
Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Semantics and invariance proof method
for weakly consistent parallelism

1

Jade Alglave (MSR-Cambridge, UCL, UK)

Patrick Cousot (NYU, Emer. ENS, PSL)

Dagstuhl Seminar 16471
http://www.dagstuhl.de/16471

Concurrency with Weak Memory Models: Semantics, Languages,
Compilation, Verification, Static Analysis, and Synthesis

November 20 – 25 , 2016

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Weakly consistent
parallel programs

2

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Weakly consistent parallel programs
var x1,…,xm; // shared variables
P0; // prelude initializing x1,…,xm
[P1 || P2 || … || Pn]

• P1, P2, …, Pn are the processes modifying the shared
variables and their local registers R, …

• The execution of a write x := E to a shared variable
and the read R := x of a shared variable is not
instantaneous (as in sequential consistency)

3

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Example (lb, load buffer)
• Algorithm A:

• Specification Sinv:
 at 3 ∧ at 13 ⇒ ¬(r1=1 ∧ r2=1)

4

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+ /QK�BMb
jXR AMi2`H2�p2/ i`�+2 b2K�MiB+ /QK�BM
h?Bb Bb i?2 b2K�MiB+ /QK�BM 7Q` b2[m2MiB�HHv +QMbBbi2Mi b2K�MiB+b ¨ H� G�KTQ`i (e)X

jXRXR 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXk ai�i2b
ai�i2b `2+Q`/ r?B+? r`Bi2 2p2Mib �z2+i i?2 b?�`2/ K2KQ`v ν- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib ρ- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b UQ` i?2 r`Bi2 2p2Mi i?�i
;2M2`�i2/ i?2b2 p�Hm2bV �`2 `2�/ #v `2�/ �+iBQMb- �M/ r?2MX

jXRXj AMi2`H2�p2/ i`�+2b
�M BMi2`H2�p2/ i`�+2 Bb � K�tBK�H }MBi2 Q` BM}MBi2 i`�+2 τ r?2`2 bi�i2b �`2 b2T�`�i2/
#v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM; �M BMi2`H2�p2/ i`�+2 Bi
Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/ #27Q`2f�7i2` r?B+?
�+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M BM };m`2 kX �7i2`
2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM Q7 QM2 T`Q+2bbX AM
�#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

Example (Peterson)
• Algorithm A:

• Specification Sinv:

5

T. D’Hondt, editor. ECOOP 2010 - Object-Oriented Programming,
24th European Conference, Maribor, Slovenia, June 21-25, 2010.
Proceedings, volume 6183 of Lecture Notes in Computer Science, 2010.
Springer. ISBN 978-3-642-14106-5. doi: 10.1007/978-3-642-14107-2.
URL http://dx.doi.org/10.1007/978-3-642-14107-2.

T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and V. Vafei-
adis. Concurrent abstract predicates. In D’Hondt (2010), pages 504–528.
ISBN 978-3-642-14106-5. doi: 10.1007/978-3-642-14107-2 24. URL
http://dx.doi.org/10.1007/978-3-642-14107-2_24.

M. Dodds, A. Haas, and C. M. Kirsch. A scalable, correct time-
stamped stack. In Rajamani and Walker (2015), pages 233–246.
ISBN 978-1-4503-3300-9. doi: 10.1145/2676726.2676963. URL
http://doi.acm.org/10.1145/2676726.2676963.

M. Doko and V. Vafeiadis. A program logic for C11 memory fences. In
B. Jobstmann and K. R. M. Leino, editors, Verification, Model Checking,
and Abstract Interpretation - 17th International Conference, VMCAI
2016, St. Petersburg, FL, USA, January 17-19, 2016. Proceedings,
volume 9583 of Lecture Notes in Computer Science, pages 413–
430. Springer, 2016. ISBN 978-3-662-49121-8. doi: 10.1007/
978-3-662-49122-5 20. URL http://dx.doi.org/10.1007/
978-3-662-49122-5_20.

A. Farzan, Z. Kincaid, and A. Podelski. Inductive data flow graphs. In
Giacobazzi and Cousot (2013), pages 129–142. ISBN 978-1-4503-
1832-7. doi: 10.1145/2429069.2429086. URL http://doi.acm.
org/10.1145/2429069.2429086.

R. W. Floyd. Assigning meaning to programs. In J. Schwartz, editor, Proc.
Symp. in Applied Math., volume 19, pages 19–32. Amer. Math. Soc.,
1967.

R. Giacobazzi and R. Cousot, editors. The 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’13, Rome, Italy - January 23 - 25, 2013, 2013. ACM. ISBN 978-1-4503-
1832-7. URL http://dl.acm.org/citation.cfm?id=2429069.

A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh, and M. Shapiro.
’cause i’m strong enough: reasoning about consistency choices in
distributed systems. In Bodı́k and Majumdar (2016), pages 371–
384. ISBN 978-1-4503-3549-2. doi: 10.1145/2837614.2837625. URL
http://doi.acm.org/10.1145/2837614.2837625.

I. Grief. Semantics of communicating parallel processes. PhD thesis,
Massachusetts Institute of Technology. Dept. of Electrical Engineering
and Computer Science, Sept. 1975. URL https://dspace.mit.edu/
handle/1721.1/57710.

C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, 1969. doi: 10.1145/363235.363259. URL
http://doi.acm.org/10.1145/363235.363259.

A. L. Hosking, P. T. Eugster, and C. V. Lopes, editors. Proceedings
of the 2013 ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA
2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-
31, 2013, 2013. ACM. ISBN 978-1-4503-2374-1. URL http:
//dl.acm.org/citation.cfm?id=2509136.

V. Klebanov. A jmm-faithful non-interference calculus for java. In
N. Guelfi, G. Reggio, and A. B. Romanovsky, editors, Scientific En-
gineering of Distributed Java Applications, 4th InternationalWork-
shop, FIDJI 2004, Luxembourg-Kirchberg, Luxembourg, Novem-
ber 24-25, 2004, Revised Selected Papers, volume 3409 of Lec-
ture Notes in Computer Science, pages 101–111. Springer, 2004.
ISBN 3-540-25053-0. doi: 10.1007/978-3-540-31869-9 10. URL
http://dx.doi.org/10.1007/978-3-540-31869-9_10.

O. Lahav and V. Vafeiadis. Owicki-Gries reasoning for weak memory
models. In M. M. Halldórsson, K. Iwama, N. Kobayashi, and
B. Speckmann, editors, Automata, Languages, and Programming -
42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-
10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in
Computer Science, pages 311–323. Springer, 2015. ISBN 978-3-
662-47665-9. doi: 10.1007/978-3-662-47666-6 25. URL http:
//dx.doi.org/10.1007/978-3-662-47666-6_25.

O. Lahav, N. Giannarakis, and V. Vafeiadis. Taming release-acquire
consistency. In Bodı́k and Majumdar (2016), pages 649–662. ISBN

978-1-4503-3549-2. doi: 10.1145/2837614.2837643. URL http:
//doi.acm.org/10.1145/2837614.2837643.

L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans.
Software Eng., 3(2):125–143, 1977. doi: 10.1109/TSE.1977.229904.
URL http://dx.doi.org/10.1109/TSE.1977.229904.

L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Computers, 28(9):
690–691, 1979. doi: 10.1109/TC.1979.1675439. URL http:
//dx.doi.org/10.1109/TC.1979.1675439.

A. Miné. Static analysis of run-time errors in embedded real-time parallel
C programs. Logical Methods in Computer Science, 8(1), 2012. doi:
10.2168/LMCS-8(1:26)2012. URL http://dx.doi.org/10.2168/
LMCS-8(1:26)2012.

A. Miné. Relational thread-modular static value analysis by abstract
interpretation. In K. L. McMillan and X. Rival, editors, Verification,
Model Checking, and Abstract Interpretation - 15th International
Conference, VMCAI 2014, San Diego, CA, USA, January 19-21,
2014, Proceedings, volume 8318 of Lecture Notes in Computer
Science, pages 39–58. Springer, 2014. ISBN 978-3-642-54012-7.
doi: 10.1007/978-3-642-54013-4 3. URL http://dx.doi.org/10.
1007/978-3-642-54013-4_3.

M. O. Myreen and M. J. C. Gordon. Hoare logic for realistically
modelled machine code. In O. Grumberg and M. Huth, editors,
Tools and Algorithms for the Construction and Analysis of Systems,
13th International Conference, TACAS 2007, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2007 Braga, Portugal, March 24 - April 1, 2007, Proceedings, volume
4424 of Lecture Notes in Computer Science, pages 568–582. Springer,
2007. ISBN 978-3-540-71208-4. doi: 10.1007/978-3-540-71209-1 44.
URL http://dx.doi.org/10.1007/978-3-540-71209-1_44.

M. O. Myreen, A. C. J. Fox, and M. J. C. Gordon. Hoare logic
for ARM machine code. In F. Arbab and M. Sirjani, editors,
International Symposium on Fundamentals of Software Engineering,
International Symposium, FSEN 2007, Tehran, Iran, April 17-19, 2007,
Proceedings, volume 4767 of Lecture Notes in Computer Science,
pages 272–286. Springer, 2007. ISBN 978-3-540-75697-2. doi:
10.1007/978-3-540-75698-9 18. URL http://dx.doi.org/10.
1007/978-3-540-75698-9_18.

M. Najafzadeh, A. Gotsman, H. Yang, C. Ferreira, and M. Shapiro.
The CISE tool: proving weakly-consistent applications correct. In
P. Alvaro and A. Bessani, editors, Proceedings of the 2nd Workshop
on the Principles and Practice of Consistency for Distributed Data,
PaPoC@EuroSys 2016, London, United Kingdom, April 18, 2016, pages
2:1–2:3. ACM, 2016. ISBN 978-1-4503-4296-4. doi: 10.1145/2911151.
2911160. URL http://doi.acm.org/10.1145/2911151.2911160.

P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966.
B. Norris and B. Demsky. CDSCHECKER: checking concurrent data

structures written with C/C++ atomics. In Hosking et al. (2013), pages
131–150. ISBN 978-1-4503-2374-1. doi: 10.1145/2509136.2509514.
URL http://doi.acm.org/10.1145/2509136.2509514.

P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor.
Comput. Sci., 375(1-3):271–307, 2007. doi: 10.1016/j.tcs.2006.12.035.
URL http://dx.doi.org/10.1016/j.tcs.2006.12.035.

S. Owens. Reasoning about the implementation of concurrency abstractions
on x86-tso. In D’Hondt (2010), pages 478–503. ISBN 978-3-
642-14106-5. doi: 10.1007/978-3-642-14107-2 23. URL http:
//dx.doi.org/10.1007/978-3-642-14107-2_23.

S. S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs I. Acta Inf., 6:319–340, 1976. doi: 10.1007/BF00268134.
URL http://dx.doi.org/10.1007/BF00268134.

G. L. Peterson. Myths about the mutual exclusion problem. Inf. Process.
Lett., 12(3):115–116, 1981. doi: 10.1016/0020-0190(81)90106-X. URL
http://dx.doi.org/10.1016/0020-0190(81)90106-X.

S. K. Rajamani and D. Walker, editors. Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015, 2015.
ACM. ISBN 978-1-4503-3300-9. URL http://dl.acm.org/
citation.cfm?id=2676726.

14 2016/7/16

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/16

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Weak memory/consistency models
• Sequential consistency:

• Weak memory models:

6

x1 … xm

P1 P2 … Pn

x1 … xm

P1 P2 Pn

communication
network

(anticipations,
delays, shuffles…)

atomic
instantaneous

communications

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

• In the worst case a read x can read from any past or
future write x of any process (including for the
reading process)

Read/write matching

7

read xwrite x write xinterleaved
executions

write x

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot8

Example (lb, incorrect)

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+ /QK�BMb
jXR AMi2`H2�p2/ i`�+2 b2K�MiB+ /QK�BM
h?Bb Bb i?2 b2K�MiB+ /QK�BM 7Q` b2[m2MiB�HHv +QMbBbi2Mi b2K�MiB+b ¨ H� G�KTQ`i (e)X

jXRXR 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXk ai�i2b
ai�i2b `2+Q`/ r?B+? r`Bi2 2p2Mib �z2+i i?2 b?�`2/ K2KQ`v ν- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib ρ- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b UQ` i?2 r`Bi2 2p2Mi i?�i
;2M2`�i2/ i?2b2 p�Hm2bV �`2 `2�/ #v `2�/ �+iBQMb- �M/ r?2MX

jXRXj AMi2`H2�p2/ i`�+2b
�M BMi2`H2�p2/ i`�+2 Bb � K�tBK�H }MBi2 Q` BM}MBi2 i`�+2 τ r?2`2 bi�i2b �`2 b2T�`�i2/
#v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM; �M BMi2`H2�p2/ i`�+2 Bi
Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/ #27Q`2f�7i2` r?B+?
�+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M BM };m`2 kX �7i2`
2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM Q7 QM2 T`Q+2bbX AM
�#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

• at 3 ∧ at 13 ∧ r1=1 ∧ r2=1

•

• This erroneous behavior can be observed on TSO
machines

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Example: Peterson (incorrect)
• Can read the wrong flags

9

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Peterson behaves differently under WCMs:
1) can read the wrong flags

rf

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 3: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 4: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 5: Incorrect executions of Peterson algorithm with WCM

2 2016/9/8

at 6 ∧ at 16: ¬R1 ∧ R2=1 ∧ ¬R3 ∧ R4=2 holds
⇒ both processes simultaneously enter their critical section

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Example: Peterson (incorrect)
• Can read the wrong turns

10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Peterson behaves differently under WCMs:
2) can read the wrong turns

rf

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 3: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 4: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 5: Incorrect executions of Peterson algorithm with WCM

2 2016/9/8

at 6 ∧ at 16: ¬R1 ∧ R2=1 ∧ ¬R3 ∧ R4=2 holds
⇒ both processes simultaneously enter their critical section

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

A hierarchy of semantics
of weakly consistent

parallelism

11

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Hierarchy of semantics
• Hierarchy of semantic domains:

• Induces a hierarchy of semantics

12

rfrf

rf

rf

rf

rf

rf

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

po

IW

po po

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

po

IW

po po

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

po

IW

po po

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

po

IW

po po

6B;m`2 N, *�M/B/�i2 2t2+miBQMb Q7 H#

Domain of sets of candidate executions

Domain of sets of histories

Domain of sets of executions

Domain of sets of interleaved traces

!e

!h "h

"e

!c "c

!h

Invariance domain

!i

"i

6B;m`2 Ry, >B2`�`+?v Q7 b2K�MiB+ �#bi`�+iBQMb

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

rfrf

co

co

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

rf

rf

co

co

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

rf

rf

co

co

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

rf

co

co

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

rfrf

co

co

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

rf

rf

co

co

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

rf

rf

co

co

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

bi�`i y,t 4 yc v 4 y−−−−−−−−−−−−→ 〈{t← 0, v← 0}, R,{`R← 0}, RR,{`k← 0}〉 R,`() `R t−−−−−−−−→

〈{t ← 0, v ← 0}, k,{`R ← 0}, RR,{`k ← 0}〉 k,r() v R−−−−−−−−→ 〈{t ← 0, v ← 1},

j,{`R ← 0}, RR,{`k ← 0}〉 RR,`() `k v−−−−−−−−−→ 〈{t ← 0, v ← 1}, j,{`R ← 0},
Rk,{`k← 1}〉 Rk,r() t R−−−−−−−−→ 〈{t← 1, v← 1}, j,{`R← 0}, Rj,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2 Q7 H#

jXk ai�i2H2bb 2t2+miBQM b2K�MiB+b
jXj >BbiQ`v b2K�MiB+b
jX9 �M�`+?B+ b2K�MiB+b
jX8 *QMbBbi2M+v bT2+B}+�iBQM

9 h`mHv T�`�HH2H b2K�MiB+b rBi? b2T�`�i2 +QKKm@
MB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 +QKKmMB+�iBQMbX

9XR h`�+2
h`�+2b �`2 b2[m2M+2b Q7 2p2Mib τ 4 〈τi, i ∈ /QK(τ)〉 `2+Q`/BM; i?2 2t2+miBQM Q7 �
T`Q+2bbX h`�+2b �`2 }MBi2 U/QK(τ) = [0, n[Q7 H2M;i? n > 0V Q` BM}MBi2 b2[m2M+2b Q7
2p2Mib U/QK(τ) = NVX

9Xk _2�/@7`QK
h?2 `2�/@7Q`K `2H�iBQM `7 `2+Q`/b r?B+? `2�/ 2p2Mib `2�/ 7`QK r?B+? r`Bi2 2p2MibX
aQ 〈w, r〉 ∈ `7 BKTHB2b i?�i o(r) = o(w)X

9Xj >BbiQ`v
�M ?BbiQ`v η 4 〈τ0

∏n
i=1 τi, `7〉 +QMbBbib Q7 i?2 i`�+2 τ0 Q7 i?2 2t2+miBQM Q7 i?2 BMBiB�H@

Bx�iBQM S0 Q7 i?2 T`Q;`�K S 4 S0(S1%ē%Sn)- i?2 }MBi2 Q` BM}MBi2 i`�+2b Q7 2t2+miBQM
Q7 T`Q+2bb2b Si- i ∈ [1, n]- �M/ i?2 `2�/@7Q`K `2H�iBQM `7X

j

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+b
jXR AMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b
jXRXR ai�i2b
ai�i2b `2+Q`/ i?2 2z2+i Q7 r`Bi2 2p2Mib BM i?2 b?�`2/ K2KQ`v- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b �`2 `2�/ #v `2�/ �+iBQMb-
�M/ r?2MX

jXRXk 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXj AMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Bb � b2i Q7 K�tBK�H }MBi2 Q` BM}MBi2 i`�+2b
r?2`2 bi�i2b �`2 b2T�`�i2/ #v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM;
�M BMi2`H2�p2/ i`�+2 Bi Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/
#27Q`2f�7i2` r?B+? �+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M
BM };m`2 \\X �7i2` 2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM
Q7 QM2 T`Q+2bbX AM �#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

rf

co

co

6B;m`2 RR, �M�`+?B+ b2K�MiB+b Q7 H#

R8

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Sets of interleaved traces
• Traces: maximal finite or infinite sequence of states

separated by events generated by computation and
communication steps ⟶ global time

• States: shared memory assigning values to global
variables, store buffers, … program point of each
process, assignment to local registers

• Events 𝑒: P(𝑒) process executed, A(𝑒): labelled action
executed, X(𝑒): shared variable involved, V(𝑒): value
involved, …

• No restriction on who can read which write on the
same shared variable!

13

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Example of interleaved trace for lb
•

•

14

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+ /QK�BMb
jXR AMi2`H2�p2/ i`�+2 b2K�MiB+ /QK�BM
h?Bb Bb i?2 b2K�MiB+ /QK�BM 7Q` b2[m2MiB�HHv +QMbBbi2Mi b2K�MiB+b ¨ H� G�KTQ`i (e)X

jXRXR 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXk ai�i2b
ai�i2b `2+Q`/ r?B+? r`Bi2 2p2Mib �z2+i i?2 b?�`2/ K2KQ`v ν- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib ρ- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b UQ` i?2 r`Bi2 2p2Mi i?�i
;2M2`�i2/ i?2b2 p�Hm2bV �`2 `2�/ #v `2�/ �+iBQMb- �M/ r?2MX

jXRXj AMi2`H2�p2/ i`�+2b
�M BMi2`H2�p2/ i`�+2 Bb � K�tBK�H }MBi2 Q` BM}MBi2 i`�+2 τ r?2`2 bi�i2b �`2 b2T�`�i2/
#v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM; �M BMi2`H2�p2/ i`�+2 Bi
Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/ #27Q`2f�7i2` r?B+?
�+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M BM };m`2 kX �7i2`
2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM Q7 QM2 T`Q+2bbX AM
�#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

• bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

• bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
Rj,{`k← 1}〉

• h?2 b?�`2/ K2KQ`v BM/B+�i2b r?B+? r`Bi2 2p2Mi r�b `2�/ iQ �bbB;M � p�Hm2 iQ �
b?�`2/ p�`B�#H2X h?Bb r`Bi2 2p2Mi w +�``B2b i?2 p�Hm2 o(w) �bbB;M2/ iQ i?2 b?�`2/
p�`B�#H2 r?B+? Bb �bbB;M2/ iQ i?2 `2;Bbi2`X h?2 �bbB;MK2Mi Bb BMbi�Mi�M2Qmb #mi /Q2b
MQi M2+2bb�`BHv `2�/b 7`QK i?2 H�bi T�bi r`Bi2 BM i?2 BMi2`H2�p2/ i`�+2X

• �M �Hi2`M�iBp2 +QMbBbib BM BMi`Q/m+BM; � mMB[m2 Svi?B� p�`B�#H2 7Q` i?2 `2�/ 2p2Mib
�M/ iQ `2+Q`/ Bib p�Hm2 BM � ;HQ#�H Svi?B� p�`B�#H2 2MpB`QMK2MiX

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

j

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Sets of truly parallel execution traces
• project traces per process ⟶ local time on

computations

• get rid of shared memory states using a read-from
relation rf ⟶ no time on communications

⟨𝑟,𝑤⟩∈ rf ⟺ ∧

• keep local states on process control points and values
of registers

• keep computation progress information using cuts of
parallel traces ⟶ global time

15

jXRX9 a2K�MiB+ /QK�BM Q7 BMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Q7 � T`Q;`�K Bb � b2i Q7 K�tBK�H BMi2`H2�p2/
i`�+2b bQ i?2 b2K�MiB+ /QK�BM Q7 BMi2`H2�p2/ i`�+2b Bb i?2 TQr2`b2i Q7 i?2 b2i Q7
K�tBK�H BMi2`H2�p2/ i`�+2bX

jXk >BbiQ`v b2K�MiB+ /QK�BM 7Q` i`mHv T�`�HH2H b2K�MiB+b
rBi? b2T�`�i2 +QKKmMB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 7Q` +QKKmMB+�iBQMbX

jXkXR �#bi`�+iBQM Q7 �M BMi2`H2�p2/ i`�+2 b2K�MiB+b iQ � ?BbiQ`v b2K�MiB+
hQ ;2i � i`mHv T�`�HH2H b2K�MiB+b- i?2 �#bi`�+iBQM α? Kmbi }`bi 7Q`;2i �#Qmi ;HQ#�H
iBK2X

S�`�HH2H i`�+2b hQ /Q bQ- α? T`QD2+ib i?2 i`�+2b Q7 i?2 BMi2`H2�p2/ b2K�MiB+b QM
i`�+2b T2` T`Q+2bb bQ i?�i QMHv HQ+�H iBK2 Bb �p�BH�#H2 iQ � T`Q+2bbX

_2�/@7`QK `2H�iBQM `7 hQ ;2i `B/ Q7 bi�i2b- α? b2T�`�i2b +QKKmMB+�iBQMb mbBM; �
`2�/@7`QK +QKKmMB+�iBQM `2H�iBQM `7X q2 ?�p2 〈w, r〉 ∈ `7 B7 �M/ QMHv B7 i?2`2 2tBbib
� i`�MbBiBQM τ = τ0〈ν, . . .〉

r−→ 〈ν ′, . . .〉τ1 QM i?2 i`�+2 bm+? i?�i ν(s(r)) = wX

GQ+�H `2;Bbi2`b h?2 HQ+�H `2;Bbi2` 2MpB`QMK2Mi ρ +�M 2Bi?2` #2 F2Ti BM i?2 bi�i2
Q` +�M #2 2HBKBM�i2/ bBM+2 i?2 p�Hm2 �bbB;M2/ iQ � `2;Bbi2` Bb i?2 H�bi QM2 QM i?2 i`�+2
Q7 i?2 T`Q+2bbX

*Q?2`2M+2 Q`/2` +Q 6BM�HHv- i?2 +Q?2`2M+2 Q`/2` +Q `2H�i2b �Mv r`Bi2 2p2Mi w iQ
�Mv H�i2` r`Bi2 2p2Mi w′ iQ i?�i p�`B�#H2 7QmM/ QM i?2 i`�+2 r?B+? Bb i?2`27Q`2 Q7 i?2
7Q`K τ0

w−→ τ1
w′
−−→ τ2X q2 +�M �HbQ `2bi`B+i iQ i?2 b�K2 b?�`2/ p�`B�#H2- 7Q`K�HHv

+Q(〈π, `7〉) ! {〈w, w′〉 | ∃i < j . w ∈ πi ∧ w′ ∈ πj ∧ o(w) = o(w′)}

j

jXRX9 a2K�MiB+ /QK�BM Q7 BMi2`H2�p2/ i`�+2b
h?2 BMi2`H2�p2/ QT2`�iBQM�H b2K�MiB+b Q7 � T`Q;`�K Bb � b2i Q7 K�tBK�H BMi2`H2�p2/
i`�+2b bQ i?2 b2K�MiB+ /QK�BM Q7 BMi2`H2�p2/ i`�+2b Bb i?2 TQr2`b2i Q7 i?2 b2i Q7
K�tBK�H BMi2`H2�p2/ i`�+2bX

jXk >BbiQ`v b2K�MiB+ /QK�BM 7Q` i`mHv T�`�HH2H b2K�MiB+b
rBi? b2T�`�i2 +QKKmMB+�iBQMb

h?2 i`mHv T�`�HH2H b2K�MiB+b ?�b HQ+�H iBK2 #mi MQ ;HQ#�H iBK2 7Q` +QKTmi�iBQMb �M/
MQ HQ+�H Q` ;HQ#�H iBK2 7Q` +QKKmMB+�iBQMbX

jXkXR �#bi`�+iBQM Q7 �M BMi2`H2�p2/ i`�+2 b2K�MiB+b iQ � ?BbiQ`v b2K�MiB+
hQ ;2i � i`mHv T�`�HH2H b2K�MiB+b- i?2 �#bi`�+iBQM α? Kmbi }`bi 7Q`;2i �#Qmi ;HQ#�H
iBK2X

S�`�HH2H i`�+2b hQ /Q bQ- α? T`QD2+ib i?2 i`�+2b Q7 i?2 BMi2`H2�p2/ b2K�MiB+b QM
i`�+2b T2` T`Q+2bb bQ i?�i QMHv HQ+�H iBK2 Bb �p�BH�#H2 iQ � T`Q+2bbX

_2�/@7`QK `2H�iBQM `7 hQ ;2i `B/ Q7 bi�i2b- α? b2T�`�i2b +QKKmMB+�iBQMb mbBM; �
`2�/@7`QK +QKKmMB+�iBQM `2H�iBQM `7X q2 ?�p2 〈w, r〉 ∈ `7 B7 �M/ QMHv B7 i?2`2 2tBbib
� i`�MbBiBQM τ = τ0〈ν, . . .〉

r−→ 〈ν ′, . . .〉τ1 QM i?2 i`�+2 bm+? i?�i ν ′(s(r)) = wX

GQ+�H `2;Bbi2`b h?2 HQ+�H `2;Bbi2` 2MpB`QMK2Mi ρ +�M 2Bi?2` #2 F2Ti BM i?2 bi�i2
Q` +�M #2 2HBKBM�i2/ bBM+2 i?2 p�Hm2 �bbB;M2/ iQ � `2;Bbi2` Bb i?2 H�bi QM2 QM i?2 i`�+2
Q7 i?2 T`Q+2bbX

*Q?2`2M+2 Q`/2` +Q 6BM�HHv- i?2 +Q?2`2M+2 Q`/2` +Q `2H�i2b �Mv r`Bi2 2p2Mi w iQ
�Mv H�i2` r`Bi2 2p2Mi w′ iQ i?�i p�`B�#H2 7QmM/ QM i?2 i`�+2 r?B+? Bb i?2`27Q`2 Q7 i?2
7Q`K τ0

w−→ τ1
w′
−−→ τ2X q2 +�M �HbQ `2bi`B+i iQ i?2 b�K2 b?�`2/ p�`B�#H2- 7Q`K�HHv

+Q(〈π, `7〉) ! {〈w, w′〉 | ∃i < j . w ∈ πi ∧ w′ ∈ πj ∧ o(w) = o(w′)}

j

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Example of truly parallel execution for lb

16

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+ /QK�BMb
jXR AMi2`H2�p2/ i`�+2 b2K�MiB+ /QK�BM
h?Bb Bb i?2 b2K�MiB+ /QK�BM 7Q` b2[m2MiB�HHv +QMbBbi2Mi b2K�MiB+b ¨ H� G�KTQ`i (e)X

jXRXR 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXk ai�i2b
ai�i2b `2+Q`/ r?B+? r`Bi2 2p2Mib �z2+i i?2 b?�`2/ K2KQ`v ν- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib ρ- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b UQ` i?2 r`Bi2 2p2Mi i?�i
;2M2`�i2/ i?2b2 p�Hm2bV �`2 `2�/ #v `2�/ �+iBQMb- �M/ r?2MX

jXRXj AMi2`H2�p2/ i`�+2b
�M BMi2`H2�p2/ i`�+2 Bb � K�tBK�H }MBi2 Q` BM}MBi2 i`�+2 τ r?2`2 bi�i2b �`2 b2T�`�i2/
#v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM; �M BMi2`H2�p2/ i`�+2 Bi
Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/ #27Q`2f�7i2` r?B+?
�+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M BM };m`2 kX �7i2`
2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM Q7 QM2 T`Q+2bbX AM
�#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

rf

11:,r2=0

12:,r2=1

13:,r2=1

1:,r1=0

0:, start

2:,r1=1

3:,r1=1

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w12
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w12
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

• bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

• bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
Rj,{`k← 1}〉

• h?2 b?�`2/ K2KQ`v BM/B+�i2b r?B+? r`Bi2 2p2Mi r�b `2�/ iQ �bbB;M � p�Hm2 iQ �
b?�`2/ p�`B�#H2X h?Bb r`Bi2 2p2Mi w +�``B2b i?2 p�Hm2 o(w) �bbB;M2/ iQ i?2 b?�`2/
p�`B�#H2 r?B+? Bb �bbB;M2/ iQ i?2 `2;Bbi2`X h?2 �bbB;MK2Mi Bb BMbi�Mi�M2Qmb #mi /Q2b
MQi M2+2bb�`BHv `2�/b 7`QK i?2 H�bi T�bi r`Bi2 BM i?2 BMi2`H2�p2/ i`�+2X

• �M �Hi2`M�iBp2 +QMbBbib BM BMi`Q/m+BM; � mMB[m2 Svi?B� p�`B�#H2 7Q` i?2 `2�/ 2p2Mib
�M/ iQ `2+Q`/ Bib p�Hm2 BM � ;HQ#�H Svi?B� p�`B�#H2 2MpB`QMK2MiX

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

9

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Sets of histories
• Get rid of cuts ⟶ no global time

• A processor cannot know where the others parallel
processors are in their computations

17

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Example of history for lb

18

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+ /QK�BMb
jXR AMi2`H2�p2/ i`�+2 b2K�MiB+ /QK�BM
h?Bb Bb i?2 b2K�MiB+ /QK�BM 7Q` b2[m2MiB�HHv +QMbBbi2Mi b2K�MiB+b ¨ H� G�KTQ`i (e)X

jXRXR 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXk ai�i2b
ai�i2b `2+Q`/ r?B+? r`Bi2 2p2Mib �z2+i i?2 b?�`2/ K2KQ`v ν- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib ρ- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b UQ` i?2 r`Bi2 2p2Mi i?�i
;2M2`�i2/ i?2b2 p�Hm2bV �`2 `2�/ #v `2�/ �+iBQMb- �M/ r?2MX

jXRXj AMi2`H2�p2/ i`�+2b
�M BMi2`H2�p2/ i`�+2 Bb � K�tBK�H }MBi2 Q` BM}MBi2 i`�+2 τ r?2`2 bi�i2b �`2 b2T�`�i2/
#v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM; �M BMi2`H2�p2/ i`�+2 Bi
Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/ #27Q`2f�7i2` r?B+?
�+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M BM };m`2 kX �7i2`
2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM Q7 QM2 T`Q+2bbX AM
�#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

rf

11:,r2=0

12:,r2=1

13:,r2=1

1:,r1=0

0:, start

2:,r1=1

3:,r1=1

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w12
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w12
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

• bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

• bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
Rj,{`k← 1}〉

• h?2 b?�`2/ K2KQ`v BM/B+�i2b r?B+? r`Bi2 2p2Mi r�b `2�/ iQ �bbB;M � p�Hm2 iQ �
b?�`2/ p�`B�#H2X h?Bb r`Bi2 2p2Mi w +�``B2b i?2 p�Hm2 o(w) �bbB;M2/ iQ i?2 b?�`2/
p�`B�#H2 r?B+? Bb �bbB;M2/ iQ i?2 `2;Bbi2`X h?2 �bbB;MK2Mi Bb BMbi�Mi�M2Qmb #mi /Q2b
MQi M2+2bb�`BHv `2�/b 7`QK i?2 H�bi T�bi r`Bi2 BM i?2 BMi2`H2�p2/ i`�+2X

• �M �Hi2`M�iBp2 +QMbBbib BM BMi`Q/m+BM; � mMB[m2 Svi?B� p�`B�#H2 7Q` i?2 `2�/ 2p2Mib
�M/ iQ `2+Q`/ Bib p�Hm2 BM � ;HQ#�H Svi?B� p�`B�#H2 2MpB`QMK2MiX

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

9

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Sets of candidate executions
• Keep the set of events

• Keep the read-from relation rf

• Represent process traces by

• the set of initial writes IW in 𝜏0

• the program order po
⟨𝑒,𝑒'⟩ ∈ po ⟺ 𝜏𝑖 = 𝜏𝑖'⟶ 𝜏𝑖'' ⟶ 𝜏𝑖'''
⟶ relational on events

• Get rid of states

19

jX9 *�M/B/�i2 2t2+miBQM b2K�MiB+ /QK�BM
� +�M/B/�i2 2t2+miBQM 〈E, TQ, `7, Aq〉 Bb i?2 �#bi`�+iBQM Q7 � r2HH@7Q`K2/ ?BbiQ`v

〈τ0
n∏

i=1

τi, `7, +Q〉X h?2 +�M/B/�i2 2t2+miBQM 〈E, TQ, `7, Aq〉 +QMbBbib Q7

Ç i?2 b2i E 4 {e ∈ τi | i ∈ [0, n]} Q7 �HH MQM@HQ+�H 2p2Mib �TT2�`BM; QM i?2 i`�+2b
τi- i ∈ [0, n] U+�i2;Q`Bx2/ BM `2�/ _- r`Bi2 q- #`�M+? "- �M/ 72M+2 2p2Mib 6Vc

Ç i?2 T2`@T`Q+2bb T`Q;`�K Q`/2` TQ 4 {〈τ ji , τ ki 〉 | i ∈ [1, n] ∧ j, k ∈ /QK(τi) ∧ j <
k} UBX2X i?2 b2i Q7 T�B`b Q7 /Bz2`2Mi 2p2Mib �TT2�`BM; BM Q`/2` QM � i`�+2 τi-
i ∈ [1, n]Vc

Ç i?2 BMBiB�H r`Bi2b Aq 4 {w ∈ q | w ∈ τ0} UBX2X i?2 b2i Q7 r`Bi2 2p2Mib QM τ0Vc

Ç i?2 +QKKmMB+�iBQM `2H�iBQM `7X

h?2 +�M/B/�i2 2t2+miBQMb Q7 � T`Q;`�K �`2 i?2 +�M/B/�i2 �#bi`�+iBQMb Q7 i?2 ?BbiQ`B2b
Q7 Bib �M�`+?B+ b2K�MiB+bX a22 6B;m`2 N 7Q` H#X

jX8 AMp�`B�M+2
h?2 BMp�`B�M+2 �#bi`�+iBQM Q7 (j- a2+iBQM 8XR Ua2K�MiB+- 2t2+miBQM- �M/ BMp�`B�M+2
T`QT2`iB2bV) Q#b2`p2b 2t2+miBQMb i?`Qm;? +mib- MQi KQ`2 �#bi`�+i ?BbiQ`B2b- r?2`2 +mib
�`2 �#bi`�+i2/ �r�vX

jXe >B2`�`+?v Q7 b2K�MiB+ /QK�BMb �M/ b2K�MiB+b
h?2 ?B2`�`+?v Q7 b2K�MiB+b Bb /2}M2/ #v i?2 ?B2`�`+?v #2ir22M i?2B` b2K�MiB+ /Q@
K�BMb �b 7Q`K�HBx2/ #v :�HQBb +QMM2+iBQMb- b22 6B;m`2 RyX

9 aT2+B}+�iBQM Q7 b2K�MiB+b
9XR PT2`�iBQM�H BMi2`H2�p2/ b2K�MiB+b
h?2 i`�/BiBQM�H QT2`�iBQM�H bT2+B}+�iBQM Q7 i?2 b2K�MiB+b Q7 T�`�HH2H T`Q;`�Kb Bb �
b2i Q7 K�tBK�H BMi2`H2�p2/ i`�+2b ;2M2`�i2/ #v � i`�MbBiBQM bvbi2K /2}MBM; �M �iQKB+
bi2T Q7 HQ+�H +QKTmi�iBQM Q` +QKKmMB+�iBQM rBi? i?2 b?�`2/ K2KQ`vX 6Q` b2[m2MiB�H
+QMbBbi2M+v bi�i2b `2+Q`/ i?2 p�Hm2b Q7 b?�`2/ p�`B�#H2b �b r2HH �b i?2 p�Hm2b Q7 HQ+�H
`2;Bbi2`b �M/ +m``2Mi 2t2+miBQM TQBMi Q7 2�+? T`Q+2bbX

d

𝑒 𝑒'

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Example of candidate execution for lb

20

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+ /QK�BMb
jXR AMi2`H2�p2/ i`�+2 b2K�MiB+ /QK�BM
h?Bb Bb i?2 b2K�MiB+ /QK�BM 7Q` b2[m2MiB�HHv +QMbBbi2Mi b2K�MiB+b ¨ H� G�KTQ`i (e)X

jXRXR 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXk ai�i2b
ai�i2b `2+Q`/ r?B+? r`Bi2 2p2Mib �z2+i i?2 b?�`2/ K2KQ`v ν- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib ρ- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b UQ` i?2 r`Bi2 2p2Mi i?�i
;2M2`�i2/ i?2b2 p�Hm2bV �`2 `2�/ #v `2�/ �+iBQMb- �M/ r?2MX

jXRXj AMi2`H2�p2/ i`�+2b
�M BMi2`H2�p2/ i`�+2 Bb � K�tBK�H }MBi2 Q` BM}MBi2 i`�+2 τ r?2`2 bi�i2b �`2 b2T�`�i2/
#v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM; �M BMi2`H2�p2/ i`�+2 Bi
Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/ #27Q`2f�7i2` r?B+?
�+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M BM };m`2 kX �7i2`
2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM Q7 QM2 T`Q+2bbX AM
�#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

rf

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w12
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w12
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

po po

IW

• bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

• bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
Rj,{`k← 1}〉

• h?2 b?�`2/ K2KQ`v BM/B+�i2b r?B+? r`Bi2 2p2Mi r�b `2�/ iQ �bbB;M � p�Hm2 iQ �
b?�`2/ p�`B�#H2X h?Bb r`Bi2 2p2Mi w +�``B2b i?2 p�Hm2 o(w) �bbB;M2/ iQ i?2 b?�`2/
p�`B�#H2 r?B+? Bb �bbB;M2/ iQ i?2 `2;Bbi2`X h?2 �bbB;MK2Mi Bb BMbi�Mi�M2Qmb #mi /Q2b
MQi M2+2bb�`BHv `2�/b 7`QK i?2 H�bi T�bi r`Bi2 BM i?2 BMi2`H2�p2/ i`�+2X

• �M �Hi2`M�iBp2 +QMbBbib BM BMi`Q/m+BM; � mMB[m2 Svi?B� p�`B�#H2 7Q` i?2 `2�/ 2p2Mib
�M/ iQ `2+Q`/ Bib p�Hm2 BM � ;HQ#�H Svi?B� p�`B�#H2 2MpB`QMK2MiX

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

9

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Auxiliary relations
• loc: between events on the same shared variable

• ext: between events on different processes

• coherence order co: between a write and the later
ones on the same shared variable

• from-read fr: between a read reading from a write and
the later writes to the same shared variable
 fr = rf-1 ; co

21

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot22

Auxiliary relations

rf

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w12
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w12
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

po po

IW

• bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

• bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
Rj,{`k← 1}〉

• h?2 b?�`2/ K2KQ`v BM/B+�i2b r?B+? r`Bi2 2p2Mi r�b `2�/ iQ �bbB;M � p�Hm2 iQ �
b?�`2/ p�`B�#H2X h?Bb r`Bi2 2p2Mi w +�``B2b i?2 p�Hm2 o(w) �bbB;M2/ iQ i?2 b?�`2/
p�`B�#H2 r?B+? Bb �bbB;M2/ iQ i?2 `2;Bbi2`X h?2 �bbB;MK2Mi Bb BMbi�Mi�M2Qmb #mi /Q2b
MQi M2+2bb�`BHv `2�/b 7`QK i?2 H�bi T�bi r`Bi2 BM i?2 BMi2`H2�p2/ i`�+2X

• �M �Hi2`M�iBp2 +QMbBbib BM BMi`Q/m+BM; � mMB[m2 Svi?B� p�`B�#H2 7Q` i?2 `2�/ 2p2Mib
�M/ iQ `2+Q`/ Bib p�Hm2 BM � ;HQ#�H Svi?B� p�`B�#H2 2MpB`QMK2MiX

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

9

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

co

rf

fr

y,& t 4 yc v 4 yc '
Sy SR c
R,`() `R t RR,`() `k vc
k,r() v R Rk,r() t R c
j, Rj, c

6B;m`2 R, H# �H;Q`Bi?K BM GBb�

j >B2`�`+?v Q7 b2K�MiB+ /QK�BMb
jXR AMi2`H2�p2/ i`�+2 b2K�MiB+ /QK�BM
h?Bb Bb i?2 b2K�MiB+ /QK�BM 7Q` b2[m2MiB�HHv +QMbBbi2Mi b2K�MiB+b ¨ H� G�KTQ`i (e)X

jXRXR 1p2Mib
1p2Mib `2+Q`/ i?2 2t2+miBQM Q7 �M �+iBQM #v � T`Q+2bbX �M 2p2Mi e Bb B/2MiB}2/ #v i?2
T`Q+2bb S(e) i?�i 2t2+mi2/ i?2 �+iBQM- i?2 H�#2HH2/ �+iBQM �(e) BM i?2 T`Q+2bb �i i?2
Q`B;BM Q7 i?2 2p2Mi- � bi�KT h(e) mMB[m2Hv B/2MiB7vBM; i?2 2p2Mi eX ai�`i 2p2Mib bi�`i
K�`F i?2 #2;BMMBM; Q7 i?2 2t2+miBQM Q7 � T`Q+2bb �7i2` i?2 T`QHQ;m2X AM �//BiBQM-
r`Bi2 2p2Mib w +�``v i?2 r`Bii2M p�`B�#H2 s(w) �M/ p�Hm2 o(w) r?BH2 `2�/ 2p2Mib r
+�``v i?2 `2�/ p�`B�#H2 s(r) �M/ p�Hm2 o(r)X

jXRXk ai�i2b
ai�i2b `2+Q`/ r?B+? r`Bi2 2p2Mib �z2+i i?2 b?�`2/ K2KQ`v ν- biQ`2 #mz2`b- HQ+�H
2MpB`QMK2Mib ρ- 2i+X h?2v �`2 mb2/ iQ bT2+B7v r?B+? p�Hm2b UQ` i?2 r`Bi2 2p2Mi i?�i
;2M2`�i2/ i?2b2 p�Hm2bV �`2 `2�/ #v `2�/ �+iBQMb- �M/ r?2MX

jXRXj AMi2`H2�p2/ i`�+2b
�M BMi2`H2�p2/ i`�+2 Bb � K�tBK�H }MBi2 Q` BM}MBi2 i`�+2 τ r?2`2 bi�i2b �`2 b2T�`�i2/
#v 2p2MibX h?2`2 Bb � MQiBQM Q7 ;HQ#�H iBK2 BM i?�i �HQM; �M BMi2`H2�p2/ i`�+2 Bi
Bb TQbbB#H2 iQ bi�i2 r?B+? �+iBQMb Q7 r?B+? T`Q+2bb �`2 2t2+mi2/ #27Q`2f�7i2` r?B+?
�+iBQMb Q7 �Mv UQi?2`V T`Q+2bbX �M BMi2`H2�p2/ i`�+2 Q7 H# Bb ;Bp2M BM };m`2 kX �7i2`
2t2+miBQM Q7 i?2 T`2Hm/2- 2�+? bi2T Bb i?2 2t2+miBQM Q7 �M �+iBQM Q7 QM2 T`Q+2bbX AM
�#b2M+2 Q7 HQQTb 2p2Mib �`2 mMB[m2 bQ M22/ MQi #2 bi�KT2/X

k

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot23

co in cat
"co.cat"

let fold f =
 let rec fold_rec (es,y) = match es with
 || {} -> y
 || e ++ es -> fold_rec (es, f(e,y))
 end in
 fold_rec

let map f = fun es -> fold (fun (e,y) -> f e ++ y) (es,{})

let rec cross S = match S with
 || {} -> { 0 }
 || S1 ++ S ->
 let yss = cross S in
 fold
 (fun (e1,r) -> map (fun t -> e1 | t) yss | r)
(S1,{}) end

let co0 = loc & (IW * (W\IW))
let makeCo(s) = linearisations(s,co0)
let same-loc-writes = loc & (W*W)
let allCoL = map makeCo (classes (same-loc-writes))
let allCo = cross allCoL

with co from allCo

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Example of specification of
weakly consistent parallelism

in the semantic hierarchy:
sequential consistency

24

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

✘

Sequential consistency
• Interleaved semantics: a read can only read from the

last past write

• lb:

25

✘

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Example: sequential consistency for lb
• Parallel executions with cuts: a

read can read only the last
write before its cut

• lb:

26

rf

11:,r2=0

12:,r2=1

13:,r2=1

1:,r1=0

0:, start

2:,r1=1

3:,r1=1

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w12
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w12
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w12
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

✘

πj

rf
w

r

πi

πk

πi’

✗

✓

rf

w

w

✗

rf

6B;m`2 Rk, a2[m2MiB�HHv +QMbBbi2Mi 2t2+miBQM

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

rf ✓

rf ✗

rf ✗

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

rf ✓

6B;m`2 Rj, �M b2[m2MiB�HHv +QMbBbi2Mi 2t2+miBQM 7Q` H#

rBi?+Q
H2i 7` 4 U`7�@Rc+QV
�+v+HB+ TQ % `7 % +Q % 7` �b a*

6B;m`2 R9, a* BM +�i

& t 4 y'
Sy % SR % Sk c
r() t R % r() ` k % `() `y t c

6B;m`2 R8, S`Q;`�K S

Re

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Example: sequential consistency for lb
• Parallel histories: abstract to candidate execution and

check it is allowed

• Candidate executions: irreflexive po ; rf ; po; rf

27

rf

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w12
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w12
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w12
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r1t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t ← w0

t, v ← w0
v}, k,{`R ← 0}, RR,{`k ← 0}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→

〈{t← w0
t, v← w2

v}, j,{`R← 0}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→ 〈{t← w0

t, v← w2
v},

j,{`R ← 0}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 0},
Rj,{`k← 1}〉

bi�`i y,
w0

t︷ ︸︸ ︷
t 4 y;

w0
v︷ ︸︸ ︷

v 4 y−−−−−−−−−−−−→ 〈{t ← w0
t, v ← w0

v}, R,{`R ← 0}, RR,{`k ←

0}〉

r12t︷ ︸︸ ︷
R,`() `R t−−−−−−−−→ 〈{t← w12

t , v← w0
v}, k,{`R← 1}, RR,{`k← 0}〉

r11v︷ ︸︸ ︷
RR,`() `k v−−−−−−−−−→

〈{t ← w12
t , v ← w2

v}, k,{`R ← 1}, Rk,{`k ← 1}〉

w12
t︷ ︸︸ ︷

Rk,r() t R−−−−−−−−→ 〈{t ← w12
t , v ←

w2
v}, k,{`R ← 1}, Rj,{`k ← 1}〉

w2
v︷ ︸︸ ︷

k,r() v R−−−−−−−−→ 〈{t ← w12
t , v ← w2

v}, j,{`R ← 1},
RR,{`k← 1}〉

6B;m`2 k, �M BMi2`H2�p2/ i`�+2b Q7 H#

Rk

po po

IW

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Analytic semantics of
weakly consistent

parallelism

28

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Analytic semantics
• Anarchic semantics: all possible executions with cuts/

histories with no restriction on rf (any read can read
any value from any write to the same shared variable)

• Communication consistency: requirements on rf
specified on an abstraction to a candidate execution

• Analytic semantics: all executions with cuts/histories
which rf satisfies the consistency requirements

29

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Example of anarchic semantics: LB

30

{ x = 0; y = 0; }
 P0 | P1 ;
 r[] r1 x | r[] r2 y ;
 w[] y 1 | w[] x 1 ;

✔

✔ ✘

✔

References
M. Abadi and L. Lamport. The existence of refinement mappings. Theor.

Comput. Sci., 82(2):253–284, 1991. doi: 10.1016/0304-3975(91)
90224-P. URL http://dx.doi.org/10.1016/0304-3975(91)
90224-P.

M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto. Causal
memory: Definitions, implementation, and programming. Distributed
Computing, 9(1):37–49, 1995. doi: 10.1007/BF01784241. URL
http://dx.doi.org/10.1007/BF01784241.

J. Alglave. A Shared Memory Poetics. PhD thesis, Université Paris 7, 2010.
J. Alglave and L. Maranget. herd7. virginia.cs.ucl.ac.uk/herd, 31

Aug. 2015.
J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig. Software verification

for weak memory via program transformation. In M. Felleisen and
P. Gardner, editors, Programming Languages and Systems - 22nd
European Symposium on Programming, ESOP 2013, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume
7792 of Lecture Notes in Computer Science, pages 512–532. Springer,
2013. ISBN 978-3-642-37035-9. doi: 10.1007/978-3-642-37036-6 28.
URL http://dx.doi.org/10.1007/978-3-642-37036-6_28.

J. Alglave, P. Cousot, and L. Maranget. La langue au chat: cat, a language
to describe consistency properties. Unpublished manuscript, 31 Jan.
2015a.

J. Alglave, P. Cousot, and L. Maranget. Syntax and semantics of the cat
language. HSA Foundation, Version 1.1:38 p., 16 Oct 2015b. URL
http://www.hsafoundation.com/?ddownload=5382.

M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the
verification problem for weak memory models. In M. V. Hermenegildo
and J. Palsberg, editors, Proceedings of the 37th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2010, Madrid, Spain, January 17-23, 2010, pages 7–18. ACM, 2010.
ISBN 978-1-60558-479-9. doi: 10.1145/1706299.1706303. URL
http://doi.acm.org/10.1145/1706299.1706303.

M. F. Atig, A. Bouajjani, and G. Parlato. Getting rid of store-buffers
in TSO analysis. In G. Gopalakrishnan and S. Qadeer, editors,
Computer Aided Verification - 23rd International Conference, CAV
2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806
of Lecture Notes in Computer Science, pages 99–115. Springer, 2011.
ISBN 978-3-642-22109-5. doi: 10.1007/978-3-642-22110-1 9. URL
http://dx.doi.org/10.1007/978-3-642-22110-1_9.

G. Barthe, C. Kunz, and J. L. Sacchini. Certified reasoning in memory
hierarchies. In G. Ramalingam, editor, Programming Languages
and Systems, 6th Asian Symposium, APLAS 2008, Bangalore, India,
December 9-11, 2008. Proceedings, volume 5356 of Lecture Notes
in Computer Science, pages 75–90. Springer, 2008. ISBN 978-
3-540-89329-5. doi: 10.1007/978-3-540-89330-1 6. URL http:
//dx.doi.org/10.1007/978-3-540-89330-1_6.

M. Batty, M. Dodds, and A. Gotsman. Library abstraction for C/C++
concurrency. In Giacobazzi and Cousot (2013), pages 235–248.
ISBN 978-1-4503-1832-7. doi: 10.1145/2429069.2429099. URL
http://doi.acm.org/10.1145/2429069.2429099.

R. Bodı́k and R. Majumdar, editors. Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -
22, 2016, 2016. ACM. ISBN 978-1-4503-3549-2. URL http:
//dl.acm.org/citation.cfm?id=2837614.

R. Bornat, J. Alglave, and M. J. Parkinson. New lace and arsenic: adven-
tures in weak memory with a program logic. CoRR, abs/1512.01416,
2015. URL http://arxiv.org/abs/1512.01416.

G. Boudol, G. Petri, and B. P. Serpette. Relaxed operational semantics
of concurrent programming languages. In B. Luttik and M. A.
Reniers, editors, Proceedings Combined 19th International Workshop
on Expressiveness in Concurrency and 9th Workshop on Structured
Operational Semantics, EXPRESS/SOS 2012, Newcastle upon Tyne,
UK, September 3, 2012., volume 89 of EPTCS, pages 19–33, 2012. doi:
10.4204/EPTCS.89.3. URL http://dx.doi.org/10.4204/EPTCS.
89.3.

S. D. Brookes. A denotational approach to weak memory concurrency. In
Mathematical Foundations of Programming Semantics XXXII, Carnegie
Mellon University, Pittsburgh, USA, May 23–26, 2016, volume to appear
of Lecture Notes in Computer Science. Springer, 2016.

S. Burckhardt and M. Musuvathi. Effective program verification for relaxed
memory models. In A. Gupta and S. Malik, editors, Computer Aided
Verification, 20th International Conference, CAV 2008, Princeton,
NJ, USA, July 7-14, 2008, Proceedings, volume 5123 of Lecture
Notes in Computer Science, pages 107–120. Springer, 2008. ISBN
978-3-540-70543-7. doi: 10.1007/978-3-540-70545-1 12. URL
http://dx.doi.org/10.1007/978-3-540-70545-1_12.

S. Burckhardt, R. Alur, and M. M. K. Martin. Bounded model checking
of concurrent data types on relaxed memory models: A case study. In
T. Ball and R. B. Jones, editors, Computer Aided Verification, 18th
International Conference, CAV 2006, Seattle, WA, USA, August 17-20,
2006, Proceedings, volume 4144 of Lecture Notes in Computer Science,
pages 489–502. Springer, 2006. ISBN 3-540-37406-X. doi: 10.1007/
11817963 45. URL http://dx.doi.org/10.1007/11817963_45.

S. Burckhardt, R. Alur, and M. M. K. Martin. Checkfence: checking
consistency of concurrent data types on relaxed memory models. In
J. Ferrante and K. S. McKinley, editors, Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and
Implementation, San Diego, California, USA, June 10-13, 2007, pages
12–21. ACM, 2007. ISBN 978-1-59593-633-2. doi: 10.1145/1250734.
1250737. URL http://doi.acm.org/10.1145/1250734.1250737.

E. Cohen. Coherent causal memory. CoRR, abs/1404.2187, 2014. URL
http://arxiv.org/abs/1404.2187.

E. Cohen and B. Schirmer. From total store order to sequential consistency:
A practical reduction theorem. In M. Kaufmann and L. C. Paulson,
editors, Interactive Theorem Proving, First International Conference,
ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings, volume 6172
of Lecture Notes in Computer Science, pages 403–418. Springer, 2010.
ISBN 978-3-642-14051-8. doi: 10.1007/978-3-642-14052-5 28. URL
http://dx.doi.org/10.1007/978-3-642-14052-5_28.

J. W. Coleman and C. B. Jones. A structural proof of the soundness
of rely/guarantee rules. J. Log. Comput., 17(4):807–841, 2007. doi:
10.1093/logcom/exm030. URL http://dx.doi.org/10.1093/
logcom/exm030.

S. A. Cook. Soundness and completeness of an axiom system for program
verification. SIAM J. Comput., 7(1):70–90, 1978. doi: 10.1137/0207005.
URL http://dx.doi.org/10.1137/0207005.

S. A. Cook. Corrigendum: Soundness and completeness of an axiom
system for program verification. SIAM J. Comput., 10(3):612, 1981. doi:
10.1137/0210045. URL http://dx.doi.org/10.1137/0210045.

P. Cousot and R. Cousot. Reasoning about program invariance proof meth-
ods. Res. rep. CRIN-80-P050, Centre de Recherche en Informatique
de Nancy (CRIN), Institut National Polytechnique de Lorraine, Nancy,
France, July 1980.

P. Cousot and R. Cousot. Induction principles for proving invariance
properties of programs. In D. Néel, editor, Tools & Notions for
Program Construction: an Advanced Course, pages 75–119. Cambridge
University Press, Cambridge, UK, Aug. 1982.

P. Cousot, R. Cousot, and R. Giacobazzi. Abstract interpretation of
resolution-based semantics. Theor. Comput. Sci., 410(46):4724–4746,
2009. doi: 10.1016/j.tcs.2009.07.040. URL http://dx.doi.org/10.
1016/j.tcs.2009.07.040.

K. Crary and M. J. Sullivan. A calculus for relaxed memory. In Rajamani
and Walker (2015), pages 623–636. ISBN 978-1-4503-3300-9. doi:
10.1145/2676726.2676984. URL http://doi.acm.org/10.1145/
2676726.2676984.

A. M. Dan, Y. Meshman, M. T. Vechev, and E. Yahav. Effective abstractions
for verification under relaxed memory models. In D. D’Souza, A. Lal,
and K. G. Larsen, editors, Verification, Model Checking, and Abstract
Interpretation - 16th International Conference, VMCAI 2015, Mumbai,
India, January 12-14, 2015. Proceedings, volume 8931 of Lecture
Notes in Computer Science, pages 449–466. Springer, 2015. ISBN
978-3-662-46080-1. doi: 10.1007/978-3-662-46081-8 25. URL
http://dx.doi.org/10.1007/978-3-662-46081-8_25.

13 2016/7/16

References
M. Abadi and L. Lamport. The existence of refinement mappings. Theor.

Comput. Sci., 82(2):253–284, 1991. doi: 10.1016/0304-3975(91)
90224-P. URL http://dx.doi.org/10.1016/0304-3975(91)
90224-P.

M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto. Causal
memory: Definitions, implementation, and programming. Distributed
Computing, 9(1):37–49, 1995. doi: 10.1007/BF01784241. URL
http://dx.doi.org/10.1007/BF01784241.

J. Alglave. A Shared Memory Poetics. PhD thesis, Université Paris 7, 2010.
J. Alglave and L. Maranget. herd7. virginia.cs.ucl.ac.uk/herd, 31

Aug. 2015.
J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig. Software verification

for weak memory via program transformation. In M. Felleisen and
P. Gardner, editors, Programming Languages and Systems - 22nd
European Symposium on Programming, ESOP 2013, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume
7792 of Lecture Notes in Computer Science, pages 512–532. Springer,
2013. ISBN 978-3-642-37035-9. doi: 10.1007/978-3-642-37036-6 28.
URL http://dx.doi.org/10.1007/978-3-642-37036-6_28.

J. Alglave, P. Cousot, and L. Maranget. La langue au chat: cat, a language
to describe consistency properties. Unpublished manuscript, 31 Jan.
2015a.

J. Alglave, P. Cousot, and L. Maranget. Syntax and semantics of the cat
language. HSA Foundation, Version 1.1:38 p., 16 Oct 2015b. URL
http://www.hsafoundation.com/?ddownload=5382.

M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the
verification problem for weak memory models. In M. V. Hermenegildo
and J. Palsberg, editors, Proceedings of the 37th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2010, Madrid, Spain, January 17-23, 2010, pages 7–18. ACM, 2010.
ISBN 978-1-60558-479-9. doi: 10.1145/1706299.1706303. URL
http://doi.acm.org/10.1145/1706299.1706303.

M. F. Atig, A. Bouajjani, and G. Parlato. Getting rid of store-buffers
in TSO analysis. In G. Gopalakrishnan and S. Qadeer, editors,
Computer Aided Verification - 23rd International Conference, CAV
2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806
of Lecture Notes in Computer Science, pages 99–115. Springer, 2011.
ISBN 978-3-642-22109-5. doi: 10.1007/978-3-642-22110-1 9. URL
http://dx.doi.org/10.1007/978-3-642-22110-1_9.

G. Barthe, C. Kunz, and J. L. Sacchini. Certified reasoning in memory
hierarchies. In G. Ramalingam, editor, Programming Languages
and Systems, 6th Asian Symposium, APLAS 2008, Bangalore, India,
December 9-11, 2008. Proceedings, volume 5356 of Lecture Notes
in Computer Science, pages 75–90. Springer, 2008. ISBN 978-
3-540-89329-5. doi: 10.1007/978-3-540-89330-1 6. URL http:
//dx.doi.org/10.1007/978-3-540-89330-1_6.

M. Batty, M. Dodds, and A. Gotsman. Library abstraction for C/C++
concurrency. In Giacobazzi and Cousot (2013), pages 235–248.
ISBN 978-1-4503-1832-7. doi: 10.1145/2429069.2429099. URL
http://doi.acm.org/10.1145/2429069.2429099.

R. Bodı́k and R. Majumdar, editors. Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -
22, 2016, 2016. ACM. ISBN 978-1-4503-3549-2. URL http:
//dl.acm.org/citation.cfm?id=2837614.

R. Bornat, J. Alglave, and M. J. Parkinson. New lace and arsenic: adven-
tures in weak memory with a program logic. CoRR, abs/1512.01416,
2015. URL http://arxiv.org/abs/1512.01416.

G. Boudol, G. Petri, and B. P. Serpette. Relaxed operational semantics
of concurrent programming languages. In B. Luttik and M. A.
Reniers, editors, Proceedings Combined 19th International Workshop
on Expressiveness in Concurrency and 9th Workshop on Structured
Operational Semantics, EXPRESS/SOS 2012, Newcastle upon Tyne,
UK, September 3, 2012., volume 89 of EPTCS, pages 19–33, 2012. doi:
10.4204/EPTCS.89.3. URL http://dx.doi.org/10.4204/EPTCS.
89.3.

S. D. Brookes. A denotational approach to weak memory concurrency. In
Mathematical Foundations of Programming Semantics XXXII, Carnegie
Mellon University, Pittsburgh, USA, May 23–26, 2016, volume to appear
of Lecture Notes in Computer Science. Springer, 2016.

S. Burckhardt and M. Musuvathi. Effective program verification for relaxed
memory models. In A. Gupta and S. Malik, editors, Computer Aided
Verification, 20th International Conference, CAV 2008, Princeton,
NJ, USA, July 7-14, 2008, Proceedings, volume 5123 of Lecture
Notes in Computer Science, pages 107–120. Springer, 2008. ISBN
978-3-540-70543-7. doi: 10.1007/978-3-540-70545-1 12. URL
http://dx.doi.org/10.1007/978-3-540-70545-1_12.

S. Burckhardt, R. Alur, and M. M. K. Martin. Bounded model checking
of concurrent data types on relaxed memory models: A case study. In
T. Ball and R. B. Jones, editors, Computer Aided Verification, 18th
International Conference, CAV 2006, Seattle, WA, USA, August 17-20,
2006, Proceedings, volume 4144 of Lecture Notes in Computer Science,
pages 489–502. Springer, 2006. ISBN 3-540-37406-X. doi: 10.1007/
11817963 45. URL http://dx.doi.org/10.1007/11817963_45.

S. Burckhardt, R. Alur, and M. M. K. Martin. Checkfence: checking
consistency of concurrent data types on relaxed memory models. In
J. Ferrante and K. S. McKinley, editors, Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and
Implementation, San Diego, California, USA, June 10-13, 2007, pages
12–21. ACM, 2007. ISBN 978-1-59593-633-2. doi: 10.1145/1250734.
1250737. URL http://doi.acm.org/10.1145/1250734.1250737.

E. Cohen. Coherent causal memory. CoRR, abs/1404.2187, 2014. URL
http://arxiv.org/abs/1404.2187.

E. Cohen and B. Schirmer. From total store order to sequential consistency:
A practical reduction theorem. In M. Kaufmann and L. C. Paulson,
editors, Interactive Theorem Proving, First International Conference,
ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings, volume 6172
of Lecture Notes in Computer Science, pages 403–418. Springer, 2010.
ISBN 978-3-642-14051-8. doi: 10.1007/978-3-642-14052-5 28. URL
http://dx.doi.org/10.1007/978-3-642-14052-5_28.

J. W. Coleman and C. B. Jones. A structural proof of the soundness
of rely/guarantee rules. J. Log. Comput., 17(4):807–841, 2007. doi:
10.1093/logcom/exm030. URL http://dx.doi.org/10.1093/
logcom/exm030.

S. A. Cook. Soundness and completeness of an axiom system for program
verification. SIAM J. Comput., 7(1):70–90, 1978. doi: 10.1137/0207005.
URL http://dx.doi.org/10.1137/0207005.

S. A. Cook. Corrigendum: Soundness and completeness of an axiom
system for program verification. SIAM J. Comput., 10(3):612, 1981. doi:
10.1137/0210045. URL http://dx.doi.org/10.1137/0210045.

P. Cousot and R. Cousot. Reasoning about program invariance proof meth-
ods. Res. rep. CRIN-80-P050, Centre de Recherche en Informatique
de Nancy (CRIN), Institut National Polytechnique de Lorraine, Nancy,
France, July 1980.

P. Cousot and R. Cousot. Induction principles for proving invariance
properties of programs. In D. Néel, editor, Tools & Notions for
Program Construction: an Advanced Course, pages 75–119. Cambridge
University Press, Cambridge, UK, Aug. 1982.

P. Cousot, R. Cousot, and R. Giacobazzi. Abstract interpretation of
resolution-based semantics. Theor. Comput. Sci., 410(46):4724–4746,
2009. doi: 10.1016/j.tcs.2009.07.040. URL http://dx.doi.org/10.
1016/j.tcs.2009.07.040.

K. Crary and M. J. Sullivan. A calculus for relaxed memory. In Rajamani
and Walker (2015), pages 623–636. ISBN 978-1-4503-3300-9. doi:
10.1145/2676726.2676984. URL http://doi.acm.org/10.1145/
2676726.2676984.

A. M. Dan, Y. Meshman, M. T. Vechev, and E. Yahav. Effective abstractions
for verification under relaxed memory models. In D. D’Souza, A. Lal,
and K. G. Larsen, editors, Verification, Model Checking, and Abstract
Interpretation - 16th International Conference, VMCAI 2015, Mumbai,
India, January 12-14, 2015. Proceedings, volume 8931 of Lecture
Notes in Computer Science, pages 449–466. Springer, 2015. ISBN
978-3-662-46080-1. doi: 10.1007/978-3-662-46081-8 25. URL
http://dx.doi.org/10.1007/978-3-662-46081-8_25.

13 2016/7/16

read from
initial write

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Example of communication
specification in the cat language for LB

31

irreflexive (po | rf)+

✘
References
M. Abadi and L. Lamport. The existence of refinement mappings. Theor.

Comput. Sci., 82(2):253–284, 1991. doi: 10.1016/0304-3975(91)
90224-P. URL http://dx.doi.org/10.1016/0304-3975(91)
90224-P.

M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto. Causal
memory: Definitions, implementation, and programming. Distributed
Computing, 9(1):37–49, 1995. doi: 10.1007/BF01784241. URL
http://dx.doi.org/10.1007/BF01784241.

J. Alglave. A Shared Memory Poetics. PhD thesis, Université Paris 7, 2010.
J. Alglave and L. Maranget. herd7. virginia.cs.ucl.ac.uk/herd, 31

Aug. 2015.
J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig. Software verification

for weak memory via program transformation. In M. Felleisen and
P. Gardner, editors, Programming Languages and Systems - 22nd
European Symposium on Programming, ESOP 2013, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume
7792 of Lecture Notes in Computer Science, pages 512–532. Springer,
2013. ISBN 978-3-642-37035-9. doi: 10.1007/978-3-642-37036-6 28.
URL http://dx.doi.org/10.1007/978-3-642-37036-6_28.

J. Alglave, P. Cousot, and L. Maranget. La langue au chat: cat, a language
to describe consistency properties. Unpublished manuscript, 31 Jan.
2015a.

J. Alglave, P. Cousot, and L. Maranget. Syntax and semantics of the cat
language. HSA Foundation, Version 1.1:38 p., 16 Oct 2015b. URL
http://www.hsafoundation.com/?ddownload=5382.

M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the
verification problem for weak memory models. In M. V. Hermenegildo
and J. Palsberg, editors, Proceedings of the 37th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2010, Madrid, Spain, January 17-23, 2010, pages 7–18. ACM, 2010.
ISBN 978-1-60558-479-9. doi: 10.1145/1706299.1706303. URL
http://doi.acm.org/10.1145/1706299.1706303.

M. F. Atig, A. Bouajjani, and G. Parlato. Getting rid of store-buffers
in TSO analysis. In G. Gopalakrishnan and S. Qadeer, editors,
Computer Aided Verification - 23rd International Conference, CAV
2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806
of Lecture Notes in Computer Science, pages 99–115. Springer, 2011.
ISBN 978-3-642-22109-5. doi: 10.1007/978-3-642-22110-1 9. URL
http://dx.doi.org/10.1007/978-3-642-22110-1_9.

G. Barthe, C. Kunz, and J. L. Sacchini. Certified reasoning in memory
hierarchies. In G. Ramalingam, editor, Programming Languages
and Systems, 6th Asian Symposium, APLAS 2008, Bangalore, India,
December 9-11, 2008. Proceedings, volume 5356 of Lecture Notes
in Computer Science, pages 75–90. Springer, 2008. ISBN 978-
3-540-89329-5. doi: 10.1007/978-3-540-89330-1 6. URL http:
//dx.doi.org/10.1007/978-3-540-89330-1_6.

M. Batty, M. Dodds, and A. Gotsman. Library abstraction for C/C++
concurrency. In Giacobazzi and Cousot (2013), pages 235–248.
ISBN 978-1-4503-1832-7. doi: 10.1145/2429069.2429099. URL
http://doi.acm.org/10.1145/2429069.2429099.

R. Bodı́k and R. Majumdar, editors. Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -
22, 2016, 2016. ACM. ISBN 978-1-4503-3549-2. URL http:
//dl.acm.org/citation.cfm?id=2837614.

R. Bornat, J. Alglave, and M. J. Parkinson. New lace and arsenic: adven-
tures in weak memory with a program logic. CoRR, abs/1512.01416,
2015. URL http://arxiv.org/abs/1512.01416.

G. Boudol, G. Petri, and B. P. Serpette. Relaxed operational semantics
of concurrent programming languages. In B. Luttik and M. A.
Reniers, editors, Proceedings Combined 19th International Workshop
on Expressiveness in Concurrency and 9th Workshop on Structured
Operational Semantics, EXPRESS/SOS 2012, Newcastle upon Tyne,
UK, September 3, 2012., volume 89 of EPTCS, pages 19–33, 2012. doi:
10.4204/EPTCS.89.3. URL http://dx.doi.org/10.4204/EPTCS.
89.3.

S. D. Brookes. A denotational approach to weak memory concurrency. In
Mathematical Foundations of Programming Semantics XXXII, Carnegie
Mellon University, Pittsburgh, USA, May 23–26, 2016, volume to appear
of Lecture Notes in Computer Science. Springer, 2016.

S. Burckhardt and M. Musuvathi. Effective program verification for relaxed
memory models. In A. Gupta and S. Malik, editors, Computer Aided
Verification, 20th International Conference, CAV 2008, Princeton,
NJ, USA, July 7-14, 2008, Proceedings, volume 5123 of Lecture
Notes in Computer Science, pages 107–120. Springer, 2008. ISBN
978-3-540-70543-7. doi: 10.1007/978-3-540-70545-1 12. URL
http://dx.doi.org/10.1007/978-3-540-70545-1_12.

S. Burckhardt, R. Alur, and M. M. K. Martin. Bounded model checking
of concurrent data types on relaxed memory models: A case study. In
T. Ball and R. B. Jones, editors, Computer Aided Verification, 18th
International Conference, CAV 2006, Seattle, WA, USA, August 17-20,
2006, Proceedings, volume 4144 of Lecture Notes in Computer Science,
pages 489–502. Springer, 2006. ISBN 3-540-37406-X. doi: 10.1007/
11817963 45. URL http://dx.doi.org/10.1007/11817963_45.

S. Burckhardt, R. Alur, and M. M. K. Martin. Checkfence: checking
consistency of concurrent data types on relaxed memory models. In
J. Ferrante and K. S. McKinley, editors, Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and
Implementation, San Diego, California, USA, June 10-13, 2007, pages
12–21. ACM, 2007. ISBN 978-1-59593-633-2. doi: 10.1145/1250734.
1250737. URL http://doi.acm.org/10.1145/1250734.1250737.

E. Cohen. Coherent causal memory. CoRR, abs/1404.2187, 2014. URL
http://arxiv.org/abs/1404.2187.

E. Cohen and B. Schirmer. From total store order to sequential consistency:
A practical reduction theorem. In M. Kaufmann and L. C. Paulson,
editors, Interactive Theorem Proving, First International Conference,
ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings, volume 6172
of Lecture Notes in Computer Science, pages 403–418. Springer, 2010.
ISBN 978-3-642-14051-8. doi: 10.1007/978-3-642-14052-5 28. URL
http://dx.doi.org/10.1007/978-3-642-14052-5_28.

J. W. Coleman and C. B. Jones. A structural proof of the soundness
of rely/guarantee rules. J. Log. Comput., 17(4):807–841, 2007. doi:
10.1093/logcom/exm030. URL http://dx.doi.org/10.1093/
logcom/exm030.

S. A. Cook. Soundness and completeness of an axiom system for program
verification. SIAM J. Comput., 7(1):70–90, 1978. doi: 10.1137/0207005.
URL http://dx.doi.org/10.1137/0207005.

S. A. Cook. Corrigendum: Soundness and completeness of an axiom
system for program verification. SIAM J. Comput., 10(3):612, 1981. doi:
10.1137/0210045. URL http://dx.doi.org/10.1137/0210045.

P. Cousot and R. Cousot. Reasoning about program invariance proof meth-
ods. Res. rep. CRIN-80-P050, Centre de Recherche en Informatique
de Nancy (CRIN), Institut National Polytechnique de Lorraine, Nancy,
France, July 1980.

P. Cousot and R. Cousot. Induction principles for proving invariance
properties of programs. In D. Néel, editor, Tools & Notions for
Program Construction: an Advanced Course, pages 75–119. Cambridge
University Press, Cambridge, UK, Aug. 1982.

P. Cousot, R. Cousot, and R. Giacobazzi. Abstract interpretation of
resolution-based semantics. Theor. Comput. Sci., 410(46):4724–4746,
2009. doi: 10.1016/j.tcs.2009.07.040. URL http://dx.doi.org/10.
1016/j.tcs.2009.07.040.

K. Crary and M. J. Sullivan. A calculus for relaxed memory. In Rajamani
and Walker (2015), pages 623–636. ISBN 978-1-4503-3300-9. doi:
10.1145/2676726.2676984. URL http://doi.acm.org/10.1145/
2676726.2676984.

A. M. Dan, Y. Meshman, M. T. Vechev, and E. Yahav. Effective abstractions
for verification under relaxed memory models. In D. D’Souza, A. Lal,
and K. G. Larsen, editors, Verification, Model Checking, and Abstract
Interpretation - 16th International Conference, VMCAI 2015, Mumbai,
India, January 12-14, 2015. Proceedings, volume 8931 of Lecture
Notes in Computer Science, pages 449–466. Springer, 2015. ISBN
978-3-662-46080-1. doi: 10.1007/978-3-662-46081-8 25. URL
http://dx.doi.org/10.1007/978-3-662-46081-8_25.

13 2016/7/16

References
M. Abadi and L. Lamport. The existence of refinement mappings. Theor.

Comput. Sci., 82(2):253–284, 1991. doi: 10.1016/0304-3975(91)
90224-P. URL http://dx.doi.org/10.1016/0304-3975(91)
90224-P.

M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto. Causal
memory: Definitions, implementation, and programming. Distributed
Computing, 9(1):37–49, 1995. doi: 10.1007/BF01784241. URL
http://dx.doi.org/10.1007/BF01784241.

J. Alglave. A Shared Memory Poetics. PhD thesis, Université Paris 7, 2010.
J. Alglave and L. Maranget. herd7. virginia.cs.ucl.ac.uk/herd, 31

Aug. 2015.
J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig. Software verification

for weak memory via program transformation. In M. Felleisen and
P. Gardner, editors, Programming Languages and Systems - 22nd
European Symposium on Programming, ESOP 2013, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume
7792 of Lecture Notes in Computer Science, pages 512–532. Springer,
2013. ISBN 978-3-642-37035-9. doi: 10.1007/978-3-642-37036-6 28.
URL http://dx.doi.org/10.1007/978-3-642-37036-6_28.

J. Alglave, P. Cousot, and L. Maranget. La langue au chat: cat, a language
to describe consistency properties. Unpublished manuscript, 31 Jan.
2015a.

J. Alglave, P. Cousot, and L. Maranget. Syntax and semantics of the cat
language. HSA Foundation, Version 1.1:38 p., 16 Oct 2015b. URL
http://www.hsafoundation.com/?ddownload=5382.

M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the
verification problem for weak memory models. In M. V. Hermenegildo
and J. Palsberg, editors, Proceedings of the 37th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2010, Madrid, Spain, January 17-23, 2010, pages 7–18. ACM, 2010.
ISBN 978-1-60558-479-9. doi: 10.1145/1706299.1706303. URL
http://doi.acm.org/10.1145/1706299.1706303.

M. F. Atig, A. Bouajjani, and G. Parlato. Getting rid of store-buffers
in TSO analysis. In G. Gopalakrishnan and S. Qadeer, editors,
Computer Aided Verification - 23rd International Conference, CAV
2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806
of Lecture Notes in Computer Science, pages 99–115. Springer, 2011.
ISBN 978-3-642-22109-5. doi: 10.1007/978-3-642-22110-1 9. URL
http://dx.doi.org/10.1007/978-3-642-22110-1_9.

G. Barthe, C. Kunz, and J. L. Sacchini. Certified reasoning in memory
hierarchies. In G. Ramalingam, editor, Programming Languages
and Systems, 6th Asian Symposium, APLAS 2008, Bangalore, India,
December 9-11, 2008. Proceedings, volume 5356 of Lecture Notes
in Computer Science, pages 75–90. Springer, 2008. ISBN 978-
3-540-89329-5. doi: 10.1007/978-3-540-89330-1 6. URL http:
//dx.doi.org/10.1007/978-3-540-89330-1_6.

M. Batty, M. Dodds, and A. Gotsman. Library abstraction for C/C++
concurrency. In Giacobazzi and Cousot (2013), pages 235–248.
ISBN 978-1-4503-1832-7. doi: 10.1145/2429069.2429099. URL
http://doi.acm.org/10.1145/2429069.2429099.

R. Bodı́k and R. Majumdar, editors. Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -
22, 2016, 2016. ACM. ISBN 978-1-4503-3549-2. URL http:
//dl.acm.org/citation.cfm?id=2837614.

R. Bornat, J. Alglave, and M. J. Parkinson. New lace and arsenic: adven-
tures in weak memory with a program logic. CoRR, abs/1512.01416,
2015. URL http://arxiv.org/abs/1512.01416.

G. Boudol, G. Petri, and B. P. Serpette. Relaxed operational semantics
of concurrent programming languages. In B. Luttik and M. A.
Reniers, editors, Proceedings Combined 19th International Workshop
on Expressiveness in Concurrency and 9th Workshop on Structured
Operational Semantics, EXPRESS/SOS 2012, Newcastle upon Tyne,
UK, September 3, 2012., volume 89 of EPTCS, pages 19–33, 2012. doi:
10.4204/EPTCS.89.3. URL http://dx.doi.org/10.4204/EPTCS.
89.3.

S. D. Brookes. A denotational approach to weak memory concurrency. In
Mathematical Foundations of Programming Semantics XXXII, Carnegie
Mellon University, Pittsburgh, USA, May 23–26, 2016, volume to appear
of Lecture Notes in Computer Science. Springer, 2016.

S. Burckhardt and M. Musuvathi. Effective program verification for relaxed
memory models. In A. Gupta and S. Malik, editors, Computer Aided
Verification, 20th International Conference, CAV 2008, Princeton,
NJ, USA, July 7-14, 2008, Proceedings, volume 5123 of Lecture
Notes in Computer Science, pages 107–120. Springer, 2008. ISBN
978-3-540-70543-7. doi: 10.1007/978-3-540-70545-1 12. URL
http://dx.doi.org/10.1007/978-3-540-70545-1_12.

S. Burckhardt, R. Alur, and M. M. K. Martin. Bounded model checking
of concurrent data types on relaxed memory models: A case study. In
T. Ball and R. B. Jones, editors, Computer Aided Verification, 18th
International Conference, CAV 2006, Seattle, WA, USA, August 17-20,
2006, Proceedings, volume 4144 of Lecture Notes in Computer Science,
pages 489–502. Springer, 2006. ISBN 3-540-37406-X. doi: 10.1007/
11817963 45. URL http://dx.doi.org/10.1007/11817963_45.

S. Burckhardt, R. Alur, and M. M. K. Martin. Checkfence: checking
consistency of concurrent data types on relaxed memory models. In
J. Ferrante and K. S. McKinley, editors, Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and
Implementation, San Diego, California, USA, June 10-13, 2007, pages
12–21. ACM, 2007. ISBN 978-1-59593-633-2. doi: 10.1145/1250734.
1250737. URL http://doi.acm.org/10.1145/1250734.1250737.

E. Cohen. Coherent causal memory. CoRR, abs/1404.2187, 2014. URL
http://arxiv.org/abs/1404.2187.

E. Cohen and B. Schirmer. From total store order to sequential consistency:
A practical reduction theorem. In M. Kaufmann and L. C. Paulson,
editors, Interactive Theorem Proving, First International Conference,
ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings, volume 6172
of Lecture Notes in Computer Science, pages 403–418. Springer, 2010.
ISBN 978-3-642-14051-8. doi: 10.1007/978-3-642-14052-5 28. URL
http://dx.doi.org/10.1007/978-3-642-14052-5_28.

J. W. Coleman and C. B. Jones. A structural proof of the soundness
of rely/guarantee rules. J. Log. Comput., 17(4):807–841, 2007. doi:
10.1093/logcom/exm030. URL http://dx.doi.org/10.1093/
logcom/exm030.

S. A. Cook. Soundness and completeness of an axiom system for program
verification. SIAM J. Comput., 7(1):70–90, 1978. doi: 10.1137/0207005.
URL http://dx.doi.org/10.1137/0207005.

S. A. Cook. Corrigendum: Soundness and completeness of an axiom
system for program verification. SIAM J. Comput., 10(3):612, 1981. doi:
10.1137/0210045. URL http://dx.doi.org/10.1137/0210045.

P. Cousot and R. Cousot. Reasoning about program invariance proof meth-
ods. Res. rep. CRIN-80-P050, Centre de Recherche en Informatique
de Nancy (CRIN), Institut National Polytechnique de Lorraine, Nancy,
France, July 1980.

P. Cousot and R. Cousot. Induction principles for proving invariance
properties of programs. In D. Néel, editor, Tools & Notions for
Program Construction: an Advanced Course, pages 75–119. Cambridge
University Press, Cambridge, UK, Aug. 1982.

P. Cousot, R. Cousot, and R. Giacobazzi. Abstract interpretation of
resolution-based semantics. Theor. Comput. Sci., 410(46):4724–4746,
2009. doi: 10.1016/j.tcs.2009.07.040. URL http://dx.doi.org/10.
1016/j.tcs.2009.07.040.

K. Crary and M. J. Sullivan. A calculus for relaxed memory. In Rajamani
and Walker (2015), pages 623–636. ISBN 978-1-4503-3300-9. doi:
10.1145/2676726.2676984. URL http://doi.acm.org/10.1145/
2676726.2676984.

A. M. Dan, Y. Meshman, M. T. Vechev, and E. Yahav. Effective abstractions
for verification under relaxed memory models. In D. D’Souza, A. Lal,
and K. G. Larsen, editors, Verification, Model Checking, and Abstract
Interpretation - 16th International Conference, VMCAI 2015, Mumbai,
India, January 12-14, 2015. Proceedings, volume 8931 of Lecture
Notes in Computer Science, pages 449–466. Springer, 2015. ISBN
978-3-662-46080-1. doi: 10.1007/978-3-662-46081-8 25. URL
http://dx.doi.org/10.1007/978-3-662-46081-8_25.

13 2016/7/16

Rejects only the anarchic execution:

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Examples of architecture specification
• SC (sequential consistency):

• TSO:

• For lb:

sc ⇒ lb, tso ⇒ lb

32

writes, gathered in the set W, unless they come from the prelude
of the program in which case they are gathered in the set of
initial writes IW;
reads, gathered in the set R;
fences, gathered in the set F.

• the program order po, relating accesses written in program order
in the original LISA program;

• the read-from rf describing a communication between a write
and a read event;

The language provides additional basic built-in semantics bricks:
• the relation loc relating events accessing the same variable;
• the relation ext relating events from different processes;
• operators over relations, such as intersection &, union |, inverse

of a relation ^-1, closure +, cartesian product *, set difference \.

The cat user can define new relations using let, and declare con-
straints over relations, such as irreflexivity or acyclicity constraints,
using the eponymous keywords irreflexive r and acyclic r
(i.e. irreflexive r+).

• Writing the corresponding cat specification Hcm goes as fol-
lows (see Fig. 7 for the definition of Hcm in cat):
• we define the relation co as relating initial writes (viz., the writes

from the prelude) to the writes in the program that access the
same variable. In cat speak, the set of initial writes is written IW,
the set of writes in the program is W, the relation between accesses
to the same variable is loc (for location) and the intersection is &;

• we define a shorthand fr (for from-read) for the sequence of
relations rf^-1 and co that appears twice in the cycle in Fig. 6.
We refine this relation further, to the relation fre, which is fr
restricted to accesses that belong to different processes—in cat
speak this is denoted by the relation ext (for external);

• we require the sequence po; fre; po; fre to be irreflex-
ive, i.e. communications between the two processes of Peterson
should not be such that taking a step in program order po, then a
step of fre, landing on the other process, then a step of po, then
a step of fre again, goes back to the starting point.

Overall this leads to the cat specification given in Fig. 7:
let co = (IW*W) & loc
let fre = (rf^-1;co) & ext
irreflexive po; fre; po; fre as Peterson

Figure 7. A possible specification Hcm of Peterson algorithm

• Proving that all the behaviours allowed by Hcm are allowed by
Scom is done contrapositively i.e. ¬Scom ⇒ ¬Hcm . By ¬Scom in
(1), we get ∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ rf〈F1j13,
〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉 which implies 0: w[] F2 false —
rf −→ 4: r[] R1 F2 ! F2i4 and 0: w[] F1 false — rf −→ 13:

r[] R3 F1 ! F1j13. The program order yields 1: w[] F1 true —
po −→ 4: r[] R1 F2 ! F2i4 and 10: w[] F2 true — po −→ 13:

r[] R3 F1! F1j13. By definition of the coherence order 0: w[] F2

false — co−→ 10: w[] F2 true and 0: w[] F1 false — co−→
1: w[] F1 true. It follows that reflexive po; fre; po; fre is
true proving ¬Hcm .

2.3.3 Consistency proof M ⇒ Hcm

• Proving that all the behaviours allowed by M are allowed by
Hcm is done by reductio ad absurdum. Suppose an execution of
Peterson that is forbidden by Hcm yet allowed by M . Such an
execution involves a sequence s of accesses a, b, c, d such that
s = a — po −→ b — fre −→ c —po −→ d — fre −→ a. This
may be forbidden by the WCM M (e.g. SC) or prevented by adding
fences (e.g. TSO).

• When M is SC. In cat speak, SC is modelled as given in
Fig. 8. The first two lines are similar to our specification of Peterson
given in Fig. 7. The last line states that there cannot be a cycle in the
union (depicted by |) of the program order po, the read-from rf,
the coherence co and the from-read fr. Now, note that the sequence

let co = (IW*W) & loc
let fr = (rf^-1;co)
acyclic po | rf | co | fr as sc

Figure 8. SC for Peterson in cat

s forbidden by Peterson’s specification is also a cycle in the union
of relations which the SC model of Fig. 8 requires to be acyclic,
hence a contradiction: an execution containing s is also forbidden
when M is SC.

• When M is TSO. In cat speak, TSO is modelled as given in
Fig. 9. The first two lines define co and fr as in SC, in a similar
way to our specification of Peterson given in Fig. 7. Then we define
a new relation po-loc, as the restriction of the program order po
to accesses relative the same variable (see the intersection with
the relation loc). Next up we require the acyclicity of the union
of po-loc with all the communication relations: read-from rf,
coherence co and from-read fr.

We then define the relation ppo (for preserved program order) as
the program order po relieved from (see the setminus operator \)
the write-read pairs (W*R). Then we define the relation rfe (for ex-
ternal read-from) as the restriction of the read-from rf to accesses
that belong to different threads (denoted by the relation ext). Fi-
nally we require the acyclicity of the union of the preserved pro-
gram order, the external read-from, the coherence and the from-
read relations.

let co = (IW*W) & loc
let fr = (rf^-1;co)
let po-loc = po & loc
acyclic po-loc | rf | co | fr as scpv

let ppo = po \ (W*R)
let rfe = rf & ext
acyclic ppo | rfe | co | fr as tso

Figure 9. TSO for Peterson in cat

Thus an execution forbidden by our specification Hcm of Peterson
(see Fig. 7) will not be forbidden by the TSO model given in Fig. 9.
This is because any execution forbidden by our specification of
Peterson involves a pair write-read in program order (see the two
po edges in the sequence s for example). Moreover, the write-read
pairs are explicitly removed from the tso acyclicity check given on
the last line of the TSO model of Fig. 9, thus will not contribute to
executions forbidden by the model.

• Adding fences LISA fences can be added to have a correct
implementation as shown in Fig. 10. In the invariance proof, fences
are skip so the proof is unchanged. The fence semantics must be
defined by a cat specification (F is the set of fence events) and Hcm
strengthened as follows.

let fhw = (po & (_ * F)); po
let fre = (rf^-1;co) & ext
irreflexive fhw ; fre ; fhw ; fre as Peterson

The consistency model M (e.g. SC with fhw = no fence; TSO with
fhw = mfence; ARM, with fhw = dmb | dsb) must then be shown
to implement Hcm by the proof method of (Alglave et al. 2015a).

3. Related works
Contrary to our approach, previous attempts to generalise the
(Owicki and Gries 1976) invariance proof method from SC to
WCM are not parameterised by a formal specification of the WCM.
Our formal specification of the WCM parameter takes the form of

5 2016/7/16

acyclic (po | rf) as lb

writes, gathered in the set W, unless they come from the prelude
of the program in which case they are gathered in the set of
initial writes IW;
reads, gathered in the set R;
fences, gathered in the set F.

• the program order po, relating accesses written in program order
in the original LISA program;

• the read-from rf describing a communication between a write
and a read event;

The language provides additional basic built-in semantics bricks:
• the relation loc relating events accessing the same variable;
• the relation ext relating events from different processes;
• operators over relations, such as intersection &, union |, inverse

of a relation ^-1, closure +, cartesian product *, set difference \.

The cat user can define new relations using let, and declare con-
straints over relations, such as irreflexivity or acyclicity constraints,
using the eponymous keywords irreflexive r and acyclic r
(i.e. irreflexive r+).

• Writing the corresponding cat specification Hcm goes as fol-
lows (see Fig. 7 for the definition of Hcm in cat):
• we define the relation co as relating initial writes (viz., the writes

from the prelude) to the writes in the program that access the
same variable. In cat speak, the set of initial writes is written IW,
the set of writes in the program is W, the relation between accesses
to the same variable is loc (for location) and the intersection is &;

• we define a shorthand fr (for from-read) for the sequence of
relations rf^-1 and co that appears twice in the cycle in Fig. 6.
We refine this relation further, to the relation fre, which is fr
restricted to accesses that belong to different processes—in cat
speak this is denoted by the relation ext (for external);

• we require the sequence po; fre; po; fre to be irreflex-
ive, i.e. communications between the two processes of Peterson
should not be such that taking a step in program order po, then a
step of fre, landing on the other process, then a step of po, then
a step of fre again, goes back to the starting point.

Overall this leads to the cat specification given in Fig. 7:
let co = (IW*W) & loc
let fre = (rf^-1;co) & ext
irreflexive po; fre; po; fre as Peterson

Figure 7. A possible specification Hcm of Peterson algorithm

• Proving that all the behaviours allowed by Hcm are allowed by
Scom is done contrapositively i.e. ¬Scom ⇒ ¬Hcm . By ¬Scom in
(1), we get ∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ rf〈F1j13,
〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉 which implies 0: w[] F2 false —
rf −→ 4: r[] R1 F2 ! F2i4 and 0: w[] F1 false — rf −→ 13:

r[] R3 F1 ! F1j13. The program order yields 1: w[] F1 true —
po −→ 4: r[] R1 F2 ! F2i4 and 10: w[] F2 true — po −→ 13:

r[] R3 F1! F1j13. By definition of the coherence order 0: w[] F2

false — co−→ 10: w[] F2 true and 0: w[] F1 false — co−→
1: w[] F1 true. It follows that reflexive po; fre; po; fre is
true proving ¬Hcm .

2.3.3 Consistency proof M ⇒ Hcm

• Proving that all the behaviours allowed by M are allowed by
Hcm is done by reductio ad absurdum. Suppose an execution of
Peterson that is forbidden by Hcm yet allowed by M . Such an
execution involves a sequence s of accesses a, b, c, d such that
s = a — po −→ b — fre −→ c —po −→ d — fre −→ a. This
may be forbidden by the WCM M (e.g. SC) or prevented by adding
fences (e.g. TSO).

• When M is SC. In cat speak, SC is modelled as given in
Fig. 8. The first two lines are similar to our specification of Peterson
given in Fig. 7. The last line states that there cannot be a cycle in the
union (depicted by |) of the program order po, the read-from rf,
the coherence co and the from-read fr. Now, note that the sequence

let co = (IW*W) & loc
let fr = (rf^-1;co)
acyclic po | rf | co | fr as sc

Figure 8. SC for Peterson in cat

s forbidden by Peterson’s specification is also a cycle in the union
of relations which the SC model of Fig. 8 requires to be acyclic,
hence a contradiction: an execution containing s is also forbidden
when M is SC.

• When M is TSO. In cat speak, TSO is modelled as given in
Fig. 9. The first two lines define co and fr as in SC, in a similar
way to our specification of Peterson given in Fig. 7. Then we define
a new relation po-loc, as the restriction of the program order po
to accesses relative the same variable (see the intersection with
the relation loc). Next up we require the acyclicity of the union
of po-loc with all the communication relations: read-from rf,
coherence co and from-read fr.

We then define the relation ppo (for preserved program order) as
the program order po relieved from (see the setminus operator \)
the write-read pairs (W*R). Then we define the relation rfe (for ex-
ternal read-from) as the restriction of the read-from rf to accesses
that belong to different threads (denoted by the relation ext). Fi-
nally we require the acyclicity of the union of the preserved pro-
gram order, the external read-from, the coherence and the from-
read relations.

let co = (IW*W) & loc
let fr = (rf^-1;co)
let po-loc = po & loc
acyclic po-loc | rf | co | fr as scpv

let ppo = po \ (W*R)
let rfe = rf & ext
acyclic ppo | rfe | co | fr as tso

Figure 9. TSO for Peterson in cat

Thus an execution forbidden by our specification Hcm of Peterson
(see Fig. 7) will not be forbidden by the TSO model given in Fig. 9.
This is because any execution forbidden by our specification of
Peterson involves a pair write-read in program order (see the two
po edges in the sequence s for example). Moreover, the write-read
pairs are explicitly removed from the tso acyclicity check given on
the last line of the TSO model of Fig. 9, thus will not contribute to
executions forbidden by the model.

• Adding fences LISA fences can be added to have a correct
implementation as shown in Fig. 10. In the invariance proof, fences
are skip so the proof is unchanged. The fence semantics must be
defined by a cat specification (F is the set of fence events) and Hcm
strengthened as follows.

let fhw = (po & (_ * F)); po
let fre = (rf^-1;co) & ext
irreflexive fhw ; fre ; fhw ; fre as Peterson

The consistency model M (e.g. SC with fhw = no fence; TSO with
fhw = mfence; ARM, with fhw = dmb | dsb) must then be shown
to implement Hcm by the proof method of (Alglave et al. 2015a).

3. Related works
Contrary to our approach, previous attempts to generalise the
(Owicki and Gries 1976) invariance proof method from SC to
WCM are not parameterised by a formal specification of the WCM.
Our formal specification of the WCM parameter takes the form of

5 2016/7/16

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Fence specification:
• In Lisa:

• Implementation with dependencies and fences in TSO:

33

{ x = 0; y = 0; }
 P0 | P1 ;
 r[] r1 x | r[] r2 y ;
 f[dep] | f[lw] ;
 w[] y 1 | w[] x 1 ;

{ x = 0; y = 0; }
 P0 | P1 ;
 r[] r1 x | r[] r2 y ;
 r2 = xor r1 r1 | mfence ;
 r3 = r2+1 |
 w[] y r3 | w[] x r3 ;

data
dependency

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

cat
• Handles one history at a time

• For each execution relies on:

• the set E (_) of events of the execution (partitionned into
initial writes IW, writes W, read R, fences F, …

• the program order po of events per process

• the read-from relation rf per variable

• Has predefined relations loc, ext,…

• Can define new relations e.g. *,;, |, &, \, +, ^-1,…

• Accepts/eliminates the execution by defining relations r and
checking irreflexive r, acyclic r, empty r, not
empty r

34

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

ARM in cat

35

let fr = rf^-1;co
acyclic po-loc | rf | co | fr as scpv

let deps = addr | data
let rdw = po-loc & (fre;rfe)
let detour = po-loc & (coe ; rfe)

let ii0 = deps | rfi | rdw
let ic0 = 0
let ci0 = ctrlcfence(ISB) | detour
let cc0 = deps | ctrl | (addr;po)

let rec ii = ii0 | ci | (ic;ci) | (ii;ii)
and ic = ic0 | ii | cc | (ic;cc) | (ii;ic)
and ci = ci0 | (ci;ii) | (cc;ci)
and cc = cc0 | ci | (ci;ic) | (cc;cc)

let ppo = ii & R*R | ic & R*W

let dmb = fencerel(DMB)
let dsb = fencerel(DSB)
let fences = dmb|dsb
let A-cumul = rfe;fences

let hb = ppo | fences | rfe
acyclic hb as no-thin-air

let prop-base = (fences | A-cumul);hb*
let prop = (prop-base & W*W)| (com*; prop-base*; fences; hb*)

irreflexive fre;prop;hb* as observation
acyclic co | prop as propagation

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Invariance proof method
for weakly consistent

parallelism

36

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Difficulties
• There is no longer a notion of instantaneous value of

the shared variables:
⇒

⇒

⇒

37

pythia variables (denoting values of variables
when read)
communications rf (keeping track of which
writes events the pythia variables take there
values from)
stamps (keeping track of events to distinguish
different instruction executions)

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Difficulties
• We have to make hypotheses on how communications

do happen:
⇒

• We have to show that the communication
specification is correctly implemented on an
architecture:
⇒

38

a way to mix invariant Scom and cat
specifications

communication specification Scom

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot39

Methodology
priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {〈w12

x , r1x 〉, 〈w2
y , r

11
y 〉} %∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ! in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {〈w12

x , r1x 〉, 〈w2
y , r

11
y 〉} %∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ! in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

Invariant

40

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Pythia variables
• Unique name given to communicated values during

execution (using stamps)

41

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/16

Stamp: label,counter Pythia variables

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

• Inception: no communication is possible without the occurrence
of both the read and (maybe initial) write it involves:
∀r w.(rf[w, r] ∈ Γ)⇒ (∃p ∈ Pi, q ∈ Pi ∪ {start}. Wf 9(π)

∃j ∈ [0, 1 + |τp|[, k ∈ [0, 1 + |τq|[. τpj = r ∧ τqk = w) .

Note that this does not prevent a read to read from a future write.

Language-dependent conditions for LISA are as follows:

• Start: the initial state of a trace τp should be of the form:
τp

0
= s〈l0p, infp, λ R . 0, ∅〉 Wf 10(π)

where l0p is the entry label of process p and infp is a minimal
stamp of p.

• Next state: if at point k of a trace τp of process p of an execution
π = τstart ×

∏
p∈Pi τp × Γ the computation is in state τp

k−1
=

s〈$, θ, ρ, ν〉 then:
the next event must be generated by the instruction instr !
instr!P"p$ at label $ of process p
the next event has the form τpk = e〈〈p, $, instr, θ〉, xθ, v〉
the next state τp

k
= s〈κ′, θ′, ρ′, ν′〉 has κ′ = $′ which is the

label after the instruction instr
the stamp θ′ = succp(θ) is larger, and
the value v as well as the new environment ρ′ and valuation ν′

are computed as a function of the previous environment ρ, the
valuation ν, and the execution π.

Formally: ∀k ∈]0, 1 + |τp|[. ∀κ′ ρ ρ′ ν ν′ θ θ′ .

(τp
k−1

= s〈$, θ, ρ, ν〉 ∧ τpk = e〈〈p, $, instr, θ〉, xθ, v〉 ∧

τp
k
= s〈κ′, θ′, ρ′, ν′〉)⇒ (κ′ = $′ ∧ θ′ = succp(θ) ∧

v = v(ρ) ∧ ρ′ = ρ(v, ρ) ∧ ν(v, ρ, ν,π, ν′)) .

We give the form of the next event τpk for each LISA instruction:

• Fence (instr = $: f[ts]
[
{l01 . . . lm1 } {l02 . . . lq2}

]
; $′ : . . .):

τpk = m(〈p, $, f[ts]
[
{l01 . . . lm1 } {l02 . . . lq2}

]
, θ〉)

(ρ′ = ρ ∧ ν′ = ν) . Wf 11(π)
• Register instruction (instr = $: mov R1 operation; $′ : . . .):
τpk = a(〈p, $, mov R1 operation, θ〉, v) Wf 12(π)
(v = E!operation"(ρ, ν) ∧ ρ′ = ρ[R1 := v] ∧ ν′ = ν) .

where E!e"(ρ, ν) is the evaluation of the expression e in the
environment ρ and valuation ν.

• Write (instr = $: w[ts] x r-value; $′ : . . .):
τpk = w(〈p, $, w[ts] x r-value, θ〉, v) Wf 13(π)
(v = E!r-value"(ρ, ν) ∧ ρ = ρ′ ∧ ν′ = ν) .

• Read (instr = $: r[ts] R1 x; $′ : . . .):
τpk = r(〈p, $, r[ts] R1 x, θ〉, xθ) Wf 14(π)
(ρ′ = ρ[R1 := xθ] ∧ ∃q ∈ Pi ∪ {start} . ∃!j ∈ [1, 1 + |τq|[.
∃$′′, θ′′, v . (τqj = w(〈q, $′′, w[ts] x r-value, θ′′〉, v) ∧

rf[τqj , τpk] ∈ Γ ∧ ν′ = ν[xθ := v])) .

• RMW (instr = rmw[ts] r (reg-instrs) x): for the begin (instr =
beginrmw[ts] x) and end event (instr = endrmw[ts] x):
τpk = m(〈p, $, instr, θ〉) Wf 15(π)
(ρ′ = ρ ∧ ν′ = ν) .

• Test (instr = $: b[ts] operation lt; $′ : . . .):
on the true branch:
τpk = t(〈p, $, b[ts] operation lt, θ〉) Wf 16t(π)
(sat(E!operation"(ρ, ν) += 0) ∧ κ′ = lt ∧ ρ′ = ρ ∧ ν′ = ν)

on the false branch:
τpk = t(〈p, $, b[ts] operation lt, θ〉) Wf 16f (π)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = $′ ∧ ρ′ = ρ ∧ ν′ = ν)

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for 〈k0, . . . , kr, . . . , kn−1〉

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉∧kp < |τ ip|∧τ ip

kp

=

s〈&, θip,kp
, ρip,kp

, νip,kp
〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

(25)

and we must show that it holds for 〈k0, . . . , kr +1, . . . , kn−1〉. There are two cases.
The sequential proof case for r = p and the case r)= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider 〈k0, . . . , kp + 1, . . . , kn−1〉

(25) where kp is kp + 1

⇐⇒ {〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s〈&, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

⇐⇒ {〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s〈κ′, θip,kp
, ρip,kp

, νip,kp
〉 ∧ τ ip

kp+1
= s〈&, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for 〈k0, . . . , kr, . . . , kn−1〉

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉∧kp < |τ ip|∧τ ip

kp

=

s〈&, θip,kp
, ρip,kp

, νip,kp
〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

(25)

and we must show that it holds for 〈k0, . . . , kr +1, . . . , kn−1〉. There are two cases.
The sequential proof case for r = p and the case r)= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider 〈k0, . . . , kp + 1, . . . , kn−1〉

(25) where kp is kp + 1

⇐⇒ {〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s〈&, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

⇐⇒ {〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s〈κ′, θip,kp
, ρip,kp

, νip,kp
〉 ∧ τ ip

kp+1
= s〈&, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for 〈k0, . . . , kr, . . . , kn−1〉

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉∧kp < |τ ip|∧τ ip

kp

=

s〈&, θip,kp
, ρip,kp

, νip,kp
〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

(25)

and we must show that it holds for 〈k0, . . . , kr +1, . . . , kn−1〉. There are two cases.
The sequential proof case for r = p and the case r)= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider 〈k0, . . . , kp + 1, . . . , kn−1〉

(25) where kp is kp + 1

⇐⇒ {〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s〈&, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

⇐⇒ {〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s〈κ′, θip,kp
, ρip,kp

, νip,kp
〉 ∧ τ ip

kp+1
= s〈&, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

……

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for 〈k0, . . . , kr, . . . , kn−1〉

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉∧kp < |τ ip|∧τ ip

kp

=

s〈&, θip,kp
, ρip,kp

, νip,kp
〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

(25)

and we must show that it holds for 〈k0, . . . , kr +1, . . . , kn−1〉. There are two cases.
The sequential proof case for r = p and the case r)= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider 〈k0, k1, . . . , kp + 1, . . . , kn−1〉

(25) where kp is kp + 1

⇐⇒ {〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s〈&, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

⇐⇒ {〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s〈κ′, θip,kp
, ρip,kp

, νip,kp
〉 ∧ τ ip

kp+1
= s〈&, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈,, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈,, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈,, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so , uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, ,, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀, ∈ L(p) . αa(S)(p, ,) ⊆ Sinvp,! where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
!∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈,, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈,, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈,, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so , uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, ,, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀, ∈ L(p) . αa(S)(p, ,) ⊆ Sinvp,! where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
!∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈,, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈,, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈,, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so , uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, ,, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀, ∈ L(p) . αa(S)(p, ,) ⊆ Sinvp,! where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
!∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈,, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈,, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈,, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so , uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, ,, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀, ∈ L(p) . αa(S)(p, ,) ⊆ Sinvp,! where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
!∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈,, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈,, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈,, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so , uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, ,, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀, ∈ L(p) . αa(S)(p, ,) ⊆ Sinvp,! where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
!∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1 τ in−1

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈,, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈,, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈,, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so , uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, ,, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀, ∈ L(p) . αa(S)(p, ,) ⊆ Sinvp,! where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
!∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈,, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈,, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈,, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so , uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, ,, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀, ∈ L(p) . αa(S)(p, ,) ⊆ Sinvp,! where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
!∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈,, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈,, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈,, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so , uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, ,, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀, ∈ L(p) . αa(S)(p, ,) ⊆ Sinvp,! where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
!∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈,, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈,, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈,, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so , uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, ,, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀, ∈ L(p) . αa(S)(p, ,) ⊆ Sinvp,! where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
!∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:30pm GMT)A:31

〈κi
0, θ

i
0, ρ

i
0, ν

i
0〉

〈%, θip, ρip, νip〉
〈κi

n−1, θ
i
n−1, ρ

i
n−1, ν

i
n−1〉

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈%, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈%, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈%, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so % uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, %, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀% ∈ L(p) . αa(S)(p, %) ⊆ Sinvp,! where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

〈κi
0, θ

i
0, ρ

i
0, ν

i
0〉

〈%, θip, ρip, νip〉

〈κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1〉

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈%, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈%, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈%, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so % uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, %, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀% ∈ L(p) . αa(S)(p, %) ⊆ Sinvp,! where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

〈κi
0, θ

i
0, ρ

i
0, ν

i
0〉

〈%, θip, ρip, νip〉

〈κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1〉

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈%, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈%, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈%, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so % uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, %, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀% ∈ L(p) . αa(S)(p, %) ⊆ Sinvp,! where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 11. Invariance abstraction of an execution
4.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {π ∈ Π | Wf 2(π) ∧ . . . ∧Wf 16(π)} .

Theorem 1 In an execution ς × Γ ∈ Sa!P", the communication Γ
uniquely determines the computation ς .

4.2.4 cat specification of a weakly consistent semantics
The candidate execution abstraction αΞ(π) abstracts the execution
π = ς × Γ into a candidate execution αΞ(π) = 〈e, po, rf , iw〉
where e is the set of events (partitionned into fence, read, write,
. . . events), po is the program order (transitively relating success-
ive events on a trace of each process), rf = Γ is the set of com-
munications, and iw is the set of initial write events. Then we
define αΞ(S) ! {〈π, αΞ(π)〉 | π ∈ S} and α !Hcm "(C) !
{π ∈ Π | 〈π, Ξ〉 ∈ C ∧ !Hcm "(Ξ)} where the consistence

!Hcm "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcm is defined in (Alglave et al. 2015b). The analytic se-
mantics of a program P for a cat specification Hcm is then S !P"!
α !Hcm " ◦ αΞ(Sa!P").

5. Invariance proof
5.1 Semantic, execution, and invariance properties
The semantics S !P" of a program P is a set of executions π ∈ Π
so belongs to ℘(Π). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Π)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that 〈℘(℘(Π)), ⊆〉−−−−→←−−−−
α∪

γ∪

〈℘(Π), ⊆〉 yields execution properties P ∈ ℘(Π). So P has exe-
cution property P means S !P" ∈ γ∪(P) that is {S !P"} ⊆ γ∪(P)
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αa(P) where P = {πi | i ∈ ∆} ∈
℘(Π) with πi = ςi × Γ i and ςi = τ i

start ×
∏n−1

p=0 τ i
p collects

simultaneously reachable states along process traces (see Fig. 11).

αa({πi | i ∈ ∆}) !
∏

p∈Pi

∏

%∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi
0,k0

, . . . ,

νi
p−1,kp−1

, θip,kp , ρ
i
p,kp , ν

i
p,kp ,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

, θin−1,kn−1
,

ρin−1,kn−1
, νi

n−1,kn−1
,Γ i〉 | ∀q ∈ [0, n[\ {p} . τ i

q
kq

=

s〈κi
q,kq , θ

i
q,kq , ρ

i
q,kq , ν

i
q,kq 〉 ∧ τ i

p
kp

= s〈$, θip,kp , ρ
i
p,kp , ν

i
p,kp〉}.

At each program point $ of each process p, a local invariance
property Ip($), in particular the strongest invariant αa(S !P")p($),
is a relation between the process state and the state of all other
processes (including their control state) when execution reaches
point $ in process p. We have 〈℘(Π), ⊆〉 −−−−→←−−−−αa

γa 〈I, ⊆̇〉 so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γa(Sinv)) i.e.
S !P" ⊆ γa(Sinv) that is αa(S !P") ⊆̇ Sinv .

8 2016/7/21

Invariance abstraction

42

program
point stamp

environment
(value of registers)

valuation
(value of pythia

variables)

state =

rf

read-from

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

• Inception: no communication is possible without the occurrence
of both the read and (maybe initial) write it involves:
∀r w.(rf[w, r] ∈ Γ)⇒ (∃p ∈ Pi, q ∈ Pi ∪ {start}. Wf 9(π)

∃j ∈ [0, 1 + |τp|[, k ∈ [0, 1 + |τq|[. τpj = r ∧ τqk = w) .

Note that this does not prevent a read to read from a future write.

Language-dependent conditions for LISA are as follows:

• Start: the initial state of a trace τp should be of the form:
τp

0
= s〈l0p, infp, λ R . 0, ∅〉 Wf 10(π)

where l0p is the entry label of process p and infp is a minimal
stamp of p.

• Next state: if at point k of a trace τp of process p of an execution
π = τstart ×

∏
p∈Pi τp × Γ the computation is in state τp

k−1
=

s〈$, θ, ρ, ν〉 then:
the next event must be generated by the instruction instr !
instr!P"p$ at label $ of process p
the next event has the form τpk = e〈〈p, $, instr, θ〉, xθ, v〉
the next state τp

k
= s〈κ′, θ′, ρ′, ν′〉 has κ′ = $′ which is the

label after the instruction instr
the stamp θ′ = succp(θ) is larger, and
the value v as well as the new environment ρ′ and valuation ν′

are computed as a function of the previous environment ρ, the
valuation ν, and the execution π.

Formally: ∀k ∈]0, 1 + |τp|[. ∀κ′ ρ ρ′ ν ν′ θ θ′ .

(τp
k−1

= s〈$, θ, ρ, ν〉 ∧ τpk = e〈〈p, $, instr, θ〉, xθ, v〉 ∧

τp
k
= s〈κ′, θ′, ρ′, ν′〉)⇒ (κ′ = $′ ∧ θ′ = succp(θ) ∧

v = v(ρ) ∧ ρ′ = ρ(v, ρ) ∧ ν(v, ρ, ν,π, ν′)) .

We give the form of the next event τpk for each LISA instruction:

• Fence (instr = $: f[ts]
[
{l01 . . . lm1 } {l02 . . . lq2}

]
; $′ : . . .):

τpk = m(〈p, $, f[ts]
[
{l01 . . . lm1 } {l02 . . . lq2}

]
, θ〉)

(ρ′ = ρ ∧ ν′ = ν) . Wf 11(π)
• Register instruction (instr = $: mov R1 operation; $′ : . . .):
τpk = a(〈p, $, mov R1 operation, θ〉, v) Wf 12(π)
(v = E!operation"(ρ, ν) ∧ ρ′ = ρ[R1 := v] ∧ ν′ = ν) .

where E!e"(ρ, ν) is the evaluation of the expression e in the
environment ρ and valuation ν.

• Write (instr = $: w[ts] x r-value; $′ : . . .):
τpk = w(〈p, $, w[ts] x r-value, θ〉, v) Wf 13(π)
(v = E!r-value"(ρ, ν) ∧ ρ = ρ′ ∧ ν′ = ν) .

• Read (instr = $: r[ts] R1 x; $′ : . . .):
τpk = r(〈p, $, r[ts] R1 x, θ〉, xθ) Wf 14(π)
(ρ′ = ρ[R1 := xθ] ∧ ∃q ∈ Pi ∪ {start} . ∃!j ∈ [1, 1 + |τq|[.
∃$′′, θ′′, v . (τqj = w(〈q, $′′, w[ts] x r-value, θ′′〉, v) ∧

rf[τqj , τpk] ∈ Γ ∧ ν′ = ν[xθ := v])) .

• RMW (instr = rmw[ts] r (reg-instrs) x): for the begin (instr =
beginrmw[ts] x) and end event (instr = endrmw[ts] x):
τpk = m(〈p, $, instr, θ〉) Wf 15(π)
(ρ′ = ρ ∧ ν′ = ν) .

• Test (instr = $: b[ts] operation lt; $′ : . . .):
on the true branch:
τpk = t(〈p, $, b[ts] operation lt, θ〉) Wf 16t(π)
(sat(E!operation"(ρ, ν) += 0) ∧ κ′ = lt ∧ ρ′ = ρ ∧ ν′ = ν)

on the false branch:
τpk = t(〈p, $, b[ts] operation lt, θ〉) Wf 16f (π)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = $′ ∧ ρ′ = ρ ∧ ν′ = ν)

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for 〈k0, . . . , kr, . . . , kn−1〉

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉∧kp < |τ ip|∧τ ip

kp

=

s〈&, θip,kp
, ρip,kp

, νip,kp
〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

(25)

and we must show that it holds for 〈k0, . . . , kr +1, . . . , kn−1〉. There are two cases.
The sequential proof case for r = p and the case r)= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider 〈k0, . . . , kp + 1, . . . , kn−1〉

(25) where kp is kp + 1

⇐⇒ {〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s〈&, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

⇐⇒ {〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s〈κ′, θip,kp
, ρip,kp

, νip,kp
〉 ∧ τ ip

kp+1
= s〈&, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for 〈k0, . . . , kr, . . . , kn−1〉

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉∧kp < |τ ip|∧τ ip

kp

=

s〈&, θip,kp
, ρip,kp

, νip,kp
〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

(25)

and we must show that it holds for 〈k0, . . . , kr +1, . . . , kn−1〉. There are two cases.
The sequential proof case for r = p and the case r)= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider 〈k0, . . . , kp + 1, . . . , kn−1〉

(25) where kp is kp + 1

⇐⇒ {〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s〈&, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

⇐⇒ {〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s〈κ′, θip,kp
, ρip,kp

, νip,kp
〉 ∧ τ ip

kp+1
= s〈&, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for 〈k0, . . . , kr, . . . , kn−1〉

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉∧kp < |τ ip|∧τ ip

kp

=

s〈&, θip,kp
, ρip,kp

, νip,kp
〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

(25)

and we must show that it holds for 〈k0, . . . , kr +1, . . . , kn−1〉. There are two cases.
The sequential proof case for r = p and the case r)= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider 〈k0, . . . , kp + 1, . . . , kn−1〉

(25) where kp is kp + 1

⇐⇒ {〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s〈&, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

⇐⇒ {〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s〈κ′, θip,kp
, ρip,kp

, νip,kp
〉 ∧ τ ip

kp+1
= s〈&, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

……

A:36 J. Alglave et al.

Initialisation We let A[x← e] be the substitution of e for x with renaming of quan-
tified variables to avoid variable capture.

∏m
i=1 A[xi ← ei] is A[x1 ← e1] . . . [xm ← em].

The above set-theoretic initialization verification condition is the interpretation of the
following logical verification condition with free variables κ0, θ0, ρ0, ν0, . . ., νp−1, θp, ρp,
νp, κp+1 . . ., κn−1, θn−1, ρn−1, νn−1, Γ .

For all p ∈ Pi and entry label at(Pp) of process Pp,
Sindp(at(Pp))

∏
r∈Pi\{p}[κr ← at(Pr)]

∏
r∈Pi[θr ← infr, ρr ← λ r ∈ R(r) . 0, νr ← ∅]

i.e. the invariant at the process entry must be true when the other processes are also
at their entry, with registers initialized to zero and no media variables at all.

For the inductive case, we have the induction hypothesis for 〈k0, . . . , kr, . . . , kn−1〉

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈

[0, n[\{p} . kq < |τ iq|∧τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉∧kp < |τ ip|∧τ ip

kp

=

s〈&, θip,kp
, ρip,kp

, νip,kp
〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

(25)

and we must show that it holds for 〈k0, . . . , kr +1, . . . , kn−1〉. There are two cases.
The sequential proof case for r = p and the case r)= p called interference-freeness
proof in [Owicki and Gries 1976a] and monotony proof in [Lamport 1977].

11.2.1. Sequential proof

For the sequential case r = p, and we consider 〈k0, k1, . . . , kp + 1, . . . , kn−1〉

(25) where kp is kp + 1

⇐⇒ {〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} . kq <

|τ iq|∧ τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧ kp+1 < |τ ip|∧ τ ip

kp+1
= s〈&, θip,kp+1, ρ

i
p,kp+1,

νip,kp+1〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

⇐⇒ {〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp+1, ρ
i
p,kp+1, ν

i
p,kp+1,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

,

θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 ∈ Scomp(&) | i ∈ ∆ ∧ ∀q ∈ [0, n[\ {p} .

kq < |τ iq| ∧ τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧ kp + 1 < |τ ip| ∧ ∃κ′ ∈

L(p), θip,kp
, ρip,kp

, νip,kp
. τ ip

kp

= s〈κ′, θip,kp
, ρip,kp

, νip,kp
〉 ∧ τ ip

kp+1
= s〈&, θip,kp+1,

ρip,kp+1, ν
i
p,kp+1〉 ∧Wf6(πi) ∧ . . . ∧Wf20(πi) ∧Wf21(πi)} ⊆ Sindp(&)

!def. executions in Sect. 6.2, traces in Sect. 6.3, and states in Sect. 6.10 so
that τ ip

kp

is the state immediately preceding τ ip
kp+1

in the trace τ ip"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈,, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈,, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈,, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so , uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, ,, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀, ∈ L(p) . αa(S)(p, ,) ⊆ Sinvp,! where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
!∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:01pm GMT)A:31

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈,, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈,, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈,, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so , uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, ,, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀, ∈ L(p) . αa(S)(p, ,) ⊆ Sinvp,! where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
!∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈,, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈,, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈,, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so , uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, ,, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀, ∈ L(p) . αa(S)(p, ,) ⊆ Sinvp,! where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
!∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:05pm GMT)A:31

τ i0 τ ii

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈,, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈,, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈,, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so , uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, ,, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀, ∈ L(p) . αa(S)(p, ,) ⊆ Sinvp,! where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
!∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈,, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈,, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈,, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so , uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, ,, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀, ∈ L(p) . αa(S)(p, ,) ⊆ Sinvp,! where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
!∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:08pm GMT)A:31

τ i0 τ i1 τ in−1

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈,, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈,, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈,, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so , uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, ,, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀, ∈ L(p) . αa(S)(p, ,) ⊆ Sinvp,! where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
!∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈,, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈,, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈,, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so , uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, ,, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀, ∈ L(p) . αa(S)(p, ,) ⊆ Sinvp,! where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
!∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈,, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈,, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈,, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so , uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, ,, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀, ∈ L(p) . αa(S)(p, ,) ⊆ Sinvp,! where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
!∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:15pm GMT)A:31

τ i0 τ i1 τ in−1

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈,, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈,, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈,, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so , uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, ,, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀, ∈ L(p) . αa(S)(p, ,) ⊆ Sinvp,! where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all
others. true which denotes all possible values

∏n−1
p=1

∏
!∈L(p) L(0)×P(0)×Ev(0)×Va(0)×

. . .×P(p)× Ev(p)× Va(p)× . . .×
L(n− 1)×P(n− 1)× Ev(n− 1)× Va(n− 1)× ℘(K) is the weakest invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:30pm GMT)A:31

〈κi
0, θ

i
0, ρ

i
0, ν

i
0〉

〈%, θip, ρip, νip〉
〈κi

n−1, θ
i
n−1, ρ

i
n−1, ν

i
n−1〉

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈%, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈%, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈%, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so % uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, %, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀% ∈ L(p) . αa(S)(p, %) ⊆ Sinvp,! where
αa is the invariance abstraction. αa(S) is the strongest invariant in that it implies all

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

〈κi
0, θ

i
0, ρ

i
0, ν

i
0〉

〈%, θip, ρip, νip〉

〈κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1〉

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈%, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈%, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈%, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so % uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, %, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀% ∈ L(p) . αa(S)(p, %) ⊆ Sinvp,! where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Invariance proof of weakly consistent parallel programs (DRAFT of Friday 3rd June 2016 5:31pm GMT)A:31

〈κi
0, θ

i
0, ρ

i
0, ν

i
0〉

〈%, θip, ρip, νip〉

〈κi
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1〉

s〈κ, θ, ρ, ν〉 ∈ τ ! ∃τ1, ε, τ2 . τ = τ1
ε−−→ s〈κ, θ, ρ, ν〉 τ2

αa({πi | i ∈ ∆}) where πi = ςi × Γ i and ςi = τ istart ×
n−1∏

p=0

τ ip × τ ifinish

!
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0, θ

i
0, ρ

i
0, ν

i
0, . . . , ν

i
p−1, θ

i
p, ρ

i
p, ν

i
p,κ

i
p+1 . . . ,κ

i
n−1, θ

i
n−1, ρ

i
n−1, ν

i
n−1,Γ

i〉 |
∀q ∈ [0, n[\ {p} . s〈κi

q, θ
i
q, ρ

i
q, ν

i
q〉 ∈ τ iq ∧ s〈%, θip, ρip, νip〉 ∈ τ ip}

=
∏

p∈Pi

∏

!∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi0,k0
, . . . , νip−1,kp−1

, θip,kp
, ρip,kp

, νip,kp
,κi

p+1,kp+1
, . . . ,

κi
n−1,kn−1

, θin−1,kn−1
, ρin−1,kn−1

, νin−1,kn−1
,Γ i〉 |

∀q ∈ [0, n[\ {p} . τ iq
kq

= s〈κi
q,kq

, θiq,kq
, ρiq,kq

, νiq,kq
〉 ∧

τ ip
kp

= s〈%, θip,kp
, ρip,kp

, νip,kp
〉}

Notice that αa ignores τ istart which is not a loss of information since, in LISA, τ istart is
known to be a write of 0 to all shared variables x of the program. αa also ignores
τ ifinish but for LISA executions which satisfy the well-formed communication conditions
Wf7(π), Wf9(π) to Wf12(π) impose conditions on Γ i from which it is possible to rebuilt
τ ifinish (see Lem. 10.2 in both cases).
αa preserves arbitrary joins/unions so there is a Galois connection 〈℘(Π), ⊆〉 −−−−→←−−−−

αa

γa

〈I, ⊆̇〉, pointwise. By composition this is an abstraction of program properties 〈℘(D),

⊆〉 −−−−−−−→←−−−−−−−
αa◦α∪

γ∪◦γa 〈I, ⊆̇〉. Moreover αa preserves finite meets/intersections.

LEMMA 10.2. The abstraction αa is exact for the semantics S!P" of any LISA program
P (i.e. there exists a ⊆-increasing map α−1

a !P" such that α−1
a !P"(αa(S!P")) = S!P").

PROOF. We must show how to define the map α−1
a !P" that reconstructs the execu-

tions from the invariant abstraction αa(S!P"). We can rebuilt the initial traces τstart
and final traces τfinish which are fully determined by the initialisation well-formedness
condition Wf6 and finalisation condition Wf7. By the definition of the semantics of LISA, a
state σ = s〈%, θ, ρ, ν〉 contains enough information to rebuilt the corresponding event
since labels are unique per process so % uniquely determines the process p to which
it belongs, hence the unique instruction instr that is labels hence the unique event
marker 〈p, %, instr, θ〉 for the corresponding event. For register and write instructions
the value v = E!operation"ρ is recovered from the instruction and the environment ρ
in the state. Similarly for the branch instruction the branch taken is recovered from
sat(E!operation"ρ). The stamps in states, which are unique per process, can be used
to put states in traces in the !p-increasing order. A state may have different !p-
successors in αa(S!P") but they must come from different traces of S!P" which can
therefore be rebuilt exactly in the original order of states.

10.7. Invariance
So P has invariance property Sinv ∈ I means S!P" ∈ γ∪(γa(Sinv)) i.e. S!P" ⊆ γa(Sinv)
that is αa(S!P") ⊆̇ Sinv , pointwise, i.e. ∀p ∈ [1, n] . ∀% ∈ L(p) . αa(S)(p, %) ⊆ Sinvp,! where

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 11. Invariance abstraction of an execution
4.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {π ∈ Π | Wf 2(π) ∧ . . . ∧Wf 16(π)} .

Theorem 1 In an execution ς × Γ ∈ Sa!P", the communication Γ
uniquely determines the computation ς .

4.2.4 cat specification of a weakly consistent semantics
The candidate execution abstraction αΞ(π) abstracts the execution
π = ς × Γ into a candidate execution αΞ(π) = 〈e, po, rf , iw〉
where e is the set of events (partitionned into fence, read, write,
. . . events), po is the program order (transitively relating success-
ive events on a trace of each process), rf = Γ is the set of com-
munications, and iw is the set of initial write events. Then we
define αΞ(S) ! {〈π, αΞ(π)〉 | π ∈ S} and α !Hcm "(C) !
{π ∈ Π | 〈π, Ξ〉 ∈ C ∧ !Hcm "(Ξ)} where the consistence

!Hcm "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcm is defined in (Alglave et al. 2015b). The analytic se-
mantics of a program P for a cat specification Hcm is then S !P"!
α !Hcm " ◦ αΞ(Sa!P").

5. Invariance proof
5.1 Semantic, execution, and invariance properties
The semantics S !P" of a program P is a set of executions π ∈ Π
so belongs to ℘(Π). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Π)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that 〈℘(℘(Π)), ⊆〉−−−−→←−−−−
α∪

γ∪

〈℘(Π), ⊆〉 yields execution properties P ∈ ℘(Π). So P has exe-
cution property P means S !P" ∈ γ∪(P) that is {S !P"} ⊆ γ∪(P)
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αa(P) where P = {πi | i ∈ ∆} ∈
℘(Π) with πi = ςi × Γ i and ςi = τ i

start ×
∏n−1

p=0 τ i
p collects

simultaneously reachable states along process traces (see Fig. 11).

αa({πi | i ∈ ∆}) !
∏

p∈Pi

∏

%∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi
0,k0

, . . . ,

νi
p−1,kp−1

, θip,kp , ρ
i
p,kp , ν

i
p,kp ,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

, θin−1,kn−1
,

ρin−1,kn−1
, νi

n−1,kn−1
,Γ i〉 | ∀q ∈ [0, n[\ {p} . τ i

q
kq

=

s〈κi
q,kq , θ

i
q,kq , ρ

i
q,kq , ν

i
q,kq 〉 ∧ τ i

p
kp

= s〈$, θip,kp , ρ
i
p,kp , ν

i
p,kp〉}.

At each program point $ of each process p, a local invariance
property Ip($), in particular the strongest invariant αa(S !P")p($),
is a relation between the process state and the state of all other
processes (including their control state) when execution reaches
point $ in process p. We have 〈℘(Π), ⊆〉 −−−−→←−−−−αa

γa 〈I, ⊆̇〉 so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γa(Sinv)) i.e.
S !P" ⊆ γa(Sinv) that is αa(S !P") ⊆̇ Sinv .

8 2016/7/21

43

Invariance abstraction

• Inception: no communication is possible without the occurrence
of both the read and (maybe initial) write it involves:
∀r w.(rf[w, r] ∈ Γ)⇒ (∃p ∈ Pi, q ∈ Pi ∪ {start}. Wf 9(π)

∃j ∈ [0, 1 + |τp|[, k ∈ [0, 1 + |τq|[. τpj = r ∧ τqk = w) .

Note that this does not prevent a read to read from a future write.

Language-dependent conditions for LISA are as follows:

• Start: the initial state of a trace τp should be of the form:
τp

0
= s〈l0p, infp, λ R . 0, ∅〉 Wf 10(π)

where l0p is the entry label of process p and infp is a minimal
stamp of p.

• Next state: if at point k of a trace τp of process p of an execution
π = τstart ×

∏
p∈Pi τp × Γ the computation is in state τp

k−1
=

s〈$, θ, ρ, ν〉 then:
the next event must be generated by the instruction instr !
instr!P"p$ at label $ of process p
the next event has the form τpk = e〈〈p, $, instr, θ〉, xθ, v〉
the next state τp

k
= s〈κ′, θ′, ρ′, ν′〉 has κ′ = $′ which is the

label after the instruction instr
the stamp θ′ = succp(θ) is larger, and
the value v as well as the new environment ρ′ and valuation ν′

are computed as a function of the previous environment ρ, the
valuation ν, and the execution π.

Formally: ∀k ∈]0, 1 + |τp|[. ∀κ′ ρ ρ′ ν ν′ θ θ′ .

(τp
k−1

= s〈$, θ, ρ, ν〉 ∧ τpk = e〈〈p, $, instr, θ〉, xθ, v〉 ∧

τp
k
= s〈κ′, θ′, ρ′, ν′〉)⇒ (κ′ = $′ ∧ θ′ = succp(θ) ∧

v = v(ρ) ∧ ρ′ = ρ(v, ρ) ∧ ν(v, ρ, ν,π, ν′)) .

We give the form of the next event τpk for each LISA instruction:

• Fence (instr = $: f[ts]
[
{l01 . . . lm1 } {l02 . . . lq2}

]
; $′ : . . .):

τpk = m(〈p, $, f[ts]
[
{l01 . . . lm1 } {l02 . . . lq2}

]
, θ〉)

(ρ′ = ρ ∧ ν′ = ν) . Wf 11(π)
• Register instruction (instr = $: mov R1 operation; $′ : . . .):
τpk = a(〈p, $, mov R1 operation, θ〉, v) Wf 12(π)
(v = E!operation"(ρ, ν) ∧ ρ′ = ρ[R1 := v] ∧ ν′ = ν) .

where E!e"(ρ, ν) is the evaluation of the expression e in the
environment ρ and valuation ν.

• Write (instr = $: w[ts] x r-value; $′ : . . .):
τpk = w(〈p, $, w[ts] x r-value, θ〉, v) Wf 13(π)
(v = E!r-value"(ρ, ν) ∧ ρ = ρ′ ∧ ν′ = ν) .

• Read (instr = $: r[ts] R1 x; $′ : . . .):
τpk = r(〈p, $, r[ts] R1 x, θ〉, xθ) Wf 14(π)
(ρ′ = ρ[R1 := xθ] ∧ ∃q ∈ Pi ∪ {start} . ∃!j ∈ [1, 1 + |τq|[.
∃$′′, θ′′, v . (τqj = w(〈q, $′′, w[ts] x r-value, θ′′〉, v) ∧

rf[τqj , τpk] ∈ Γ ∧ ν′ = ν[xθ := v])) .

• RMW (instr = rmw[ts] r (reg-instrs) x): for the begin (instr =
beginrmw[ts] x) and end event (instr = endrmw[ts] x):
τpk = m(〈p, $, instr, θ〉) Wf 15(π)
(ρ′ = ρ ∧ ν′ = ν) .

• Test (instr = $: b[ts] operation lt; $′ : . . .):
on the true branch:
τpk = t(〈p, $, b[ts] operation lt, θ〉) Wf 16t(π)
(sat(E!operation"(ρ, ν) += 0) ∧ κ′ = lt ∧ ρ′ = ρ ∧ ν′ = ν)

on the false branch:
τpk = t(〈p, $, b[ts] operation lt, θ〉) Wf 16f (π)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = $′ ∧ ρ′ = ρ ∧ ν′ = ν)

Figure 11. Invariance abstraction of an execution
4.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {π ∈ Π | Wf 2(π) ∧ . . . ∧Wf 16(π)} .

Theorem 1 In an execution ς × Γ ∈ Sa!P", the communication Γ
uniquely determines the computation ς .

4.2.4 cat specification of a weakly consistent semantics
The candidate execution abstraction αΞ(π) abstracts the execution
π = ς × Γ into a candidate execution αΞ(π) = 〈e, po, rf , iw〉
where e is the set of events (partitionned into fence, read, write,
. . . events), po is the program order (transitively relating success-
ive events on a trace of each process), rf = Γ is the set of com-
munications, and iw is the set of initial write events. Then we
define αΞ(S) ! {〈π, αΞ(π)〉 | π ∈ S} and α !Hcm "(C) !
{π ∈ Π | 〈π, Ξ〉 ∈ C ∧ !Hcm "(Ξ)} where the consistence

!Hcm "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcm is defined in (Alglave et al. 2015b). The analytic se-
mantics of a program P for a cat specification Hcm is then S !P"!
α !Hcm " ◦ αΞ(Sa!P").

5. Invariance proof
5.1 Semantic, execution, and invariance properties
The semantics S !P" of a program P is a set of executions π ∈ Π
so belongs to ℘(Π). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Π)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that 〈℘(℘(Π)), ⊆〉−−−−→←−−−−
α∪

γ∪

〈℘(Π), ⊆〉 yields execution properties P ∈ ℘(Π). So P has exe-
cution property P means S !P" ∈ γ∪(P) that is {S !P"} ⊆ γ∪(P)
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αa(P) where P = {πi | i ∈ ∆} ∈
℘(Π) with πi = ςi × Γ i and ςi = τ i

start ×
∏n−1

p=0 τ i
p collects

simultaneously reachable states along process traces (see Fig. 11).

αa({πi | i ∈ ∆}) !
∏

p∈Pi

∏

%∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi
0,k0

, . . . ,

νi
p−1,kp−1

, θip,kp , ρ
i
p,kp , ν

i
p,kp ,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

, θin−1,kn−1
,

ρin−1,kn−1
, νi

n−1,kn−1
,Γ i〉 | ∀q ∈ [0, n[\ {p} . τ i

q
kq

=

s〈κi
q,kq , θ

i
q,kq , ρ

i
q,kq , ν

i
q,kq 〉 ∧ τ i

p
kp

= s〈$, θip,kp , ρ
i
p,kp , ν

i
p,kp〉}.

At each program point $ of each process p, a local invariance
property Ip($), in particular the strongest invariant αa(S !P")p($),
is a relation between the process state and the state of all other
processes (including their control state) when execution reaches
point $ in process p. We have 〈℘(Π), ⊆〉 −−−−→←−−−−αa

γa 〈I, ⊆̇〉 so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γa(Sinv)) i.e.
S !P" ⊆ γa(Sinv) that is αa(S !P") ⊆̇ Sinv .

8 2016/7/16

• Inception: no communication is possible without the occurrence
of both the read and (maybe initial) write it involves:
∀r w.(rf[w, r] ∈ Γ)⇒ (∃p ∈ Pi, q ∈ Pi ∪ {start}. Wf 9(π)

∃j ∈ [0, 1 + |τp|[, k ∈ [0, 1 + |τq|[. τpj = r ∧ τqk = w) .

Note that this does not prevent a read to read from a future write.

Language-dependent conditions for LISA are as follows:

• Start: the initial state of a trace τp should be of the form:
τp

0
= s〈l0p, infp, λ R . 0, ∅〉 Wf 10(π)

where l0p is the entry label of process p and infp is a minimal
stamp of p.

• Next state: if at point k of a trace τp of process p of an execution
π = τstart ×

∏
p∈Pi τp × Γ the computation is in state τp

k−1
=

s〈$, θ, ρ, ν〉 then:
the next event must be generated by the instruction instr !
instr!P"p$ at label $ of process p
the next event has the form τpk = e〈〈p, $, instr, θ〉, xθ, v〉
the next state τp

k
= s〈κ′, θ′, ρ′, ν′〉 has κ′ = $′ which is the

label after the instruction instr
the stamp θ′ = succp(θ) is larger, and
the value v as well as the new environment ρ′ and valuation ν′

are computed as a function of the previous environment ρ, the
valuation ν, and the execution π.

Formally: ∀k ∈]0, 1 + |τp|[. ∀κ′ ρ ρ′ ν ν′ θ θ′ .

(τp
k−1

= s〈$, θ, ρ, ν〉 ∧ τpk = e〈〈p, $, instr, θ〉, xθ, v〉 ∧

τp
k
= s〈κ′, θ′, ρ′, ν′〉)⇒ (κ′ = $′ ∧ θ′ = succp(θ) ∧

v = v(ρ) ∧ ρ′ = ρ(v, ρ) ∧ ν(v, ρ, ν,π, ν′)) .

We give the form of the next event τpk for each LISA instruction:

• Fence (instr = $: f[ts]
[
{l01 . . . lm1 } {l02 . . . lq2}

]
; $′ : . . .):

τpk = m(〈p, $, f[ts]
[
{l01 . . . lm1 } {l02 . . . lq2}

]
, θ〉)

(ρ′ = ρ ∧ ν′ = ν) . Wf 11(π)
• Register instruction (instr = $: mov R1 operation; $′ : . . .):
τpk = a(〈p, $, mov R1 operation, θ〉, v) Wf 12(π)
(v = E!operation"(ρ, ν) ∧ ρ′ = ρ[R1 := v] ∧ ν′ = ν) .

where E!e"(ρ, ν) is the evaluation of the expression e in the
environment ρ and valuation ν.

• Write (instr = $: w[ts] x r-value; $′ : . . .):
τpk = w(〈p, $, w[ts] x r-value, θ〉, v) Wf 13(π)
(v = E!r-value"(ρ, ν) ∧ ρ = ρ′ ∧ ν′ = ν) .

• Read (instr = $: r[ts] R1 x; $′ : . . .):
τpk = r(〈p, $, r[ts] R1 x, θ〉, xθ) Wf 14(π)
(ρ′ = ρ[R1 := xθ] ∧ ∃q ∈ Pi ∪ {start} . ∃!j ∈ [1, 1 + |τq|[.
∃$′′, θ′′, v . (τqj = w(〈q, $′′, w[ts] x r-value, θ′′〉, v) ∧

rf[τqj , τpk] ∈ Γ ∧ ν′ = ν[xθ := v])) .

• RMW (instr = rmw[ts] r (reg-instrs) x): for the begin (instr =
beginrmw[ts] x) and end event (instr = endrmw[ts] x):
τpk = m(〈p, $, instr, θ〉) Wf 15(π)
(ρ′ = ρ ∧ ν′ = ν) .

• Test (instr = $: b[ts] operation lt; $′ : . . .):
on the true branch:
τpk = t(〈p, $, b[ts] operation lt, θ〉) Wf 16t(π)
(sat(E!operation"(ρ, ν) += 0) ∧ κ′ = lt ∧ ρ′ = ρ ∧ ν′ = ν)

on the false branch:
τpk = t(〈p, $, b[ts] operation lt, θ〉) Wf 16f (π)
(sat(E!operation"(ρ, ν) = 0) ∧ κ′ = $′ ∧ ρ′ = ρ ∧ ν′ = ν)

Figure 11. Invariance abstraction of an execution
4.2.3 Anarchic semantics
The anarchic semantics of a program P is

Sa!P" ! {π ∈ Π | Wf 2(π) ∧ . . . ∧Wf 16(π)} .

Theorem 1 In an execution ς × Γ ∈ Sa!P", the communication Γ
uniquely determines the computation ς .

4.2.4 cat specification of a weakly consistent semantics
The candidate execution abstraction αΞ(π) abstracts the execution
π = ς × Γ into a candidate execution αΞ(π) = 〈e, po, rf , iw〉
where e is the set of events (partitionned into fence, read, write,
. . . events), po is the program order (transitively relating success-
ive events on a trace of each process), rf = Γ is the set of com-
munications, and iw is the set of initial write events. Then we
define αΞ(S) ! {〈π, αΞ(π)〉 | π ∈ S} and α !Hcm "(C) !
{π ∈ Π | 〈π, Ξ〉 ∈ C ∧ !Hcm "(Ξ)} where the consistence

!Hcm "(Ξ) of a candidate execution Ξ for a cat consistency
model Hcm is defined in (Alglave et al. 2015b). The analytic se-
mantics of a program P for a cat specification Hcm is then S !P"!
α !Hcm " ◦ αΞ(Sa!P").

5. Invariance proof
5.1 Semantic, execution, and invariance properties
The semantics S !P" of a program P is a set of executions π ∈ Π
so belongs to ℘(Π). Representing properties by the set of elements
which have this property, semantic properties P are elements of
P ∈ ℘(℘(Π)). So P has semantic property P means S !P" ∈ P ,
equivalently {S !P"} ⊆ P where {S !P"} is the strongest semantic
property and ⊆ is implication.

The join abstraction α∪(P) = ∪P such that 〈℘(℘(Π)), ⊆〉−−−−→←−−−−
α∪

γ∪

〈℘(Π), ⊆〉 yields execution properties P ∈ ℘(Π). So P has exe-
cution property P means S !P" ∈ γ∪(P) that is {S !P"} ⊆ γ∪(P)
equivalently α∪({S !P"}) ⊆ P i.e. S !P" ⊆ P . The strongest exe-
cution property of P is S !P".

The invariance abstraction αa(P) where P = {πi | i ∈ ∆} ∈
℘(Π) with πi = ςi × Γ i and ςi = τ i

start ×
∏n−1

p=0 τ i
p collects

simultaneously reachable states along process traces (see Fig. 11).

αa({πi | i ∈ ∆}) !
∏

p∈Pi

∏

%∈L(p)

⋃

i∈∆

{〈κi
0,k0

, θi0,k0
, ρi0,k0

, νi
0,k0

, . . . ,

νi
p−1,kp−1

, θip,kp , ρ
i
p,kp , ν

i
p,kp ,κ

i
p+1,kp+1

, . . . ,κi
n−1,kn−1

, θin−1,kn−1
,

ρin−1,kn−1
, νi

n−1,kn−1
,Γ i〉 | ∀q ∈ [0, n[\ {p} . τ i

q
kq

=

s〈κi
q,kq , θ

i
q,kq , ρ

i
q,kq , ν

i
q,kq 〉 ∧ τ i

p
kp

= s〈$, θip,kp , ρ
i
p,kp , ν

i
p,kp〉}.

At each program point $ of each process p, a local invariance
property Ip($), in particular the strongest invariant αa(S !P")p($),
is a relation between the process state and the state of all other
processes (including their control state) when execution reaches
point $ in process p. We have 〈℘(Π), ⊆〉 −−−−→←−−−−αa

γa 〈I, ⊆̇〉 so P has
invariance property Sinv ∈ I means S !P" ∈ γ∪(γa(Sinv)) i.e.
S !P" ⊆ γa(Sinv) that is αa(S !P") ⊆̇ Sinv .

8 2016/7/16

rf

rf

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Invariant
• An invariant Sinv(p) at point p of process Pi is a

statement relating

• the program points p1,…,pi-1, pi+1,…, pm of the
other processes

• the pythia variables (forbidden to mention of
shared variables)

• the local registers of all processes

• the communications (rf)
which always holds when at the cut where execution
reaches point p of process Pi and the other processes
are at p1,…,pi-1, pi+1,…, pm

44

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Example (Peterson)

45

(these invariants are for the anarchic semantics, so all
 communications are possible, no constraints on rf)

We define our communication specification as follows:
Scom ! ¬[∃i, j.[rf〈F2i4, 〈0:, false〉〉 ∨ rf〈F2i4, 〈17:, false〉〉 (1)

∨ rf〈Ti5, 〈11:, 1〉〉] ∧ [rf〈F1j13, 〈0:, false〉〉
∨ rf〈F1j13, 〈8:, false〉〉 ∨ rf〈Tj14, 〈2:, 2〉〉]]

In words, our communication specification Scom states the read-
froms should yield values in the registers ensuring that both pro-
cesses cannot simultaneously leave their waiting loops. The scen-
arios in Fig. 4 are therefore impossible. This ensures that both pro-
cesses cannot be simultaneously in their critical section.

Therefore, there cannot be two iteration counters i and j such that:
• The first process PO enters its critical section at the ith iteration

of its waiting loop (corresponding to the pythia variables F2i4 and
Ti5) because

either the read at line 4: and ith iteration (corresponding to the
pythia variable F2i4) takes its value, false, from the initialisa-
tion of the variable F2 (in the prelude at line 0:) or from the
write to F2 at line 17:;
or, the read at line 5: and ith iteration (corresponding to the
pythia variable Ti5) takes its value, 1, from the write at line 11;

• And the second process P1 enters its critical section at the j th

iteration of its waiting loop (corresponding to the pythia variables
F1j13 and Tj14) because

either the read at line 13: and j th iteration (corresponding
to the pythia variable F1j13) takes its value, false, from the
initialisation of the variable F1 (in the prelude at line 0:) or
from the write to F1 at line 8:;
or, the read at line 14: and j th iteration (corresponding to the
pythia variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

1. an invariant specification Sinv , e.g. the one in Fig. 3 for Peterson’s
algorithm;

2. a communication specification Scom , e.g. (1) in Sect. 2.2.2 for
Peterson’s algorithm;

With these two specifications at hand, we can now start proving
away; our method is articulated as follows:

1. Conditional invariance proof Scom !⇒ Sinv : we need to prove
that if the communications occur like prescribed by Scom , then
the processes satisfy the invariant Sinv ;

2. Inclusion proof M ⇒ Scom : we need to validate the hypotheses
made in the communication specification Scom , viz., we need to
ensure that the WCM M guarantees them.

We now detail each proof in turn.

2.3.1 Conditional invariance proof Scom !⇒ Sinv

Given an algorithm A, and the specifications Sinv and Scom , we
need to prove that each process of the algorithm satisfies a given
invariant Sinv under the hypothesis Scom ; to do so we:

1. invent a stronger invariant Sind , which is inductive;
2. prove that Sind is indeed inductive, i.e. satisfies verification

conditions implying that if it is true, it stays true after one step of
computation or one step of communication that satisfies Scom ;
effectively we prove Scom !⇒ Sind .

3. prove that Sind is indeed stronger than Sinv (i.e. Sind ⇒ Sinv);

Thus we have:

– Scom !⇒ Sind , saying that Sind is invariant for the algorithm
under communication hypothesis Scom ;

– Sind ⇒ Sinv , saying that the inductive invariant Sind is stronger
than the invariant Sinv .

This allows us to conclude that Scom !⇒ Sinv , which was our goal.
We now illustrate the correctness proof process on Peterson.

• An inductive invariant Sind , stronger than Sinv is given in
Fig. 5. More precisely, Fig. 5 gives local invariants (depicted in
blue in curly brackets) for each program point of each process, as
in the Owicki-Gries and Lamport proof methods (??). These local
invariants attached to program points can depend on the program
state that is on registers (both the ones local to the process un-
der scrutiny, and from other processes), pythia variables and, as
in Lamport’s method (?), on the program counter of the other pro-
cesses (thus avoiding auxiliary variables (?)). In general the local
invariants may also depend on the possible communications rf i.e.
which reads may read their values from which writes (but this is
not necessary in Fig. 5 since the program logic does not restricts in
any way the possible communications as, e.g., would be the case
for unreachable reads or writes). The invariants cannot depend on
shared variables.
0: { w F1 false; w F2 false; w T 0; }
{F1=false ∧ F2=false ∧ T=0} }
1: {R1=0 ∧ R2=0} 10: {R3=0 ∧ R4=0}

w[] F1 true w[] F2 true;

2: {R1=0 ∧ R2=0} 11: {R3=0 ∧ R4=0}
w[] T 2 w[] T 1;

3: {R1=0 ∧ R2=0} 12: {R3=0 ∧ R4=0}
do {i} do {j}

4: {(i=0 ∧ R1=0 ∧ R2=0) ∨
(i>0 ∧ R1=F2i−1

4 ∧ R2=Ti−1
5)}

13: {(j=0 ∧ R3=0 ∧ R4=0) ∨
(j>0 ∧ R3=F1

j−1
13 ∧ R4=T

j−1
14)}

r[] R1 F2 {! F2i4} r[] R3 F1 {! F1
j
13};

5: {R1=F2i4 ∧ (i=0 ∧ R2=0) ∨
(i>0 ∧ R2=Ti−1

5)}
14: {R3=F1j13 ∧ (j=0 ∧ R4=0) ∨

(j>0 ∧ R4=T
j−1
14)}

r[] R2 T {! Ti5} r[] R4 T; {! T
j
14}

6: {R1=F2i4 ∧ R2=Ti5} 15: {R3=F1j13 ∧ R4=T
j
14)}

while R1 ∧ R2 #=1 {iend} while R3 ∧ R4 #=2 {jend} ;

7: {¬F2
iend
4 ∨ T

iend
5 =1} 16: {¬F1

jend
13 ∨ T

jend
14 =2}

skip (* CS1 *) skip (* CS2 *)

8: {¬F2
iend
4 ∨ T

iend
5 =1} 17: {¬F1

jend
13 ∨ T

jend
14 =2}

w[] F1 false w[] F2 false;

9: {¬F2
iend
4 ∨ T

iend
5 =1} 18: {¬F1

jend
13 ∨ T

jend
14 =2}

Figure 5: (Anarchic) invariants of Peterson algorithm

Let us read the local invariants for the first process of Peterson:

– line 0: simply reflects the initialisations made in the prelude, thus
we have F1=false ∧ F2=false ∧ T=0;

– at line 1: LISA assumes that all registers local to P1 (viz., R1
and R2) are initialised to 0, thus we have R1=0 ∧ R2=0—we
separate the initialisation of shared variables (e.g. F1, F2 and T),
factored out in the prelude, and the initialisation of local registers,
which is made at the top of each concerned process;

– at line 2:, we have just passed a write of F1, which leaves the
invariant unchanged, thus we still have R1=0 ∧ R2=0 (the effect
of the write will be taken into account by the communication
proof);

– similarly at line 3:, we just passed a write of T, which leaves the
invariant unchanged, thus we still have R1=0 ∧ R2=0;

– at line 4:, we are about to enter, or have entered, a loop, whose
iterations are indexed by i as indicated by the annotation after
the do instruction; the loop invariant states that:

either we have not entered the loop yet (i=0), in which case the
registers are unchanged, viz., R1=0 ∧ R2=0, or
we have entered the loop (i>0), in which case the registers con-
tain updated values, more precisely updated pythia variables:
for example R1=F2i−1

4 indicates that in the i − 1 iteration of
the loop, there has been, at line 4:, a read of the variable F2,

3 2016/9/17

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {〈w12

x , r1x 〉, 〈w2
y , r

11
y 〉} %∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ! in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

Invariance proof

46

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Verification conditions
• Sequential proof

• Absence of interference proof

• Communication proof

Examples:

• { P(R, …, rf) ∧ ⟨𝑤(x, 𝑣), 𝑟(θ, x)⟩ ∈ rf }
read x R { ↝ xθ }
{ P[R ← xθ, xθ ←𝑣,…, rf]}

• { P } fence { P } (fences are markers in the execution)

• { P } write R x { P } (a write has no local effect)

47

communication

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Communication proof
• The communications rf must be checked to be well-

formed (none allowed by Hcm should miss, see later)

• If ⟨𝑤(P, p, θ, x, 𝑣), 𝑟(P’, p’, θ’, x, xθ’)⟩ ∈ rf then:

• The read instruction of at point p’ process P’ must
read from an initial or a reachable write

• A read event (for a given stamp θ’) must read from a
unique write event with the same variable x

• The value assigned to the read pythia variable xθ’
must be that of 𝑣 the matching write

48

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {〈w12

x , r1x 〉, 〈w2
y , r

11
y 〉} %∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ! in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

Communication
specification Scom

49

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Communication specification
• The algorithm A is often incorrect for the anarchic

semantics

• The allowable communications are specified by a
communication specification Scom (i.e. an invariant
constraining the allowed communications rf)

• This communication specification can often be
calculated from the anarchic invariant and the
inductive invariant Sind

50

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Example (Peterson)

51

so that Peterson has been proved correct under the
hypothesis that the communication specification Scom
holds:

(preventing the incorrect case)

We define our communication specification as follows:
Scom ! ¬[∃i, j.[rf〈F2i4, 〈0:, false〉〉 ∨ rf〈F2i4, 〈17:, false〉〉 (1)

∨ rf〈Ti5, 〈11:, 1〉〉] ∧ [rf〈F1j13, 〈0:, false〉〉
∨ rf〈F1j13, 〈8:, false〉〉 ∨ rf〈Tj14, 〈2:, 2〉〉]]

In words, our communication specification Scom states the read-
froms should yield values in the registers ensuring that both pro-
cesses cannot simultaneously leave their waiting loops. The scen-
arios in Fig. 4 are therefore impossible. This ensures that both pro-
cesses cannot be simultaneously in their critical section.

Therefore, there cannot be two iteration counters i and j such that:
• The first process PO enters its critical section at the ith iteration

of its waiting loop (corresponding to the pythia variables F2i4 and
Ti5) because

either the read at line 4: and ith iteration (corresponding to the
pythia variable F2i4) takes its value, false, from the initialisa-
tion of the variable F2 (in the prelude at line 0:) or from the
write to F2 at line 17:;
or, the read at line 5: and ith iteration (corresponding to the
pythia variable Ti5) takes its value, 1, from the write at line 11;

• And the second process P1 enters its critical section at the j th

iteration of its waiting loop (corresponding to the pythia variables
F1j13 and Tj14) because

either the read at line 13: and j th iteration (corresponding
to the pythia variable F1j13) takes its value, false, from the
initialisation of the variable F1 (in the prelude at line 0:) or
from the write to F1 at line 8:;
or, the read at line 14: and j th iteration (corresponding to the
pythia variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

1. an invariant specification Sinv , e.g. the one in Fig. 3 for Peterson’s
algorithm;

2. a communication specification Scom , e.g. (1) in Sect. 2.2.2 for
Peterson’s algorithm;

With these two specifications at hand, we can now start proving
away; our method is articulated as follows:

1. Conditional invariance proof Scom !⇒ Sinv : we need to prove
that if the communications occur like prescribed by Scom , then
the processes satisfy the invariant Sinv ;

2. Inclusion proof M ⇒ Scom : we need to validate the hypotheses
made in the communication specification Scom , viz., we need to
ensure that the WCM M guarantees them.

We now detail each proof in turn.

2.3.1 Conditional invariance proof Scom !⇒ Sinv

Given an algorithm A, and the specifications Sinv and Scom , we
need to prove that each process of the algorithm satisfies a given
invariant Sinv under the hypothesis Scom ; to do so we:

1. invent a stronger invariant Sind , which is inductive;
2. prove that Sind is indeed inductive, i.e. satisfies verification

conditions implying that if it is true, it stays true after one step of
computation or one step of communication that satisfies Scom ;
effectively we prove Scom !⇒ Sind .

3. prove that Sind is indeed stronger than Sinv (i.e. Sind ⇒ Sinv);

Thus we have:

– Scom !⇒ Sind , saying that Sind is invariant for the algorithm
under communication hypothesis Scom ;

– Sind ⇒ Sinv , saying that the inductive invariant Sind is stronger
than the invariant Sinv .

This allows us to conclude that Scom !⇒ Sinv , which was our goal.
We now illustrate the correctness proof process on Peterson.

• An inductive invariant Sind , stronger than Sinv is given in
Fig. 5. More precisely, Fig. 5 gives local invariants (depicted in
blue in curly brackets) for each program point of each process, as
in the Owicki-Gries and Lamport proof methods (??). These local
invariants attached to program points can depend on the program
state that is on registers (both the ones local to the process un-
der scrutiny, and from other processes), pythia variables and, as
in Lamport’s method (?), on the program counter of the other pro-
cesses (thus avoiding auxiliary variables (?)). In general the local
invariants may also depend on the possible communications rf i.e.
which reads may read their values from which writes (but this is
not necessary in Fig. 5 since the program logic does not restricts in
any way the possible communications as, e.g., would be the case
for unreachable reads or writes). The invariants cannot depend on
shared variables.
0: { w F1 false; w F2 false; w T 0; }
{F1=false ∧ F2=false ∧ T=0} }
1: {R1=0 ∧ R2=0} 10: {R3=0 ∧ R4=0}

w[] F1 true w[] F2 true;

2: {R1=0 ∧ R2=0} 11: {R3=0 ∧ R4=0}
w[] T 2 w[] T 1;

3: {R1=0 ∧ R2=0} 12: {R3=0 ∧ R4=0}
do {i} do {j}

4: {(i=0 ∧ R1=0 ∧ R2=0) ∨
(i>0 ∧ R1=F2i−1

4 ∧ R2=Ti−1
5)}

13: {(j=0 ∧ R3=0 ∧ R4=0) ∨
(j>0 ∧ R3=F1

j−1
13 ∧ R4=T

j−1
14)}

r[] R1 F2 {! F2i4} r[] R3 F1 {! F1
j
13};

5: {R1=F2i4 ∧ (i=0 ∧ R2=0) ∨
(i>0 ∧ R2=Ti−1

5)}
14: {R3=F1j13 ∧ (j=0 ∧ R4=0) ∨

(j>0 ∧ R4=T
j−1
14)}

r[] R2 T {! Ti5} r[] R4 T; {! T
j
14}

6: {R1=F2i4 ∧ R2=Ti5} 15: {R3=F1j13 ∧ R4=T
j
14)}

while R1 ∧ R2 #=1 {iend} while R3 ∧ R4 #=2 {jend} ;

7: {¬F2
iend
4 ∨ T

iend
5 =1} 16: {¬F1

jend
13 ∨ T

jend
14 =2}

skip (* CS1 *) skip (* CS2 *)

8: {¬F2
iend
4 ∨ T

iend
5 =1} 17: {¬F1

jend
13 ∨ T

jend
14 =2}

w[] F1 false w[] F2 false;

9: {¬F2
iend
4 ∨ T

iend
5 =1} 18: {¬F1

jend
13 ∨ T

jend
14 =2}

Figure 5: (Anarchic) invariants of Peterson algorithm

Let us read the local invariants for the first process of Peterson:

– line 0: simply reflects the initialisations made in the prelude, thus
we have F1=false ∧ F2=false ∧ T=0;

– at line 1: LISA assumes that all registers local to P1 (viz., R1
and R2) are initialised to 0, thus we have R1=0 ∧ R2=0—we
separate the initialisation of shared variables (e.g. F1, F2 and T),
factored out in the prelude, and the initialisation of local registers,
which is made at the top of each concerned process;

– at line 2:, we have just passed a write of F1, which leaves the
invariant unchanged, thus we still have R1=0 ∧ R2=0 (the effect
of the write will be taken into account by the communication
proof);

– similarly at line 3:, we just passed a write of T, which leaves the
invariant unchanged, thus we still have R1=0 ∧ R2=0;

– at line 4:, we are about to enter, or have entered, a loop, whose
iterations are indexed by i as indicated by the annotation after
the do instruction; the loop invariant states that:

either we have not entered the loop yet (i=0), in which case the
registers are unchanged, viz., R1=0 ∧ R2=0, or
we have entered the loop (i>0), in which case the registers con-
tain updated values, more precisely updated pythia variables:
for example R1=F2i−1

4 indicates that in the i − 1 iteration of
the loop, there has been, at line 4:, a read of the variable F2,

3 2016/9/17

resulting in the pythia variable F2i−1
4 being placed into register

R1;
– at line 5: we have just passed a read of the variable F2, yielding

the pythia variable F2i4: this leads to the updated local invariant
R1=F2i4 ∧ ((i=0 ∧ R2=0) ∨ (i>0 ∧ R2=Ti−1

5));
– at line 6: we have just passed a read of the variable T, yielding

the pythia variable Ti5: this leads to the updated local invariant
R1=F2i4 ∧ R2=Ti5;

– at line 7:, we have just exited the loop—as symbolised by the
annotation iend—thus we have met the exit condition, viz., ¬R1
∨ R2=1; this is reflected in the invariant ¬F2iend4 ∨ Tiend5 =1, as
we know from the invariant at line 6: that R1=F2i4 and R2=Ti5;

– at line 8:, we just passed a skip, which leaves the invariant
unchanged;

– at line 9:, we just passed a write, which leaves the invariant
unchanged.

• Sind is inductive under the hypothesis Scom ; we prove this in
several steps:
• Initialisation proof: we must prove that the invariant at the entry

of each process (e.g. R1=0 ∧ R2=0 for P0) is true when all
processes are at their entry, all registers hold the value 0, and
there is no pythia variable;

• Sequential proof: we must prove that the invariants are true when
executing a process sequentially. This is simple since:

a read r[] R x ! xi! updates the value of register R to the
adequate pythia variable xi!,
a write is handled like a skip, i.e. has no effect on the invari-
ant, and
loops are handled classically:
− the loop invariant at line 4: must be true upon the first loop

entry (i.e. R1=0 ∧ R2=0 when i=0), and
− on the ith iteration, if the invariant at line 6: is true after the

previous iteration (i.e. R1=F2i−1
4 ∧ R2=Ti−1

5), and the exit
condition is false (i.e. we do have F2i−1

4 ∧ Ti−1
5 $= 1), then

the loop invariant at line 4: must be true for i (i.e. R1=F2i−1
4

∧ R2=Ti−1
5 since the registers hold the values read at the

previous iteration), and
− if the invariant at line 6: is true at the end of the loop i.e.

when iend = i and the while test is false, then the invariant
at line 7: must be true, i.e. ¬F2iend4 ∨ Tiend5 =1.

• Absence of interference proof: we must prove that if an invariant
is true at a given program point of a process, and another process
takes one step of computation, the invariant stays true. In our
example, the invariants of each process depend only on its own
registers and pythia variables which are not modified by the
other process (the upcoming communication proof takes into
account the fact that the pythia variables are determined by the
communications).

• Communication proof: we must prove that if an invariant is true
at some process point ! of a process p and a read for xθ is
performed then the value received into xθ is that of a matching
write. Of course no possible communication must be forgotten
and only the communications allowed by the communication
invariant Scom have to be taken into account.
In our case, the invariants do not say anything on the value
assigned to the pythia variables so that the invariants are true
for any value carried by the pythia variables. More precisely, the
read at line 4: can read from the writes at line 0:, 10: or 17:.
The invariant at line 4: does not make any distinction on these
cases and just states that some value F2i4 has been read—this
value can be true or false—and assigned to R1. Similarly the
read of T at line 5: can read from the writes at line 0:, 2:, or
11:. Again the invariant does not make any distinction between
these cases just stating that some value Ti5 is read and assigned

to R2. So the communications can be anarchic and therefore no
possible communication has been forgotten. On that example, the
invariance proof does not make any use of the communication
hypothesis Scom . It is however used in the next proof, that Sind
is stronger than Sinv .

• Sind is stronger than Sinv under the hypothesis Scom ; we
establish our mutual exclusion proof by reductio ad absurdum.
More precisely, we want to prove that (Scom ∧ Sind) ⇒ Sinv . We
choose to prove the equivalent (Sind ∧¬Sinv)⇒ ¬Scom . Thus we
assume that at 7 and at 16 do hold and get a contradiction:

at 7 ∧ at 16
⇒ (¬F2iend

4 ∨ T
iend
5 = 1) ∧ (¬F1jend

13 ∨ T
jend
14 = 2)}

!i.e. the invariants at lines 7: and 16: hold"
⇒ ¬Scom !since by taking i = iend and j = jend, we have

(F2i4 = false ∨ Ti5 = 1) ∧ (F1j13 = false ∨ Tj14 = 2)"
which is the desired contradiction.

2.3.2 Inclusion proof Hcom ⇒ Scom

Recall that we have proved that the algorithm A satisfies the invari-
ant Sinv under a certain communication hypothesis specified by
Scom . To ensure that Sinv holds in the context of the consistency
model M , we need to ensure that M guarantees that the commu-
nication specification Scom holds.

This is essentially an inclusion proof, that all the behaviours al-
lowed by M are allowed by Scom , which we write M ⇒ Scom .
Note that proving that M ⇒ Scom is the only bit of proof that
must be adapted when considering a different model M ′.

To make this inclusion proof easier, we translate our specification
Scom into the same language as the model M . Recall that we use
the cat language to describe our model M ; hence we need to find
a cat specification Hcom that encompasses our specification Scom .

The same way that we derived Scom from the program specifica-
tion ¬Sinv , we derive Hcom from the communication specification
¬Scom . This is an abstraction since e.g. shared variable names and
their values are abstracted away. In general, Hcom will allow less
behaviors that Scom and M less that Hcom . We proceed as follows
(see Fig. 1):
• we build the communication scenario corresponding to the pythia

triples given in the communication specification ¬Scom ;
• we write a cat specification Hcom which will forbid the corres-

ponding communication scenario.
• we prove that all the behaviours allowed by the cat model M

are allowed by the cat specification Hcom .

We now take the reader through this process using again Peterson’s
algorithm (see Fig. 2) with Scom being (1) in Sect. 2.2.2 as an
illustration.

• Building the communication scenario corresponding to the py-
thia triples requires us building several relations between accesses
(i.e. read/write events) from the program anarchic invariants (Fig. 5
for Peterson):
• the read-from relation rf links a write w of a variable to a

read r of the same variable, such that r takes its value from w.
Subrelations are rf-init when reading from an initial write and
rfe when reading from a write of another process;

• the coherence relation co links an initial write of a variable in the
prelude to all the writes of that variable in the program;

• the program order relation po links accesses (i.e. read/write
events) that appear in program order on a process.

More precisely, given the code of the algorithm A (e.g. Peterson’s
in Fig. 2) and an anarchic invariant (i.e. without any restriction on

4 2016/9/17

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {〈w12

x , r1x 〉, 〈w2
y , r

11
y 〉} %∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ! in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

Soundness and completeness
• The invariance proof method is derived from the truly

parallel semantics with cuts by calculational design
⇒ soundness and (relative) completeness

• A consistency specification Hcom may be less expressive
than Scom ⇒ incompleteness (*)

52

(*) e.g. hardware cannot restrict a read to input from writes writing odd numbers.

incompleteness

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {〈w12

x , r1x 〉, 〈w2
y , r

11
y 〉} %∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ! in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

Consistency hypothesis
and inclusion proof

53

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Consistency hypothesis
• The communication specification Scom is useful to

reason on invariance, but not on machine architecture

• We express Scom as a consistency hypothesis Hcom
expressed in the cat language

• Hcom is derived from Scom by calculations design while
doing the inclusion proof

54

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Inclusion proof
• Inclusion proof: ¬Scom ⇒ ¬Hcom

• Calculational design of Hcom:

• Calculate all possible execution scenarios violating
Scom

• Prevent each of them by a cat specification

• Hcom is their conjunction

55

We define our communication specification as follows:
Scom ! ¬[∃i, j.[rf〈F2i4, 〈0:, false〉〉 ∨ rf〈F2i4, 〈17:, false〉〉 (1)

∨ rf〈Ti5, 〈11:, 1〉〉] ∧ [rf〈F1j13, 〈0:, false〉〉
∨ rf〈F1j13, 〈8:, false〉〉 ∨ rf〈Tj14, 〈2:, 2〉〉]]

In words, our communication specification Scom states the read-
froms should yield values in the registers ensuring that both pro-
cesses cannot simultaneously leave their waiting loops. The scen-
arios in Fig. 4 are therefore impossible. This ensures that both pro-
cesses cannot be simultaneously in their critical section.

Therefore, there cannot be two iteration counters i and j such that:
• The first process PO enters its critical section at the ith iteration

of its waiting loop (corresponding to the pythia variables F2i4 and
Ti5) because

either the read at line 4: and ith iteration (corresponding to the
pythia variable F2i4) takes its value, false, from the initialisa-
tion of the variable F2 (in the prelude at line 0:) or from the
write to F2 at line 17:;
or, the read at line 5: and ith iteration (corresponding to the
pythia variable Ti5) takes its value, 1, from the write at line 11;

• And the second process P1 enters its critical section at the j th

iteration of its waiting loop (corresponding to the pythia variables
F1j13 and Tj14) because

either the read at line 13: and j th iteration (corresponding
to the pythia variable F1j13) takes its value, false, from the
initialisation of the variable F1 (in the prelude at line 0:) or
from the write to F1 at line 8:;
or, the read at line 14: and j th iteration (corresponding to the
pythia variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

1. an invariant specification Sinv , e.g. the one in Fig. 3 for Peterson’s
algorithm;

2. a communication specification Scom , e.g. (1) in Sect. 2.2.2 for
Peterson’s algorithm;

With these two specifications at hand, we can now start proving
away; our method is articulated as follows:

1. Conditional invariance proof Scom !⇒ Sinv : we need to prove
that if the communications occur like prescribed by Scom , then
the processes satisfy the invariant Sinv ;

2. Inclusion proof M ⇒ Scom : we need to validate the hypotheses
made in the communication specification Scom , viz., we need to
ensure that the WCM M guarantees them.

We now detail each proof in turn.

2.3.1 Conditional invariance proof Scom !⇒ Sinv

Given an algorithm A, and the specifications Sinv and Scom , we
need to prove that each process of the algorithm satisfies a given
invariant Sinv under the hypothesis Scom ; to do so we:

1. invent a stronger invariant Sind , which is inductive;
2. prove that Sind is indeed inductive, i.e. satisfies verification

conditions implying that if it is true, it stays true after one step of
computation or one step of communication that satisfies Scom ;
effectively we prove Scom !⇒ Sind .

3. prove that Sind is indeed stronger than Sinv (i.e. Sind ⇒ Sinv);

Thus we have:

– Scom !⇒ Sind , saying that Sind is invariant for the algorithm
under communication hypothesis Scom ;

– Sind ⇒ Sinv , saying that the inductive invariant Sind is stronger
than the invariant Sinv .

This allows us to conclude that Scom !⇒ Sinv , which was our goal.
We now illustrate the correctness proof process on Peterson.

• An inductive invariant Sind , stronger than Sinv is given in
Fig. 5. More precisely, Fig. 5 gives local invariants (depicted in
blue in curly brackets) for each program point of each process, as
in the Owicki-Gries and Lamport proof methods (??). These local
invariants attached to program points can depend on the program
state that is on registers (both the ones local to the process un-
der scrutiny, and from other processes), pythia variables and, as
in Lamport’s method (?), on the program counter of the other pro-
cesses (thus avoiding auxiliary variables (?)). In general the local
invariants may also depend on the possible communications rf i.e.
which reads may read their values from which writes (but this is
not necessary in Fig. 5 since the program logic does not restricts in
any way the possible communications as, e.g., would be the case
for unreachable reads or writes). The invariants cannot depend on
shared variables.
0: { w F1 false; w F2 false; w T 0; }
{F1=false ∧ F2=false ∧ T=0} }
1: {R1=0 ∧ R2=0} 10: {R3=0 ∧ R4=0}

w[] F1 true w[] F2 true;

2: {R1=0 ∧ R2=0} 11: {R3=0 ∧ R4=0}
w[] T 2 w[] T 1;

3: {R1=0 ∧ R2=0} 12: {R3=0 ∧ R4=0}
do {i} do {j}

4: {(i=0 ∧ R1=0 ∧ R2=0) ∨
(i>0 ∧ R1=F2i−1

4 ∧ R2=Ti−1
5)}

13: {(j=0 ∧ R3=0 ∧ R4=0) ∨
(j>0 ∧ R3=F1

j−1
13 ∧ R4=T

j−1
14)}

r[] R1 F2 {! F2i4} r[] R3 F1 {! F1
j
13};

5: {R1=F2i4 ∧ (i=0 ∧ R2=0) ∨
(i>0 ∧ R2=Ti−1

5)}
14: {R3=F1j13 ∧ (j=0 ∧ R4=0) ∨

(j>0 ∧ R4=T
j−1
14)}

r[] R2 T {! Ti5} r[] R4 T; {! T
j
14}

6: {R1=F2i4 ∧ R2=Ti5} 15: {R3=F1j13 ∧ R4=T
j
14)}

while R1 ∧ R2 #=1 {iend} while R3 ∧ R4 #=2 {jend} ;

7: {¬F2
iend
4 ∨ T

iend
5 =1} 16: {¬F1

jend
13 ∨ T

jend
14 =2}

skip (* CS1 *) skip (* CS2 *)

8: {¬F2
iend
4 ∨ T

iend
5 =1} 17: {¬F1

jend
13 ∨ T

jend
14 =2}

w[] F1 false w[] F2 false;

9: {¬F2
iend
4 ∨ T

iend
5 =1} 18: {¬F1

jend
13 ∨ T

jend
14 =2}

Figure 5: (Anarchic) invariants of Peterson algorithm

Let us read the local invariants for the first process of Peterson:

– line 0: simply reflects the initialisations made in the prelude, thus
we have F1=false ∧ F2=false ∧ T=0;

– at line 1: LISA assumes that all registers local to P1 (viz., R1
and R2) are initialised to 0, thus we have R1=0 ∧ R2=0—we
separate the initialisation of shared variables (e.g. F1, F2 and T),
factored out in the prelude, and the initialisation of local registers,
which is made at the top of each concerned process;

– at line 2:, we have just passed a write of F1, which leaves the
invariant unchanged, thus we still have R1=0 ∧ R2=0 (the effect
of the write will be taken into account by the communication
proof);

– similarly at line 3:, we just passed a write of T, which leaves the
invariant unchanged, thus we still have R1=0 ∧ R2=0;

– at line 4:, we are about to enter, or have entered, a loop, whose
iterations are indexed by i as indicated by the annotation after
the do instruction; the loop invariant states that:

either we have not entered the loop yet (i=0), in which case the
registers are unchanged, viz., R1=0 ∧ R2=0, or
we have entered the loop (i>0), in which case the registers con-
tain updated values, more precisely updated pythia variables:
for example R1=F2i−1

4 indicates that in the i − 1 iteration of
the loop, there has been, at line 4:, a read of the variable F2,

3 2016/9/17

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Example: Peterson

56

possible communications hence satisfying the verification condi-
tions for Scom = true, e.g. Peterson’s in Fig. 5), we build the fol-
lowing relations:

• read-from rf: for each pythia triple, we depict the read-from
relation in red; for example for rf〈F2i4, 〈0:, false〉〉, we create
a read-from relation between a write and a read of the variable
F2 with value false. The write comes from line 0:, and the read
from line 4, at the ith iteration.

• coherence co: we depict the coherence edges relative to the
variables that are mentioned by the pythia triples, in our case
F1, F2 and T: see in Fig. 6 the co edge in blue between the write
of F1 (resp. F2, T) in the prelude at line 0: and the write of F1
(resp. F2, T) at line 1: (resp. 10: for F2 and 2:, 11: for T).

• from-read fr: we depict in brown the edges from a read relative
to a variable x that is mentioned by the pythia triples to all the
writes to x coming after the write read by this read; For example
in case 1 of Fig. 6 where the read r[] R1 F2 of F2 at line 4:
is from the initial write 0: w[] F2 0 and the fr relation shows
that write 10:w[] F2 true comes later.

• program order po: we also depict the program order edges
between the accesses which are either the source or the target
of a communication edge (viz., read-from and coherence): see in
Fig. 6 the po edges in purple between the lines 1:, 2:, 4:, 5:,
and 8: on the first process, and similarly on the second process.
po is irreflexive and transitive (not represented on Fig. 6).

• the cut relation cut: we also depict the relation cut, which de-
scribes the current point in program execution, linking all the
current control label on each thread.

Now in Fig. 6, each case has a reflexive sequence, written under-
neath. These are the sequences that our cat specification Hcom will
forbid.

Before detailing how we write Hcom in cat, we give a glimpse of
the cat language.

• The cat language (?) is a domain specific language to describe
consistency models succinctly by constraining an abstraction of
program executions into a candidate execution 〈e, po, rf, IW〉
providing
• events e , giving a semantics to instructions; for example a LISA

write w[] x v yields a write event of variable x with value v.
Events can be (for brevity this is not an exhaustive list):

writes, gathered in the set W, unless they come from the prelude
of the program in which case they are gathered in the set of
initial writes IW;
reads, gathered in the set R;
fences, gathered in the set F.

• the program order po, relating accesses written in program order
in the original LISA program;

• the read-from rf describing a communication between a write
and a read event;

The language provides additional basic built-in semantics bricks:
• the relation loc relating events accessing the same variable;
• the relation ext relating events from different processes;
• operators over relations, such as intersection &, union |, inverse

of a relation ^-1, sequence of relations ;, transitive closure +,
cartesian product *, set difference \.

The cat user can define new relations using let, and declare con-
straints over relations, such as irreflexivity or acyclicity constraints,
using the eponymous keywords irreflexive r and acyclic r
(i.e. irreflexive r+).

For example, Figure 7 gives a definition of Sequential Consistency
in cat (an equivalence proof appears e.g. in (?)). On the first line

rf co

po

co

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

fr

rf po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

co fr

4 —fr→ 10 —po→ 13 —fr→ 1 —po→ 4
case 1: 0:F2,0:F1

14 —fr→ 11 —po→ 14
case 2a: 0:F2,1:F1 (2 —co→ 11)

rf co po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

co
frpo

fr
co

po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

co

rf

11 —co→ 2 —po→ 4 —fr→ 10 —po→ 11
case 2b: 0:F2,1:F1 (11 —co→ 2)

2 —co→ 11 —po→ 13 —fr→ 1 —po→ 2
case 3a: 10:F2,0:F1 (2 —co→ 11)

rf

po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

co
fr

rf po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

co fr

5 —fr→ 2 —po→ 5
case 3b: 10:F2,0:F1 (11 —co→ 2)

14 ---fr→ 11 ---po→ 14
case 4a: 10:F2,1:F1 (2 —co→ 11)

rf
po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

cofr
rf po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

5 —fr→ 2 —po→ 5
case 4b: 10:F2,1:F1 (11 —co→ 2)

4 —po→ 8 —rf→ 13 —po→ 17 —rf→ 4
case 5: 17:F2,8:F1

rf
po

cut

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

po

rf

cut
po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

po

7 —po→ 8 —rf→ 13 —po→ 17 —cut→ 7
case 6: 8:F1

16 —po→ 17 —rf→ 4 —po→ 7 —cut→ 16
case 7: 17:F2

Figure 6: Communication scenarios violating Scom for Peterson
let fr = (rf^-1;co)
acyclic po | rf | co | fr as sc

Figure 7: SC in cat

we define the relation fr, for from-read, as the sequence of the
inverse of rf (viz., rf-̂1) and the coherence order co. We then
require the acyclicity of the union of the program order po, the
read-from rf, the coherence co and the from-read fr.

• Writing the corresponding cat specification Hcom (see Fig. 8
for the definition of Hcom in cat). For each case in Fig. 6, we forbid
a reflexive sequence.

Overall this leads to the cat specification given in Fig. 8:
irreflexive fr; po; fr; po
irreflexive fr; po
irreflexive co; po; fr; po
irreflexive rf; po; rf; po
irreflexive rf; po; cut; po

Figure 8: A possible specification Hcom of Peterson algorithm

• Proving that all the behaviours allowed by Hcom are allowed by
Scom is done contrapositively i.e. ¬Scom ⇒ ¬Hcom . By ¬Scom in
(1), we get ∃i, j . [rf〈F2i4, 〈0:, false〉〉∨ rf〈F2i4, 〈17:, false〉〉∨ rf〈Ti5,
〈11:, 1〉〉]∧ [rf〈F1j13, 〈0:, false〉〉∨ rf〈F1j13, 〈8:, false〉〉∨ rf〈Tj14, 〈2:,
2〉〉]] which we put in disjunctive normal form and give the cases
illustrated in Fig. 6, thus proving ¬Hcom .

5 2016/9/17

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Example: Peterson

57

possible communications hence satisfying the verification condi-
tions for Scom = true, e.g. Peterson’s in Fig. 5), we build the fol-
lowing relations:

• read-from rf: for each pythia triple, we depict the read-from
relation in red; for example for rf〈F2i4, 〈0:, false〉〉, we create
a read-from relation between a write and a read of the variable
F2 with value false. The write comes from line 0:, and the read
from line 4, at the ith iteration.

• coherence co: we depict the coherence edges relative to the
variables that are mentioned by the pythia triples, in our case
F1, F2 and T: see in Fig. 6 the co edge in blue between the write
of F1 (resp. F2, T) in the prelude at line 0: and the write of F1
(resp. F2, T) at line 1: (resp. 10: for F2 and 2:, 11: for T).

• from-read fr: we depict in brown the edges from a read relative
to a variable x that is mentioned by the pythia triples to all the
writes to x coming after the write read by this read; For example
in case 1 of Fig. 6 where the read r[] R1 F2 of F2 at line 4:
is from the initial write 0: w[] F2 0 and the fr relation shows
that write 10:w[] F2 true comes later.

• program order po: we also depict the program order edges
between the accesses which are either the source or the target
of a communication edge (viz., read-from and coherence): see in
Fig. 6 the po edges in purple between the lines 1:, 2:, 4:, 5:,
and 8: on the first process, and similarly on the second process.
po is irreflexive and transitive (not represented on Fig. 6).

• the cut relation cut: we also depict the relation cut, which de-
scribes the current point in program execution, linking all the
current control label on each thread.

Now in Fig. 6, each case has a reflexive sequence, written under-
neath. These are the sequences that our cat specification Hcom will
forbid.

Before detailing how we write Hcom in cat, we give a glimpse of
the cat language.

• The cat language (?) is a domain specific language to describe
consistency models succinctly by constraining an abstraction of
program executions into a candidate execution 〈e, po, rf, IW〉
providing
• events e , giving a semantics to instructions; for example a LISA

write w[] x v yields a write event of variable x with value v.
Events can be (for brevity this is not an exhaustive list):

writes, gathered in the set W, unless they come from the prelude
of the program in which case they are gathered in the set of
initial writes IW;
reads, gathered in the set R;
fences, gathered in the set F.

• the program order po, relating accesses written in program order
in the original LISA program;

• the read-from rf describing a communication between a write
and a read event;

The language provides additional basic built-in semantics bricks:
• the relation loc relating events accessing the same variable;
• the relation ext relating events from different processes;
• operators over relations, such as intersection &, union |, inverse

of a relation ^-1, sequence of relations ;, transitive closure +,
cartesian product *, set difference \.

The cat user can define new relations using let, and declare con-
straints over relations, such as irreflexivity or acyclicity constraints,
using the eponymous keywords irreflexive r and acyclic r
(i.e. irreflexive r+).

For example, Figure 7 gives a definition of Sequential Consistency
in cat (an equivalence proof appears e.g. in (?)). On the first line

rf co

po

co

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

fr

rf po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

co fr

4 —fr→ 10 —po→ 13 —fr→ 1 —po→ 4
case 1: 0:F2,0:F1

14 —fr→ 11 —po→ 14
case 2a: 0:F2,1:F1 (2 —co→ 11)

rf co po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

co
frpo

fr
co

po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

co

rf

11 —co→ 2 —po→ 4 —fr→ 10 —po→ 11
case 2b: 0:F2,1:F1 (11 —co→ 2)

2 —co→ 11 —po→ 13 —fr→ 1 —po→ 2
case 3a: 10:F2,0:F1 (2 —co→ 11)

rf

po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

co
fr

rf po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

co fr

5 —fr→ 2 —po→ 5
case 3b: 10:F2,0:F1 (11 —co→ 2)

14 ---fr→ 11 ---po→ 14
case 4a: 10:F2,1:F1 (2 —co→ 11)

rf
po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

cofr
rf po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

5 —fr→ 2 —po→ 5
case 4b: 10:F2,1:F1 (11 —co→ 2)

4 —po→ 8 —rf→ 13 —po→ 17 —rf→ 4
case 5: 17:F2,8:F1

rf
po

cut

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

po

rf

cut
po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

po

7 —po→ 8 —rf→ 13 —po→ 17 —cut→ 7
case 6: 8:F1

16 —po→ 17 —rf→ 4 —po→ 7 —cut→ 16
case 7: 17:F2

Figure 6: Communication scenarios violating Scom for Peterson
let fr = (rf^-1;co)
acyclic po | rf | co | fr as sc

Figure 7: SC in cat

we define the relation fr, for from-read, as the sequence of the
inverse of rf (viz., rf-̂1) and the coherence order co. We then
require the acyclicity of the union of the program order po, the
read-from rf, the coherence co and the from-read fr.

• Writing the corresponding cat specification Hcom (see Fig. 8
for the definition of Hcom in cat). For each case in Fig. 6, we forbid
a reflexive sequence.

Overall this leads to the cat specification given in Fig. 8:
irreflexive fr; po; fr; po
irreflexive fr; po
irreflexive co; po; fr; po
irreflexive rf; po; rf; po
irreflexive rf; po; cut; po

Figure 8: A possible specification Hcom of Peterson algorithm

• Proving that all the behaviours allowed by Hcom are allowed by
Scom is done contrapositively i.e. ¬Scom ⇒ ¬Hcom . By ¬Scom in
(1), we get ∃i, j . [rf〈F2i4, 〈0:, false〉〉∨ rf〈F2i4, 〈17:, false〉〉∨ rf〈Ti5,
〈11:, 1〉〉]∧ [rf〈F1j13, 〈0:, false〉〉∨ rf〈F1j13, 〈8:, false〉〉∨ rf〈Tj14, 〈2:,
2〉〉]] which we put in disjunctive normal form and give the cases
illustrated in Fig. 6, thus proving ¬Hcom .

5 2016/9/17

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot58

Example: Peterson

possible communications hence satisfying the verification condi-
tions for Scom = true, e.g. Peterson’s in Fig. 5), we build the fol-
lowing relations:

• read-from rf: for each pythia triple, we depict the read-from
relation in red; for example for rf〈F2i4, 〈0:, false〉〉, we create
a read-from relation between a write and a read of the variable
F2 with value false. The write comes from line 0:, and the read
from line 4, at the ith iteration.

• coherence co: we depict the coherence edges relative to the
variables that are mentioned by the pythia triples, in our case
F1, F2 and T: see in Fig. 6 the co edge in blue between the write
of F1 (resp. F2, T) in the prelude at line 0: and the write of F1
(resp. F2, T) at line 1: (resp. 10: for F2 and 2:, 11: for T).

• from-read fr: we depict in brown the edges from a read relative
to a variable x that is mentioned by the pythia triples to all the
writes to x coming after the write read by this read; For example
in case 1 of Fig. 6 where the read r[] R1 F2 of F2 at line 4:
is from the initial write 0: w[] F2 0 and the fr relation shows
that write 10:w[] F2 true comes later.

• program order po: we also depict the program order edges
between the accesses which are either the source or the target
of a communication edge (viz., read-from and coherence): see in
Fig. 6 the po edges in purple between the lines 1:, 2:, 4:, 5:,
and 8: on the first process, and similarly on the second process.
po is irreflexive and transitive (not represented on Fig. 6).

• the cut relation cut: we also depict the relation cut, which de-
scribes the current point in program execution, linking all the
current control label on each thread.

Now in Fig. 6, each case has a reflexive sequence, written under-
neath. These are the sequences that our cat specification Hcom will
forbid.

Before detailing how we write Hcom in cat, we give a glimpse of
the cat language.

• The cat language (?) is a domain specific language to describe
consistency models succinctly by constraining an abstraction of
program executions into a candidate execution 〈e, po, rf, IW〉
providing
• events e , giving a semantics to instructions; for example a LISA

write w[] x v yields a write event of variable x with value v.
Events can be (for brevity this is not an exhaustive list):

writes, gathered in the set W, unless they come from the prelude
of the program in which case they are gathered in the set of
initial writes IW;
reads, gathered in the set R;
fences, gathered in the set F.

• the program order po, relating accesses written in program order
in the original LISA program;

• the read-from rf describing a communication between a write
and a read event;

The language provides additional basic built-in semantics bricks:
• the relation loc relating events accessing the same variable;
• the relation ext relating events from different processes;
• operators over relations, such as intersection &, union |, inverse

of a relation ^-1, sequence of relations ;, transitive closure +,
cartesian product *, set difference \.

The cat user can define new relations using let, and declare con-
straints over relations, such as irreflexivity or acyclicity constraints,
using the eponymous keywords irreflexive r and acyclic r
(i.e. irreflexive r+).

For example, Figure 7 gives a definition of Sequential Consistency
in cat (an equivalence proof appears e.g. in (?)). On the first line

rf co

po

co

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

fr

rf po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

co fr

4 —fr→ 10 —po→ 13 —fr→ 1 —po→ 4
case 1: 0:F2,0:F1

14 —fr→ 11 —po→ 14
case 2a: 0:F2,1:F1 (2 —co→ 11)

rf co po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

co
frpo

fr
co

po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

co

rf

11 —co→ 2 —po→ 4 —fr→ 10 —po→ 11
case 2b: 0:F2,1:F1 (11 —co→ 2)

2 —co→ 11 —po→ 13 —fr→ 1 —po→ 2
case 3a: 10:F2,0:F1 (2 —co→ 11)

rf

po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

co
fr

rf po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

co fr

5 —fr→ 2 —po→ 5
case 3b: 10:F2,0:F1 (11 —co→ 2)

14 ---fr→ 11 ---po→ 14
case 4a: 10:F2,1:F1 (2 —co→ 11)

rf
po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

cofr
rf po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

5 —fr→ 2 —po→ 5
case 4b: 10:F2,1:F1 (11 —co→ 2)

4 —po→ 8 —rf→ 13 —po→ 17 —rf→ 4
case 5: 17:F2,8:F1

rf
po

cut

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

po

rf

cut
po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

po

7 —po→ 8 —rf→ 13 —po→ 17 —cut→ 7
case 6: 8:F1

16 —po→ 17 —rf→ 4 —po→ 7 —cut→ 16
case 7: 17:F2

Figure 6: Communication scenarios violating Scom for Peterson
let fr = (rf^-1;co)
acyclic po | rf | co | fr as sc

Figure 7: SC in cat

we define the relation fr, for from-read, as the sequence of the
inverse of rf (viz., rf-̂1) and the coherence order co. We then
require the acyclicity of the union of the program order po, the
read-from rf, the coherence co and the from-read fr.

• Writing the corresponding cat specification Hcom (see Fig. 8
for the definition of Hcom in cat). For each case in Fig. 6, we forbid
a reflexive sequence.

Overall this leads to the cat specification given in Fig. 8:
irreflexive fr; po; fr; po
irreflexive fr; po
irreflexive co; po; fr; po
irreflexive rf; po; rf; po
irreflexive rf; po; cut; po

Figure 8: A possible specification Hcom of Peterson algorithm

• Proving that all the behaviours allowed by Hcom are allowed by
Scom is done contrapositively i.e. ¬Scom ⇒ ¬Hcom . By ¬Scom in
(1), we get ∃i, j . [rf〈F2i4, 〈0:, false〉〉∨ rf〈F2i4, 〈17:, false〉〉∨ rf〈Ti5,
〈11:, 1〉〉]∧ [rf〈F1j13, 〈0:, false〉〉∨ rf〈F1j13, 〈8:, false〉〉∨ rf〈Tj14, 〈2:,
2〉〉]] which we put in disjunctive normal form and give the cases
illustrated in Fig. 6, thus proving ¬Hcom .

5 2016/9/17

• the cut relation can be expressed in cat using tags on
fence markers f[p0] and f[p1]

• Hcom is irreflexive fr;po;fr;po
irreflexive fr;po
irreflexive co;po;fr;po
irreflexive po;rf;po;rf
irreflexive po;rf;po;cut

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {〈w12

x , r1x 〉, 〈w2
y , r

11
y 〉} %∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ! in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

Consistency model
and proof

59

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Example: Peterson in SC
• Hcom is

• Sequential consistency in cat:
 let fr = (rf^-1 ; co)
 acyclic po | rf | co | fr as sc

• Forbid all first 4 cases

60

irreflexive fr;po;fr;po
irreflexive fr;po
irreflexive co;po;fr;po
irreflexive po;rf;po;rf
irreflexive po;rf;po;cut

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Example: Peterson in SC

61

possible communications hence satisfying the verification condi-
tions for Scom = true, e.g. Peterson’s in Fig. 5), we build the fol-
lowing relations:

• read-from rf: for each pythia triple, we depict the read-from
relation in red; for example for rf〈F2i4, 〈0:, false〉〉, we create
a read-from relation between a write and a read of the variable
F2 with value false. The write comes from line 0:, and the read
from line 4, at the ith iteration.

• coherence co: we depict the coherence edges relative to the
variables that are mentioned by the pythia triples, in our case
F1, F2 and T: see in Fig. 6 the co edge in blue between the write
of F1 (resp. F2, T) in the prelude at line 0: and the write of F1
(resp. F2, T) at line 1: (resp. 10: for F2 and 2:, 11: for T).

• from-read fr: we depict in brown the edges from a read relative
to a variable x that is mentioned by the pythia triples to all the
writes to x coming after the write read by this read; For example
in case 1 of Fig. 6 where the read r[] R1 F2 of F2 at line 4:
is from the initial write 0: w[] F2 0 and the fr relation shows
that write 10:w[] F2 true comes later.

• program order po: we also depict the program order edges
between the accesses which are either the source or the target
of a communication edge (viz., read-from and coherence): see in
Fig. 6 the po edges in purple between the lines 1:, 2:, 4:, 5:,
and 8: on the first process, and similarly on the second process.
po is irreflexive and transitive (not represented on Fig. 6).

• the cut relation cut: we also depict the relation cut, which de-
scribes the current point in program execution, linking all the
current control label on each thread.

Now in Fig. 6, each case has a reflexive sequence, written under-
neath. These are the sequences that our cat specification Hcom will
forbid.

Before detailing how we write Hcom in cat, we give a glimpse of
the cat language.

• The cat language (?) is a domain specific language to describe
consistency models succinctly by constraining an abstraction of
program executions into a candidate execution 〈e, po, rf, IW〉
providing
• events e , giving a semantics to instructions; for example a LISA

write w[] x v yields a write event of variable x with value v.
Events can be (for brevity this is not an exhaustive list):

writes, gathered in the set W, unless they come from the prelude
of the program in which case they are gathered in the set of
initial writes IW;
reads, gathered in the set R;
fences, gathered in the set F.

• the program order po, relating accesses written in program order
in the original LISA program;

• the read-from rf describing a communication between a write
and a read event;

The language provides additional basic built-in semantics bricks:
• the relation loc relating events accessing the same variable;
• the relation ext relating events from different processes;
• operators over relations, such as intersection &, union |, inverse

of a relation ^-1, sequence of relations ;, transitive closure +,
cartesian product *, set difference \.

The cat user can define new relations using let, and declare con-
straints over relations, such as irreflexivity or acyclicity constraints,
using the eponymous keywords irreflexive r and acyclic r
(i.e. irreflexive r+).

For example, Figure 7 gives a definition of Sequential Consistency
in cat (an equivalence proof appears e.g. in (?)). On the first line

rf co

po

co

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

fr

rf po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

co fr

4 —fr→ 10 —po→ 13 —fr→ 1 —po→ 4
case 1: 0:F2,0:F1

14 —fr→ 11 —po→ 14
case 2a: 0:F2,1:F1 (2 —co→ 11)

rf co po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

co
frpo

fr
co

po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

co

rf

11 —co→ 2 —po→ 4 —fr→ 10 —po→ 11
case 2b: 0:F2,1:F1 (11 —co→ 2)

2 —co→ 11 —po→ 13 —fr→ 1 —po→ 2
case 3a: 10:F2,0:F1 (2 —co→ 11)

rf

po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

co
fr

rf po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

co fr

5 —fr→ 2 —po→ 5
case 3b: 10:F2,0:F1 (11 —co→ 2)

14 ---fr→ 11 ---po→ 14
case 4a: 10:F2,1:F1 (2 —co→ 11)

rf
po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

cofr
rf po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

5 —fr→ 2 —po→ 5
case 4b: 10:F2,1:F1 (11 —co→ 2)

4 —po→ 8 —rf→ 13 —po→ 17 —rf→ 4
case 5: 17:F2,8:F1

rf
po

cut

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

po

rf

cut
po

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do 12:do
4: r[] R1 F2 13: r[] R3 F1;
5: r[] R2 T 14: r[] R4 T;
6:while R1 ∧ R2 "= 1 15:while R3 ∧ R4 "= 2;
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The plain red arrows are an informal
representation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

The dashed arrows picture alternatice erroneous read-from rela-
tions. In all these situations (which are impossible under SC), both
loop exit conditions can be true so that both processes can be simul-
taneously in their critical section, thus invalidating the specification
Sinv . Other erroneous behaviors are illustrated in Fig. 4b. The value

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: f[p0] (* CS1 *) 16: f[p1] (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a do
instruction which ensures that we iterate the instructions at lines
4 and 5 until the condition expressed at line 6 (viz., R1 ∧ R2 "=
1) is false. At line 4: we read the variable F2 and write its value
into register R1, and at line 5: we read the variable T and write its
value into register R2. At line 7: we have a marker f[p0] which
semantics is skip, simply to signify the critical section, and at
line 8: we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using fresh auxiliary registers
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(a) Incorrect flags

rf
0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2: Peterson algorithm in LISA

• a prelude at line 0:, between curly brackets, which initialises the
variables F1 and F2 to false and the variable T to 0;

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
while clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3: Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-
process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4a. The red arrows are an informal rep-
resentation of a communication scenario where:
• on the first process (see the left-hand side), the read at line
4: reads the value that F2 was initialised to, at line 0: (or
alternatively from line 17:), so that R1 contains false. And, the
read at line 5: reads from any write of T, so that R2 contains one
of the values 0, 1, or 2, indifferently.

• on the second process, the read at line 13: reads from the initial
value of F1 or from 8:, so that R3 contains false. The read at
line 14: reads from 0:, 11:, or 1: so that R4 contains 0, 1, or 2,
indifferently.

In these situations (which are impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(a) Incorrect flags

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value is
written to x. At line 2 we write 2 to T. At line 3: we see a
do instruction which ensures that we iterate the instructions at
lines 4 and 5 until the condition expressed at line 6 (viz., R1 ∧
R2 "= 1) is false. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:do translates to !:skip in LISA (e.g. !:b[] false !) and
!′:while B to !′:b[] B !, maybe using an auxiliary register to
evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each do loop, at line 3: and at line 12:, is
decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:repeat {i} 12:repeat {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:until ¬R1 ∨ R2 = 1 {iend} 15:until ¬R3 ∨ R4 = 2; {jend}
7:skip (* CS1 *) 16:skip (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 2. Peterson algorithm in LISA

• two processes, each depicted as a column; let’s detail the first
process, on the left-hand side: at line 1: we write true to the
variable F1—the LISA syntax for writes is “w[] x e” where x
is a variable and e an expression over registers, whose value
is written to x. At line 2 we write 2 to T. At line 3: we see a
repeat instruction which ensures that we repeat the instructions
at lines 4 and 5 until the condition expressed at line 6 (viz., ¬R1
∨ R2 = 1) is met. At line 4: we read the variable F2 and write
its value into register R1, and at line 5: we read the variable T
and write its value into register R2. At line 7: we have a skip
instruction, simply to signify the critical section, and at line 8:
we write false to F1.

(!:repeat translates to !:skip in LISA (e.g. !:b[] false !) and
!′:untilB to !′:b[](notB)!, maybe using an auxiliary register
to evaluate the Boolean condition B.)

Annotations We have placed a few annotations in our LISA code,
to be used later in invariants and proofs:

• iteration counters: each repeat loop, at line 3: and at line 12:,
is decorated with an iteration counter, e.g. i for the first process
and j for the second process. We also decorate the line of each
until clause (i.e. lines 6: and 15:) with a symbolic name (iend
and jend) to represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with a
pythia variable. More precisely a read !: r[] R x at line !:,
reading the variable x and placing its result into register R, is
decorated with the pythia variable {! xn! }, where ! is the line of
the read in the program, x is the variable that the read is reading,
and n is an instance of the iteration counter (for nested loops we
record all iteration counters of all surrounding loops).

Our invariants use pythia variables as opposed to simply the shared
variables because WCMs are such that there is no notion of instant-
aneous value of the shared variables that the invariants could refer
to. Instead, we use pythia variables, which give us a unique way to
denote the values read during computation.

2.1.2 Invariant specification Sinv

Fig. 3 gives an invariant specification of our implementation of
Peterson: the specification states that both processes cannot be
simultaneously in their critical sections.

1: {true} 10: {true}
... ...
7: {¬at{16}} 16: {¬at{7}}
... ...
9: {true} 18: {true}

Figure 3. Invariant specification Sinv for Peterson’s algorithm

2.2 Communication specification Scom

The next step in our specification process consists in stating an in-
variant communication specification Scom , expressing which inter-

process communications are allowed for the algorithm A. We take
the reader through this process using again Peterson’s algorithm as
an illustration.

2.2.1 Peterson can go wrong under WCMs
Under certain WCMs, such as x86-TSO or any weaker model,
Peterson’s algorithm is incorrect (i.e. does not satisfy the specifica-
tion Sinv given above in Fig. 3, that both processes cannot be sim-
ultaneously in their critical section).

To see this, consider Fig. 4. The red arrows are an informal repres-
entation of a communication scenario where:
• on the first process (see the left-hand side), the read at line 4:

reads the value that F2 was initialised with at line 0:, so that R1
contains false. The read at line 5: reads from the update of T
by the right-hand side process, so that R2 contains the value 1.

• on the second process, the read at line 13: reads from the initial
value of F1, so that R3 contains false; the read at line 14: reads
from the left-hand side process, so that R4 contains 2.

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:

• the read at line 4: and ith iteration (corresponding to the pythia
variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/7

rf

Figure 4. Incorrect execution of Peterson algorithm with WCM

In this situation (which is impossible under SC), both loop exit
conditions can be true so that both processes can be simultaneously
in their critical section, thus invalidating the specification Sinv .

2.2.2 Communication specification Scom

Let us express the communication scenario depicted in red in Fig. 4
as an invariant. We write the pythia triple rf〈xθ, 〈!:, v〉〉 to mean
that the read !′: r[] R x {! xθ}, or more precisely its pythia
variable xθ , takes its value v from evaluating the expression e of the
write !: w[] x e, and the local invariant at ! implies that e = v.

We define our communication specification as follows:
Scom ! ¬[∃i, j . rf〈F2i4, 〈0:, false〉〉 ∧ rf〈Ti5, 〈11:, 1〉〉 ∧ (1)

rf〈F1j13, 〈0:, false〉〉 ∧ rf〈Tj14, 〈2:, 2〉〉]
In words, our communication specification Scom states that the
scenario in Fig. 4 is impossible, which in turn ensures that both
processes cannot be simultaneously in their critical section. There-
fore, there cannot be two iteration counters i and j such that:
• the read at line 4: and ith iteration (corresponding to the pythia

variable F2i4) takes its value, false, from the initialisation of the
variable F2 (which has been made in the prelude at line 0:);

• the read at line 5: and ith iteration (corresponding to the pythia
variable Ti5) takes its value, 1, from the write at line 11;

• the read at line 13 and j th iteration (corresponding to the pythia
variable F1j13) takes its value, false, from the initialisation of
the variable F1 (which has been made in the prelude at line 0:);

• the read at line 14 and j th iteration (corresponding to the pythia
variable Tj14) takes its value, 2, from the write at line 2.

2.3 Our proof method
Recall Fig. 1; given an algorithm A (e.g. Peterson’s algorithm as
given in Fig. 2) and a WCM M , we first need to invent:

2 2016/7/21

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).

2 2016/9/1

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

Other erroneous behaviors are illustrated in Fig. 4b. The value of
F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so
that both processes can be simultaneously in their critical section,
again invalidating the specification Sinv .

Explained in an interleaved semantics of processes, the errors
come from the fact that a read action r(p, x) of shared variable
x by process p is not instantaneous as in SC. Its satisfaction
rf(w(q, x), r(p, x)) comes later (or can even be anticipated earlier).
Moreover, it can read from any past or future write w(q, x) of by
process q, including the case p = q.

2 2016/9/10

rf

(b) Incorrect turn

Figure 4: Incorrect executions of Peterson algorithm with WCM

of F2 and F1 is indifferent (the erroneous cases are already handled
in Fig. 4a). But process P0 reads T in R1 from the write 11: so
R1=1 while P1 reads T in R4 from the write 2: so R4=2. In these
situations (which are impossible under SC) the turns are wrong so

2 2016/9/10

po

7 —po→ 8 —rf→ 13 —po→ 17 —cut→ 7
case 6: 8:F1

16 —po→ 17 —rf→ 4 —po→ 7 —cut→ 16
case 7: 17:F2

Figure 6: Communication scenarios violating Scom for Peterson
let fr = (rf^-1;co)
acyclic po | rf | co | fr as sc

Figure 7: SC in cat

we define the relation fr, for from-read, as the sequence of the
inverse of rf (viz., rf-̂1) and the coherence order co. We then
require the acyclicity of the union of the program order po, the
read-from rf, the coherence co and the from-read fr.

• Writing the corresponding cat specification Hcom (see Fig. 8
for the definition of Hcom in cat). For each case in Fig. 6, we forbid
a reflexive sequence.

Overall this leads to the cat specification given in Fig. 8:
irreflexive fr; po; fr; po
irreflexive fr; po
irreflexive co; po; fr; po
irreflexive rf; po; rf; po
irreflexive rf; po; cut; po

Figure 8: A possible specification Hcom of Peterson algorithm

• Proving that all the behaviours allowed by Hcom are allowed by
Scom is done contrapositively i.e. ¬Scom ⇒ ¬Hcom . By ¬Scom in
(1), we get ∃i, j . [rf〈F2i4, 〈0:, false〉〉∨ rf〈F2i4, 〈17:, false〉〉∨ rf〈Ti5,
〈11:, 1〉〉]∧ [rf〈F1j13, 〈0:, false〉〉∨ rf〈F1j13, 〈8:, false〉〉∨ rf〈Tj14, 〈2:,
2〉〉]] which we put in disjunctive normal form and give the cases
illustrated in Fig. 6, thus proving ¬Hcom .

5 2016/9/17

• The last case follows from the
truly parallel execution trace
semantics with cuts for
sequential consistency

πj

rf
w

r

πi

πk

πi’

✗

✓

rf

w

w

✗

rf

6B;m`2 Rk, a2[m2MiB�HHv +QMbBbi2Mi 2t2+miBQM

w[] x 0

w[] y 0

π0

π1

π2
π3
π4

rf ✓

rf ✗

rf ✗

start start

r[] r1 x r[] r2 y

w[] y 1 w[] x 1

rf ✓

6B;m`2 Rj, �M b2[m2MiB�HHv +QMbBbi2Mi 2t2+miBQM 7Q` H#

rBi?+Q
H2i 7` 4 U`7�@Rc+QV
�+v+HB+ TQ % `7 % +Q % 7` �b a*

6B;m`2 R9, a* BM +�i

& t 4 y'
Sy % SR % Sk c
r() t R % r() ` k % `() `y t c

6B;m`2 R8, S`Q;`�K S

Re

✗
✗

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Example: Peterson in TSO
• Hcom is not forbidden by TSO:

 let fr = (rf^-1;co)
 let po-loc = po & loc
 acyclic po-loc | rf | co | fr as scpv
 let ppo = po \ (W*R)
 let rfe = rf & ext
 acyclic ppo | rfe | co | fr as tso

• For example the case 1,
 ⟨𝑤1,𝑟4⟩ ∈ fr ; po ; fr ; po

is not forbidden by TSO since ⟨𝑤,𝑟⟩ pairs on different variables

are excluded from ppo.

62

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Implementation with
(weak) cat fences

63

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot64

Implementation with fences
0:{ F1 = 0; F2 = 0; T = 0; }
1: w[] F1 1 | 10: w[] F2 1 ;
2: w[] T 2 | 11: w[] T 1 ;
3: do | 12: do ;
 f[fhw] | f[fhw] ;
4: r[] r1 F2 | 13: r[] r3 F1 ;
5: r[] r2 T | 14: r[] r4 T ;
6: while r1 ∧ r2 ≠ 1 | 15: while r3 ∧ r4 ≠ 1 ;
7: (* CS1 *) | 16: (* CS2 *) ;
 f[fhw] | f[fhw] ;
8: w[] F1 0 | L17: w[] F2 0 ;

let fhw = (po & (_ * F)) ; po
let fre = (rf^-1;co) & ext
irreflexive fhw;fre; fhw;fre
…

• Invariance proof unchanged (fence = skip)
• Proved to imply the previous fenceless cat specification
• so Scom unchanged

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

priori possible (and will be considered in cat with with co from
AllCo (Alglave et al. 2016)).

1.2 Communication semantics
The communication semantics filters anarchic executions accord-
ing to certain restrictions on the communication between processes
(i.e., the read-from relation rf).

To apply these restrictions more easily, we abstract anarchic
executions into candidate executions, where communicated values
and cuts are abstracted away. A candidate execution consists of the
set of events (partitioned into reads, writes—including the initial-
isation writes IW, tests, fences), the process execution order po (a
total per process, between consecutive events on a trace), and the
read-from relation rf. Fig. 3 shows the candidate execution which
abstracts the anarchic execution of lb of Fig. 2.

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

po

π0

π1

π2

π3

π4

π5

π6

1

start

0:

w0
x︷ ︸︸ ︷

x = 0;

w0
y

︷ ︸︸ ︷
y = 0

1: r1 = 0; ∅

r1x︷ ︸︸ ︷
1:r[] r1 x! x1

2: r1 = x1; x1 = 1

w2
y

︷ ︸︸ ︷
2:w[] y 1

3: r1 = x1; x1 = 1

11: r2 = 0; ∅

r11y
︷ ︸︸ ︷
11:r[] r2 y! y11

12: r2 = y1; y1 = 1

w12
x︷ ︸︸ ︷

12:w[] x 1

13: r2 = y1; y1 = 1

rf

IW

po

π0

π1

π2

π3

π4

π5

π6

1

Figure 3: Candidate execution for lb

We use the domain-specific language cat (Alglave et al. 2016)
as an example of a language to specify restrictions on communica-
tions. In cat, we can forbid the anarchic execution of lb in Fig. 3
by asking its candidate execution abstraction in Fig. 3 to satisfy the
constraint irreflexive po;rf;po;rf. Thus the candidate exe-
cution of Fig. 3 should not have a reflexive sequence that alternates
process execution order (po) and communications (rf). This is not
the case since: r1x po w2

y rf r11y po w12
x rf r1x .

1.3 Invariance semantics
We follow (Cousot and Cousot 1980) and define the invariance
semantics by abstraction of the analytic semantics. The invariance
semantics relates each local program point to the values of the other
program points, local variables, pythia variables, and rf along all
cuts of all executions going through that local program point. For
example Scom ⇒ Sinv is invariant for lb where Sinv = (at{3} ∧
at{13}) ⇒ ¬(r1 = 1 ∧ r2 = 1) and the communication
hypothesis Scom = {〈w12

x , r1x 〉, 〈w2
y , r

11
y 〉} %∈ rf excludes the case

of Fig. 2 and 3. The verification conditions are formally derived
by calculational design from the formal definition of the analytic
semantics and proceed by induction along cuts. In addition to
the initialisation, sequential, and non-interference proof, the main
difference with (Owicki and Gries 1976; Lamport 1977) is the
use of pythia variables and the read-from relation rf in assertions
and the communication proof showing that rf is well-formed. This
proof method design methodology is independent of the considered
language. We apply it to the Litmus Instruction Set Architecture
(LISA) language (Alglave and Cousot 2016) of the herd7 tool
(Alglave and Maranget 2015)

2. Overview of the invariance proof method
We aim at developing correct algorithms for a wide variety of weak
consistency models M0, . . . ,Mn. Given an algorithm A and a
consistency model M ∈ {M0, . . . ,Mn}, our method is articulated
as follows—we detail each of these points in turn below, and show
a graphical representation in Fig. 4:
1. Design the algorithm A, state its invariant specification Sinv

(see Sect. 2.1), and its communication specification Scom (see
Sect. 2.2).
We write A in LISA, using LISA’s special fence synchronisation
markers if needed, which allow to define in cat between which

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

1. version 1
algorithm A

invariant
specification Sinv

communication
specification Scom

consistency model M

invariance proof
Scom !⇒ Sinv

inclusion proof
M ⇒ Scom

algorithm A proved
correct w.r.t. M and Sinv

M !⇒ Sinv

2. version 2
algorithm A

invariant
specification

Sinv

communication
specification

Scom

consistency
hypothesis

Hcom

consistency
model M

invariance proof
Scom !⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom !⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M !⇒ Sinv

3. version 3
algorithm A

invariant
specification of A

Sinv

communication
specification of A

Scom

consistency
hypothesis of A

Hcom

consistency
model M

conditional
invariance proof
Scom ⇒ Sinv

inclusion proof
Hcom ⇒ Scom

consistency proof
M ⇒ Hcom

algorithm A proved
correct w.r.t.
Hcom and Sinv

Hcom ⇒ Sinv

algorithm A proved
correct w.r.t.
M and Sinv

M ⇒ Sinv

1

Figure 4: Our method

0:{ w F1 false; w F2 false; w T 0; }
P0: P1:
1:w[] F1 true 10:w[] F2 true;
2:w[] T 2 11:w[] T 1;
3:do {i} 12:do {j}
4: r[] R1 F2 {! F2i4} 13: r[] R3 F1; {! F1j13}
5: r[] R2 T {! Ti5} 14: r[] R4 T; {! Tj14}
6:while R1 ∧ R2 "= 1 {iend} 15:while R3 ∧ R4 "= 2; {jend}
7: (* CS1 *) 16: (* CS2 *)
8:w[] F1 false 17:w[] F2 false;
9: 18:

Figure 5: Peterson algorithm in LISA

program points (perhaps sets of program points) synchronisation
is needed for correctness;

2. Prove the correctness Scom ⇒ Sinv of the algorithm A w.r.t. the
invariant specification Sinv , under the communication specifica-
tion Scom (see Sect. 2.3.1);

3. Prove that the consistency model M guarantees the communic-
ation specification Scom that we postulated for the correctness of
algorithm A (i.e., M ⇒ Scom , see Sect. 2.3.3 and Sect. 2.3.4).
To illustrate our preamble, we use the classical mutual exclu-

sion algorithm of Peterson (Peterson 1981), which requires explicit
synchronisation to be correct on WCMs.
2.1 Algorithm: design and specifications
2.1.1 Writing our running example
We give the code of Peterson’s algorithm in LISA in Fig. 5. The
algorithm uses two shared flags, F1 for the first process P0 (resp. F2
for the second process P1), indicating that the process P0 (resp. P1)
wants to enter its critical section. The shared turn T grants priority
to the other process: when T is set to 1 (resp. 2), the priority is given
to P0 (resp. P1).

Let’s look at the process P0: P0 busy-waits before entering its
critical section (see the do instruction at line 3) until (see the while
clause at line 6) the process P1 does not want to enter its critical
section (viz., when F2=false, which in turn means R1=false
thanks to the read at line 4) or if P1 has given priority to P0 by
setting turn T to 1, which in turn means that R2=1 thanks to the
read at line 5.

Sect. 4 details the syntax and semantics of the LISA language.
Annotations We placed a few annotations in our LISA code, to
ensure the unicity of events in invariants and proofs:
• iteration counters: each loop is decorated with an iteration

counter, e.g. i at line 3 for the first process and j at line 12:
for the second process. The names (iend at line 6 and jend at 15)
represent the iteration counter when exiting the loop.

• pythia variables: each read, at lines 4 and 5 for the first process,
and lines 13 and 14 for the second process, is decorated with
a pythia variable. A read r[] R x at line ! in the program,
reading the variable x and placing its result into register R, is

J. Alglave and P. Cousot, Ogre and Pythia 2 2016/11/7

consistency proof

65

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Example: Peterson
• The proof is valid for the virtual machine defined by

the cat specification Peterson

• Porting the algorithm to a different machine 𝑀ʹ just

need refencing (and redoing the proof 𝑀ʹ ⇒ Hcm)

• On machine architecture stronger fences have to be
used:

• SC: fhw = no fence

• TSO: fhw = mfence

• ARM: fhw = dbm | dsb
66

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Conclusion

67

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Algorithm design methodology
1. Design the algorithm A and its specification S in the

sequential consistency model of parallelism

2. Consider the anarchic semantics of algorithm A

3. Add communication specifications Scom to restrict
anarchic communications and ensure the correctness of A
with respect to specification S

4. Do the invariance proof under WCM with Scom

5. Infer Hcm in cat from Scom

6. Prove that the machine memory model M in cat implies

Hcm

68

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

Conclusion
• Modern machines have complex memory models

⇒ portability has a price (refencing)

⇒ debugging is very hard/quasi-impossible

⇒ proofs are much harder than with sequential
consistency (but still feasible?, mechanically?)

⇒ static analysis parameterized by a WCM will be a
challenge

69

Semantics and invariance proof methods for weakly consistent parallelism, Dagstuhl Seminar 16471, 20-25 November 2016 © J. Alglave & P. Cousot

The End, Thank You

70

