be all possible events.

3.1.4. Finite and infinite sequences

— S+ is the set of finite non-empty sequences s of elements sk, k ∈ [1, n], of length
n " 1 of set S (written s = ⟨sk | k ∈ [1, n]⟩);

— S∞ is the set of infinite sequences s of elements of S (written s = ⟨sk | k ∈ N+⟩,
where N+ is the set of strictly positive naturals);
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Fig. 2. Time-travel communication

— The set of all events e(p), e′(p), . . . ∈ E(p) of process p
(1) must include read, write, and communication events: ∀p . . . ∈ Pi,

(⋃

x∈X

W(p, x) ∪
⋃

x∈X

Rf(p, x) ∪
⋃

x∈X,q∈Pi∪{start}

K(q, p, x
)
⊆ E(p) .

(2) may also include events that are not directly involved in communication, e.g.
computation events (register events such as assignments or tests) or marker
events (fences, beginning and end of read-modify-write instructions).

In the following, e, e′, . . . ∈ E ! ⋃
p∈Pi∪{start,finish} E(p) can be any possible events.

3.2.4. Finite and infinite sequences.

— S+ is the set of finite non-empty sequences s of elements sk, k ∈ [1, n], of length n " 1
of set S (written s = ⟨sk | k ∈ [1, n]⟩). S∗ ! S+ ∪ {ε} includes the empty sequence ε;

— S∞ is the set of infinite sequences s of elements of S (written s = ⟨sk | k ∈ N+⟩,
where N+ is the set of strictly positive naturals).

— S+∞ ! S+ ∪ S∞ is the set of finite non-empty or infinite sequences and S∗∞ !
S∗ ∪ S∞ is the set of finite or infinite sequences.

3.2.5. Event traces t, t′, . . . ∈ E+∞ are non-empty finite sequences of events in E+ or
infinite sequences of events in E∞. t1, t2, . . . ∈ E∗∞ may be the empty sequence ε.
Concatenation is denoted by juxtaposition, ε is the neutral element.

3.2.6. Computational semantics S ,S ′, . . . ∈ Dcp are possibly infinite sets of finite or infin-
ite event traces satisfying the following well-formedness conditions Wf1(S) to Wf7(S).
— Uniqueness: events are unique in any event trace t of the semantics S .

∀t ∈ S . ∀t1, t2 ∈ E∗, t3 ∈ E∗∞ . ∀e, e′ ∈ E . (t = t1 e t2 e
′ t3) =⇒ (e ̸= e′) . (Wf1(S))

— Initialisation: all shared variables x ∈ X are assumed to be initialised once and only
once at execution start, as recorded by initialisation write events w(start, x) (which
can be read from as recorded by an event rf[w(start, x), r(p, x)]).
∀t ∈ S . ∀x ∈ X . (Wf2(S))
(∃t1 ∈ E∗, t2 ∈ E∗∞ . t = t1 w(start, x) t2) ∧
(∀t1, t2 ∈ E∗, t3 ∈ E∗∞ . (t = t1 ϵ t2 w(start, x) t3) =⇒ (ϵ ∈W(start, y) ∧ y ̸= x)) .

— Maximality: finite event traces t of S are maximal (i.e. describe terminated executions
where no further event can occur).

∀t ∈ S ∩ E+ . !t′ ∈ E+∞ . t t′ ∈ S . (Wf3(S))
— Finalisation: a distinguished finish process creates read events r(finish, x) in the finite

traces to read the final value of shared variables x. The computational semantics is
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Analytic semantic specification
• Anarchic semantics:

describes computations, no constraints on 
communications

• cat specification (Jade Alglave & Luc Maranget):

imposes architecture-dependent communication 
constraints

• Hierarchy of anarchic semantics:
many different styles to describe the same 
computations (e.g. interleaved versus true parallelism)
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— t1 r t2 rf[w, r] t3 w t4 or t1 r t2 w t3 rf[w, r] t4, then the read r has to guess the value
later written by the write w;

— t1 rf[w, r] t2 r t3 w t4 or t1 rf[w, r] t2 w t3 r t4, then the read-from event rf[w, r] has to
guess the value later written by the write w. TODO: If faut assurer que le guess FiXme

Fatal:
jade: en
ecrivant
ca je me
demande
pourquoi
le rf
devrait
se preoc-
cuper des
valeurs?

par le read correspond a la valeur d’un write qu’il lit et c’est ce que fait le rf ca
doit etre sur la meme variable et la meme valeur

A semantics S!P" of a program P is well-formed if and only if it can be abstracted
into an event trace semantics Scp!P" ∈ Dcp such that all event traces t ∈ S satisfy
requirements Wf1(t) to Wf7(t). The semantic domain Dcp of well-formed computational
semantics is

Dcp ! {S ∈ ℘(E+∞) | Wf1(S) ∧ . . . ∧Wf7(S)} (8)

REMARK 3.2 TODO: Cette remarque est pas vraiment indispendable pour les connais-
seurs, bien que pas evidente pour moi au debut The idea behind classical trace se-
mantics [Wegner 1972] for parallel programs is that a trace is the interleaving of the
sequential execution traces of the processes [Keller 1976; Hennessy and Plotkin 1979;
Lamport 1979]. So to paraphrase [Lamport 1979], “The result of any execution is the
same as if the operations of all the processors were executed in some sequential order,
and the operations of each individual processor appear in this sequence in the or-
der specified by its program.”. However the execution traces of well-formed semantics
S ∈ Dcp satisfying Wf1(t) to Wf7(t) for all traces t ∈ S of the semantics, although satisfy-
ing [Lamport 1979]’s above informal definition, are not necessarily “sequentially con-
sistent”. This is because there is an implicit synchrony hypothesis in [Lamport 1979]’s
definition: the read of a variable is performed immediately (without delay between the
launching of the read action and its satisfaction by a write action) and always takes
its value from the last write to that variable (where last is with respect to the past
interleaved actions of processes).

Our operational semantics decouples the event r(p, x) of launching a read action of
a shared variable x by process p from the satisfaction rf[w(q, x), r(p, x)] of this read by
a write event w(q, x) to x by process q. So actions of a process are executed in program
order, although their effects may not be observed in that program order.

The above definition of sequential consistency by [Lamport 1979] implicitly makes
an additional requirement that the read event r(p, x) should immediately be followed
in the trace by a communication event rf[w(q, x), r(p, x)]. Moreover, the write event
w(q, x) from which the read event r(p, x) takes its value should be the last write of x
preceeding the read event r(p, x) in the trace.

All traces with this additional restriction on trace events satisfy the cat specific-
ation of sequential consistency (as proved in [Alglave 2010] by comparison with a
classical interleaved semantics à la [Lamport 1979]). The converse is not true since
communication synchrony is not strictly mandatory for sequential consistency. A re-
laxed definition e.g. would allow unrelated events to occur between the read r(p, x) and
communication events rf[w(q, x), r(p, x)].

EXAMPLE 3.3 Consider the LISA LB (load buffer) program
{ x = 0; y = 0; }
P0 | P1 ;
r[] r1 x | r[] r2 y ;
w[] y 1 | w[] x 1 ;
exists(0:r1=1 /\ 1:r2=1)

The computational semantics Scp!LB" of LB satisfying conditions Wf1(Scp!LB") to
Wf7(Scp!LB") contains the following event trace t =
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t = w(start, x, 0) w(start, y, 0) r(P0, x, 1) rf[w(P1, x, 1), r(P0, x, 1)]) w(P0, y, 1) r(P1, y, 1)
w(P1, x, 1) rf[w(P0, y, 1), r(P1, y, 1)] r(finish, x) rf[w(P1, x, 1), r(finish, x, 1)]
r(finish, y, 1) rf[w(P0, y, 1), r(finish, y, 1)]

where we have added the communicated values for clarity.

3.3. Abstraction to a Candidate Execution
The candidate execution abstraction αΞ ∈ ℘(E+∞) "→ Ξ extracts a candidate execution
αΞ(t) ∈ Ξ from an event trace t ∈ E+∞. This candidate execution αΞ(t) is used by the
cat specification language semantics to decide whether that event trace t is feasible in
the weak consistency model defined by a cat communication specification.

3.3.1. Events of an event trace.
The candidate execution abstraction extracts the events of an event trace ignoring

communication events (which belong to the set K !
⋃

x∈X,q∈Pi∪{start},p∈Pi∪{finish}

K(q, p, x)

of communication events).

αe(t) ! {e ∈ E \ K | ∃t1, t2 . t = t1 e t2}1 .

Communication events are abstracted away in cat specifications. The events αe(t) of
an event trace t can be partitioned into write, read, branch, fence events, etc.

3.3.2. Program order of an event trace. The candidate execution abstraction extracts
the program order of an event trace, more precisely the program execution order, i.e.
the pair of events generated by execution of successive actions of a process, thus ig-
noring communication events2. By convention, the initial write events w(start, x) are
before any process event or final read in the program order.

αpo(t) !
⋃

p∈Pi

{⟨e, e′⟩ | ∃t1, t2, t3 . t = t1 e t2 e′ t3 ∧ e ∈W(start) ∪ (E(p) \ K) ∧
e′ ∈ (E(p) \ K) ∪R(finish)}3,4 .

3.3.3. Read-from relation. The candidate execution abstraction extracts the read-from
relation of an event trace modeling who reads from where.

αrf(t) !
⋃

q∈Pi∪{start}, p∈Pi∪{finish}, x∈X

{⟨w(q, x), r(p, x)⟩ | ∃t1, t2 . t = t1 rf[w(q, x), r(p, x)] t2} .

This records the effect of communications but ignores when they happen.

1The cat language does not allow to refer to final reads in R(finish).
2By program order, one must understand order of execution of actions in the program, not necessarily the
order in which they appear in the program text, although they are often the same. For a counter-example
of the difference between the order of actions in the program and during execution, one can imagine a silly
command execute_next;a;b;c; which semantics would to be to execute action b, then a, and then c. So the
program syntactic order is a, then b, and then c while the program execution order is b, then a, and then c.
3The herd7 tool considers the program order to be αpo(t) \ (E×R(finish)) instead.
4The initial writes are not ordered between themselves by the program order and similarly for the final
reads. This is because if a trace of the semantics has the initial writes and final reads in some order, re-
shuffling them in any other order is also a valid trace of the semantics, as shown by the exact computation
parallel abstraction of Sect. 16.
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t = w(start, x, 0) w(start, y, 0) r(P0, x, 1) rf[w(P1, x, 1), r(P0, x, 1)]) w(P0, y, 1) r(P1, y, 1)
w(P1, x, 1) rf[w(P0, y, 1), r(P1, y, 1)] r(finish, x) rf[w(P1, x, 1), r(finish, x, 1)]
r(finish, y, 1) rf[w(P0, y, 1), r(finish, y, 1)]

where we have added the communicated values for clarity.

3.3. Abstraction to a Candidate Execution
The candidate execution abstraction αΞ ∈ ℘(E+∞) "→ Ξ extracts a candidate execution
αΞ(t) ∈ Ξ from an event trace t ∈ E+∞. This candidate execution αΞ(t) is used by the
cat specification language semantics to decide whether that event trace t is feasible in
the weak consistency model defined by a cat communication specification.

3.3.1. Events of an event trace.
The candidate execution abstraction extracts the events of an event trace ignoring

communication events (which belong to the set K !
⋃

x∈X,q∈Pi∪{start},p∈Pi∪{finish}

K(q, p, x)

of communication events).

αe(t) ! {e ∈ E \ K | ∃t1, t2 . t = t1 e t2}1 .

Communication events are abstracted away in cat specifications. The events αe(t) of
an event trace t can be partitioned into write, read, branch, fence events, etc.

3.3.2. Program order of an event trace. The candidate execution abstraction extracts
the program order of an event trace, more precisely the program execution order, i.e.
the pair of events generated by execution of successive actions of a process, thus ig-
noring communication events2. By convention, the initial write events w(start, x) are
before any process event or final read in the program order.

αpo(t) !
⋃

p∈Pi

{⟨e, e′⟩ | ∃t1, t2, t3 . t = t1 e t2 e′ t3 ∧ e ∈W(start) ∪ (E(p) \ K) ∧
e′ ∈ (E(p) \ K) ∪R(finish)}3,4 .

3.3.3. Read-from relation. The candidate execution abstraction extracts the read-from
relation of an event trace modeling who reads from where.

αrf(t) !
⋃

q∈Pi∪{start}, p∈Pi∪{finish}, x∈X

{⟨w(q, x), r(p, x)⟩ | ∃t1, t2 . t = t1 rf[w(q, x), r(p, x)] t2} .

This records the effect of communications but ignores when they happen.

1The cat language does not allow to refer to final reads in R(finish).
2By program order, one must understand order of execution of actions in the program, not necessarily the
order in which they appear in the program text, although they are often the same. For a counter-example
of the difference between the order of actions in the program and during execution, one can imagine a silly
command execute_next;a;b;c; which semantics would to be to execute action b, then a, and then c. So the
program syntactic order is a, then b, and then c while the program execution order is b, then a, and then c.
3The herd7 tool considers the program order to be αpo(t) \ (E×R(finish)) instead.
4The initial writes are not ordered between themselves by the program order and similarly for the final
reads. This is because if a trace of the semantics has the initial writes and final reads in some order, re-
shuffling them in any other order is also a valid trace of the semantics, as shown by the exact computation
parallel abstraction of Sect. 16.
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Part IV: HIERARCHY OF INTERLEAVED TRACE SEMANTICS
7. GENERIC, UNSPECIFIED LOCALITY, UNSPECIFIED PREDICTABILITY, TIME-TRAVEL,

STATELESS, MAXIMAL, INTERLEAVED, STEPLESS TRACE SEMANTICS
Trace semantics are classical defined by state-based transition system [Keller 1976;
Hennessy and Plotkin 1979; Lamport 1979]. Instead, we start with an axiomatic defin-
ition of an event trace semantics. It will be shown in Sect. 18 and 31 that states and
transitions are abstractions of this event trace semantics. Moreover this event trace
semantics is generic meaning that the domains of (boolean) data as well as the expres-
sion and control evaluation rules are left as formal parameters.

7.1. Axiomatic definition of a generic semantics
The formal definition of a generic trace semantics S!P" of a program P = !P1∥. . . ∥Pn" ∈
Pg is of the form

S!P" ! λ ⟨B, sat, D, I, S, V , E , N ⟩ . {τ ∈ T!P"|∼= | Wfn (τ ) ∧ . . . ∧Wfm (τ )}
where the considered set of traces T!P", as well as the well-formedness
conditions Wfn (τ ), . . . , Wfm (τ ) implicitly depend upon the formal parameters
⟨B, sat, D, I, S, V , E , N ⟩. The type and meaning of the formal parameters ⟨B, sat, D,
I, S, V , E , N ⟩ is specified in Sect. 7.3. In particular the [boolean] expression evaluation
E must satisfy the axioms of Sect. 7.4. The traces τ ∈ T|∼= are generated by interleaved
and maximal execution of the program processes (i.e. traces are finite terminated or
infinite). A feasible trace τ satisfies conditions Wfn (τ ) ∧ . . . ∧Wfm (τ ) and belongs to the
semantics (τ ∈ S!P"). The trace τ is infeasible otherwise (τ ∈ T|∼= \ S!P").

7.2. The generic, unspecified locality, unspecified predictability, time-travel, stateless,
maximal, interleaved, stepless trace semantics

The generic, unspecified locality, unspecified predictability, time-travel, stateless, max-
imal, interleaved, stepless trace semantics is t ∈ S⊥!P"

S⊥!P" ! λ ⟨B, sat, D, I, S, V , E , N ⟩ . {τ ∈ T!P"|∼= | Wf15(τ ) ∧ . . . ∧Wf29(τ )}
where the conditions Wf15(τ ) to Wf29(τ ) on the feasible execution traces τ ∈ S⊥!P" are
given in Sect. 7.5. The generic semantics S⊥!P" is the infimum of our hierarchy of
semantics (see Fig. 5). The generic semantics S⊥!P" ∈ D⊥!P" is the ⊆-largest semantics
in the generic semantic domain
D⊥!P" ! λ ⟨B, sat, D, I, S, V , E , N ⟩ . {S ∈ ℘(T!P"|∼=) | ∀τ ∈ S . Wf15(τ ) ∧ . . . ∧Wf29(τ )} .

7.3. Formal parameters of the generic semantics
The parameters are the following.
Booleans B. The set B of boolean values (e.g. {false, true} or symbolic boolean expres-

sions);
Satisfiability sat. sat(b) holds when the boolean expression b may be the truth value

(e.g. B ! {true, false}, sat(true) holds but not sat(false) or for symbolic boolean expres-
sions, sat is the existence of a model);

Data D. The set D of ground values/data manipulated by programs (e.g. Z, machine
integers, symbolic expressions interpreted for integers, or symbolic uninterpreted
expressions);

Interpretation of operations I. The language primitives are given a semantics.
— The interpretation I!d" ∈ D of data denotations d ∈ D (including the initial value

I!0"),
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3.3.4. Initial writes. By the initialisation condition Wf2(S), all shared variables are as-
sumed to be initialised. The candidate execution abstraction extracts the initial writes
of an event trace.

αiw(t) ! {w(start, x) | x ∈ X ∧ ∃t1, t2 . t = t1 w(start, x) t2} .

3.3.5. Final writes. By the finalisation condition Wf4(S), all the final values variables
are assumed to be read upon program termination. The candidate execution abstrac-
tion extracts the final writes satisfying these final reads of an event trace.

αfw(t) !
⋃

x∈X

{w(p, x) | x ∈ X ∧ ∃t1, t2 . t = t1 rf[w(p, x), r(finish, x)] t2} .

3.3.6. cat candidate executions. The cat candidate executions are
Ξ ! ℘(E \ K)× ℘((E \ K)2)× ℘(W×Rf)× ℘(W)× ℘(W)

αΞ ∈ E+∞ → Ξ

αΞ(t) ! ⟨αe(t), αpo(t), αrf(t), αiw(t), αfw(t)⟩ ∈ Ξ

αΞ ∈ Dcp → ℘(E+∞ ×Ξ)

αΞ(S) ! {⟨t, αΞ(t)⟩ | t ∈ S} .

EXAMPLE 3.4 Continuing Ex. 3.3, we have
αe(t) = {w(start, x, 0), w(start, y, 0), r(P0, x, 1), w(P0, y, 1), r(P1, y, 1), w(P1, x, 1),

r(finish, x), r(finish, y, 1)}
αpo(t) = {⟨w(start, x, 0), r(P0, x, 1)⟩, ⟨w(start, x, 0), w(P0, y, 1)⟩, ⟨w(start, x, 0), r(P1, y, 1)⟩,

⟨w(start, x, 0), w(P1, x, 1)⟩, ⟨w(start, x, 0), r(finish, x)⟩, ⟨w(start, x, 0), r(finish, y, 1)⟩,
⟨w(start, y, 0), r(P0, x, 1)⟩, ⟨w(start, y, 0), w(P0, y, 1)⟩, ⟨w(start, y, 0), r(P1, y, 1)⟩,
⟨w(start, y, 0), w(P1, x, 1)⟩, ⟨w(start, y, 0), r(finish, x)⟩, ⟨w(start, y, 0), r(finish, y, 1)⟩,
⟨r(P0, x, 1), w(P0, y, 1)⟩, ⟨r(P0, x, 1), r(P1, y, 1)⟩, ⟨r(P0, x, 1), w(P1, x, 1)⟩,
⟨r(P0, x, 1), r(finish, x)⟩, ⟨r(P0, x, 1), r(finish, y, 1)⟩, ⟨w(P0, y, 1), r(P1, y, 1)⟩,
⟨w(P0, y, 1), w(P1, x, 1)⟩, ⟨w(P0, y, 1), r(finish, x)⟩, ⟨w(P0, y, 1), r(finish, y, 1)⟩,
⟨r(P1, y, 1), w(P1, x, 1)⟩, ⟨r(P1, y, 1), r(finish, x)⟩, ⟨r(P1, y, 1), r(finish, y, 1)⟩,
⟨w(P1, x, 1), r(finish, x)⟩, ⟨w(P1, x, 1), r(finish, y, 1)⟩}

αrf(t) = {⟨w(P1, x, 1), r(P0, x, 1)⟩), ⟨w(P0, y, 1), r(P1, y, 1)⟩, ⟨w(P1, x, 1), r(finish, x, 1)⟩,
⟨w(P0, y, 1), r(finish, y, 1)⟩}

αiw(t) = {w(start, x, 0), w(start, y, 0)}
αfw(t) = {w(P1, x, 1), w(P0, y, 1)} .

This is a non-SC candidate execution because of its cycle in union of program order
and communications [Alglave 2015]:

Exercise: SC per location with load-load hazard Certain architectures,
such as Sparc RMO [11] allow what is sometimes called load-load hazard, i.e. a
situation where the coRR test that we’ve just seen is allowed to yield the result
0:r1=1; 0:r2=0;.

How do you think we can build a check that forbids all tests coWW, coRW1,
coRW2 and coWR, but allows the test coRR?

4.2 No thin air

The second principle is called no thin air. Intuitively, this principle forbids
scenarios where a read can take its value from a write that depends on this read.
The word “depends” can be interpreted in many different ways; let’s make that
precise. Consider the following litmus test:

Bell LB
{
x = 0;
y = 0;
}
P0 | P1 ;
r[] r1 x | r[] r2 y ;
w[] y 1 | w[] x 1 ;

exists (0:r1 = 1 /\ 1:r2 = 1)

In the LB test, we have two threads P0 and P1. P0 reads x and places the
result into register r1, then writes 1 to y. P1 reads y and places the result into
register r2, then writes 1 to x. At the end we’re asking whether it is possible
for both registers to contain the value 1, i.e. if the two reads can read from the
po-later writes. This is perfectly well possible on ARM or Nvidia machines for
example [5, 3], because the read-write pairs on each thread can be reordered.

Let’s run herd on this test with our current cat file (find the lb.litmus file
in the litmus test drop box); we get the following histogram:

Test LB Allowed
States 4
0:r1=0; 1:r2=0;
0:r1=0; 1:r2=1;
0:r1=1; 1:r2=0;
0:r1=1; 1:r2=1;
Ok

The execution corresponding to the situation we asked about in the test is
as follows; note that it’s a non-SC execution because of its cycle in union of
program order and communications:

lb

P0

a: Rx=1

b: Wy=1

c: Ry=1

P1

d: Wx=1

po
rf rf

po

18

which would be invalid with the following cat specification

acyclic (po | rf)+
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3.3.4. Initial writes. By the initialisation condition Wf2(S), all shared variables are as-
sumed to be initialised. The candidate execution abstraction extracts the initial writes
of an event trace.

αiw(t) ! {w(start, x) | x ∈ X ∧ ∃t1, t2 . t = t1 w(start, x) t2} .

3.3.5. Final writes. By the finalisation condition Wf4(S), all the final values variables
are assumed to be read upon program termination. The candidate execution abstrac-
tion extracts the final writes satisfying these final reads of an event trace.

αfw(t) !
⋃

x∈X

{w(p, x) | x ∈ X ∧ ∃t1, t2 . t = t1 rf[w(p, x), r(finish, x)] t2} .

3.3.6. cat candidate executions. The cat candidate executions are
Ξ ! ℘(E \ K)× ℘((E \ K)2)× ℘(W×Rf)× ℘(W)× ℘(W)

αΞ ∈ E+∞ → Ξ

αΞ(t) ! ⟨αe(t), αpo(t), αrf(t), αiw(t), αfw(t)⟩ ∈ Ξ

αΞ ∈ Dcp → ℘(E+∞ ×Ξ)

αΞ(S) ! {⟨t, αΞ(t)⟩ | t ∈ S} .

EXAMPLE 3.4 Continuing Ex. 3.3, we have
αe(t) = {w(start, x, 0), w(start, y, 0), r(P0, x, 1), w(P0, y, 1), r(P1, y, 1), w(P1, x, 1),

r(finish, x), r(finish, y, 1)}
αpo(t) = {⟨w(start, x, 0), r(P0, x, 1)⟩, ⟨w(start, x, 0), w(P0, y, 1)⟩, ⟨w(start, x, 0), r(P1, y, 1)⟩,

⟨w(start, x, 0), w(P1, x, 1)⟩, ⟨w(start, x, 0), r(finish, x)⟩, ⟨w(start, x, 0), r(finish, y, 1)⟩,
⟨w(start, y, 0), r(P0, x, 1)⟩, ⟨w(start, y, 0), w(P0, y, 1)⟩, ⟨w(start, y, 0), r(P1, y, 1)⟩,
⟨w(start, y, 0), w(P1, x, 1)⟩, ⟨w(start, y, 0), r(finish, x)⟩, ⟨w(start, y, 0), r(finish, y, 1)⟩,
⟨r(P0, x, 1), w(P0, y, 1)⟩, ⟨r(P0, x, 1), r(P1, y, 1)⟩, ⟨r(P0, x, 1), w(P1, x, 1)⟩,
⟨r(P0, x, 1), r(finish, x)⟩, ⟨r(P0, x, 1), r(finish, y, 1)⟩, ⟨w(P0, y, 1), r(P1, y, 1)⟩,
⟨w(P0, y, 1), w(P1, x, 1)⟩, ⟨w(P0, y, 1), r(finish, x)⟩, ⟨w(P0, y, 1), r(finish, y, 1)⟩,
⟨r(P1, y, 1), w(P1, x, 1)⟩, ⟨r(P1, y, 1), r(finish, x)⟩, ⟨r(P1, y, 1), r(finish, y, 1)⟩,
⟨w(P1, x, 1), r(finish, x)⟩, ⟨w(P1, x, 1), r(finish, y, 1)⟩}

αrf(t) = {⟨w(P1, x, 1), r(P0, x, 1)⟩), ⟨w(P0, y, 1), r(P1, y, 1)⟩, ⟨w(P1, x, 1), r(finish, x, 1)⟩,
⟨w(P0, y, 1), r(finish, y, 1)⟩}

αiw(t) = {w(start, x, 0), w(start, y, 0)}
αfw(t) = {w(P1, x, 1), w(P0, y, 1)} .

This is a non-SC candidate execution because of its cycle in union of program order
and communications [Alglave 2015]:

Exercise: SC per location with load-load hazard Certain architectures,
such as Sparc RMO [11] allow what is sometimes called load-load hazard, i.e. a
situation where the coRR test that we’ve just seen is allowed to yield the result
0:r1=1; 0:r2=0;.

How do you think we can build a check that forbids all tests coWW, coRW1,
coRW2 and coWR, but allows the test coRR?

4.2 No thin air

The second principle is called no thin air. Intuitively, this principle forbids
scenarios where a read can take its value from a write that depends on this read.
The word “depends” can be interpreted in many different ways; let’s make that
precise. Consider the following litmus test:

Bell LB
{
x = 0;
y = 0;
}
P0 | P1 ;
r[] r1 x | r[] r2 y ;
w[] y 1 | w[] x 1 ;

exists (0:r1 = 1 /\ 1:r2 = 1)

In the LB test, we have two threads P0 and P1. P0 reads x and places the
result into register r1, then writes 1 to y. P1 reads y and places the result into
register r2, then writes 1 to x. At the end we’re asking whether it is possible
for both registers to contain the value 1, i.e. if the two reads can read from the
po-later writes. This is perfectly well possible on ARM or Nvidia machines for
example [5, 3], because the read-write pairs on each thread can be reordered.

Let’s run herd on this test with our current cat file (find the lb.litmus file
in the litmus test drop box); we get the following histogram:

Test LB Allowed
States 4
0:r1=0; 1:r2=0;
0:r1=0; 1:r2=1;
0:r1=1; 1:r2=0;
0:r1=1; 1:r2=1;
Ok

The execution corresponding to the situation we asked about in the test is
as follows; note that it’s a non-SC execution because of its cycle in union of
program order and communications:

lb

P0

a: Rx=1

b: Wy=1

c: Ry=1

P1

d: Wx=1

po
rf rf

po

18

which would be invalid with the following cat specification

acyclic (po | rf)+
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t = w(start, x, 0) w(start, y, 0) r(P0, x, 1) rf[w(P1, x, 1), r(P0, x, 1)]) w(P0, y, 1) r(P1, y, 1)
w(P1, x, 1) rf[w(P0, y, 1), r(P1, y, 1)] r(finish, x) rf[w(P1, x, 1), r(finish, x, 1)]
r(finish, y, 1) rf[w(P0, y, 1), r(finish, y, 1)]

where we have added the communicated values for clarity.

3.3. Abstraction to a Candidate Execution
The candidate execution abstraction αΞ ∈ ℘(E+∞) "→ Ξ extracts a candidate execution
αΞ(t) ∈ Ξ from an event trace t ∈ E+∞. This candidate execution αΞ(t) is used by the
cat specification language semantics to decide whether that event trace t is feasible in
the weak consistency model defined by a cat communication specification.

3.3.1. Events of an event trace.
The candidate execution abstraction extracts the events of an event trace ignoring

communication events (which belong to the set K !
⋃

x∈X,q∈Pi∪{start},p∈Pi∪{finish}

K(q, p, x)

of communication events).

αe(t) ! {e ∈ E \ K | ∃t1, t2 . t = t1 e t2}1 .

Communication events are abstracted away in cat specifications. The events αe(t) of
an event trace t can be partitioned into write, read, branch, fence events, etc.

3.3.2. Program order of an event trace. The candidate execution abstraction extracts
the program order of an event trace, more precisely the program execution order, i.e.
the pair of events generated by execution of successive actions of a process, thus ig-
noring communication events2. By convention, the initial write events w(start, x) are
before any process event or final read in the program order.

αpo(t) !
⋃

p∈Pi

{⟨e, e′⟩ | ∃t1, t2, t3 . t = t1 e t2 e′ t3 ∧ e ∈W(start) ∪ (E(p) \ K) ∧
e′ ∈ (E(p) \ K) ∪R(finish)}3,4 .

3.3.3. Read-from relation. The candidate execution abstraction extracts the read-from
relation of an event trace modeling who reads from where.

αrf(t) !
⋃

q∈Pi∪{start}, p∈Pi∪{finish}, x∈X

{⟨w(q, x), r(p, x)⟩ | ∃t1, t2 . t = t1 rf[w(q, x), r(p, x)] t2} .

This records the effect of communications but ignores when they happen.

1The cat language does not allow to refer to final reads in R(finish).
2By program order, one must understand order of execution of actions in the program, not necessarily the
order in which they appear in the program text, although they are often the same. For a counter-example
of the difference between the order of actions in the program and during execution, one can imagine a silly
command execute_next;a;b;c; which semantics would to be to execute action b, then a, and then c. So the
program syntactic order is a, then b, and then c while the program execution order is b, then a, and then c.
3The herd7 tool considers the program order to be αpo(t) \ (E×R(finish)) instead.
4The initial writes are not ordered between themselves by the program order and similarly for the final
reads. This is because if a trace of the semantics has the initial writes and final reads in some order, re-
shuffling them in any other order is also a valid trace of the semantics, as shown by the exact computation
parallel abstraction of Sect. 16.
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3.4. Abstraction to a semantics with weak consistency model
3.4.1. The semantics of a cat weak consistency model specification. The communication

semantics
!cat" ∈ Ξ → B

is specified in [Alglave et al. 2015] (where B ! {true, false} is the set of booleans). A
candidate execution Ξ ∈ Ξ is said to be accepted or valid if and only if !cat"Ξ holds.
It is rejected or invalid if and only if ¬ !cat"Ξ.

3.4.2. Computational semantics with weak consistency model. The computational se-
mantics S restricted by a weak consistency model specified by cat is then α !cat" ◦
αΞ(S!P") where

α !cat"(S) ! {t | ⟨t, Ξ⟩ ∈ S ∧ !cat"(Ξ)} . (Def. 9)

The concurrent execution abstractions are Galois connections.

LEMMA 3.5 ⟨℘(H), ⊆⟩ −−−−→←−−−−
αΞ

γΞ ⟨℘(Ξ), ⊆⟩ where γΞ(C) ! {t ∈ H | αΞ(t) ∈ C}.

PROOF OF LEM. 3.7. By LEM. 2.1, this is a Galois connection.

LEMMA 3.6 ⟨℘(H), ⊆⟩ −−−−−−−−−−−−→←−−−−−−−−−−−−
α !cat"[αΞ ]

γ !cat"[αΞ ]

⟨℘(H), ⊆⟩ where γ !cat"[αΞ ]Y ! {t ∈ H |

!cat" (αΞ(t)) =⇒ t ∈ Y }.

PROOF OF LEM. 3.7. By LEM. 2.3 this is a subset abstraction. For all X,Y ∈ ℘(H),

α !cat"[αΞ ]X ⊆ Y

⇐⇒ {t ∈ X | !cat" (αΞ(t)) ⊆ Y } #def. α !cat"[αΞ ]$
⇐⇒ ∀t ∈ X . !cat" (αΞ(t)) =⇒ t ∈ Y #def. ⊆$
⇐⇒ X ⊆ {t ∈ H | !cat" (αΞ(t)) =⇒ t ∈ Y } #def. ⊆$
⇐⇒ X ⊆ γ !cat"[αΞ ]Y #def. γ !cat"[αΞ ]$

LEMMA 3.7 α !cat"[αΞ ] = γΞ ◦ !cat" ◦ αΞ .

PROOF OF LEM. 3.7. For all S ∈ ℘(H),

γΞ ◦ !cat" ◦ αΞ(S)

= γΞ( !cat"({αΞ(t) | t ∈ S} #def. function composition ◦ and αΞ$
= γΞ({αΞ(t) | t ∈ S ∧ !cat"(αΞ(t))} #def. !cat"X ! {Ξ ∈ X | !cat"Ξ}$
= {t ∈ H | αΞ(t) ∈ {αΞ(t) | t ∈ S ∧ !cat"(αΞ(t))}} #def. γΞ$
= {t ∈ H | t ∈ S ∧ !cat"(αΞ(t))} #def. ∈$
= α !cat"[αΞ ]S #def. α !cat"[αΞ ]$

3.5. Preservation of a semantics with weak consistency model by abstraction
The interest of specifying weak consistency models on the candidate execution ab-
straction αΞ(S) of the semantics S rather than directly on the semantics S itself, is,
as shown by the forthcoming hierarchy of semantics, that semantics expressed in com-
pletely different styles can all be abstracted to the same candidate execution semantics
on which a single cat specification does operate, with exactly the same effect on all se-
mantics. So the specification of the weak consistency model is factorized for all possible
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is specified in [Alglave et al. 2015] (where B ! {true, false} is the set of booleans). A
candidate execution Ξ ∈ Ξ is said to be accepted or valid if and only if !cat"Ξ holds.
It is rejected or invalid if and only if ¬ !cat"Ξ.

3.4.2. Computational semantics with weak consistency model. The computational se-
mantics S restricted by a weak consistency model specified by cat is then α !cat" ◦
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= γΞ( !cat"({αΞ(t) | t ∈ S} #def. function composition ◦ and αΞ$
= γΞ({αΞ(t) | t ∈ S ∧ !cat"(αΞ(t))} #def. !cat"X ! {Ξ ∈ X | !cat"Ξ}$
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= {t ∈ H | t ∈ S ∧ !cat"(αΞ(t))} #def. ∈$
= α !cat"[αΞ ]S #def. α !cat"[αΞ ]$

3.5. Preservation of a semantics with weak consistency model by abstraction
The interest of specifying weak consistency models on the candidate execution ab-
straction αΞ(S) of the semantics S rather than directly on the semantics S itself, is,
as shown by the forthcoming hierarchy of semantics, that semantics expressed in com-
pletely different styles can all be abstracted to the same candidate execution semantics
on which a single cat specification does operate, with exactly the same effect on all se-
mantics. So the specification of the weak consistency model is factorized for all possible
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3.3.4. Initial writes. By the initialisation condition Wf2(S), all shared variables are as-
sumed to be initialised. The candidate execution abstraction extracts the initial writes
of an event trace.

αiw(t) ! {w(start, x) | x ∈ X ∧ ∃t1, t2 . t = t1 w(start, x) t2} .

3.3.5. Final writes. By the finalisation condition Wf4(S), all the final values variables
are assumed to be read upon program termination. The candidate execution abstrac-
tion extracts the final writes satisfying these final reads of an event trace.

αfw(t) !
⋃

x∈X

{w(p, x) | x ∈ X ∧ ∃t1, t2 . t = t1 rf[w(p, x), r(finish, x)] t2} .

3.3.6. cat candidate executions. The cat candidate executions are
Ξ ! ℘(E \ K)× ℘((E \ K)2)× ℘(W×Rf)× ℘(W)× ℘(W)

αΞ ∈ E+∞ → Ξ

αΞ(t) ! ⟨αe(t), αpo(t), αrf(t), αiw(t), αfw(t)⟩ ∈ Ξ

αΞ ∈ Dcp → ℘(E+∞ ×Ξ)

αΞ(S) ! {⟨t, αΞ(t)⟩ | t ∈ S} .

EXAMPLE 3.4 Continuing Ex. 3.3, we have
αe(t) = {w(start, x, 0), w(start, y, 0), r(P0, x, 1), w(P0, y, 1), r(P1, y, 1), w(P1, x, 1),

r(finish, x), r(finish, y, 1)}
αpo(t) = {⟨w(start, x, 0), r(P0, x, 1)⟩, ⟨w(start, x, 0), w(P0, y, 1)⟩, ⟨w(start, x, 0), r(P1, y, 1)⟩,

⟨w(start, x, 0), w(P1, x, 1)⟩, ⟨w(start, x, 0), r(finish, x)⟩, ⟨w(start, x, 0), r(finish, y, 1)⟩,
⟨w(start, y, 0), r(P0, x, 1)⟩, ⟨w(start, y, 0), w(P0, y, 1)⟩, ⟨w(start, y, 0), r(P1, y, 1)⟩,
⟨w(start, y, 0), w(P1, x, 1)⟩, ⟨w(start, y, 0), r(finish, x)⟩, ⟨w(start, y, 0), r(finish, y, 1)⟩,
⟨r(P0, x, 1), w(P0, y, 1)⟩, ⟨r(P0, x, 1), r(P1, y, 1)⟩, ⟨r(P0, x, 1), w(P1, x, 1)⟩,
⟨r(P0, x, 1), r(finish, x)⟩, ⟨r(P0, x, 1), r(finish, y, 1)⟩, ⟨w(P0, y, 1), r(P1, y, 1)⟩,
⟨w(P0, y, 1), w(P1, x, 1)⟩, ⟨w(P0, y, 1), r(finish, x)⟩, ⟨w(P0, y, 1), r(finish, y, 1)⟩,
⟨r(P1, y, 1), w(P1, x, 1)⟩, ⟨r(P1, y, 1), r(finish, x)⟩, ⟨r(P1, y, 1), r(finish, y, 1)⟩,
⟨w(P1, x, 1), r(finish, x)⟩, ⟨w(P1, x, 1), r(finish, y, 1)⟩}

αrf(t) = {⟨w(P1, x, 1), r(P0, x, 1)⟩), ⟨w(P0, y, 1), r(P1, y, 1)⟩, ⟨w(P1, x, 1), r(finish, x, 1)⟩,
⟨w(P0, y, 1), r(finish, y, 1)⟩}

αiw(t) = {w(start, x, 0), w(start, y, 0)}
αfw(t) = {w(P1, x, 1), w(P0, y, 1)} .

This is a non-SC candidate execution because of its cycle in union of program order
and communications [Alglave 2015]:

Exercise: SC per location with load-load hazard Certain architectures,
such as Sparc RMO [11] allow what is sometimes called load-load hazard, i.e. a
situation where the coRR test that we’ve just seen is allowed to yield the result
0:r1=1; 0:r2=0;.

How do you think we can build a check that forbids all tests coWW, coRW1,
coRW2 and coWR, but allows the test coRR?

4.2 No thin air

The second principle is called no thin air. Intuitively, this principle forbids
scenarios where a read can take its value from a write that depends on this read.
The word “depends” can be interpreted in many different ways; let’s make that
precise. Consider the following litmus test:

Bell LB
{
x = 0;
y = 0;
}
P0 | P1 ;
r[] r1 x | r[] r2 y ;
w[] y 1 | w[] x 1 ;

exists (0:r1 = 1 /\ 1:r2 = 1)

In the LB test, we have two threads P0 and P1. P0 reads x and places the
result into register r1, then writes 1 to y. P1 reads y and places the result into
register r2, then writes 1 to x. At the end we’re asking whether it is possible
for both registers to contain the value 1, i.e. if the two reads can read from the
po-later writes. This is perfectly well possible on ARM or Nvidia machines for
example [5, 3], because the read-write pairs on each thread can be reordered.

Let’s run herd on this test with our current cat file (find the lb.litmus file
in the litmus test drop box); we get the following histogram:

Test LB Allowed
States 4
0:r1=0; 1:r2=0;
0:r1=0; 1:r2=1;
0:r1=1; 1:r2=0;
0:r1=1; 1:r2=1;
Ok

The execution corresponding to the situation we asked about in the test is
as follows; note that it’s a non-SC execution because of its cycle in union of
program order and communications:

lb

P0

a: Rx=1

b: Wy=1

c: Ry=1

P1

d: Wx=1

po
rf rf

po

18

which would be invalid with the following cat specification

acyclic (po | rf)+
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3.3.4. Initial writes. By the initialisation condition Wf2(S), all shared variables are as-
sumed to be initialised. The candidate execution abstraction extracts the initial writes
of an event trace.

αiw(t) ! {w(start, x) | x ∈ X ∧ ∃t1, t2 . t = t1 w(start, x) t2} .

3.3.5. Final writes. By the finalisation condition Wf4(S), all the final values variables
are assumed to be read upon program termination. The candidate execution abstrac-
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scenarios where a read can take its value from a write that depends on this read.
The word “depends” can be interpreted in many different ways; let’s make that
precise. Consider the following litmus test:
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y = 0;
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exists (0:r1 = 1 /\ 1:r2 = 1)
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register r2, then writes 1 to x. At the end we’re asking whether it is possible
for both registers to contain the value 1, i.e. if the two reads can read from the
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example [5, 3], because the read-write pairs on each thread can be reordered.

Let’s run herd on this test with our current cat file (find the lb.litmus file
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3.4. Abstraction to a semantics with weak consistency model
3.4.1. The semantics of a cat weak consistency model specification. The communication

semantics
!cat" ∈ Ξ → B

is specified in [Alglave et al. 2015] (where B ! {true, false} is the set of booleans). A
candidate execution Ξ ∈ Ξ is said to be accepted or valid if and only if !cat"Ξ holds.
It is rejected or invalid if and only if ¬ !cat"Ξ.

3.4.2. Computational semantics with weak consistency model. The computational se-
mantics S restricted by a weak consistency model specified by cat is then α !cat" ◦
αΞ(S!P") where

α !cat"(S) ! {t | ⟨t, Ξ⟩ ∈ S ∧ !cat"(Ξ)} . (Def. 9)

The concurrent execution abstractions are Galois connections.

LEMMA 3.5 ⟨℘(H), ⊆⟩ −−−−→←−−−−
αΞ

γΞ ⟨℘(Ξ), ⊆⟩ where γΞ(C) ! {t ∈ H | αΞ(t) ∈ C}.

PROOF OF LEM. 3.7. By LEM. 2.1, this is a Galois connection.

LEMMA 3.6 ⟨℘(H), ⊆⟩ −−−−−−−−−−−−→←−−−−−−−−−−−−
α !cat"[αΞ ]

γ !cat"[αΞ ]

⟨℘(H), ⊆⟩ where γ !cat"[αΞ ]Y ! {t ∈ H |

!cat" (αΞ(t)) =⇒ t ∈ Y }.

PROOF OF LEM. 3.7. By LEM. 2.3 this is a subset abstraction. For all X,Y ∈ ℘(H),

α !cat"[αΞ ]X ⊆ Y

⇐⇒ {t ∈ X | !cat" (αΞ(t)) ⊆ Y } #def. α !cat"[αΞ ]$
⇐⇒ ∀t ∈ X . !cat" (αΞ(t)) =⇒ t ∈ Y #def. ⊆$
⇐⇒ X ⊆ {t ∈ H | !cat" (αΞ(t)) =⇒ t ∈ Y } #def. ⊆$
⇐⇒ X ⊆ γ !cat"[αΞ ]Y #def. γ !cat"[αΞ ]$

LEMMA 3.7 α !cat"[αΞ ] = γΞ ◦ !cat" ◦ αΞ .

PROOF OF LEM. 3.7. For all S ∈ ℘(H),

γΞ ◦ !cat" ◦ αΞ(S)

= γΞ( !cat"({αΞ(t) | t ∈ S} #def. function composition ◦ and αΞ$
= γΞ({αΞ(t) | t ∈ S ∧ !cat"(αΞ(t))} #def. !cat"X ! {Ξ ∈ X | !cat"Ξ}$
= {t ∈ H | αΞ(t) ∈ {αΞ(t) | t ∈ S ∧ !cat"(αΞ(t))}} #def. γΞ$
= {t ∈ H | t ∈ S ∧ !cat"(αΞ(t))} #def. ∈$
= α !cat"[αΞ ]S #def. α !cat"[αΞ ]$

3.5. Preservation of a semantics with weak consistency model by abstraction
The interest of specifying weak consistency models on the candidate execution ab-
straction αΞ(S) of the semantics S rather than directly on the semantics S itself, is,
as shown by the forthcoming hierarchy of semantics, that semantics expressed in com-
pletely different styles can all be abstracted to the same candidate execution semantics
on which a single cat specification does operate, with exactly the same effect on all se-
mantics. So the specification of the weak consistency model is factorized for all possible
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3.4. Abstraction to a semantics with weak consistency model
3.4.1. The semantics of a cat weak consistency model specification. The communication

semantics
!cat" ∈ Ξ → B

is specified in [Alglave et al. 2015] (where B ! {true, false} is the set of booleans). A
candidate execution Ξ ∈ Ξ is said to be accepted or valid if and only if !cat"Ξ holds.
It is rejected or invalid if and only if ¬ !cat"Ξ.

3.4.2. Computational semantics with weak consistency model. The computational se-
mantics S restricted by a weak consistency model specified by cat is then α !cat" ◦
αΞ(S!P") where

α !cat"(S) ! {t | ⟨t, Ξ⟩ ∈ S ∧ !cat"(Ξ)} . (Def. 9)

The concurrent execution abstractions are Galois connections.

LEMMA 3.5 ⟨℘(H), ⊆⟩ −−−−→←−−−−
αΞ

γΞ ⟨℘(Ξ), ⊆⟩ where γΞ(C) ! {t ∈ H | αΞ(t) ∈ C}.

PROOF OF LEM. 3.7. By LEM. 2.1, this is a Galois connection.

LEMMA 3.6 ⟨℘(H), ⊆⟩ −−−−−−−−−−−−→←−−−−−−−−−−−−
α !cat"[αΞ ]

γ !cat"[αΞ ]

⟨℘(H), ⊆⟩ where γ !cat"[αΞ ]Y ! {t ∈ H |

!cat" (αΞ(t)) =⇒ t ∈ Y }.

PROOF OF LEM. 3.7. By LEM. 2.3 this is a subset abstraction. For all X,Y ∈ ℘(H),

α !cat"[αΞ ]X ⊆ Y

⇐⇒ {t ∈ X | !cat" (αΞ(t)) ⊆ Y } #def. α !cat"[αΞ ]$
⇐⇒ ∀t ∈ X . !cat" (αΞ(t)) =⇒ t ∈ Y #def. ⊆$
⇐⇒ X ⊆ {t ∈ H | !cat" (αΞ(t)) =⇒ t ∈ Y } #def. ⊆$
⇐⇒ X ⊆ γ !cat"[αΞ ]Y #def. γ !cat"[αΞ ]$

LEMMA 3.7 α !cat"[αΞ ] = γΞ ◦ !cat" ◦ αΞ .

PROOF OF LEM. 3.7. For all S ∈ ℘(H),

γΞ ◦ !cat" ◦ αΞ(S)

= γΞ( !cat"({αΞ(t) | t ∈ S} #def. function composition ◦ and αΞ$
= γΞ({αΞ(t) | t ∈ S ∧ !cat"(αΞ(t))} #def. !cat"X ! {Ξ ∈ X | !cat"Ξ}$
= {t ∈ H | αΞ(t) ∈ {αΞ(t) | t ∈ S ∧ !cat"(αΞ(t))}} #def. γΞ$
= {t ∈ H | t ∈ S ∧ !cat"(αΞ(t))} #def. ∈$
= α !cat"[αΞ ]S #def. α !cat"[αΞ ]$

3.5. Preservation of a semantics with weak consistency model by abstraction
The interest of specifying weak consistency models on the candidate execution ab-
straction αΞ(S) of the semantics S rather than directly on the semantics S itself, is,
as shown by the forthcoming hierarchy of semantics, that semantics expressed in com-
pletely different styles can all be abstracted to the same candidate execution semantics
on which a single cat specification does operate, with exactly the same effect on all se-
mantics. So the specification of the weak consistency model is factorized for all possible
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3.4. Abstraction to a semantics with weak consistency model
3.4.1. The semantics of a cat weak consistency model specification. The communication

semantics
!cat" ∈ Ξ → B

is specified in [Alglave et al. 2015] (where B ! {true, false} is the set of booleans). A
candidate execution Ξ ∈ Ξ is said to be accepted or valid if and only if !cat"Ξ holds.
It is rejected or invalid if and only if ¬ !cat"Ξ.

3.4.2. Computational semantics with weak consistency model. The computational se-
mantics S restricted by a weak consistency model specified by cat is then α !cat" ◦
αΞ(S!P") where

α !cat"(S) ! {t | ⟨t, Ξ⟩ ∈ S ∧ !cat"(Ξ)} . (Def. 9)

The concurrent execution abstractions are Galois connections.
LEMMA 3.5 ⟨℘(E+∞), ⊆⟩ −−−−→←−−−−

αΞ

γΞ ⟨℘(E+∞ ×Ξ), ⊆⟩ where γΞ(C) ! {t | ⟨t, αΞ(t)⟩ ∈ Y }.

PROOF OF LEM. 3.5. By LEM. 2.1, this is a Galois connection.

αΞ(X) ⊆ Y

{⟨t, αΞ(t)⟩ | t ∈ X} ⊆ Y #def.αΞ$
∀t ∈ X . ⟨t, αΞ(t)⟩ ∈ Y #def. ⊆$
X ⊆ {t | ⟨t, αΞ(t)⟩ ∈ Y } #def. ⊆$
X ⊆ γΞ(Y ) #def. γΞ$

LEMMA 3.6 ⟨℘(E+∞×Ξ),⊆⟩ −−−−−−−−→←−−−−−−−−
α !cat"

γ !cat"
⟨℘(E+∞),⊆⟩where γ !cat"Y ! {⟨t, Ξ⟩ ∈ E+∞×

Ξ | !cat" (Ξ) =⇒ t ∈ Y }.
PROOF OF LEM. 3.6. This is the composition of a subset abstraction of LEM. 2.3

and a functional LEM. 2.1. For all X ∈ ℘(E+∞ ×Ξ) and Y ∈ ℘(E+∞),

α !cat"X ⊆ Y

⇐⇒ {t | ⟨t, Ξ⟩ ∈ X ∧ !cat" (Ξ)} ⊆ Y #def. α !cat"$
⇐⇒ ∀t ∈ E+∞ . ∀Ξ ∈ Ξ . (⟨t, Ξ⟩ ∈ X ∧ !cat" (Ξ)) =⇒ t ∈ Y #def. ⊆$
⇐⇒ X ⊆ {⟨t, Ξ⟩ ∈ E+∞ ×Ξ | !cat" (Ξ) =⇒ t ∈ Y } #def. ⊆$
⇐⇒ X ⊆ γ !cat"Y #def. γ !cat"$

3.5. Preservation of a semantics with weak consistency model by abstraction
The interest of specifying weak consistency models on the candidate execution ab-
straction αΞ(S) of the semantics S rather than directly on the semantics S itself, is,
as shown by the forthcoming hierarchy of semantics, that semantics expressed in com-
pletely different styles can all be abstracted to the same candidate execution semantics
on which a single cat specification does operate, with exactly the same effect on all se-
mantics. So the specification of the weak consistency model is factorized for all possible
semantics of programs, as opposed to a difference dedicated specification for each spe-
cific style of semantics.

This idea can be formalized by showing that if S ∈ Dcp is a semantics and α(S) ∈
Dcp is an abstraction of S with the same candidate execution αΞ(α(S)) = αΞ(S) then

for all weak consistency model specifications cat we have the commutation property
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3.5. Preservation of a semantics with weak consistency model by abstraction
The interest of specifying weak consistency models on the candidate execution ab-
straction αΞ(S) of the semantics S rather than directly on the semantics S itself, is,
as shown by the forthcoming hierarchy of semantics, that semantics expressed in com-
pletely different styles can all be abstracted to the same candidate execution semantics
on which a single cat specification does operate, with exactly the same effect on all se-
mantics. So the specification of the weak consistency model is factorized for all possible
semantics of programs, as opposed to a difference dedicated specification for each spe-
cific style of semantics.

This idea can be formalized by showing that if S ∈ Dcp is a semantics and α(S) ∈
Dcp is an abstraction of S with the same candidate execution αΞ(α(S)) = αΞ(S) then

for all weak consistency model specifications cat we have the commutation property
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• The semantics          is a finite/infinite sequence of interleaved 
events of processes satisfying well-formedness conditions.

• Example: computation (local variable assignment)

9
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control of process 
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value 𝑣 of 𝑒 is 
evaluated by past-

travel

unique event stamp 𝜃

Axiomatic parameterized definition 
of the anarchic semantics 

A:36 J. Alglave et al.

Part IV: HIERARCHY OF INTERLEAVED TRACE SEMANTICS
7. GENERIC, UNSPECIFIED LOCALITY, UNSPECIFIED PREDICTABILITY, TIME-TRAVEL,

STATELESS, MAXIMAL, INTERLEAVED, STEPLESS TRACE SEMANTICS
Trace semantics are classical defined by state-based transition system [Keller 1976;
Hennessy and Plotkin 1979; Lamport 1979]. Instead, we start with an axiomatic defin-
ition of an event trace semantics. It will be shown in Sect. 18 and 31 that states and
transitions are abstractions of this event trace semantics. Moreover this event trace
semantics is generic meaning that the domains of (boolean) data as well as the expres-
sion and control evaluation rules are left as formal parameters.

7.1. Axiomatic definition of a generic semantics
The formal definition of a generic trace semantics S!P" of a program P = !P1∥. . . ∥Pn" ∈
Pg is of the form

S!P" ! λ ⟨B, sat, D, I, S, V , E , N ⟩ . {τ ∈ T!P"|∼= | Wfn (τ ) ∧ . . . ∧Wfm (τ )}
where the considered set of traces T!P", as well as the well-formedness
conditions Wfn (τ ), . . . , Wfm (τ ) implicitly depend upon the formal parameters
⟨B, sat, D, I, S, V , E , N ⟩. The type and meaning of the formal parameters ⟨B, sat, D,
I, S, V , E , N ⟩ is specified in Sect. 7.3. In particular the [boolean] expression evaluation
E must satisfy the axioms of Sect. 7.4. The traces τ ∈ T|∼= are generated by interleaved
and maximal execution of the program processes (i.e. traces are finite terminated or
infinite). A feasible trace τ satisfies conditions Wfn (τ ) ∧ . . . ∧Wfm (τ ) and belongs to the
semantics (τ ∈ S!P"). The trace τ is infeasible otherwise (τ ∈ T|∼= \ S!P").

7.2. The generic, unspecified locality, unspecified predictability, time-travel, stateless,
maximal, interleaved, stepless trace semantics

The generic, unspecified locality, unspecified predictability, time-travel, stateless, max-
imal, interleaved, stepless trace semantics is t ∈ S⊥!P"

S⊥!P" ! λ ⟨B, sat, D, I, S, V , E , N ⟩ . {τ ∈ T!P"|∼= | Wf15(τ ) ∧ . . . ∧Wf29(τ )}
where the conditions Wf15(τ ) to Wf29(τ ) on the feasible execution traces τ ∈ S⊥!P" are
given in Sect. 7.5. The generic semantics S⊥!P" is the infimum of our hierarchy of
semantics (see Fig. 5). The generic semantics S⊥!P" ∈ D⊥!P" is the ⊆-largest semantics
in the generic semantic domain
D⊥!P" ! λ ⟨B, sat, D, I, S, V , E , N ⟩ . {S ∈ ℘(T!P"|∼=) | ∀τ ∈ S . Wf15(τ ) ∧ . . . ∧Wf29(τ )} .

7.3. Formal parameters of the generic semantics
The parameters are the following.
Booleans B. The set B of boolean values (e.g. {false, true} or symbolic boolean expres-

sions);
Satisfiability sat. sat(b) holds when the boolean expression b may be the truth value

(e.g. B ! {true, false}, sat(true) holds but not sat(false) or for symbolic boolean expres-
sions, sat is the existence of a model);

Data D. The set D of ground values/data manipulated by programs (e.g. Z, machine
integers, symbolic expressions interpreted for integers, or symbolic uninterpreted
expressions);

Interpretation of operations I. The language primitives are given a semantics.
— The interpretation I!d" ∈ D of data denotations d ∈ D (including the initial value

I!0"),
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EXAMPLE 7.2 The choice P(p) ! {p}× N, succp(⟨p, θ⟩) = ⟨p, θ + 1⟩, stamp(τk) = ⟨p,
k⟩, k ∈ [1, 1 + |τ |[, ⟨p′, θ⟩ ✁p ⟨p′′, θ′⟩ ! p = p′ = p′′ ∧ θ < θ′ satisfies Wf16(τ ) and
Wf17(τ ).

— All shared variables x ∈ X are assumed to be initialized to 0 once and only once
before any other action which is not the initialisation of another shared variable.

∀x ∈ X .(∃τ1, τ2 . τ = τ1 (w(⟨start, ℓstart, x := 0, θ⟩, I!0")) τ2) ∧ (Wf18(τ ))
(∀τ1, τ2, τ3 . (τ = τ1 ϵ τ2 w(⟨start, ℓ, x := e, θ⟩, v) τ3)

=⇒ (ϵ ∈W(start, y) ∧ y ̸= x)) .

— A finite trace must be finished in that all processes are terminated.

(τ ∈ T|∼=
+) =⇒ (∀p ∈ Pi . N p(τ, |τ |) = ∅) . (Wf19(τ ))

(This condition Wf19(τ ) is for maximal traces and is relaxed in Sect. 24 for prefix
traces.)

— On finite traces τ ∈ T|∼=
+, all shared variables x ∈ X are finally read once and only

once in a fresh register rx.

(τ ∈ T|∼=
+) =⇒ (∀x ∈ X . (∃τ1, τ2 = τ1 r(⟨finish, finish, rx := x, θ⟩, xθ) τ2) ∧ (Wf20(τ ))

(∀τ1, τ2, τ3 . (τ = τ1 r(⟨finish, ℓ, r := x, θ⟩, xθ) τ2 ϵ′ τ3)) =⇒
((ϵ′ ∈ R(finish, y) ∧ y ̸= x) ∨ (ϵ′ ∈ K(finish)))) .

7.5.2. Events generated by instruction execution. A program instruction is represented
in the abstract syntax by an action (relative to the manipulation or test of data, see
Sect. 4.5) and a control (specifying the next instruction, see Sect. 4.7). The conditions
Wf21(τ ) to Wf25(τ ) below specify that computation events in the trace τ must be gener-
ated by the execution of program instruction, in program order, although their effects
may be observable in a different order. These conditions are defined by case on the
possible actions.

— A marker event m at point k ∈ ]1, 1 + |τ |[ of a trace τ ∈ T|∼= must be generated by a
marker action m. TODO[PC]: Reflechir ⇐⇒ ou =⇒, je crois =⇒

∀p ∈ Pi . ∀k ∈ [1, 1 + |τ |[ . ∀ℓ ∈ L(p) . (Wf21(τ ))
(∃θ ∈ P(p) . τk = m(⟨p, ℓ, m, θ⟩))

⇐⇒ (ℓ ∈ N p(τ, k) ∧ action(p, ℓ) = m) .

— An assignment event at point k ∈ ]1, 1 + |τ |[ of a trace τ ∈ T|∼= must be generated
by an assignment action r := e and the assigned value v = E p!e"(τ, k − 1) is that of
expression e evaluated before the assignment.
∀p ∈ Pi . ∀k ∈ ]1, 1 + |τ |[ . ∀ℓ ∈ L(p) . ∀v ∈ D . (Wf22(τ ))

(∃θ ∈ P(p) . τk = a(⟨p, ℓ, r := e, θ⟩, v))
=⇒ (ℓ ∈ N p(τ, k) ∧ action(p, ℓ) = r := e ∧ v = E p!e"(τ, k − 1)) .

(Recall by definition of e ∈ E!R(p)" in Sect. 4.5 that expression e is on registers R(p)
of process Pp only, excluding the symbolic variables of Sect. 5.4.)

— A read event at point k ∈ ]1, 1 + |τ |[ of a trace τ ∈ T|∼= must be generated by a read
action r := x.

∀p ∈ Pi . ∀k ∈ ]1, 1 + |τ |[ . ∀ℓ ∈ L(p) . (Wf23(τ ))
(∃θ ∈ P(p) . (τk = r(⟨p, ℓ, r := x, θ⟩, xθ)))

⇐⇒ (ℓ ∈ N p(τ, k) ∧ action(p, ℓ) = r := x) .

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Jayadev MISRA Fest Symposium 'Programming: Logics, Models, Algorithms and Concurrency’, U.T. Austin, April 29–30, 2016                                                                                                    © P. Cousot

• Example: communication

• a read event is initiated by a read action: 

• a read must read-from (𝖗𝖋) a write (fairness):

10
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— A marker event m at point k ∈ ]1, 1 + |τ |[ of a trace τ ∈ T|∼= must be generated by a
marker action m.

∀p ∈ Pi . ∀k ∈ [1, 1 + |τ |[ . ∀ℓ ∈ L(p) . (Wf21(τ ))
(∃θ ∈ P(p) . τk = m(⟨p, ℓ, m, θ⟩))

⇐⇒ (ℓ ∈ N p(τ, k) ∧ action(p, ℓ) = m) .

— An assignment event at point k ∈ ]1, 1 + |τ |[ of a trace τ ∈ T|∼= must be generated
by an assignment action r := e and the assigned value v = E p!e"(τ, k − 1) is that of
expression e evaluated before the assignment.
∀p ∈ Pi . ∀k ∈ ]1, 1 + |τ |[ . ∀ℓ ∈ L(p) . ∀v ∈ D . (Wf22(τ ))

(∃θ ∈ P(p) . τk = a(⟨p, ℓ, r := e, θ⟩, v))
⇐⇒ (ℓ ∈ N p(τ, k) ∧ action(p, ℓ) = r := e ∧ v = E p!e"(τ, k − 1)) .

(Recall by definition of e ∈ E!R(p)" in Sect. 4.5 that expression e is on registers R(p)
of process Pp only, excluding the symbolic variables of Sect. 5.4.)

— A read event at point k ∈ ]1, 1 + |τ |[ of a trace τ ∈ T|∼= must be generated by a read
action r := x.
∀p ∈ Pi . ∀k ∈ ]1, 1 + |τ |[ . ∀ℓ ∈ L(p) . (Wf23(τ ))

(∃θ ∈ P(p) . (τk = r(⟨p, ℓ, r := x, θ⟩, xθ))) ⇐⇒ (ℓ ∈ N p(τ, k) ∧ action(p, ℓ) = r := x) .

(The unique symbolic variable xθ designates the value read by or to be read by the
read action. The value can be ground or symbolic depending on the considered kind
of semantics.)

— A write event at point k ∈ ]1, 1 + |τ |[ of a trace τ ∈ T|∼= must be generated by a write
x := e and the written value v = E p!e"(τ, k) is that of expression e evaluated at that
program point.

∀p ∈ Pi . ∀k ∈ ]1, 1 + |τ |[ . ∀ℓ ∈ L(p) . ∀v ∈ D . (Wf24(τ ))
(∃θ ∈ P(p) . τk = w(⟨p, ℓ, x := e, θ⟩, v))

⇐⇒ (ℓ ∈ N p(τ, k) ∧ action(p, ℓ) = x := e ∧ E p!e"(τ, k) = v) .

— A test event at point k ∈ ]1, 1 + |τ |[ of a trace τ ∈ T|∼= must be generated by a
conditional action b evaluated before the test.

∀p ∈ Pi . ∀k ∈ ]1, 1 + |τ |[ . ∀ℓ ∈ L(p) . (Wf25(τ ))
(∃θ ∈ P(p) . τk = t(⟨p, ℓ, b, θ⟩,Bp!b"(τ, k − 1)))

⇐⇒ (ℓ ∈ N p(τ, k) ∧ action(p, ℓ) = b ∧ sat(Bp!b"(τ, k − 1)))

∀p ∈ Pi . ∀k ∈ ]1, 1 + |τ |[ . ∀ℓ ∈ L(p) .
(∃θ ∈ P(p) . τk = t(⟨p, ℓ, b, θ⟩,Bp! ¬⃝ b"(τ, k − 1)))

⇐⇒ (ℓ ∈ N p(τ, k) ∧ action(p, ℓ) = b ∧ sat(Bp! ¬⃝ b"(τ, k − 1))) .

7.5.3. Communications. Conditions Wf26(τ ) to Wf29(τ ) specify communication events
i.e. how the effects of read and write actions can be observed.

— A read event in the trace τ ∈ T|∼= must have at least one corresponding communic-
ation event in the trace τ (since writes are fair i.e. become ultimately readable and
there is always an initial readable write to initialize variables).

∀p ∈ Pi . ∀i ∈ ]1, 1 + |τ |[ . ∀r ∈ Rf(p) . (Wf26(τ ))
(τ i = r) =⇒ (∃j ∈ ]1, 1 + |τ |[ . ∃w ∈Wi . τ j = rf[w, r]) .

— A read event in the trace τ ∈ T|∼= must have at most one corresponding communic-
ation event in the trace τ .
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— A marker event m at point k ∈ ]1, 1 + |τ |[ of a trace τ ∈ T|∼= must be generated by a
marker action m.

∀p ∈ Pi . ∀k ∈ [1, 1 + |τ |[ . ∀ℓ ∈ L(p) . (Wf21(τ ))
(∃θ ∈ P(p) . τk = m(⟨p, ℓ, m, θ⟩))

⇐⇒ (ℓ ∈ N p(τ, k) ∧ action(p, ℓ) = m) .

— An assignment event at point k ∈ ]1, 1 + |τ |[ of a trace τ ∈ T|∼= must be generated
by an assignment action r := e and the assigned value v = E p!e"(τ, k − 1) is that of
expression e evaluated before the assignment.
∀p ∈ Pi . ∀k ∈ ]1, 1 + |τ |[ . ∀ℓ ∈ L(p) . ∀v ∈ D . (Wf22(τ ))

(∃θ ∈ P(p) . τk = a(⟨p, ℓ, r := e, θ⟩, v))
⇐⇒ (ℓ ∈ N p(τ, k) ∧ action(p, ℓ) = r := e ∧ v = E p!e"(τ, k − 1)) .

(Recall by definition of e ∈ E!R(p)" in Sect. 4.5 that expression e is on registers R(p)
of process Pp only, excluding the symbolic variables of Sect. 5.4.)

— A read event at point k ∈ ]1, 1 + |τ |[ of a trace τ ∈ T|∼= must be generated by a read
action r := x.

∀p ∈ Pi . ∀k ∈ ]1, 1 + |τ |[ . ∀ℓ ∈ L(p) . (Wf23(τ ))
(∃θ ∈ P(p) . (τk = r(⟨p, ℓ, r := x, θ⟩, xθ)))

⇐⇒ (ℓ ∈ N p(τ, k) ∧ action(p, ℓ) = r := x) .

(The unique symbolic variable xθ designates the value read by or to be read by the
read action. The value can be ground or symbolic depending on the considered kind
of semantics.)

— A write event at point k ∈ ]1, 1 + |τ |[ of a trace τ ∈ T|∼= must be generated by a write
x := e and the written value v = E p!e"(τ, k) is that of expression e evaluated at that
program point.

∀p ∈ Pi . ∀k ∈ ]1, 1 + |τ |[ . ∀ℓ ∈ L(p) . ∀v ∈ D . (Wf24(τ ))
(∃θ ∈ P(p) . τk = w(⟨p, ℓ, x := e, θ⟩, v))

⇐⇒ (ℓ ∈ N p(τ, k) ∧ action(p, ℓ) = x := e ∧ E p!e"(τ, k) = v) .

— A test event at point k ∈ ]1, 1 + |τ |[ of a trace τ ∈ T|∼= must be generated by a
conditional action b evaluated before the test.

∀p ∈ Pi . ∀k ∈ ]1, 1 + |τ |[ . ∀ℓ ∈ L(p) . (Wf25(τ ))
(∃θ ∈ P(p) . τk = t(⟨p, ℓ, b, θ⟩,Bp!b"(τ, k − 1)))

⇐⇒ (ℓ ∈ N p(τ, k) ∧ action(p, ℓ) = b ∧ sat(Bp!b"(τ, k − 1)))

∀p ∈ Pi . ∀k ∈ ]1, 1 + |τ |[ . ∀ℓ ∈ L(p) .
(∃θ ∈ P(p) . τk = t(⟨p, ℓ, b, θ⟩,Bp! ¬⃝ b"(τ, k − 1)))

⇐⇒ (ℓ ∈ N p(τ, k) ∧ action(p, ℓ) = b ∧ sat(Bp! ¬⃝ b"(τ, k − 1))) .

7.5.3. Communications. Conditions Wf26(τ ) to Wf29(τ ) specify communication events
i.e. how the effects of read and write actions can be observed.

— A read event in the trace τ ∈ T|∼= must have at least one corresponding communic-
ation event in the trace τ (since writes are fair i.e. become ultimately readable and
there is always an initial readable write to initialize variables).

∀p ∈ Pi . ∀i ∈ ]1, 1 + |τ |[ . ∀r ∈ Rf(p) . (Wf26(τ ))
(τ i = r) =⇒ (∃j ∈ ]1, 1 + |τ |[ . ∃w ∈Wi . τ j = rf[w, r]) .
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EXAMPLE 7.2 The choice P(p) ! {p}× N, succp(⟨p, θ⟩) = ⟨p, θ + 1⟩, stamp(τk) = ⟨p,
k⟩, k ∈ [1, 1 + |τ |[, ⟨p′, θ⟩ ✁p ⟨p′′, θ′⟩ ! p = p′ = p′′ ∧ θ < θ′ satisfies Wf16(τ ) and
Wf17(τ ).

— All shared variables x ∈ X are assumed to be initialized to 0 once and only once
before any other action which is not the initialisation of another shared variable.

∀x ∈ X .(∃τ1, τ2 . τ = τ1 (w(⟨start, ℓstart, x := 0, θ⟩, I!0")) τ2) ∧ (Wf18(τ ))
(∀τ1, τ2, τ3 . (τ = τ1 ϵ τ2 w(⟨start, ℓ, x := e, θ⟩, v) τ3)

=⇒ (ϵ ∈W(start, y) ∧ y ̸= x)) .

— A finite trace must be finished in that all processes are terminated.

(τ ∈ T|∼=
+) =⇒ (∀p ∈ Pi . N p(τ, |τ |) = ∅) . (Wf19(τ ))

(This condition Wf19(τ ) is for maximal traces and is relaxed in Sect. 24 for prefix
traces.)

— On finite traces τ ∈ T|∼=
+, all shared variables x ∈ X are finally read once and only

once in a fresh register rx.

(τ ∈ T|∼=
+) =⇒ (∀x ∈ X . (∃τ1, τ2 = τ1 r(⟨finish, finish, rx := x, θ⟩, xθ) τ2) ∧ (Wf20(τ ))

(∀τ1, τ2, τ3 . (τ = τ1 r(⟨finish, ℓ, r := x, θ⟩, xθ) τ2 ϵ′ τ3)) =⇒
((ϵ′ ∈ R(finish, y) ∧ y ̸= x) ∨ (ϵ′ ∈ K(finish)))) .

7.5.2. Events generated by instruction execution. A program instruction is represented
in the abstract syntax by an action (relative to the manipulation or test of data, see
Sect. 4.5) and a control (specifying the next instruction, see Sect. 4.7). The conditions
Wf21(τ ) to Wf25(τ ) below specify that computation events in the trace τ must be gener-
ated by the execution of program instruction, in program order, although their effects
may be observable in a different order. These conditions are defined by case on the
possible actions.

— A marker event m at point k ∈ ]1, 1 + |τ |[ of a trace τ ∈ T|∼= must be generated by a
marker action m. TODO[PC]: Reflechir ⇐⇒ ou =⇒, je crois =⇒

∀p ∈ Pi . ∀k ∈ [1, 1 + |τ |[ . ∀ℓ ∈ L(p) . (Wf21(τ ))
(∃θ ∈ P(p) . τk = m(⟨p, ℓ, m, θ⟩))

⇐⇒ (ℓ ∈ N p(τ, k) ∧ action(p, ℓ) = m) .

— An assignment event at point k ∈ ]1, 1 + |τ |[ of a trace τ ∈ T|∼= must be generated
by an assignment action r := e and the assigned value v = E p!e"(τ, k − 1) is that of
expression e evaluated before the assignment.
∀p ∈ Pi . ∀k ∈ ]1, 1 + |τ |[ . ∀ℓ ∈ L(p) . ∀v ∈ D . (Wf22(τ ))

(∃θ ∈ P(p) . τk = a(⟨p, ℓ, r := e, θ⟩, v))
=⇒ (ℓ ∈ N p(τ, k) ∧ action(p, ℓ) = r := e ∧ v = E p!e"(τ, k − 1)) .

(Recall by definition of e ∈ E!R(p)" in Sect. 4.5 that expression e is on registers R(p)
of process Pp only, excluding the symbolic variables of Sect. 5.4.)

— A read event at point k ∈ ]1, 1 + |τ |[ of a trace τ ∈ T|∼= must be generated by a read
action r := x.

∀p ∈ Pi . ∀k ∈ ]1, 1 + |τ |[ . ∀ℓ ∈ L(p) . (Wf23(τ ))
(∃θ ∈ P(p) . (τk = r(⟨p, ℓ, r := x, θ⟩, xθ)))

=⇒ (ℓ ∈ N p(τ, k) ∧ action(p, ℓ) = r := x) .
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• Predictive evaluation of media variables: 

• Local path-based evaluation of an expression:
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9. GENERIC, UNSPECIFIED LOCALITY, PREDICTIVE, TIME-TRAVEL, STATELESS, MAXIMAL,
INTERLEAVED, STEPLESS TRACE SEMANTICS

Recall that if θ ∈ stamp(τ) is the stamp of a read event r(⟨p, ℓ, r := x, θ⟩, xθ) then
V p!xθ"(τ, k) is the value referred to by the symbolic variable xθ at point k of a trace
τ as determined by a unique communication event from an initial write to I!0" or a
program write. A generic interleaved trace semantics is predictive if and only if its
actual parameter V is V(32) defined as follows:

Vp
(32)!xθ"(τ, k) ! v where ∃!i ∈ [1, 1 + |τ |[ . (τ i = r(⟨p, ℓ, r := x, θ⟩, xθ)) ∧ (Def. 32)

∃!j ∈ [1, 1 + |τ |[ . (τ j = rf[w(⟨p′, ℓ′, x := e′, θ′⟩, v), τ i]) .
Notice that Vp

(32)!xθ"(τ, k) does not depend upon the position k in the trace τ and that
it can guess the value transmitted by future communications potentially involving
future writes and reads, which requires an oracle. When p′ = start, this is a read from
an initial write so v = I!0".
LEMMA 9.1 Vp

(32)!xθ"(τ, k) is uniquely well-defined by (Def. 32).

PROOF OF LEM. 9.1. By definition of events, xθ can only appear in a read event of
the form r(⟨p, ℓ, r := x, θ⟩, xθ) where, by Wf16(τ ), the stamp θ is unique in the trace
τ . By Wf26(τ ) and Wf27(τ ), this read event has a unique corresponding communication
event of the form rf[w(⟨p′, ℓ′, x := r′, θ′⟩, v), r(⟨p, ℓ, r := x, θ⟩, xθ)]. It follows that v is
uniquely determined on the trace τ . Threfore Vp

(32)!xθ"(τ, k) exists and is unique, so it
is well-defined and unique.

So the generic, unspecified locality, predictive, time-travel, stateless, maximal, inter-
leaved, stepless trace semantics S⊥o!P" is the abstraction of S⊥!P" by the application
abstraction of LEM. 2.4.

D⊥o!P" ! α@⟨V(32)⟩(D⊥!P")
= λ ⟨B, sat, D, I, S, E , N ⟩ .D⊥!P"⟨B, sat, D, I, S, V(32), E , N ⟩

S⊥o!P" ! α@⟨V(32)⟩(S⊥!P")
= λ ⟨B, sat, D, I, S, E , N ⟩ . S⊥!P"⟨B, sat, D, I, S, V(32), E , N ⟩ .

10. GENERIC, LOCALLY SEQUENTIAL, PREDICTIVE, TIME-TRAVEL, STATELESS, MAXIMAL,
INTERLEAVED, STEPLESS TRACE SEMANTICS

As a simple example of composition of abstractions consider the locally sequential and
predictive semantics. We have α@⟨V(32)⟩ ◦ α@⟨E (30),N(31)⟩ = α@⟨E (30),N(31)⟩ ◦ α@⟨V(32)⟩ =
α@⟨E (30),N(31),V(32)⟩ so

Do!P" ! α@⟨E (30),N(31),V(32)⟩(D⊥!P")
= λ ⟨B, sat, D, I, S⟩ .D⊥!P"⟨B, sat, D, I, S, V(32), E (30), N(31)⟩

So!P" ! α@⟨E (30),N(31),V(32)⟩(S⊥!P")
= λ ⟨B, sat, D, I, S⟩ . S⊥!P"⟨B, sat, D, I, S, V(32), E (30), N(31)⟩ .

11. VALUED, LOCALLY SEQUENTIAL, PREDICTIVE, TIME-TRAVEL, STATELESS, MAXIMAL,
INTERLEAVED, STEPLESS TRACE SEMANTICS

11.1. Valued/ground semantic domain
The valued/ground semantic domain is defined as follows.

— The set Dv of ground values/data manipulated by programs and the interpretation
Iv of operations is language dependent (e.g. the set Z of integers with arithmetic
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8. GENERIC, LOCALLY SEQUENTIAL, UNSPECIFIED PREDICTABILITY, TIME-TRAVEL,
STATELESS, MAXIMAL, INTERLEAVED, STEPLESS TRACE SEMANTICS

8.1. Local sequentiality
An interleaved trace semantics is locally sequential if and only if it is parameterized
as follows.

— The evaluation E p!r"(τ, k) ∈ D of a register r ∈ R(p) at point k ∈ [1, 1+ |τ |[ of a trace
τ ∈ T|∼= looks back in the trace to find the last assignment to that register r, if any,
else is the default value I!0"13. The value of the register is predictive in that it may
depend on future events.

Ep
(30)!r"(τ, k) ! v if k > 1 ∧

(
(τk = a(⟨p, ℓ, r := e, θ⟩, v)) ∨
(τk = r(⟨p, ℓ, r := x, θ⟩, xθ) ∧ V p!xθ"(τ, k) = v)

)(Def. 30)

Ep
(30)!r"(τ, 1) ! I!0" i.e. τ1 = ϵstart by Wf15(τ )

Ep
(30)!r"(τ, k) ! Ep

(30)!r"(τ, k − 1) otherwise.

— N p(τ, k) ∈ ℘(L(p)) is the set of possible next actions of a process Pp at point k ∈
[1, 1 + |τ |[ of a trace τ ∈ T|∼=. They are found by looking back in the trace for the last
action a executed by that process Pp. The execution of a will have been recorded in
the trace by an event identifier ⟨p, ℓ, a, θ⟩ (see Sect. 5.3) providing the program label
ℓ of this last action a in process Pp. Then the next actions are those labelled with
the possible syntactic successors of ℓ in the program abstract syntax of process Pp,
as defined in Sect. 4.7. On process exit, if any, this set will be empty.

Np
(31)(τ, 1) ! entry(p) (Def. 31)

Np
(31)(τ, k) ! next(p, ℓ) if τk ∈ {m(⟨p, ℓ, m, θ⟩), a(⟨p, ℓ, r := e, θ⟩, v),

r(⟨p, ℓ, r := x, θ⟩, xθ),w(⟨p, ℓ, x := r, θ⟩, v)}
Np

(31)(τ, k) ! nextt(p, ℓ) if τk = t(⟨p, ℓ, b, θ⟩, t)
Np

(31)(τ, k) ! nextf(p, ℓ) if τk = t(⟨p, ℓ, b, θ⟩, t)
Np

(31)(τ, k) ! Np
(31)(τ, k − 1) otherwise, where k > 1.

These definitions express that the execution of a process is in program order and se-
quentially consistent for process local registers. This is much weaker than sequential
consistency (SC) [Keller 1976; Hennessy and Plotkin 1979; Lamport 1979] or sequen-
tial consistency per variable (SCPV) [Alglave et al. 2014] which are relative to globally
shared variables.

8.2. The generic, locally sequential, unspecified predictability, time-travel, stateless,
maximal, interleaved, stepless trace semantics

The semantic domain and semantics are
D!P" ! α@⟨E (30),N(31)⟩(D⊥!P")

= λ ⟨B, sat, D, I, S, V ⟩ .D⊥!P"⟨B, sat, D, I, S, V , E (30), N(31)⟩
S!P" ! α@⟨E (30),N(31)⟩(S⊥!P")

= λ ⟨B, sat, D, I, S, V ⟩ . S⊥!P"⟨B, sat, D, I, S, V , E (30), N(31)⟩ .
We use the convention that if X is a formal parameter of a generic semantics then X(n)
is a corresponding actual parameter defined in (Def. n).

13 Alternatively, the access to register values could be defined by a cat specification.
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Abstractions of the anarchic 
semantics
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Abstractions
• Semantics: 
 
 

• Examples of abstractions:

• Choose data (e.g. ground values, uninterpreted 
symbolic expressions, interpreted symbolic 
expressions i.e. “symbolic guess”)

• Bind parameters (e.g. how expressions are evaluated)

• …

13
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Part IV: HIERARCHY OF INTERLEAVED TRACE SEMANTICS
7. GENERIC, UNSPECIFIED LOCALITY, UNSPECIFIED PREDICTABILITY, TIME-TRAVEL,

STATELESS, MAXIMAL, INTERLEAVED, STEPLESS TRACE SEMANTICS
Trace semantics are classical defined by state-based transition system [Keller 1976;
Hennessy and Plotkin 1979; Lamport 1979]. Instead, we start with an axiomatic defin-
ition of an event trace semantics. It will be shown in Sect. 18 and 31 that states and
transitions are abstractions of this event trace semantics. Moreover this event trace
semantics is generic meaning that the domains of (boolean) data as well as the expres-
sion and control evaluation rules are left as formal parameters.

7.1. Axiomatic definition of a generic semantics
The formal definition of a generic trace semantics S!P" of a program P = !P1∥. . . ∥Pn" ∈
Pg is of the form

S!P" ! λ ⟨B, sat, D, I, S, V , E , N ⟩ . {τ ∈ T!P"|∼= | Wfn (τ ) ∧ . . . ∧Wfm (τ )}
where the considered set of traces T!P", as well as the well-formedness
conditions Wfn (τ ), . . . , Wfm (τ ) implicitly depend upon the formal parameters
⟨B, sat, D, I, S, V , E , N ⟩. The type and meaning of the formal parameters ⟨B, sat, D,
I, S, V , E , N ⟩ is specified in Sect. 7.3. In particular the [boolean] expression evaluation
E must satisfy the axioms of Sect. 7.4. The traces τ ∈ T|∼= are generated by interleaved
and maximal execution of the program processes (i.e. traces are finite terminated or
infinite). A feasible trace τ satisfies conditions Wfn (τ ) ∧ . . . ∧Wfm (τ ) and belongs to the
semantics (τ ∈ S!P"). The trace τ is infeasible otherwise (τ ∈ T|∼= \ S!P").

7.2. The generic, unspecified locality, unspecified predictability, time-travel, stateless,
maximal, interleaved, stepless trace semantics

The generic, unspecified locality, unspecified predictability, time-travel, stateless, max-
imal, interleaved, stepless trace semantics is

S⊥!P" ! λ ⟨B, sat, D, I, S, V , E , N ⟩ . {τ ∈ T!P"|∼= | Wf15(τ ) ∧ . . . ∧Wf29(τ )}
where the conditions Wf15(τ ) to Wf29(τ ) on the feasible execution traces τ ∈ S⊥!P" are
given in Sect. 7.5. The generic semantics S⊥!P" is the infimum of our hierarchy of
semantics (see Fig. 5). The generic semantics S⊥!P" ∈ D⊥!P" is the ⊆-largest semantics
in the generic semantic domain
D⊥!P" ! λ ⟨B, sat, D, I, S, V , E , N ⟩ . {S ∈ ℘(T!P"|∼=) | ∀τ ∈ S . Wf15(τ ) ∧ . . . ∧Wf29(τ )} .

7.3. Formal parameters of the generic semantics
The parameters are the following.
Booleans B. The set B of boolean values (e.g. {false, true} or symbolic boolean expres-

sions);
Satisfiability sat. sat(b) holds when the boolean expression b may be the truth value

(e.g. B ! {true, false}, sat(true) holds but not sat(false) or for symbolic boolean expres-
sions, sat is the existence of a model);

Data D. The set D of ground values/data manipulated by programs (e.g. Z, machine
integers, symbolic expressions interpreted for integers, or symbolic uninterpreted
expressions);

Interpretation of operations I. The language primitives are given a semantics.
— The interpretation I!d" ∈ D of data denotations d ∈ D (including the initial value

I!0"),
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The hierarchy of interleaved semantics
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α !cat"[αΞ ◦ α]

α !cat" ◦ αΞ

α !cat"[αΞ ◦ α](S⊥!P")

α !cat" ◦ αΞ(S⊥!P")

WCM

valued

symbolic

unspecified locality

locally sequential

unspecified
predictability

predictive

inscrutable

Svi!P"

Fig. 5. Hierarchy of time-travel, stateless, maximal, interleaved, stepless trace semantics
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True parallelism
• Extract from interleaved executions:

• The subtrace of each process (sequential execution)

• The rf communication relation (interactions 
between processes)

⟹ no more global time !

15
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States
• At each point in a trace, the state abstracts the past 

computation history up to that point

• Example: classical environment (assigning values to 
register at each point k of the trace): 
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18.1. Computation states
The process computation states σ(p) = ⟨κ(p), ρ(p), π(p), ν(p)⟩ of a process Pp, p ∈ Pi,
consist of

— the control state κ(p) which is the set of labels of actions that may be executed next
by process Pp,

— the current values ρ(p)(r) of local registers r of process Pp,
— the path constraint π(p), which for a symbolic semantics must be satisfiable for the

current program point of process Pp to be reachable, and
— the values ν(p)(xθ) of symbolic variables xθ referred to in the process read events

(these values are ground for valued semantics and symbolic expressions for symbolic
semantics).

σ(p) = ⟨κ(p), ρ(p), π(p), ν(p)⟩ ∈ Sγ(p) process computation states (Def. 51)
ctrl(σ(p)) ! κ(p) ∈ ℘(L(p)) control
env(σ(p)) ! ρ(p) ∈ R(p)→ D environment

pcond(σ(p)) ! π(p) ∈ B path constraint
val(σ(p)) ! ν(p) ∈ XP(p)→ D valuation.

The program states σ record each of the process states σ(p), p ∈ Pi.

σ ∈ Sγ !
∏

p∈Pi

Sγ(p) program computation states.

18.2. Computation stateful abstraction
18.2.1. Computation stateful abstraction for a process.
The computation stateful abstraction αp

cs of a process Pp of a program !P1∥. . . ∥Pn"
collects control, register, path constraint, and valuation information on the computa-
tion of this process into the current process state. Recall that a trace τ is a sequence of

steps τ = ⟨ τ i−−−→ τ i | i ∈ [1, 1 + |τ |[⟩.

αp
cs(S) ! {αp

cs(τ) | τ ∈ S}, p ∈ Pi ! [1, n]

αp
cs(τ) ! ⟨ τk−−−−→ csp(τ, k) | k ∈ [1, 1 + |τ |[⟩

csp(τ, k) ! τk × σp(τ, k)

σp(τ, k) ! ⟨κp(τ, k), ρp(τ, k), πp(τ, k), νp(τ, k)⟩
where κp(τ, k) ! N p(τ, k)

ρp(τ, k) ! λ r∈R(p) . E p!r"(τ, k)
πp(τ, k) !

∧
{Bp![ ¬⃝]b"(τ, j) | ∃j ∈ [1, k] . τ j = t(⟨p, ℓ, [ ]b, θ⟩,Bp![ ¬⃝]b"(τ, j)) ∧

sats(Bp![ ¬⃝]b"(τ, j))}
νp(τ, k) ! {⟨xθ, V p!xθ"(τ, k)⟩ | θ ∈ read-stampp(τ, k)} where V p ∈ {Vp

(32),Vp
(34)}

read-stampp(τ, k) ! {stamp(τ j) | j ∈ [1, k] ∧ τ j ∈ Rf(p)} .

TODO[valuation]: Remarque: ν(p) est update pour les reads, pourquoi pas pour les
communications?

The concretization γp
cs eliminates the state for process Pp.
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the trace by an event identifier ⟨p, ℓ, a, θ⟩ (see Sect. 5.3) providing the program label
ℓ of this last action a in process Pp. Then the next actions are those labelled with
the possible syntactic successors of ℓ in the program abstract syntax of process Pp,
as defined in Sect. 4.7. On process exit, if any, this set will be empty.
Np

(31)(τ, 1) ! entry(p) (Def. 31)

Np
(31)(τ, k) ! next(p, ℓ) if τk−1 ∈ {m(⟨p, ℓ, m, θ⟩), a(⟨p, ℓ, r := e, θ⟩, v),

r(⟨p, ℓ, r := x, θ⟩, xθ),w(⟨p, ℓ, x := r, θ⟩, v)}
Np

(31)(τ, k) ! nextt(p, ℓ) if τk−1 = t(⟨p, ℓ, b, θ⟩, t)
Np

(31)(τ, k) ! nextf(p, ℓ) if τk−1 = t(⟨p, ℓ, b, θ⟩, t)
Np

(31)(τ, k) ! Np
(31)(τ, k − 1) otherwise, where k > 1.

These definitions express that the execution of a process is in program order and se-
quentially consistent for process local registers. This is much weaker than sequential
consistency (SC) [Keller 1976; Hennessy and Plotkin 1979; Lamport 1979] or sequen-
tial consistency per variable (SCPV) [Alglave et al. 2014] which are relative to globally
shared variables.

8.2. The generic, locally sequential, unspecified predictability, time-travel, stateless,
maximal, interleaved, stepless trace semantics

The semantic domain and semantics are
D!P" ! α@⟨E (30),N(31)⟩(D⊥!P")

= λ ⟨B, sat, D, I, S, V ⟩ .D⊥!P"⟨B, sat, D, I, S, V , E (30), N(31)⟩
S!P" ! α@⟨E (30),N(31)⟩(S⊥!P")

= λ ⟨B, sat, D, I, S, V ⟩ . S⊥!P"⟨B, sat, D, I, S, V , E (30), N(31)⟩ .
We use the convention that if X is a formal parameter of a generic semantics then X(n)
is a corresponding actual parameter defined in (Def. n).

9. GENERIC, UNSPECIFIED LOCALITY, PREDICTIVE, TIME-TRAVEL, STATELESS, MAXIMAL,
INTERLEAVED, STEPLESS TRACE SEMANTICS

Recall that if θ ∈ stamp(τ) is the stamp of a read event r(⟨p, ℓ, r := x, θ⟩, xθ) then
V p!xθ"(τ, k) is the value referred to by the symbolic variable xθ at point k of a trace
τ as determined by a unique communication event from an initial write to I!0" or a
program write. A generic interleaved trace semantics is predictive if and only if its
actual parameter V is V(32) defined as follows:

Vp
(32)!xθ"(τ, k) ! v where ∃!i ∈ [1, 1 + |τ |[ . (τ i = r(⟨p, ℓ, r := x, θ⟩, xθ)) ∧ (Def. 32)

∃!j ∈ [1, 1 + |τ |[ . (τ j = rf[w(⟨p′, ℓ′, x := e′, θ′⟩, v), τ i]) .

νp(τ, k) ! λ xθ . Vp
(32)!xθ"(τ, k)

Notice that Vp
(32)!xθ"(τ, k) does not depend upon the position k in the trace τ and that

it can guess the value transmitted by future communications potentially involving
future writes and reads, which requires an oracle.
LEMMA 9.1 Vp

(32)!xθ"(τ, k) is uniquely well-defined by (Def. 32).

PROOF OF LEM. 9.1. By definition of events, xθ can only appear in a read event of
the form r(⟨p, ℓ, r := x, θ⟩, xθ) where, by Wf16(τ ), the stamp θ is unique in the trace
τ . By Wf26(τ ) and Wf27(τ ), this read event has a unique corresponding communication
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Prefixes, transitions, …
• Abstract traces by their prefixes: 
 
 
 

• and transitions: extract transitions from traces 
 
⟹ communication fairness is lost, inexact abstraction, 
⟹ add fairness condition
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←−α(S) !
⋃{←−α(τ)

∣∣ τ ∈ S
}

←−α(τ) ! {τ⟨[j⟨] | j ∈ [1, 1 + |τ |[}
←−γ (S ′) ! {τ | ←−α(τ) ⊆ S ′} .

LEMMA 24.1 ⟨℘(T|∼=), ⊆⟩ −−−→←−−−←−α

←−γ
⟨℘(T+|∼=), ⊆⟩ .

PROOF OF LEM. 24.1. ] By the function set abstraction LEM. 2.2.

The abstraction ←−α(S) is closed by prefixes meaning that ←−α(←−α(S)) = ←−α(S) or equival-
ently ∀τ ∈ ←−α(S) . ∀τ ′ " τ . τ ′ ∈ ←−α(S). Infinite traces are lost by the abstraction ←−α. The
concretization ←−γ rebuilts these infinite traces as follows [Cousot 1985, Sect. 2.6.7].

limS ! {τ ∈ T∞|∼= | ∀τ ′ ≺ τ . ∃τ ′′ ∈ S : τ ′ " τ ′′ ∈ S}
←−γl(S) ! S ∪ limS .

LEMMA 24.2 ⟨℘(T|∼=), ⊆⟩ −−−−→←−−−−
←−α

←−γl ⟨←−α(℘(T+|∼=)), ⊆⟩ where f(X) ! {f(x) | x ∈ X}.

PROOF OF LEM. 24.2. Let S ∈ ℘(T|∼=) and S ′ ∈ ←−α(℘(T+|∼=)) so that S ′ is closed by
prefix.

←−α(S) ⊆ S ′

⇐⇒
⋃{←−α(τ)

∣∣ τ ∈ S
}
⊆ S ′ !def. ←−α"

⇐⇒ ∀τ ∈ S . ←−α(τ) ⊆ S ′ !def. ⊆"

⇐⇒ ∀τ ∈ S . {⟨ τ i−−−→ τ i | i # j⟩ | j ∈ [1, 1 + |τ |[} ⊆ S ′ !def. ←−α"

⇐⇒ ∀τ ∈ S . ∀j ∈ [1, 1 + |τ |[ . ⟨ τ i−−−→ τ i | i # j⟩ ∈ S ′ !def. ⊆"

⇐⇒ S ⊆ {τ ∈ T|∼= | ∀j ∈ [1, 1 + |τ |[ . ⟨ τ i−−−→ τ i | i # j⟩ ∈ S ′} !def. ⊆"

⇐⇒ S ⊆ {τ ∈ T+|∼= | ∀j ∈ [1, 1 + |τ |[ . ⟨ τ i−−−→ τ i | i # j⟩ ∈ S ′} ∪ {τ ∈ T∞|∼= | ∀j ∈

[1, 1 + |τ |[ . ⟨ τ i−−−→ τ i | i # j⟩ ∈ S ′} !since T = T+ ∪ T∞"

⇐⇒ S ⊆ S ′ ∪ {τ ∈ T∞|∼= | ∀j ∈ [1, 1 + |τ |[ . ⟨ τ i−−−→ τ i | i # j⟩ ∈ S ′}
!since S ′ is closed by prefixes"

⇐⇒ S ⊆ S ′ ∪ limS ′

!since S ′ is closed by prefixes so that one can choose τ ′′ = τ ′ in the defini-
tion of limS ! {τ ∈ T∞|∼= | ∀τ ′ ≺ τ . ∃τ ′′ ∈ S : τ ′ " τ ′′ ∈ S}"

⇐⇒ S ⊆ ←−γl(S ′) !def. ←−γ "

For maximal semantics, we have the following.

LEMMA 24.3 ⟨{S ∈ ℘(T|∼=) | ∀τ, τ ′ ∈ S : τ ̸≺ τ ′}, ⊆⟩ −−−−−→←−−−−−
←−α

←−γm
l ⟨←−α(℘(T+|∼=)), ⊆⟩ where

←−γm
l (S) ! {τ ∈ S | !τ ′ ∈ S . τ ′ ≺ τ} ∪ limS .

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 J. Alglave et al.

and has length |τ | = n. For brevity, we use the more traditional form τ = σ1
ϵ2−−−→ σ2

ϵ3−−−→ σ3 . . .σn−1
ϵn−−−−→ σn when the first event ϵ1 is the start event ϵ1 = ϵstart. We say that

event ϵk, state σk, and step ϵk−−−→ σk are “at point k ∈ [1, 1 + |τ |[ of τ”.
An infinite trace has the form

τ =
ϵ1−−−→ σ1

ϵ2−−−→ σ2
ϵ3−−−→ σ3 . . .σn−1

ϵn−−−−→ σn . . .

= ⟨ ϵk−−−→ σk | k ∈ N+⟩

and has length |τ | =∞ such that 1+∞ =∞10. It is traditionally written τ = σ1
ϵ2−−−→ σ2

ϵ3−−−→ σ3 . . .σn−1
ϵn−−−−→ σn . . . where ϵ1 = ϵstart.

5.9. States and events of traces
We define the sequence of states of a trace τ as

τ ! σ1σ2σ3 . . .σn−1σn[. . .]

and its sequence of events of a trace τ as

τ ! ϵ1ϵ2ϵ3 . . . ϵn−1ϵn[. . .].

(We write [. . .] when the elements . . . are optional e.g. to have a single notation for both

finite and infinite traces.) So a trace has the form τ = ⟨ τk−−−−→ τk | k ∈ [1, 1 + |τ |]⟩. The
stamps of a trace τ are stamp(τ)

stamp(τ) ! {stamp(τk) | k ∈ [1, 1 + |τ |[} .

5.10. Prefix and suffixes of traces
We let τ⟨[j⟨] be the prefix of length j ∈ [1, 1 + |τ |[ of a trace τ and τ ]⟩j ]⟩ be the suffix of a
trace τ after position j in that trace. We write ϵ ! τ to mean that ϵ is an event of trace
τ .

τ⟨[j⟨] ! ⟨ τ i−−−→ τ i | i ∈ [1, 1 + j[⟩ so that τ⟨[ |τ |⟨] = τ (prefix)

τ ]⟩j ]⟩ ! ⟨ τ i−−−→ τ i | i ∈ ]j, 1 + |τ |[⟩ so that τ ]⟩|τ | ]⟩ = ε (suffix)

ϵ ! τ ! ∃i ∈ [1, 1 + |τ |[ . τ i = ϵ . (event membership)

5.11. Equivalence of traces and semantics up to stamp renaming
We consider traces T|∼= up to the isomorphic renaming ∼= of stamps. The renaming is
an equivalence relation.

τ ∼= τ ′ ! |τ | = |τ ′| ∧
∃ϱ ∈ stamp(τ) "# stamp(τ ′) . ∀i ∈ [1, 1 + |τ |[ . τ ′i = ϱ(τ i) ∧ τ ′i = ϱ(τ i) ∧
∀p ∈ Pi . ∀θ, θ′ ∈ P(p) . (θ ✁p θ′) ⇐⇒ (ϱ(θ) ✁p ϱ(θ′))

10 With this convention, the domain of a finite or infinite trace is [1, 1 + |τ |[ (where ∞ is the first infinite
ordinal). If |τ | is finite then [1, 1 + |τ |[ = [1, |τ |]. Else |τ | is infinite so 1 + |τ | = 1 + ∞ = ∞ in which case
[1, 1 + |τ |[ = [1,∞[.
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Effect of the 
cat specification
on the hierarchy
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Exactness and cat preservation
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The cat abstraction
• The same cat specification              applies equally to 

any concurrent execution abstraction        of any 
interleaved/truly parallel semantics in the hierarchy

• The appropriate level of abstraction to specify WCM:

• No states, only marker (e.g. fence), r, w, rf(w,r) 
events

• No values in events

• No global time (only po order of events per process)

• Time of communications forgotten (only rf of who 
communicates with whom)

20
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13.4. Preservation of the cat specification between the valued and symbolic inscrutable
semantics

Again the cat weak consistency model specification is the same for the symbolic in-
scrutable semantics Ssi!P" and the ground predictive semantics Svo!P".

THEOREM 13.9 Let, by TH. 13.8, αsv (S
si!P") ∼= Svo!P" be the instantiation of the sym-

bolic inscrutable semantics Ssi!P" for the interpretation Iv of the predictive ground se-
mantic Svo!P". Then αsv (α !cat"[αΞ ◦ α](Ssi!P")) ∼= α !cat"[αΞ ◦ α](Svo!P").

PROOF OF TH. 13.9. The proof is the same as that of TH. 12.9 since the two sym-
bolic semantics have two different representations of values on traces which are any-
way forgotten by the abstraction α !cat"[αΞ ◦ α] to candidate executions and, by TH.
12.7 and 13.8, they have the same instantiations.

14. HIERARCHY OF TIME-TRAVEL, STATELESS, MAXIMAL, INTERLEAVED, STEPLESS TRACE
SEMANTICS

The hierarchy of time-travel, stateless, maximal, interleaved, stepless trace semantics
that we have constructed up to now can be represented by the Hasse diagram of Fig. 5
to which we have added the abstraction functions. For each semantics in the hierarchy,
the commutation diagram of Fig. 4 does apply.

Part V: TRUE PARALLELISM
All semantics in the hierarchy of time-travel, stateless, maximal, interleaved, stepless
trace semantics of Fig. 5 are based on traces which introduce an abstraction of the
notion of time implicitly defined by the order of appearance of events in the trace.
For example the semantics is time-travel because a read and corresponding write may
appear in any order and the communication itself can occur before or after any of them
in a trace. Because the events for different processes are interleaved in a trace, it is
possible to state that an event of a process occurs before or after an event in another
process in that trace.

Although true for a specific trace, this does not imply that the semantics is time-
dependent for computations and communications since if a trace is in the most general
semantics S⊥!P" then shuffling the computation events of different processes and/or
communication events in that trace yields another trace which is also in the most gen-
eral semantics S⊥!P". Hence the most general semantics S⊥!P" and its abstractions in
Fig. 5 are independent of the order in which computation events for different processes
and communication events do appear in traces.

We show in next Sect. 15, that this order of communication events can be abstracted
away by an abstraction α⃗g equivalent to all shuffling of communication events, without
loosing information on the S⊥!P" semantics16.

Similarly in next Sect. 16, the interleaving of actions of different processes in a trace
are abstracted away by an abstraction α⃗p equivalent to all shuffling of computation
events in processes, without loosing information on the S⊥!P" semantics17.

16Of course information is lost when considering individually a particular trace. This is because, for that
particular trace, it is no longer possible to say whether a communication appears before or after the read
and write events involved in the trace. However, no information is lost for the semantics, since all concrete
traces can be exactly rebuilt from the abstraction, up to stamp renaming, as shown by TH. 15.7.
17Again information is lost when considering individually a particular trace.
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Conclusion
• The hierarchy of anarchic semantics describe the same 

computations and potential communications in very 
different styles

• The cat semantics restricts communications to a 

machine/network architecture in the same way for all 
semantics in the hierarchy

• This idea of parameterized semantics at various levels 
of abstraction is useful for

• Verification

• Static analysis
22
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The End
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