Proof of mutual-exclusion and nonstarvation of a program with weak memory model: PostgreSQL

Patrick Cousot (NYU, Emer. ENS, PSL) (joint work with Jade Alglave)

International joint research project ``Analysis and verification of of dependable cyber physical software' National Natural Science Foundation of China Changsha, December 9, 2016

PostgreSQL

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do
2:
     do
                                           23: r[] Rl1 latch1
24: while (Rl1=0)
3:
       r[] R10 latch0
4: while (R10=0)
                                          25: w[] latch1 0
26: r[] Rf1 flag1
27: if (Rf1\neq 0) then
5: w[] latch0 0
   r[] RfO flagO
7: if (Rf0 \neq 0) then
                                           28: (* critical section *)
8: (* critical section *)
                                                 w[] flag1 0
      w[] flag0 0
                                           29: w[] flag0 1
9: w[] flag1 1
                                           30: w[] latch0 1
10: w[] latch1 1
11: fi
12:while true
13:
```


© P. Cousot

© P. Cousot

algorithm A

invariant specification of A S_{inv}

communication specification of A S_{com}

consistency hypothesis of A H_{com}

consistency model M

conditional invariance proof $S_{com} \Rightarrow S_{inv}$

Incompleteness:

inclusion proof

 $H_{com} \Rightarrow S_{com}$

Static conditions on all executions of all programs in one architecture

consistency proof $M \Rightarrow H_{com}$

algorithm A proved correct w.r.t.

 H_{com} and S_{inv} $H_{com} \Rightarrow S_{inv}$

Dynamic conditions on executions of one program

algorithm A proved correct w.r.t.

M and S_{inv}

 $M \Rightarrow S_{inv}$

Conditional invariance proof: Mutual exclusion

© P Cousot

 π_{6} π_{6} π_{6} Algorithm

=1

= 1

₁= 1

₁= 1

1

PostgreSQL

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
                                              1: do \{i\}
    do \{j_i\}
        r[] R10 latch0 \{\rightsquigarrow L0_{j_i}^i\}
   while (R10=0) \{k_i\}
5: w[] latch0 0
                                              26: r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
27: if (Rf1\neq 0) then
6: r[] Rf0 flag0 \{ \rightsquigarrow F0^i \}
7: if (Rf0 \neq 0) then
                                              28: (* critical section *)

w[] flag1 0

29: w[] flag0 1

30: w[] latch0 1

31: fi
8: (* critical section *)
       w[] flag0 0
9: w[] flag1 1
10:
    w[] latch1 1
11:
    fi
12:while true
13:
```

Stamps

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
                                                 1: do \{i\}
   do \{j_i\}
        r[] R10 latch0 \{\rightsquigarrow L0^i_{j_i}\}
                                                 24: while (Rl1=0) \{n_\ell\}
25: w[] latch1 0
   while (R10=0) \{k_i\}
5: w[] latch0 0
                                                 26: r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
27: if (Rf1\neq0) then
6: r[] Rf0 flag0 \{ \rightsquigarrow F0^i \}
7: if (Rf0 \neq 0) then
                                                28: (* critical section *)

w[] flag1 0

29: w[] flag0 1

30: w[] latch0 1

31: fi

32:while true
8: (* critical section *)
      w[] flag0 0
9: w[] flag1 1
    w[] latch1 1
11: fi
12:while true
13:
```

Ensure that events are unique (your choice)

Variables in Hoare logic & L/O-G

- program variables: int x;
- in predicates you need to name the value of variable x to express properties of this value of x:
 - \bullet valueof(x)
 - \bullet x
- WCM: no notion of "the" value of a shared variable x
- The only way to know something about "the" value of a shared variable x is to read it
- Pythia variable: name given to the read value
- Not necessary in the semantics, only in assertions (but we put them in the semantics)

Pythia variables

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
                                             1: do \{i\}
     do \{j_i\}
        r[] R10 latch0 \{\rightsquigarrow L0^i_{j_i}\}
                                               24: while (Rl1=0) \{n_\ell\}
25: w[] latch1 0
   while (R10=0) \{k_i\}
5: w[] latch0 0
                                             26: r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
27: if (Rf1\neq0) then
   r[] RfO flag0 \{\leadsto F0^i\}
7: if (Rf0 \neq 0) then
                                                       (* critical section *)
8: (* critical section *)
                                               w[] flag1 0
29: w[] flag0 1
30: w[] latch0 1
       w[] flag0 0
9: w[] flag1 1
10:
    w[] latch1 1
11:
     fi
12:while true
13:
```

© P. Cousot

π_5

=1

=1

 $_{1}=1$

 $_{1}=1$

Invariant specification S_{inv}

Mutual exclusion

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
                                                                             21: do \ \{\ell\}
22: \ do \ \{m_{\ell}\}
23: \ r[] \ Rl1 \ latch1 \ \{\leadsto L1_{m_{\ell}}^{\ell}\}
24: \ while \ (Rl1=0) \ \{n_{\ell}\}
25: \ w[] \ latch1 \ 0
26: \ r[] \ Rf1 \ flag1 \ \{\leadsto F1^{\ell}\}
27: \ if \ (Rf1\neq 0) \ then
28: \ \lnotat\{8\}
(* \ critical \ section \ *)
w[] \ flag1 \ 0
29: \ w[] \ flag0 \ 1
1: do \{i\}
2: do \{j_i\}
            r[] RlO latchO \{\leadsto L0^i_{j_i}\} hile (RlO=0) \{k_i\}
     while (R10=0) \{k_i\}
     w[] latch0 0
     r[] RfO flag0 \{\leadsto F0^i\}
7: if (Rf0 \neq 0) then
8: \neg at\{28\}
              (* critical section *)
            w[] flag0 0
                                                                              29: w[] flag0 1
30: w[] latch0 1
31: fi
32:while true
9: w[] flag1 1
10:
       w[] latch1 1
11: fi
12:while true
13:
```

(invariant Si_{nv} is elsewhere true)

Analytic semantics = Anarchic semantics + communication constraints

Analytics semantics with cuts

Anarchic semantics: set of executions:

$$\pi = \varsigma \times \pi \times \mathsf{rf}$$

- ς is the *computation*
- π is the *cut sequence*
- rf is the *communication*
- Communication semantics:
 restrictions on rf in cat

 π_5

=1

= 1

₁= 1

₁= 1

π₆ π₆ L_{π6} ocal invariants

 $\mathfrak{s}\langle\kappa,\, heta,\,
ho,\,\overline{
u
angle}\in au\, riangleq\,\exists au_1,\epsilon,$ væræðibles at all. nnvariance proof of weakly consistent parallel pr $\begin{array}{c|c} i & i \\ \hline & i$ Militario de Argonna de La Colonia de La Col

Communication relation rf

- rf: relation between write and read events
- Each rf is encoded by Γ , a set of pairs

• $\Gamma \in \Gamma$ (the set of all possible communications rf)

Anarchic communications

Anarchic communications

 Any read can read from any write on the same shared variable (location)

```
\mathrm{RL0}_{j_i}^i \triangleq \{ \mathfrak{rf}\langle L0_{j_i}^i, \ \langle 0:, \ \_, \ 0 \rangle \rangle, \mathfrak{rf}\langle L0_{j_i}^i, \ \langle 5:, \ i_5, \ 0 \rangle \rangle, \mathfrak{rf}\langle L0_{j_i}^i, \ \langle 30:, \ \ell_{30}, \ 1 \rangle \rangle \mid i_5 \in \mathbb{N} \land \ell_{30} \in \mathbb{N} \}
```

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do \{i\}
                                               21:do \{\ell\}
     do \{j_i\}
        r[] R10 latch0 \{ \leadsto L0_{i_i}^i \}
                                               23: r[] Rl1 latch1 \{ \rightsquigarrow L1_{m_{\ell}}^{\ell} \}
                                               24: while (Rl1=0) \{n_{\ell}\}
    while (R10=0) \{k_i\}
    25: w[] latch1 0
    r[] Rf0 flag0 \{ \leadsto F0^i \}
                                               26: r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
    if (Rf0 \neq 0) then
                                               27: if (Rf1 \neq 0) then
                                                       (* critical section *)
    (* critical section *)
        w[] flag0 0
                                                       w[] flag1 0
                                                      w[] flag0 1
9:
        w[] flag1 1
                                               29:
                                                       w[] latch0 1
        w[] latch1 1
10:
11: fi
12:while true
13:
```

Anarchic communications

 Possible communications for each read at each stamp (point in the execution):

```
\begin{split} & \text{RL0}_{j_i}^i \triangleq \{\mathfrak{rf}\langle L0_{j_i}^i,\, \langle 0\colon,\, _{\scriptscriptstyle{-}},\, 0\rangle\rangle, \mathfrak{rf}\langle L0_{j_i}^i,\, \langle 5\colon,\, i_5,\, 0\rangle\rangle, \mathfrak{rf}\langle L0_{j_i}^i,\, \langle 30\colon,\, \ell_{30},\, 1\rangle\rangle \mid i_5\in \mathbb{N} \wedge \ell_{30}\in \mathbb{N}\} \\ & \text{RF0}^i \triangleq \{\mathfrak{rf}\langle F0^i,\, \langle 0\colon,\, _{\scriptscriptstyle{-}},\, 0\rangle\rangle, \mathfrak{rf}\langle F0^i,\, \langle 8\colon,\, i_8,\, 0\rangle\rangle, \mathfrak{rf}\langle F0^i,\, \langle 29\colon,\, \ell_{29},\, 1\rangle\rangle \mid i_8\in \mathbb{N} \wedge \ell_{29}\in \mathbb{N}\} \\ & \text{RL1}_{m_\ell}^\ell \triangleq \{\mathfrak{rf}\langle L1_{m_\ell}^\ell,\, \langle 0\colon,\, _{\scriptscriptstyle{-}},\, 1\rangle\rangle, \mathfrak{rf}\langle L1_{m_\ell}^\ell,\, \langle 25\colon,\, \ell_{25},\, 0\rangle\rangle, \mathfrak{rf}\langle L1_{m_\ell}^\ell,\, \langle 10\colon,\, i_{10},\, 1\rangle\rangle \mid \ell_{25}\in \mathbb{N} \wedge i_{10}\in \mathbb{N}\} \\ & \text{RF1}^\ell \triangleq \{\mathfrak{rf}\langle F1^\ell,\, \langle 0\colon,\, _{\scriptscriptstyle{-}},\, 1\rangle\rangle, \mathfrak{rf}\langle F1^\ell,\, \langle 28\colon,\, \ell_{28},\, 0\rangle\rangle, \mathfrak{rf}\langle F1^\ell,\, \langle 9\colon,\, i_9,\, 1\rangle\rangle \mid \ell_{28}\in \mathbb{N} \wedge i_9\in \mathbb{N}\} \end{split}
```

Anarchic communications:

```
\overline{\Gamma} = \{ \{ \operatorname{rl0}_{j_i}^i, \operatorname{rf0}^i, \operatorname{rl1}_{m_\ell}^\ell, \operatorname{rf1}^\ell \mid i \in \mathbb{N} \land j_i \in [0, k_i] \land \ell \in \mathbb{N} \land j \in [0, n_\ell] \} \mid \forall i \in \mathbb{N} . \forall j_i \in [1, k_i] . \operatorname{rl0}_{j_i}^i \in \operatorname{RL0}_{j_i}^i \land \operatorname{rf0}^i \in \operatorname{RF0}^i \land \forall \ell \in \mathbb{N} . \forall m_\ell \in [1, m_\ell] . \operatorname{rl1}_{m_\ell}^\ell \in \operatorname{RL1}_{m_\ell}^\ell \land \operatorname{rf1}^\ell \in \operatorname{RF1}^\ell \}
```

- Anarchic semantics: $\Gamma \in \overline{\Gamma}$
- WCM semantics: $\Gamma \in \Gamma, \Gamma \subseteq \overline{\Gamma}$

π_5

=1

=1

 $_{1} = 1$

₁= 1

and S_{ind} and S_{ind}

25

- S_{ind} is inductive under hypothesis S_{com} iff, assuming S_{com} , we have:
 - S_{ind} is true at the beginning of an execution
 - If S_{ind} is true during execution is remains true after one more computation or communication step

 S_{inv} holds under hypothesis S_{com}

$$S_{ind} \Rightarrow S_{inv}$$

$$S_{com} \Rightarrow S_{inv}$$

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: \{\Gamma \in \Gamma\}
      do \{i\}
2: \{\Gamma \in \Gamma\}
         do \{j_i\}
        \{\Gamma \in \Gamma\}
3:
             r[] R10 latch0 \{ \sim L0_{i_i}^i \}
            \{\Gamma \in \Gamma \land \mathtt{Rl0} = L0^i_{j_i} \land (\mathtt{r0Rl0}^i_{j_i}[\Gamma] \lor \mathtt{r1Rl0}^i_{j_i}[\Gamma])\}
         while (R10=0) \{k_i\}
       \{\Gamma \in \Gamma \wedge \mathrm{r1Rl0}_{k_i}^i[\Gamma]\}
         w[] latch0 0
      \{\Gamma \in \Gamma \wedge \mathrm{r1Rl0}_{k_i}^i[\Gamma]\}
         r[] Rf0 flag0 \{ \rightsquigarrow F0^i \}
         \{\Gamma \in \Gamma \wedge \mathrm{r1Rl0}_{k_i}^i[\Gamma] \wedge \mathrm{Rf0} = F0^i
                                                    \wedge (r0Rf0^{i}[\Gamma] \vee r1Rf0^{i}[\Gamma])
          if (Rf0 \neq 0) then
           \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
8:
              (* critical section *)
             w[] flag0 0
          \{\Gamma \in \Gamma \wedge r1R10_{k_i}^i[\Gamma] \wedge r1Rf0^i[\Gamma]\}
             w[] flag1 1
           \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
10:
             w[] latch1 1
             \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
11:
          fi
12: \{\Gamma \in \Gamma\}
      while true
13:{false}
```

```
r[] Rl1 latch1 \{ \leadsto L1_{m_\ell}^\ell \}
\mathbf{24:} \qquad \{ \varGamma \in \Gamma \wedge \mathtt{Rl1} = L1^{\ell}_{m_{\ell}} \wedge (\mathtt{r0Rl1}^{\ell}_{m_{\ell}}[\varGamma] \vee \mathtt{r1Rl1}^{\ell}_{m_{\ell}}[\varGamma]) \}
           while (Rl1=0) \{n_\ell\}
25: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma]\}
            w[] latch1 0
26: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma]\}
           r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
\mathbf{27:} \quad \{ \varGamma \in \Gamma \wedge \mathbf{r1R11}_{n_\ell}^\ell [\varGamma] \wedge \mathbf{Rf1} = F1^\ell
                                                              \wedge (r0Rf1^{\ell}[\Gamma] \vee r1Rf1^{\ell}[\Gamma])
            if (Rf1 \neq 0) then
28: \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
                (* critical section *)
                w[] flag1 0
29: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
               w[] flag0 1
30: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
                w[] latch0 1
               \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
31:
            fi
32: \{\Gamma \in \Gamma\}
       while true
33: {false}
```

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: \{\Gamma \in \Gamma\}
                                                                                                                 21:\{\Gamma\in\Gamma\}
      do \{i\}
2: \{\Gamma \in \Gamma\}
                                                                                                                 \mathfrak{I} \mathfrak{I} \mathfrak{I} = \mathfrak{I} \mathfrak{I}
              \{\Gamma \in \Gamma\}
3:
                                                                                                                             Possible
              r[] R10 latch0 \{ \sim L0_{i}^{i} \}
             \{\Gamma\in\Gamma\wedge \mathtt{RlO}=L0^i_{j_i}\wedge (\mathtt{rORlO}^i_{j_i}[\Gamma]\vee \mathtt{r1}\}
                                                                                                                                                                                                        \mathsf{R} \mathsf{I} \mathsf{I}^\ell_{m_\ell}[\Gamma])\}
                                                                                                           communications
          while (R10=0) \{k_i\}
          \{\Gamma \in \Gamma \wedge \mathrm{r1Rl0}_{k_i}^i[\Gamma]\}
          w[] latch0 0
          \{\Gamma \in \Gamma \wedge \mathrm{r1Rl0}_{k_i}^i [\Gamma]
                                                                                                                26: \{\Gamma \in \Gamma \land r1R11_{n_{\ell}}^{\ell}[\Gamma]\}
          r[] Rf0 flag0 \{ \leadsto F0^i \}
                                                                                                                           r[] R11 flag1 \{ \rightsquigarrow F1^{\ell} \}
                                                                                                                \mathbf{27:} \quad \{ \varGamma \in \Gamma \land \mathbf{r1R11}_{n_{\ell}}^{\ell}[\varGamma] \land \mathbf{Rf1} = F1^{\ell}
          \{\Gamma\in\Gamma \land \mathsf{T}\mathsf{R}\mathsf{I}\mathsf{R}\mathsf{I}\mathsf{0}^i_{k_i}[\Gamma]\land \mathsf{R}\mathsf{f}\mathsf{0}=F\mathsf{0}^i\}
                                                                                                                                                                          \wedge (r0Rf1^{\ell}[\Gamma] \vee r1Rf1^{\ell}[\Gamma])
                                                         \land (r0Rf0^{i}[\Gamma] \lor r1Rf0^{i}[\Gamma])
                                                                                                                           if (Rf \neq 0) then
          if (Rf0 \neq 0) then
                                                                                                                            \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
            \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
8:
                                                                                                                                (* critical section *)
               (* critical section *)
                                                                                                                               w[] frag1 0
              w[] flag0 0
           \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                                29: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
              w[] flag1 1
                                                                                                                               w[] flag0 1
             \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                                            \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
                                                                                                                30:
10:
              w[] latch1 1
                                                                                                                               w[] latch0 1
                                                                                                                               \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
              \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                                31:
11:
          fi
                                                                                                                           fi
12: \{\Gamma \in \Gamma\}
                                                                                                                32: \{\Gamma \in \Gamma\}
      while true
                                                                                                                       while true
                                                                                                                33:{false}
13:{false}
```

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: \{\Gamma \in \Gamma\}
                                                                                                                  21:\{\Gamma\in\Gamma\}
       do \{i\}
       \{\Gamma \in \Gamma\}
                                                                                                                  22: \{ \Gamma \in \Gamma \}
           do \{j_i\}
               \{\Gamma \in \Gamma\}
3:
               r[] RlO latch0 \{ \sim L0_{i}^{i} \}
                                                                                                                                 r[] Rl1 latch1 \{ \leadsto L1_{m_{\ell}}^{\ell} \}
                                                                                                                                 \{ \varGamma \in \Gamma \wedge \mathtt{Rl1} = L1^\ell_{m_\ell} \wedge (\mathsf{rORl1}^\ell_{m_\ell}[\varGamma] \vee \mathsf{r1Rl1}^\ell_{m_\ell}[\varGamma]) \}
              \{\Gamma \in \Gamma \land \mathtt{Rl0} = L0^i_{i_i} \land (\mathtt{r0Rl0}^i_{i_i}[\Gamma] \lor \mathtt{r1Rl0}^i_{i_i}[\Gamma])\}
                                                                                                                             while (Rl1=2) \{n_{\ell}\}
           while (R10=0) \{k_i\}
           \{\Gamma \in \Gamma \wedge \mathrm{r1Rl0}_{k_i}^i[\Gamma]\}
           w[] latch0 0
                                                                                                                              w[] latch1 0
          \{\Gamma \in \Gamma \wedge \mathrm{r1Rl0}_{k_s}^i[\Gamma]\}
                                                                                                                                   \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma]
                                                                                                                  26:
          r[] Rf0 flag0 \{ \rightsquigarrow F0^i \}
                                                                                                                             r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
                                                                                                                             \{\varGamma\in\Gamma\wedge\mathrm{r1Rl1}_{n_\ell}^\ell[\varGamma]\wedge\mathrm{Rf1}=\digamma1^\ell
           \{\Gamma \in \Gamma \wedge \mathrm{r1Rl0}_{k}^{i}[\Gamma] \wedge \mathrm{Rf0} = F(0)\}
                                                                                                                                                                            \land (r0Rf1^{\ell}[\Gamma] \lor r1Rf1^{\ell}[\Gamma])
                                                            \land (\mathsf{r}\mathsf{0}\mathsf{R}\mathsf{f}\mathsf{0}^i[\varGamma] \lor \mathsf{r}\mathsf{1}\mathsf{R}\mathsf{f}\mathsf{0}^i[\varGamma]
                                                                                                                                    (Df1 \neq 0) then
           if (Rf
                                                                                                                                             \Gamma \wedge \mathrm{r1R11}_{n_{\ell}}^{\ell}[\Gamma] \wedge \mathrm{r1Rf1}^{\ell}[\Gamma] \}
               \{\Gamma \in
8:
                               Register assignment of
                                                                                                                                            itical section *)
                (* c:
               w[]
                                                                                                                                             lag1 0
                                                                                                                                             \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma] \}
               \{\Gamma\in
9:
                                      the Pythia variable
               w[]
                                                                                                                                             lag0 1
                                                                                                                                             \Gamma \wedge \mathrm{r}1\mathrm{R}11^\ell_{n_\ell}[\Gamma] \wedge \mathrm{r}1\mathrm{R}\mathrm{f}1^\ell[\Gamma] \}
               \{\Gamma\in
10:
                                               after read event
               พ[]
                                                                                                                                             atch0 1
                                                                                                                                              \Gamma \wedge \mathrm{r1R11}^{\ell}_{n_{\ell}}[\Gamma] \wedge \mathrm{r1Rf1}^{\ell}[\Gamma] \}
               \{\Gamma\in
11:
           fi
                                                                                                                              11
12: \{\Gamma \in \Gamma\}
                                                                                                                  32: \{\Gamma \in \Gamma\}
       while true
                                                                                                                         while true
                                                                                                                  33: {false}
13:{false}
```

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: \{\Gamma \in \Gamma\}
                                                                                                             21:\{\Gamma\in\Gamma\}
      do \{i\}
2: \{\Gamma \in \Gamma\}
                                                                                                             22: \{\Gamma \in \Gamma\}
          do \{j_i\}
       \{\Gamma \in \Gamma\}
                                                                                                             23: \{\Gamma \in \Gamma\}
                                                                                                               r[] Rl1 latch1 \{ \leadsto L1_{m_\ell}^\ell \}
            r[] R10 latch0 \{ \rightsquigarrow L0_{i_i}^i \}
                                                                                                             \mathbf{24:} \qquad \{ \varGamma \in \Gamma \wedge \mathtt{Rl1} = L1^{\ell}_{m_{\ell}} \wedge (\mathsf{r0Rl1}^{\ell}_{m_{\ell}}[\varGamma] \vee \mathsf{r1Rl1}^{\ell}_{m_{\ell}}[\varGamma]) \}
         \{\Gamma \in \Gamma \land \mathtt{Rl0} = L0^i_{j_i} \land (\mathtt{r0Rl0}^i_{j_i}[\Gamma] \lor \mathtt{r1Rl0}^i_{j_i}[\Gamma])\}
          while (R10=0) \{k_i\}
                                                                                                                       while (Rl1=0) \{n_\ell\}
          \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma]\}
                                                                                                             25: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma]\}
          w[] latch0 0
                                                                                                                        w[] latch1 0
```

Possible values of Pythia variables depending on communications

```
\begin{aligned} &\operatorname{rORlO}_{j_i}^i[\Gamma] \triangleq \frac{(\mathfrak{rf}\langle L0_{j_i}^i, \, \langle 0:, \, \_, \, 0 \rangle) \in \Gamma \wedge L0_{j_i}^i = 0)}{\operatorname{r1RlO}_{j_i}^i[\Gamma]} \vee \frac{(\exists i_5 \in \mathbb{N} \, . \, \mathfrak{rf}\langle L0_{j_i}^i, \, \langle 5:, \, i_5, \, 0 \rangle) \in \Gamma \wedge L0_{j_i}^i = 0)}{\operatorname{r1RlO}_{j_i}^i[\Gamma]} \triangleq (\exists \ell_{30} \in \mathbb{N} \, . \, \mathfrak{rf}\langle L0_{j_i}^i, \, \langle 30:, \, \ell_{30}, \, 1 \rangle) \in \Gamma \wedge L0_{j_i}^i = 1) \end{aligned}
```

```
w[] flag0 0
                                                                                                                     w[] flag1 0
                                                                                                       29: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
         \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
             w[] flag1 1
                                                                                                                   w[] flag0 1
                                                                                                       30: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
          \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
10:
             w[] latch1 1
                                                                                                                     w[] latch0 1
            \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                                 \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
                                                                                                       31:
          fi
                                                                                                                 fi
12: \{\Gamma \in \Gamma\}
                                                                                                       32: \{\Gamma \in \Gamma\}
      while true
                                                                                                             while true
13:{false}
                                                                                                       33:{false}
```

Communicated values


```
\begin{split} \operatorname{rORlO}_{j_i}^i[\Gamma] &\triangleq (\mathfrak{rf}\langle L0_{j_i}^i,\ \langle 0:,\ .,\ 0\rangle\rangle \in \Gamma \wedge L0_{j_i}^i = 0) \vee (\exists i_5 \in \mathbb{N} \ .\ \mathfrak{rf}\langle L0_{j_i}^i,\ \langle 5:,\ i_5,\ 0\rangle\rangle \in \Gamma \wedge L0_{j_i}^i = 0) \\ \operatorname{r1RlO}_{j_i}^i[\Gamma] &\triangleq (\exists \ell_{30} \in \mathbb{N} \ .\ \mathfrak{rf}\langle L0_{j_i}^i,\ \langle 30:,\ \ell_{30},\ 1\rangle\rangle \in \Gamma \wedge L0_{j_i}^i = 1) \\ \operatorname{rORf0}^i[\Gamma] &\triangleq (\mathfrak{rf}\langle F0^i,\ \langle 0:,\ .,\ 0\rangle\rangle \in \Gamma \wedge F0^i = 0) \vee (\exists i_8 \in \mathbb{N} \ .\ \mathfrak{rf}\langle F0^i,\ \langle 8:,\ i_8,\ 0\rangle\rangle \in \Gamma \wedge F0^i = 0) \\ \operatorname{r1Rf0}^i[\Gamma] &\triangleq (\exists \ell_{29} \in \mathbb{N} \ .\ \mathfrak{rf}\langle F0^i,\ \langle 29:,\ \ell_{29},\ 1\rangle\rangle \in \Gamma \wedge F0^i = 1) \\ \operatorname{rORl1}_{m_\ell}^\ell[\Gamma] &\triangleq (\exists \ell_{25} \in \mathbb{N} \ .\ \mathfrak{rf}\langle L1_{m_\ell}^\ell,\ \langle 25:,\ \ell_{25},\ 0\rangle\rangle \in \Gamma \wedge L1_{m_\ell}^\ell = 0) \\ \operatorname{r1Rl1}_{m_\ell}^\ell[\Gamma] &\triangleq (\mathfrak{rf}\langle L1_{m_\ell}^\ell,\ \langle 0:,\ .,\ 1\rangle\rangle \in \Gamma \wedge L1_{m_\ell}^\ell = 1) \vee (\exists i_{10} \in \mathbb{N} \ .\ \mathfrak{rf}\langle L1_{m_\ell}^\ell,\ \langle 10:,\ i_{10},\ 1\rangle\rangle \in \Gamma \wedge L1_{m_\ell}^\ell = 1) \\ \operatorname{rORf1}^\ell[\Gamma] &\triangleq (\exists m_{28} \in \mathbb{N} \ .\ \mathfrak{rf}\langle F1^\ell,\ \langle 28:,\ m_{28},\ 0\rangle\rangle \in \Gamma \wedge F1^\ell = 0) \\ \operatorname{r1Rf1}^\ell[\Gamma] &\triangleq (\mathfrak{rf}\langle F1^\ell,\ \langle 0:,\ .,\ 1\rangle\rangle \in \Gamma \wedge F1^\ell = 1) \vee (\exists i_9 \in \mathbb{N} \ .\ \mathfrak{rf}\langle F1^\ell,\ \langle 9:,\ i_9,\ 1\rangle\rangle \in \Gamma \wedge F1^\ell = 1) \end{split}
```

Communication specification

© P. Cousot

 π_6

=1

=1

 $_{1}=1$

 $_{1}=1$

Calculational design of the communication specification

```
(\neg S_{inv}(\Gamma, \Gamma)) \wedge S_{ind}(\Gamma, \Gamma)
\triangleq at{8} \land at{28} \land S_{ind}(\Gamma, \Gamma) (def. invariance specification S_{inv})
\Rightarrow at\{8\} \land at\{28\} \land (\exists i, k_i, \ell, n_\ell \in \mathbb{N} : \Gamma \in \Gamma \land r1Rl0^i_{k_i}[\Gamma] \land r1Rl0^i_{k
                                                             \mathsf{r}1\mathsf{R}f0^i[\Gamma] \wedge \mathsf{r}1\mathsf{R}11^\ell_{n,e}[\Gamma] \wedge \mathsf{r}1\mathsf{R}f1^\ell[\Gamma]) (by invariant S_{ind}(\Gamma,\Gamma))
\Rightarrow at\{8\} \land at\{28\} \land (\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29} \in \mathbb{N} : \Gamma \in \Gamma \land (\mathfrak{rf} \lang{L0}_{k_i}^i, \ell_{30}, \ell_{3
                                                                 \langle 30:, \ell_{30}, 1 \rangle \rangle \in \Gamma) \wedge (\mathfrak{rf} \langle F0^i, \langle 29:, \ell_{29}, 1 \rangle) \in \Gamma) \wedge (\mathfrak{rf} \langle L1^{\ell}_{n_{\ell}}, \ell_{29}, \ell_{29}, \ell_{29}, \ell_{29}) \rangle = \Gamma \langle \mathfrak{rf} \langle L1^{\ell}_{n_{\ell}}, \ell_{29}, \ell_{29
                                                                 \langle 0:, -, 1 \rangle \rangle \in \Gamma \rangle \wedge (\mathfrak{rf} \langle F1^{\ell}, \langle 0:, -, 1 \rangle \rangle \in \Gamma) \rangle \vee
                                                                    (\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29}, i_9 \in \mathbb{N} . \Gamma \in \Gamma \wedge (\mathfrak{rf} \langle L0^i_{k_i}, \langle 30:, \ell_{30}, \ell_{30}, \ell_{30}) \rangle)
                                                                 |1\rangle\rangle \in \Gamma) \wedge (\mathfrak{rf}\langle F0^i, \langle 29:, \ell_{29}, 1\rangle\rangle \in \Gamma) \wedge (\mathfrak{rf}\langle L1^{\ell}_{n_{\ell}}, \langle 0:, ..., \ell_{29}, 1\rangle\rangle) = \Gamma
                                                                 |1\rangle\rangle\in\Gamma)\wedge(\mathfrak{rf}\langle F1^{\ell}, \langle 9:, i_9, 1\rangle\rangle\in\Gamma))\vee
                                                                    (\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29}, i_{10} \in \mathbb{N} : \Gamma \in \Gamma \wedge (\mathfrak{rf}\langle L0^i_{k_i}, \langle 30:, \ell_{30}, \ell_{30}, \ell_{30}) \rangle)
                                                                 |1\rangle\rangle\in\Gamma)\wedge(\mathfrak{rf}\langle F0^i,\langle 29:,\ell_{29},1\rangle\rangle\in\Gamma)\wedge(\mathfrak{rf}\langle L1^{\ell}_{n_{\ell}},\langle 10:,i_{10},\ell_{10},\ell_{10},\ell_{10},\ell_{10})\rangle)
                                                                 |1\rangle\rangle\in\Gamma)\wedge(\mathfrak{rf}\langle F1^{\ell},\langle 0:,-,1\rangle\rangle\in\Gamma))\vee
                                                                    (\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29}, i_{10}, i_9 \in \mathbb{N} : \Gamma \in \Gamma \land (\mathfrak{rf} \langle L0_{k_i}^i, \langle 30:, \ell_{30}, \ell_{30}, \ell_{30}, \ell_{30}))
                                                                 |1\rangle\rangle\in\Gamma)\wedge(\mathfrak{rf}\langle F0^i,\ \langle 29:,\ \ell_{29},\ 1\rangle\rangle\in\Gamma)\wedge(\mathfrak{rf}\langle L1^{\ell}_{n_{\ell}},\ \langle 10:,\ i_{10},\ i_
                                                                |1\rangle\rangle\in\Gamma)\wedge(\mathfrak{rf}\langle F1^{\ell},\ \langle 9:,\ i_9,\ 1\rangle\rangle\in\Gamma)
                                                                                                                               \{ \text{def. r1R10}_{k_i}^i [\Gamma], \text{r1Rf0}^i [\Gamma], \text{r1R11}_{n_{\ell}}^{\ell} [\Gamma], \text{and r1Rf1}^{\ell} [\Gamma], \mathfrak{rf} \langle x_{\theta}, \rangle \} 
                                                                                                                                                  \langle \ell :, \theta', v \rangle \rangle implies that x_{\theta} = v, A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge B)
                                                                                                                                                (A \wedge C), \exists distributes over \vee, and (\exists x . A(x)) \wedge B = \exists x.
                                                                                                                                                  (A(x) \wedge B) when x is not free in B \setminus
\Rightarrow at{8} \land at{28} \land (\neg S_{com_1}(\Gamma, \Gamma) \lor \neg S_{com_2}(\Gamma, \Gamma) \lor \neg S_{com_3}(\Gamma, \Gamma) \lor
                                                                \neg S_{com_A}(\Gamma,\Gamma)
\Rightarrow \neg S_{com}(\Gamma, \Gamma)
```

Calculational design of the communication specification

where

$$\begin{split} S_{com}(\Gamma, \overline{\Gamma}) &\triangleq (\mathsf{at}\{8\} \land \mathsf{at}\{28\}) \Longrightarrow (S_{com_1}(\Gamma, \overline{\Gamma}) \land S_{com_2}(\Gamma, \overline{\Gamma}) \land S_{com_3}(\Gamma, \overline{\Gamma}) \land S_{com_4}(\Gamma, \overline{\Gamma})) \\ S_{com_1} &\triangleq \neg (\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29} \in \mathbb{N} : \Gamma \in \Gamma \land \mathfrak{rf}\langle L0^i_{k_i}, \langle 30:, \ell_{30}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F0^i, \langle 29:, \ell_{29}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 0:, -, 1\rangle\rangle \in \Gamma \\ \langle 0:, -, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 0:, -, 1\rangle\rangle \in \Gamma \\ S_{com_2} &\triangleq \neg (\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29}, i_9 \in \mathbb{N} : \Gamma \in \Gamma \land \mathfrak{rf}\langle L0^i_{k_i}, \langle 30:, \ell_{30}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F0^i, \langle 29:, \ell_{29}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 0:, -, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 9:, i_9, 1\rangle\rangle \in \Gamma \\ S_{com_3} &\triangleq \neg (\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29}, i_{10} \in \mathbb{N} : \Gamma \in \Gamma \land \mathfrak{rf}\langle L0^i_{k_i}, \langle 30:, \ell_{30}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F0^i, \langle 29:, \ell_{29}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 0:, -, 1\rangle\rangle \in \Gamma \\ S_{com_4} &\triangleq \neg (\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29}, i_{10}, i_9 \in \mathbb{N} : \Gamma \in \Gamma \land \mathfrak{rf}\langle L0^i_{k_i}, \langle 30:, \ell_{30}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F0^i, \langle 29:, \ell_{29}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 9:, i_9, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 9:, i_9, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 9:, i_9, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 9:, i_9, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 9:, i_9, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 9:, i_9, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 9:, i_9, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 9:, i_9, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 9:, i_9, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 9:, i_9, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 9:, i_9, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle L1^\ell_{n_\ell}, \langle 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle F1^\ell, \langle 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle E1^\ell, 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle E1^\ell, 10:, i_{10}, 1\rangle\rangle \in \Gamma \land \mathfrak{rf}\langle$$

- This proves S_{com} sufficient for correctness
- Counter-examples prove S_{com} necessary $\Rightarrow S_{com}$ is the weakest WCM requirement for correctness

Example of counter-example to S_{com_1}

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
                                               1 21:
1:
   do \{i\}
2:
                                                  22:
      do \{j_i\}
                                                        do
                                                  23:
3:
                                                           r[] Rl1 latch1 \{ \leadsto L1_{m_{\ell}}^{\ell} \}
        r[] RlO latch0 \{ \leadsto L0_{i}^{i} \}
                                                  24:
4:
      while (R10=0) \{k_i\}
                                                        while (R11=0) \{n_\ell\}
                                                  25:
5:
      w[] latch0 0
                                                        w[] latch 0
                                                  26:
6:
      r[] Rf0 flag0 \{ \leadsto F0^i \}
                                                        r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
                                                  27:
7:
      if (Rf0 \neq 0) then
                                                        if (Rf1 \neq 0) then
                                                  28
8:
                                                           (* critical section *)
         (* critical section *)
        w[] flag0 0
                                                           w[] flag1 0
                                                  29:
9:
        w[] flag1 1
                                                           w[] flag0 1
                                                  30:
10:
        w[] latch1 1
                                                           w[] latch0 1
11:
                                                  31:
      fi
                                                        fi
                                                  32:
12:
   while true
                                                      while true
                                                  33:
13:
```

Proof of mutual exclusion

• S_{com} implies mutual exclusion (for any Γ)

$$(\neg S_{inv}(\Gamma, \Gamma) \land S_{ind}(\Gamma, \Gamma)) \Longrightarrow \neg (S_{com}(\Gamma, \Gamma))$$

$$\Longrightarrow S_{com}(\Gamma, \Gamma) \Longrightarrow (S_{inv}(\Gamma, \Gamma) \lor \neg S_{ind}(\Gamma, \Gamma)) \text{ (contraposition)}$$

$$\Longrightarrow S_{com}(\Gamma, \Gamma) \Longrightarrow (S_{ind}(\Gamma, \Gamma) \Longrightarrow S_{inv}(\Gamma, \Gamma)) \text{ (implication)}$$

$$\Longrightarrow (S_{com}(\Gamma, \Gamma) \land S_{ind}(\Gamma, \Gamma)) \Longrightarrow S_{inv}(\Gamma, \Gamma) \text{ (implication)}$$

$$\Longrightarrow S_{com}(\Gamma, \overline{\Gamma}) \Longrightarrow S_{inv}(\Gamma, \overline{\Gamma}) \text{ (implication)}$$

Conditional invariance | The conditional invariance | Conditional inva

=1

=1

 $_{1} = 1$

₁= 1

Sequential proof $\ell = \kappa$ and p = q

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
                                                                                                       \parallel 21: \{\Gamma \in \Gamma\}
1: \{\Gamma \in \Gamma\}
      do \{i\}
                                           For a read instruction \kappa : r[ts] R \times \kappa':
                                                                                                                                                                                                     (read)
2: \{\Gamma \in \Gamma\}
                                                  \mathsf{PRE}_{n,r}^{\ell,\kappa}[\theta_r,\rho_r,\nu_r,\mathsf{rf}] \wedge rf[\mathfrak{w}(\langle q,\ell',\mathsf{w}[ts] \times r\text{-value},\theta'\rangle,v),
          do \{j_i\}
          \{\Gamma \in \Gamma\}
3:
                                                                                                                          \mathfrak{r}(\langle r, \ell, \mathbf{r}[ts] \ \mathsf{R} \ \mathsf{x}, \ \theta_r \rangle, \mathsf{x}_{\theta_r})] \in \mathsf{rf}
             r[] R10 lat
                                                          \Rightarrow \mathsf{POST}_{n,r}^{\ell,\kappa'}[\rho_r \leftarrow \rho_r[\mathtt{R} := \mathtt{x}_{\theta_r}], \nu_r \leftarrow \nu_r[\mathtt{x}_{\theta_r} := v]]
            \{\Gamma\in\Gamma\wedge\mathtt{RlO}
          while (R10=0)
          \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma]\}
                                                                                                          25: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma]\}
          w[] latch0 0
                                                                                                                     w[] latch1 0
        \{\Gamma \in \Gamma \wedge r1R10_{k}^{i} [\Gamma]\}
                                                                                                          26: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma]\}
         r[] RfO flagO \{ \leadsto F0^i \}
                                                                                                                    r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
         \{\Gamma \in \Gamma \wedge \mathrm{r}1\mathrm{R}10^i_{k_i}[\Gamma] \wedge \mathrm{Rf}0 = F0^i
                                                                                                          27: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge Rf1 = F1^{\ell}\}
                                                                                                                                                                 \wedge (r0Rf1^{\ell}[\Gamma] \vee r1Rf1^{\ell}[\Gamma])
                                                      \wedge (r0Rf0^{i}[\Gamma] \vee r1Rf0^{i}[\Gamma])
          if (Rf0 \neq 0) then
                                                                                                                     if (Rf1 \neq 0) then
                                                                                                                    \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
             \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
8:
                                                                                                                         (* critical section *)
              (* critical section *)
              w[] flag0 0
                                                                                                                        w[] flag1 0
           \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                          29: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
              w[] flag1 1
                                                                                                                        w[] flag0 1
                                                                                                                       \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
             \{\Gamma \in \Gamma \wedge r1R10_{k}^{i}, [\Gamma] \wedge r1Rf0^{i}[\Gamma]\}
                                                                                                          30:
10:
              w[] latch1 1
                                                                                                                         w[] latch0 1
              \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                                        \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
                                                                                                          31:
11:
          fi
                                                                                                                     fi
12: \{\Gamma \in \Gamma\}
                                                                                                          32: \{ \Gamma \in \Gamma \}
      while true
                                                                                                                 while true
                                                                                                          33: {false}
13:{false}
```

Sequential proof $\ell = \kappa$ and p = q

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: \{\Gamma \in \Gamma\}
                                                                                                      21:\{\Gamma\in\Gamma\}
      do \{i\}
                                                                                                      22: \{\Gamma \in \Gamma\}
2: \{\Gamma \in \Gamma\}
         do \{j_i\}
                                                                                                                do \{m_\ell\}
             \{\Gamma \in \Gamma\}
3:
                                       For a test instruction \kappa : b[ts] operation l_t \kappa':
                                                                                                                                                                                                     (test)
             r[] R10 lat
                                              \mathsf{PRE}_{p,r}^{\ell,\kappa}[\rho_r,\nu_r] \land \mathsf{sat}(\boldsymbol{E}[\![operation]\!](\rho_r,\nu_r) \neq 0) \Rightarrow \mathsf{POST}_{p,r}^{\ell,l_t}
             \{\Gamma\in\Gamma\wedge\mathtt{RlO}
         while (R10=0)
                                             \mathsf{PRE}_{p,r}^{\ell,\kappa}[\rho_r,\nu_r] \land \mathsf{sat}(E\llbracket operation \rrbracket(\rho_r,\nu_r) = 0) \Rightarrow \mathsf{POST}_{p,r}^{\ell,\kappa'}
         \{\Gamma \in \Gamma \land r1R10\}
         w[] latch0 0
                                                                                                      26: \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma]\}
         \{\Gamma \in \Gamma \wedge \mathrm{r1Rl0}_{k_i}^i[\Gamma]\}
                                                                                                                r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
         r[] RfO flag0 \{ \leadsto F0^i \}
                                                                                                      27: \{\Gamma \in \Gamma \land r1R11_{n_{\ell}}^{\ell}[\Gamma] \land Rf1 = F1^{\ell}\}
         \{\Gamma \in \Gamma \wedge \mathrm{r}1\mathrm{R}10_{k}^{i} [\Gamma] \wedge \mathrm{Rf}0 = F0^{i}\}
                                                                                                                                                          \wedge (r0Rf1^{\ell}[\Gamma] \vee r1Rf1^{\ell}[\Gamma])
                                                    \wedge (r0Rf0^{i}[\Gamma] \vee r1Rf0^{i}[\Gamma])
         if (Rf0 \neq 0) then
                                                                                                                if (Rf1 \neq 0) then
                                                                                                                \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
8:
              \{\Gamma \in \Gamma \wedge r1R10_{k_s}^{i}[\Gamma] \wedge r1Rf0^{i}[\Gamma]\}
              (* critical section *)
                                                                                                                    (* critical section *)
             w[] flag0 0
                                                                                                                   w[] flag1 0
             \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                      29: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
             w[] flag1 1
                                                                                                                   w[] flag0 1
                                                                                                                   \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
             \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                      30:
10:
             w[] latch1 1
                                                                                                                    w[] latch0 1
             \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                                    \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
11:
                                                                                                      31:
         fi
                                                                                                                fi
12: \{\Gamma \in \Gamma\}
                                                                                                      32: \{ \Gamma \in \Gamma \}
      while true
                                                                                                            while true
                                                                                                      33: {false}
13:{false}
```

Sequential proof $\ell = \kappa$ and p = q

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: \{\Gamma \in \Gamma\}
                                                                                                         21:\{\Gamma\in\Gamma\}
      do \{i\}
                                                                                                        22: \{\Gamma \in \Gamma\}
2: \{\Gamma \in \Gamma\}
         do \{j_i\}
             \{\Gamma \in \Gamma\}
3:
             r[] RlO latch0 \{ \sim L0_{i}^{i} \}
                                                                                                                      r[] Rl1 latch1 \{ \rightsquigarrow L1_{m_{\ell}}^{\ell} \}
             \{\varGamma\in\Gamma\wedge\mathrm{RlQ}=L0^i\ \land\ (\mathrm{rORl0}^i\ [\varGamma]\lor\mathrm{rlRl0}^i\ [\varGamma])\}
                                                                                                                      \{ \Gamma \in \Gamma \land \mathsf{R} \mathsf{1} \mathsf{1} = L \mathsf{1}^\ell \land (\mathsf{r} \mathsf{0} \mathsf{R} \mathsf{1} \mathsf{1}^\ell \mid \Gamma) \land (\mathsf{r} \mathsf{1} \mathsf{R} \mathsf{1} \mathsf{1}^\ell \mid \Gamma) \}
                                              For local side-effect free marker instructions \kappa: instr \kappa'
          while (R10=0)
                                              where instr = f[ts] [\{l_1^0 \dots l_1^m\} \{l_2^0 \dots l_2^q\}], w[ts] \times r\text{-value},
         \{\Gamma \in \Gamma \land r1Rl0\}
          w[] latch0 0
                                              beginrmw[ts] x, endrmw[ts] x:
                                                                                                                                                                                              (marker)
         \{\Gamma \in \Gamma \land r1R10\}
                                                    \mathsf{PRE}_{p,r}^{\ell,\kappa} \Rightarrow \mathsf{POST}_{p,r}^{\ell,\kappa'}
         r[] RfO flag0
          \{\Gamma \in \Gamma \wedge r1R10^{4}_{k_{i}} \mid \Gamma \mid \wedge r1 \wedge r1 \rangle
                                                                                                                               /\langle \Pi \Pi \Pi_{n_{\ell}} [I] \rangle \langle \Pi I
                                                                                                                                                              \wedge (r0Rf1^{\ell}[\Gamma] \vee r1Rf1^{\ell}[\Gamma])
                                                     \wedge (r0Rf0^{i}[\Gamma] \vee r1Rf0^{i}[\Gamma])
          if (Rf0 \neq 0) then
                                                                                                                   if (Rf1 \neq 0) then
              \{\varGamma\in\Gamma\wedge\mathrm{r1Rl0}^i_{k_i}[\varGamma]\wedge\mathrm{r1Rf0}^i[\varGamma]\}
                                                                                                                    \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
8:
                                                                                                                       (* critical section *)
              (* critical section *)
              w[] flag0 0
                                                                                                                      w[] flag1 0
                                                                                                                      \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
              \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                        29:
9:
              w[] flag1 1
                                                                                                                      w[] flag0 1
             \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                                      \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
10:
                                                                                                         30:
              w[] latch1 1
                                                                                                                      w[] latch0 1
              \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                                      \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
11:
                                                                                                         31:
          fi
                                                                                                                   fi
12: \{\Gamma \in \Gamma\}
                                                                                                        32: \{\Gamma \in \Gamma\}
      while true
                                                                                                               while true
13:{false}
                                                                                                        33:{false}
```

Non-interference proof

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: \{\Gamma \in \Gamma\}
      do \{i\}
2: \{\Gamma \in \Gamma\}
         do \{j_i\}
           \{\Gamma \in \Gamma\}
3:
             r[] R10 latch0 \{ \leadsto L0 \}
          \{ \Gamma \in \Gamma \wedge \mathtt{RlO} = L0^i_{j_i} \wedge (\mathtt{r}
         while (R10=0) \{k_i\}
      \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma]\}
         w[] latch0 0
      \{\Gamma \in \Gamma \wedge \mathrm{r1Rl0}_{k_i}^i[\Gamma]\}
         r[] Rf0 flag0 \{ \rightsquigarrow F0^i \}
        \{\Gamma \in \Gamma \wedge \mathrm{r1Rl0}_{k_i}^i[\Gamma] \wedge \mathrm{Rf0} = F0^i
                                                   \wedge (r0Rf0^{i}[\Gamma] \vee r1Rf0^{i}[\Gamma])
         if (Rf0 \neq 0) then
           \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
8:
              (* critical section *)
             w[] flag0 0
          \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
             w[] flag1 1
           \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
10:
             w[] latch1 1
             \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
11:
         fi
12: \{\Gamma \in \Gamma\}
      while true
```

The local invariants of process p depend only on Γ and local registers or Pythia variables unchanged by a step in the other process

```
26: \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma]\}
          r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
27: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge Rf1 = F1^{\ell}\}
                                                         \wedge (r0Rf1^{\ell}[\Gamma] \vee r1Rf1^{\ell}[\Gamma])
           if (Rf1 \neq 0) then
28: \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
               (* critical section *)
               w[] flag1 0
29: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
               w[] flag0 1
           \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
30:
               w[] latch0 1
              \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
31:
           fi
32: \{\Gamma \in \Gamma\}
       while true
33:{false}
```

13:{false}

Communication proof

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: \{\Gamma \in \Gamma\}
      do \{i\}

    Communication condition

                                                                        \mathsf{COM}^{\ell}_{p}[\mathsf{rf}] \triangleq S_{\mathsf{ind}\,p}(\ell)[\mathsf{rf}] \wedge S_{\mathsf{com}_{p}}(\ell)[\mathsf{rf}]
      \{\Gamma\in\Gamma\}
         do \{j_i\}
             \{\Gamma \in \Gamma\}
3:
             r[] R10 latch0 \{ \sim L0 \}
                                                          • A read event can read from only one write event.
            \{\Gamma\in\Gamma\wedge\mathtt{Rl0}=L0^i_{i_i}\wedge(\mathtt{r}
                                                                       \mathsf{COM}_n^{\ell}[\mathsf{rf}] \wedge \mathit{rf}[r,w_1] \in \mathsf{rf} \wedge \mathit{rf}[r,w_2] \in \mathsf{rf}
                                                                                                                                                                                 (singleness)
         while (R10=0) \{k_i\}
                                                                        \Rightarrow w_1 = w_2.
         \{\Gamma \in \Gamma \wedge \mathrm{r1Rl0}_{k_i}^i[\Gamma]\}
         w[] latch0 0
       \{\Gamma \in \Gamma \wedge \mathrm{r1Rl0}_{k_i}^i[\Gamma]\}
                                                                                                                 \{\Gamma \in \Gamma \wedge \mathrm{r1Rl1}_{n_{\ell}}^{\ell}[\Gamma]\}
         r[] Rf0 flag0 \{ \rightsquigarrow F0^i \}
                                                                                                                 r[] Rf1 flag1 \langle \sim F1^{\ell} \rangle
                                                                                                       27: \{\Gamma \in \Gamma \land r1Rl1_{n_{\ell}}^{\ell}[\Gamma] \land Rf1 = \emptyset\}
         \{\Gamma \in \Gamma \wedge \mathrm{r1Rl0}_{k_i}^i[\Gamma] \wedge \mathrm{Rf0} = F0^i
                                                                                                                                                                (r0Rf1^{\ell}[\Gamma] \vee r1Rf1^{\ell}[\Gamma])
                                                     \land (r0Rf0^{i}[\Gamma] \lor r1Rf0^{i}[\Gamma])
                                                                                                                 if (Rf1\neq0) then
          if (Rf0 \neq 0) then
                                                                                                                \{\Gamma \in \Gamma \wedge \mathrm{r1R11}_{n_{\ell}}^{\ell}[\Gamma] \wedge \mathrm{r1Rf1}^{\ell}[\Gamma]\}
           \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
8:
                                                                                                                     (* critical section *)
              (* critical section *)
             w[] flag0 0
                                                                                                                     w[] flag1 0
                                                                                                       29: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
           \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
             w[] flag1 1
                                                                                                                     w[] flag0 1
             \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                                  \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
                                                                                                       30:
10:
             w[] latch1 1
                                                                                                                     w[] latch0 1
                                                                                                                     \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
             \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                       31:
11:
          fi
                                                                                                                  fi
12: \{\Gamma \in \Gamma\}
                                                                                                       32: \{\Gamma \in \Gamma\}
      while true
                                                                                                              while true
                                                                                                       33:{false}
13:{false}
```

Communication proof

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: \{\Gamma \in \Gamma\}
       do \{i\}
                                                                 • All process read instructions \ell: r [ts] R x \ell' must read either from
       \{\Gamma \in \Gamma\}
                                                                 an initial or a reachable program write, allowed by the communica-
           do \{j_i\}
                                                                 tion hypothesis (\exists P[X_1,\ldots,X_m] means that all free variables in
3:
                                                                \mathsf{COM}_{\mathfrak{D}}^{\ell}[\theta_{\mathfrak{D}},\mathsf{rf}] \wedge \mathsf{rf} \neq \emptyset \Rightarrow \exists \, \mathsf{rf}[\mathfrak{w}(\langle q,\, \ell_q,\, \mathsf{w}[\mathsf{ts}] \, \mathsf{x} \, \mathsf{r-value},\, \theta' \rangle, v),
               r[] R10 latch0 \{ \sim L0 \}
               \{\Gamma\in\Gamma\wedge \mathtt{Rl0}=L0^i_{j_i}\wedge (\mathtt{r0})
                                                                     \mathfrak{r}(\langle p, \ell, \mathbf{r}[ts] \ \mathtt{R} \ \mathtt{x}, \ \theta_p \rangle, \mathtt{x}_{\theta_n})] \in \mathsf{rf} .
                                                                                                                                                                                        (satisfaction)
           while (R10=0) \{k_i\}
                                                                           ((q \in \mathbb{P}^{i} \land \exists \mathsf{PRE}_{q}^{\ell_{q}} [\theta_{q} \leftarrow \theta', \mathsf{rf}]) \lor (q = \mathsf{start} \land v = 0)).
          \{\Gamma \in \Gamma \land \mathsf{r}1\mathsf{R}10^i_{k_i}[\Gamma]\}
           w[] latch0 0
          \{\Gamma \in \Gamma \wedge \mathrm{r1R10}_{k_i}^i[\Gamma]\}
                                                                                                               26: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma]\}
           r[] RfO flag0 \{ \rightsquigarrow F0^i \}
                                                                                                                         r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
           \{\Gamma \in \Gamma \wedge \mathbf{r} \setminus \mathbf{R} | 0_{k}^i \mid \Gamma \mid \wedge \mathbf{R} \mathbf{f} \mathbf{0} = F 0^i \}
                                                                                                              27: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge Rf1 = F1^{\ell}\}
                                                                                                                                                                       \wedge (r0Rf1^{\ell}[\Gamma] \vee r1Rf1^{\ell}[\Gamma])
                                                         \wedge (r0Rf0^{i}[\Gamma] \vee r1Rf0^{i}[\Gamma])
           if (Rf(\neq 0)) then
                                                                                                                         if (Rf1 \neq 0) then
                                                                                                               28: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
              \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[I]\}
8:
                                                                                                                              (* critical section *)
                (* critical section *)
               w[] flag0 0
                                                                                                                             w[] flag1 0
                                                                                                                             \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
               \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
9:
               w[] flag1 1
                                                                                                                              w[] flag0 1
                                                                                                               30.
                                                                                                                             \int \Gamma \subset \Gamma \wedge r 1 \mathbf{R} 1 1^{\ell} \quad [\Gamma] \wedge r 1 \mathbf{R} f 1^{\ell} [\Gamma]
                \int \Gamma \subset \Gamma \wedge r 1 R 10^{i} [\Gamma] \wedge r 1 R f 0^{i} [\Gamma] \rangle
\mathrm{rORf0}^i[\Gamma] \triangleq (\mathfrak{rf}\langle F0^i, \langle 0:, -, 0 \rangle) \in \Gamma \wedge F0^i = 0) \vee (\exists i_8 \in \mathbb{N} \cdot \mathfrak{rf}\langle F0^i, \langle 8:, i_8, 0 \rangle) \in \Gamma \wedge F0^i = 0)
r1Rf0^{i}[\Gamma] \triangleq (\exists \ell_{29} \in \mathbb{N} : \mathfrak{rf}\langle F0^{i}, \langle 29:, \ell_{29}, 1 \rangle) \in \Gamma \wedge F0^{i} = 1)
12: \{\Gamma \in \Gamma\}
                                                                                                               32: \{\Gamma \in \Gamma\}
       while true
                                                                                                                     while true
13:{false}
                                                                                                               33: {false}
```

Communication proof

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: \{\Gamma \in \Gamma\}
       do \{i\}
       \{\Gamma \in \Gamma\}
                                                                • The values v allowed to be read by the communication hypo-
           do \{j_i\}
                                                                thesis must originate from reachable program write instructions
3:
                                                                \ell : w[ts] x r-value \ell':
               r[] R10 latch0 \{ \rightsquigarrow L0 \}
                                                                            \forall \mathsf{rf} \ . \ \forall \mathsf{rf}[\mathfrak{w}(\langle q, \ell_q, \mathsf{w}[\mathsf{ts}] \mathsf{x} \mathsf{r-value}, \theta_p \rangle, v), r] \in \mathsf{rf} \ (\mathsf{match})
              \{\Gamma\in \Gamma \wedge \mathtt{RlO} = L0^i_{j_i} \wedge (\mathtt{red})
                                                                                       \mathsf{COM}_{p}^{\ell}[\theta_{q}, \rho_{q}, \nu_{q}, \mathsf{rf}] \Rightarrow v = \mathsf{E}[r\text{-}value](\rho_{q}, \nu_{q})
           while (10=0) \{k_i\}
          \{\Gamma \in \Gamma \land \mathsf{r}1\mathsf{R}10^i_{k_i}[\Gamma]\}
           w[] latch0 0
          \{\Gamma \in \Gamma \wedge \mathrm{r1R10}_{k_i}^i[\Gamma]\}
                                                                                                             26: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma]\}
           r[] RfO flag0 \{ \rightsquigarrow F0^i \}
                                                                                                                        r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
                                                                                                             \mathbf{27:} \quad \{ \varGamma \in \Gamma \wedge \mathbf{r1R11}_{n_\ell}^\ell [\varGamma] \wedge \mathbf{Rf1} = F\mathbf{1}^\ell
          \{\Gamma\in\Gamma\wedge\mathrm{r}^1\mathrm{Rl}0^i_{k_i}|\Gamma]\wedge\mathrm{Rf}0=F0^i
                                                                                                                                                                     \wedge (r0Rf1^{\ell}[\Gamma] \vee r1Rf1^{\ell}[\Gamma])
                                                         \wedge (r0Rf0^{i}[\Gamma] \vee r1Rf0^{i}[\Gamma])
           if (Rf(\neq 0)) then
                                                                                                                        if (Rf1 \neq 0) then
                                                                                                             28: \{\Gamma \in \Gamma \wedge r1R11_{n_{\ell}}^{\ell}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
             \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[I]\}
8:
               (* critical section *)
                                                                                                                            (* critical section *)
               w[] flag0 0
                                                                                                                            w[] flag1 0
                                                                                                                            \{\Gamma \in \Gamma \wedge r1R11^{\ell}_{n_{\ell}}[\Gamma] \wedge r1Rf1^{\ell}[\Gamma]\}
              \{\Gamma \in \Gamma \wedge r1R10^i_{k_i}[\Gamma] \wedge r1Rf0^i[\Gamma]\}
                                                                                                                            w[] flag0 1
               w[] flag1 1
               \int \Gamma \subset \Gamma \wedge r 1 R 10^{i} [\Gamma] \wedge r 1 R f 0^{i} [\Gamma] \rangle
                                                                                                             30.
                                                                                                                            \int \Gamma \subset \Gamma \wedge r 1 \mathbf{P} 1 1^{\ell} [\Gamma] \wedge r 1 \mathbf{P} f 1^{\ell} [\Gamma]
\mathrm{rORf0}^i[\Gamma] \triangleq (\mathfrak{rf}\langle F0^i, \langle 0:, -, 0 \rangle) \in \Gamma \wedge F0^i = 0) \vee (\exists i_8 \in \mathbb{N} \cdot \mathfrak{rf}\langle F0^i, \langle 8:, i_8, 0 \rangle) \in \Gamma \wedge F0^i = 0)
r1Rf0^{i}[\Gamma] \triangleq (\exists \ell_{29} \in \mathbb{N} : \mathfrak{rf}\langle F0^{i}, \langle 29:, \ell_{29}, 1 \rangle) \in \Gamma \wedge F0^{i} = 1)
12: \{\Gamma \in \Gamma\}
                                                                                                             32: \{\Gamma \in \Gamma\}
       while true
                                                                                                                    while true
                                                                                                             33: {false}
13:{false}
```

 π_5

=1

=1

₁= 1

₁= 1

π₆ Inclusion proof

Method

The communication specification is

$$S_{com}(\Gamma, \overline{\Gamma}) \triangleq (at\{8\} \land at\{28\}) \Longrightarrow (S_{com_1}(\Gamma, \overline{\Gamma}) \land S_{com_2}(\Gamma, \overline{\Gamma}) \land S_{com_3}(\Gamma, \overline{\Gamma}) \land S_{com_4}(\Gamma, \overline{\Gamma}))$$

The consistency specification must satisfy

$$H_{com}(\Gamma, \overline{\Gamma}) \Rightarrow S_{com}(\Gamma, \overline{\Gamma})$$
 i.e. $\neg S_{com}(\Gamma, \overline{\Gamma}) \Rightarrow \neg H_{com}(\Gamma, \overline{\Gamma})$

• So the design of $H_{com}(\Gamma, \overline{\Gamma})$ must forbid the erroneous communications specified by the communication specification

$$\left(\operatorname{at}\{8\} \wedge \operatorname{at}\{28\} \wedge \bigvee_{i=1}^{4} \neg S_{com_{i}}(\Gamma, \overline{\Gamma})\right) \Longrightarrow \bigvee_{i=1}^{4} \neg H_{com_{i}}(\Gamma, \overline{\Gamma})$$

```
S_{com_1} \triangleq \neg(\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29} \in \mathbb{N} \cdot \Gamma \in \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{30} \rangle )
                                                                         |\ell_{30}, 1\rangle\rangle \in \Gamma \wedge \mathfrak{rf}\langle F0^i, \langle 29:, \ell_{29}, 1\rangle\rangle \in \Gamma \wedge \mathfrak{rf}\langle L1^{\ell}_{n_{\ell}}, \ell_{29}, \ell_{2
                                                                          \langle 0:, -, 1 \rangle \rangle \in \Gamma \wedge \mathfrak{rf} \langle F1^{\ell}, \langle 0:, -, 1 \rangle \rangle \in \Gamma
           {0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
           1: do \{i\}
                               do \{j_i\}
           2:
                                                 r[] R10 latch0 \{ \leadsto L0_{j_i}^i \}
                                                                                                                                                                                                                                                 23: r[] Rl1 latch1 \{ \rightsquigarrow L1_{m_{\ell}}^{\ell} \}
           3:
                                                                                                                                                                                                                                                 24: while (R11=0) \{n_{\ell}\}
           4:
                              while (R10=0) \{k_i\}
                                                                                                                                                                                                                                                                            w[] latch1 0
           5:
                             w[] latch0 0
                                                                                                                                                                                                                                                                            r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
           6: r[] Rf0 flag0 \longrightarrow F0^i}
           7: if (Rf0 \neq 0) then
                                                                                                                                                                                                                                                                             if (Rf1 \neq 0) then
                                                                                                                                                                                                                                                28:----(*-critical-section-*)
--8:----(*-critical-section *)
                                                 w[] flag0 0
                                                                                                                                                                                                                                                                                        w[] flag1 0
                                                                                                                                                                                                                                                 29: w[] flag0 1
          9: w[] flag1 1
                                                                                                                                                                                                                                                 30: w[] latch0 1
                                w[] latch1 1
           10:
           11:
                                      fi
                                                                                                                                                                                                                                                 32:while true
           12:while true
           13:
```

no prophecy beyond cut during execution

```
S_{com_2} \triangleq \neg(\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29}, i_9 \in \mathbb{N} . \Gamma \in \Gamma \land \mathfrak{rf}\langle L0_{k_i}^i, \langle 30:, \ell_{30} \rangle )
                                                                        |\ell_{30}, 1\rangle\rangle \in \Gamma \wedge \mathfrak{rf}\langle F0^i, \langle 29:, \ell_{29}, 1\rangle\rangle \in \Gamma \wedge \mathfrak{rf}\langle L1^{\ell}_{n_{\ell}}, \ell_{29}, \ell_{2
                                                                         \langle 0:, 1 \rangle \rangle \in \Gamma \wedge \mathfrak{rf} \langle F1^{\ell}, \langle 9:, i_9, 1 \rangle \rangle \in \Gamma
           {0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
           1: do \{i\}
                              do \{j_i\}
          2:
                                                 r[] R10 latch0 \{ \leadsto L0_{j_i}^i \}
                                                                                                                                                                                                                                             23: r[] Rl1 latch1 \{ \leadsto L1_{m_{\ell}}^{\ell} \}
          3:
                                                                                                                                                                                                                                             24: while (Rl1=0) \{n_{\ell}\}
          4:
                             while (R10=0) \{k_i\}
                                                                                                                                                                                                                                              25: w[] latch1 0
           5:
                            w[] latch0 0
                                                                                                                                                                                                                                              26: r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
          6: r[] Rf0 flag0 \longrightarrow F0^i}
          7: if (Rf0 \neq 0) then
                                                                                                                                                                                                                                             27: if (Rf1\neq0) then
--8:----(*-critical-section *)
                                                                                                                                                                                                                                             28:----(*-critical-section-*-)
                                                 w[] flag0 0
                                                                                                                                                                                                                                                                                    w[] flag1 0
          9: w[] flag1 1
                                                                                                                                                                                                                                              29: w[] flag0 1
                                                                                                                                                                                                                                                                              w[] latch0 1
                                w[] latch1 1
           10:
           11:
                                      fi
                                                                                                                                                                                                                                              32:while true
           12:while true
           13:
```

no prophecy beyond cut during execution

```
S_{com_3} \triangleq \neg(\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29}, i_{10} \in \mathbb{N} . \Gamma \in \Gamma \land \mathfrak{rf} \langle L0_{k_i}^i, \langle 30:, \ell_{20} \rangle \rangle
                                                                       |\ell_{30}, 1\rangle\rangle \in \Gamma \wedge \mathfrak{rf}\langle F0^i, \langle 29:, \ell_{29}, 1\rangle\rangle \in \Gamma \wedge \mathfrak{rf}\langle L1^{\ell}_{n_{\ell}}, \ell_{29}, \ell_{2
                                                                         \langle 10:, i_{10}, 1 \rangle \rangle \in \Gamma \wedge \mathfrak{rf} \langle F1^{\ell}, \langle 0:, 1 \rangle \rangle \in \Gamma
           {0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
                                                                                                                                                                                                                                            21:do \{\ell\}
           1: do \{i\}
                             do \{j_i\}
          2:
                                                                                                                                                                                                                                          23: r[] Rl1 latch1 \{ \leadsto L1_{m_\ell}^\ell \}
                                                r[] R10 latch0 \{ \leadsto L0_{j_i}^i \}
          3:
                                                                                                                                                                                                                                                                       while (Rl1=0) \{n_\ell\}
                             while (R10=0) \{k_i\}
          4:
                                                                                                                                                                                                                                            25: w[] latch1 0
          5:
                            w[] latch0 0
                                                                                                                                                                                                                                             26: r Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
          6: r[] Rf0 flag0 \longrightarrow F0^i}
          7: if (Rf0 \neq 0) then
                                                                                                                                                                                                                                            27:
                                                                                                                                                                                                                                                                        if (Rf1 \neq 0) then
--8:----(*-critical-section *)
                                                                                                                                                                                                                                            28:----(*-critical-section-*-)
                                                w[] flag0 0
                                                                                                                                                                                                                                                                                  w[] flag1 0
                                                                                                                                                                                                                                            29: w[] flag0 1
          9: w[] flag1 1
                                                                                                                                                                                                                                                                        w[] latch0 1
                                 w[] latch1 1
           11:
                                     fi
                                                                                                                                                                                                                                            31:
                                                                                                                                                                                                                                            32:while true
           12:while true
           13:
```

no prophecy beyond cut during execution

```
\langle 30:, \ell_{30}, 1 \rangle \rangle \in \Gamma \wedge \mathfrak{rf} \langle F0^i, \langle 29:, \ell_{29}, 1 \rangle \rangle \in \Gamma \wedge \mathfrak{rf} \langle L1^{\ell}_{n_{\ell}}, \mathcal{O} \rangle
                      \langle 10:, i_{10}, 1 \rangle \rangle \in \Gamma \wedge \mathfrak{rf} \langle F1^{\ell}, \langle 9:, i_{9}, 1 \rangle \rangle \in \Gamma
   {0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
   1: do \{i\}
                                                                 21:do \{\ell\}
      do \{j_i\}
                                                                23: r[] Rl1 latch1 \{ \leadsto L1_{m_\ell}^\ell \}
         r[] R10 latch0 \{\leadsto L0_{j_i}^i\}
                                                                 24. while (Rl1=0) \{n_\ell\}
       while (R10=0) \{k_i\}
                                                                 25: w[] latch1 0
  5: w[] latch0 0
                                                                 26: r Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
  6: r[] Rf0 flag0 \longrightarrow F0^i}
  7: if (Rf0 \neq 0) then
                                                                        if (Rf1 \neq 0) then
--8:----(*-critical-section *)
                                                                 28:----(*-critical-section-*-)
             w[] flag0 0
                                                                            w[] flag1 0
  9: w[] flag1 1
                                                                 29: w[] flag0 1
                                                                         w[] latch0 1
         w[] latch1 1
          fi
                                                                 32:while true
   12:while true
```

 $S_{com_4} \triangleq \neg(\exists i, k_i, \ell, n_\ell, \ell_{30}, \ell_{29}, i_{10}, i_9 \in \mathbb{N} \cdot \Gamma \in \Gamma \wedge \mathfrak{rf}\langle L0_{k_i}^i, q_{k_i}^i, q$

no prophecy beyond cut during execution

© P. Cousot

2:

3:

4:

11:

13:

Conclusion on mutual exclusion

 PostgreSQL is correct on architectures satisfying the ``no prophecy beyond cut during execution' property

 Intuition on necessity: when waiting for a spinlock, you should look at its current value, not at later ones!

in cat

A static condition to impose a dynamic condition:

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do \{i\}
     do \{j_i\}
                                         23: r[] Rl1 latch1 \{ \leadsto L1_{m_{\ell}}^{\ell} \}
    r[] R10 latch0 \{\leadsto L0^i_{j_i}\}
                                          24: while (Rl1=0) \{n_\ell\}
4: while (R10=0) \{k_i\}
     w[] latch0 0
                                          25: w[] latch1 0
                                          26: r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
     r[] Rf0 flag0 \{ \rightsquigarrow F0^i \}
     if (Rf0\neq0) then
                                          27: if (Rf1 \neq 0) then
     f[cut] —
                                         28: f[cut] —
       (* critical section *)
                                                (* critical section *)
       w[] flag0 0
                                                w[] flag1 0
      w[] flag1 1
                                         29: w[] flag0 1
9:
      w[] latch1 1
                                                w[] latch0 1
10:
11: fi
12:while true
13:
enum fences = 'cut
instructions F[{'cut}]
let cut = (tag2events('cut) * tag2events('cut)) & ext
irreflexive rf; po; cut; po
```

Prevents valid executions

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do \{i\}
                                               21:do \{\ell\}
     do \{j_i\}
                                               22: do \{m_{\ell}\}
                                                    r[] Rl1 latch1 \{\leadsto L1_{m_{\,eta}}^\ell\}
     r[] R10 latch0 \{\leadsto L0_{j_i}^i\}
     while (R10=0) \{k_i\}
                                               24: while (Rl1=0) \{n_{\ell}\}
     w[] latch0 0
                                               25: w[] latch1 0
     r[] Rf0 flag0 \{ \leadsto F0^i \}
                                               26: r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
                                                                                                         Invalid
     if (Rf0≠0) then
                                               27: if (Rf1 \neq 0) then
                                cut
        f[cut] -
                                               28: f[cut] -
        (* critical section *)
                                                       (* critical section *)
       w[] flag0 0
                                                       w[] flag1 0
                                               29: w[] flag0 1
        w[] flag1 1
                                 rf
        w[] latch1 1
                                                       w[] latch0 1
11: fi
                                               31: fi
12:while true
                                               32:while true
13:
                                               33:
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: do \{i\}
                                               21:do \{\ell\}
                                                     r[] Rl1 latch1 \{\leadsto L1_{m_{\ell}}^{\ell}\}
     r[] R10 latch0 \{ \leadsto L0_{j_i}^i \}
     while (R10=0) \{k_i\}
                                               24: while (Rl1=0) \{n_\ell\}
     w[] latch0 0
                                               25: w[] latch1 0
     r[] Rf0 flag0 \{ \leadsto F0^i \}
                                               26: r[] Rf1 flag1 \{ \rightsquigarrow F1^{\ell} \}
     if (Rf0\neq 0) then
                                                                                                             Valid
                                               27: if (Rf1 \neq 0) then
                                cut
        f[cut] -
                                               20: f[cut] -
                                                                                       po
        (* critical section *)
                                                       (* critical section *)
       w[] flag0 0
                                                       w[] flag1 0
        w[] flag1 1
                                                      🗕 w[] flag0 1 本
                                 rf
10:
                                                       w[] latch0 1
        w[] latch1 1
11: fi
                                               31: fi
12:while true
                                               32:while true
13:
                                               33:
```

irreflexive rf; po; cut; po

Non-starvation

Difference with Lamport/Owicki-Gries

• The communications in L/O-G are fixed in the semantics (SC) for all executions:

- (b) Read from last write
- ⇒ entangled with the verification conditions
- impossible to reason on one execution trace only

Reasoning on only one execution

- An execution is entirely determined by its read-from relation rf
- ullet The verification conditions depend on a set Γ of verification conditions
- By choosing $\Gamma = \{rf\}$, we can reason on this execution
- This execution satisfies the inductive invariant $S_{ind}(\{rf\})$
- To prove that this execution is impossible it is sufficient to prove that $S_{ind}(\{rf\})$ cannot hold (according to the verification conditions)
- Since the method is sound, if the verification conditions are not satisfied, the execution is excluded by the semantics

9 cases of starvation

(I) Both processes starve in spin loops

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
 1: {true}
       do \{i\}
           {true}
           do \{j_i\}
                                                                                          23:
                {true}
                r[] R10 latch0 \{ \rightsquigarrow L0_{i}^{i} \}
                                                                                                         r[] Rl1 latch1 \{ \leadsto L1_{m_{\theta}}^{\ell} \}
                                                                                                         {R10 = L0_{i}^{i} \wedge}
                                                                                          24:
 4:
                                                                                                           (r0Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \vee r1Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}])\}
                  (r0Rl0^{i}_{j_{i}}[\Gamma_{rf}] \vee r1Rl0^{i}_{j_{i}}[\Gamma_{rf}])
           while (R10=0) \{k_i\}
                                                                                                     while (Rl1=0) \{n_\ell\}
           \{r1Rl0^i_{k_i}[\Gamma_{\mathsf{rf}}]\}
                                                                                         25: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{rf}]\} w[] latch1 0 •
            w[] latch0 0
                                                                                                  \{\mathrm{r}1\mathrm{Rl1}_{\mathrm{n}_{\varrho}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
            \{r1Rl0^{i}_{k_{i}}[\Gamma_{rf}]\}
           r[] Rf0 flag0 \{ \leadsto F0^i \}
                                                                                                     r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
                                                                                                    \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\text{rf}}] \land \texttt{Rf1} = \texttt{F1}^{\ell} \land
            \{r1Rl0^{i}_{k_{i}}[\Gamma_{\text{rf}}] \land \texttt{Rf0} = \texttt{F0}^{i} \land
 7:
                                                                                                       (r0Rf1^{\ell}[\Gamma_{\mathsf{rf}}] \vee r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}])\}
              (r0Rf0^{i}[\Gamma_{rf}] \vee r1Rf0^{i}[\Gamma_{rf}])
           if (Rf0 \neq 0) then
                                                                                                     if (Rf1 \neq 0) then
                \{r1Rl0^{i}_{k_{i}}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
                                                                                                         \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
 8:
                                                                                          28:
                (* critical section *)
                                                                                                         (* critical section *)
false
                                                                                                                                                                    false
                w[] flag0 0
                                                                                                         w[] flag1 0
                                                                                                         \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                \{r1Rl0_{k_{i}}^{i}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
                                                                                          29:
                w[] flag1 1
                                                                                                         w[] flag0 1
                                                                                                         \{r1Rl1_{n_{\ell}}^{\ell^{-}}[\Gamma_{\text{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\text{rf}}]\}
                \{r1Rl0^i_{k_i}[\Gamma_{\text{rf}}] \wedge r1Rf0^i[\Gamma_{\text{rf}}]\}
                                                                                          30:
 10:
                w[] latch1 1
                                                                                                         w[] latch0 1
                                                                                                         \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\text{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\text{rf}}]\}
                \{r1Rl0^i_{k_i}[\Gamma_{\text{rf}}] \wedge r1Rf0^i[\Gamma_{\text{rf}}]\}
                                                                                          31:
 11:
           fi
           {true}
        while true
 13: { false }
```

- let rf be the communication for such a trace (encoded in Γ_{rf})
- invariant false after both spin loops
- so latch1 in 23: can only be read from initialization
- so latch1 is I not 0, a contradiction

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true}
     do \{i\}
        {true}
         do \{j_i\}
             {true}
            r[] RlO latch0 \{\leadsto L0_{j_i}^i\}
            \{R10 = L0^i_{i} \land
                                                                           24:
              (r0Rl0^{i}_{j_{i}}[\Gamma_{rf}] \vee r1Rl0^{i}_{j_{i}}[\Gamma_{rf}])
         while (R10=0) \{k_i\}
         \{r1Rl0^i_{k_i}[\Gamma_{\text{rf}}]\}
         w[] latch0 0
         \{r1Rl0_{k_i}^i[\Gamma_{\text{rf}}]\}
         r[] Rf0 flag0 \{ \leadsto F0^i \}
         \{\mathrm{r}1\mathrm{Rl0}^i_{k_i}[\Gamma_{\text{rf}}] \land \mathtt{Rf0} = \mathtt{F0}^i \land \\
           (r0Rf0^{i}[\Gamma_{rf}] \vee r1Rf0^{i}[\Gamma_{rf}])
         if (Rf0 \neq 0) then
             \{r1Rl0_{k_i}^i[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^i[\Gamma_{\mathsf{rf}}]\}
             (* critical section *)
            w[] flag0 0
             \{r1Rl0^i_{k_i}[\Gamma_{\text{rf}}] \wedge r1Rf0^i[\Gamma_{\text{rf}}]\}
            w[] flag1 1
             \{r1Rl0^i_{k_i}[\Gamma_{\text{rf}}] \wedge r1Rf0^i[\Gamma_{\text{rf}}]\}
                                                                           30:
10:
             w[] latch1 1
             \{r1Rl0^i_{k_i}[\Gamma_{\text{rf}}] \wedge r1Rf0^i[\Gamma_{\text{rf}}]\}
                                                                            31:
         fi
12: {true}
     while true
13:{false}
```

```
r[] Rl1 latch1 \{\leadsto L1_{m_{\ell}}^{\ell}\}
                     \{\mathtt{Rl1} = \mathtt{L1}^\ell_{\mathtt{m}_\ell} \land
                         (r0Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \vee r1Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}])\}
               while (Rl1=0) \{n_\ell\}
25: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
               w[] latch1 0
               r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
            \begin{aligned} \{\mathrm{r}1\mathrm{R}l1^{\ell}_{\mathrm{n}_{\ell}}[\Gamma_{\mathsf{r}\mathsf{f}}] \wedge \mathsf{R}\mathsf{f}1 &= \mathsf{F}1^{\ell} \wedge \\ (\mathrm{r}0\mathrm{R}\mathrm{f}1^{\ell}[\Gamma_{\mathsf{r}\mathsf{f}}] \vee \mathrm{r}1\mathrm{R}\mathrm{f}1^{\ell}[\Gamma_{\mathsf{r}\mathsf{f}}])\} \end{aligned} 
               if (Rf1 \neq 0) then
                      \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                      (* critical section *)
                      w[] flag1 0
                      \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                      w[] flag0 1
                      \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                      w[] latch0 1
                      \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
```

• let rf be the communication for such a trace (encoded in Γ_{rf})

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true}
       do \{i\}
           {true}
            do \{j_i\}
                 {true}
                                                                                                                         r[] Rl1 latch1 \{ \leadsto L1_{m_{\ell}}^{\ell} \}
                 r[] RlO latch0 \{\leadsto L0_{j_i}^i\}
                                                                                                                         \{\mathtt{Rl1} = \mathtt{L1}^\ell_{\mathtt{m}_\ell} \land
                 \{R10 = L0^i_{i} \land
                                                                                                       24:
                                                                                                                           (\mathrm{r0Rl1}^{\ell}_{\mathrm{m}_{\ell}}[\Gamma_{\mathsf{rf}}] \vee \mathrm{r1Rl1}^{\ell}_{\mathrm{m}_{\ell}}[\Gamma_{\mathsf{rf}}])\}
                    (r0Rl0^{i}_{j_{i}}[\Gamma_{rf}] \vee r1Rl0^{i}_{j_{i}}[\Gamma_{rf}])
                                                                                                                    while (Rl1=0) \{n_\ell\}
            while (R10=0) \{k_i\}
            \{r1Rl0^i_{k_i}[\Gamma_{\text{rf}}]\}
                                                                                                       25: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
                                                                                                                    w[] latch1 0
            w[] latch0 0
            \{r1Rl0_{k_{i}}^{i}\left[\Gamma_{\text{rf}}\right]\}
                                                                                                       26: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{rf}]\}
            r[] Rf0 flag0 \{ \leadsto F0^i \}
                                                                                                                    r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
                                                                                                                    \begin{aligned} \{ \mathrm{r} 1 \mathrm{R} l 1_{\mathrm{n}_{\ell}}^{\ell} [\Gamma_{\mathsf{r}\mathsf{f}}] \wedge \mathsf{R} \mathsf{f} 1 &= \mathrm{F} 1^{\ell} \wedge \\ (\mathrm{r} 0 \mathrm{R} \mathrm{f} 1^{\ell} [\Gamma_{\mathsf{r}\mathsf{f}}] \vee \mathrm{r} 1 \mathrm{R} \mathrm{f} 1^{\ell} [\Gamma_{\mathsf{r}\mathsf{f}}]) \} \end{aligned} 
            \{r1Rl0^i_{k_i}[\Gamma_{\text{rf}}] \land \texttt{Rf0} = \texttt{F0}^i \land\\
               (r0Rf0^{i}[\Gamma_{rf}] \vee r1Rf0^{i}[\Gamma_{rf}])
            if (Rf0 \neq 0) then
                                                                                                                    if (Rf1 \neq 0) then
                                                                                                                         \{\mathrm{r}1\mathrm{Rl1}_{\mathrm{n}_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge \mathrm{r}1\mathrm{Rf1}^{\ell}[\Gamma_{\mathsf{rf}}]\}
                 \{r1Rl0_{k_{i}}^{i}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
                  (* critical section *)
                                                                                                                         (* critical section *)
                 w[] flag0 0
                                                                                                                         w[] flag1 0
                  \{r1Rl0^i_{k_i}[\Gamma_{\text{rf}}] \wedge r1Rf0^i[\Gamma_{\text{rf}}]\}
                                                                                                                         \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                                                                                                                         w[] flag0 1
                 w[] flag1 1
                                                                                                                         \{r1Rl1_{n_{\ell}}^{\ell^{-}}[\Gamma_{\text{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\text{rf}}]\}
                  \{r1Rl0^i_{k_i}[\Gamma_{\text{rf}}] \wedge r1Rf0^i[\Gamma_{\text{rf}}]\}
                                                                                                       30:
10:
                 w[] latch1 1
                                                                                                                         w[] latch0 1
               \{r1Rl0^i_{k_i}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^i[\Gamma_{\mathsf{rf}}]\}
                                                                                                                         \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
12: {true}
       while true
13:{false}
```

- let rf be the communication for such a trace (encoded in Γ_{rf})
- the invariant inside critical sections must be false

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true}
      do \{i\}
          {true}
          do \{j_i\}
               {true}
                                                                                                       r[] Rl1 latch1 \{ \leadsto L1_{m_{\ell}}^{\ell} \}
               r[] RlO latch0 \{\leadsto L0_{j_i}^i\}
                                                                                                       \{\mathtt{Rl1} = \mathtt{L1}^\ell_{\mathtt{m}_\ell} \land
               \{R10 = L0^i_{i} \land
                                                                                       24:
                 (r0Rl0^{i}_{j_{i}}[\Gamma_{rf}] \vee r1Rl0^{i}_{j_{i}}[\Gamma_{rf}])
                                                                                                         (r0Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \vee r1Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}])\}
                                                                                                  while (Rl1=0) \{n_\ell\}
          while (R10=0) \{k_i\}
          \{r1Rl0^i_{k_i}[\Gamma_{\text{rf}}]\}
                                                                                        25: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
                                                                                                  w[] latch1 0
          w[] latch0 0
          \{r1Rl0_{k_{\mathbf{i}}}^{i}\left[\Gamma_{\text{rf}}\right]\}
                                                                                        26: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
                                                                                                  r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
          r[] Rf0 flag0 \{ \leadsto F0^i \}
                                                                                                  \{r1Rl1^{\ell}_{n_{\ell}}[\Gamma_{\text{rf}}] \land \texttt{Rf1} = \texttt{F1}^{\ell} \land
          \{r1Rl0^{i}_{k}, [\Gamma_{rf}] \land Rf0 = F0^{i} \land
             (r0Rf0^{i}[\Gamma_{rf}] \vee r1Rf0^{i}[\Gamma_{rr}])
          if (Rf0 \neq 0) then
                                                                                                   if (Rf1 \neq 0) then
                                                                                                       \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
              \{r1Rl0^i_{k_i}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^i[\Gamma_{\mathsf{rf}}]\}
               (* critical section *)
                                                                                                       (* critical section *)
               w[] flag0 0
                                                                                                       w[] flag1 0
               \{r1Rl0_{k_{i}}^{i}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
                                                                                                       \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                                                                                                       w[] flag0 1
               w[] flag1 1
               \{r1Rl0_{k_i}^i[\Gamma_{\text{rf}}] \wedge r1Rf0^i[\Gamma_{\text{rf}}]\}
                                                                                                       \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\text{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\text{rf}}]\}
                                                                                        30:
10:
                                                                                                       w[] latch0 1
               w[] latch1 1
             \{r1Rl0^{i}_{k_{i}}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
                                                                                                       \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                                                                                        31:
12: {true}
      while true
13:{false}
```

- let rf be the communication for such a trace (encoded in Γ_{rf})
- the invariant inside critical sections must be false
- tests (Rf0≠0) and (Rf1≠0)
 must be false (written ***)

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true}
       do \{i\}
           {true}
                                                                                                     22: {true}
            do \{j_i\}
                 {true}
                                                                                                     23:
                                                                                                                      r[] Rl1 latch1 \{ \leadsto L1_{m_{\ell}}^{\ell} \}
                 r[] RlO latch0 \{ \leadsto L0_{i}^{i} \}
                 \{R10 = L0^{i}_{i} \land
                                                                                                     24:
                                                                                                                       \{\mathtt{Rl1} = \mathtt{L1}^{\ell}_{\mathtt{m}_{\varrho}} \land
                                                                                                                         (\mathrm{r0Rl1}^{\ell}_{\mathrm{m}_{\ell}}[\Gamma_{\mathsf{rf}}] \vee \mathrm{r1Rl1}^{\ell}_{\mathrm{m}_{\ell}}[\Gamma_{\mathsf{rf}}])\}
                   (r0Rl0_{i:}^{i}[\Gamma_{\mathsf{rf}}] \vee r1Rl0_{i:}^{i}[\Gamma_{\mathsf{rf}}])
            while (R10=0) \{k_i\}
                                                                                                                  while (Rl1=0) \{n_\ell\}
                                                                                                     25: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
            \{r1Rl0_{k}^{i}[\Gamma_{rf}]\}
            w[] latch0 0
                                                                                                                  w[] latch1 0
            \left\{r1Rl0_{k_{i}}^{i}\left[\Gamma_{\mathsf{rf}}\right]\right\}
                                                                                                                 \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
            r[] Rf0 flag0 \{ \rightsquigarrow F0^i \}
                                                                                                                  r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
                                                                                                                  \{r1R11_{n_e}^{\ell}[\Gamma_{rf}] \land Rf1 = F1^{\ell} \land
               (r0Rf0^{i}[\Gamma_{rf}] \vee \frac{r1Rf0^{i}[\Gamma_{rf}]}{r}
            if (Rf0 \neq 0) then
                                                                                                                  if (Rf1 \neq 0) then
                                                                                                                        \begin{cases} r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}] \end{cases} 
(* critical section *)
                 \{\mathrm{r}1\mathrm{R}\mathrm{l}0^{\mathrm{i}}_{\mathrm{k}}, [\Gamma_{\mathsf{rf}}] \wedge \mathrm{r}1\mathrm{R}\mathrm{f}0^{\mathrm{i}}[\Gamma_{\mathsf{rf}}]\}
                                                                                                     28:
                  (* critical section *)
                 w[] flag0 0
                 \{r1Rl0_{k_i}^i[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^i[\Gamma_{\mathsf{rf}}]\}
                                                                                                                       \{\mathrm{r}1\mathrm{R}l1_{\mathrm{n}_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge \mathrm{r}1\mathrm{R}f1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                 w[] flag1 1
                                                                                                                       w[] flag0 1
                 \{r1Rl0^i_{k_i}[\Gamma_{\text{rf}}] \wedge r1Rf0^i[\Gamma_{\text{rf}}]\}
                                                                                                                       \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                                                                                                     30:
10:
                 w[] latch1 1
                                                                                                                       w[] latch0 1
               \{\mathrm{r1Rl0_{k_i}^i}[\Gamma_{\mathsf{rf}}] \wedge \mathrm{r1Rf0^i}[\Gamma_{\mathsf{rf}}]\}
                                                                                                                       \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                                                                                                     31:
12: {true}
       while true
13:{false}
```

- let rf be the communication for such a trace (encoded in Γ_{rf})
- the invariant inside critical sections must be false
- tests (Rf0≠0) and (Rf1≠0)
 must be false (written ***)
- so read of Rf0 and Rf1 is 0 from a reachable write

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true}
      do \{i\}
          {true}
          do \{j_i\}
               {true}
              r[] R10 latch0 \{\sim\}
               \{R10 = L0^{i}_{i} \land
                 (r0Rl0_{i:}^{i}[\Gamma_{\mathsf{rf}}] \vee r1Rl0_{i:}^{i}[\Gamma_{\mathsf{rf}}])
          while (R10=0) \{k_i\}
          \{r1Rl0_{k}^{i}[\Gamma_{rf}]\}
          w[] latch0 0
          \{r1Rl0_{k}^{i}, [\Gamma_{rf}]\}
          r[] Rf0 flag0 \{ \rightsquigarrow F0^i \}
             (r0Rf0^{i}[\Gamma_{rf}] \vee r1Rf0^{i}[\Gamma_{rf}]
          if (Rf0 \neq 0) then
              \{\mathrm{r1Rl0}_{\mathrm{k}}^{\mathrm{i}}, [\Gamma_{\mathsf{rf}}] \wedge \mathrm{r1Rf0}^{\mathrm{i}}[\Gamma_{\mathsf{rf}}]\}
8:
               (* critical section *)
               w[] flag0 0
               \{r1Rl0_{k_i}^{i}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
               w[] flag1 1
               \{r1Rl0_{k:}^{i}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
               w[] latch1 1
             \{\mathrm{r}1\mathrm{R}10^{\mathrm{i}}_{\mathrm{k_{i}}}[\Gamma_{\mathsf{rf}}]\wedge\mathrm{r}1\mathrm{R}f0^{\mathrm{i}}[\Gamma_{\mathsf{rf}}]\}
12: {true}
      while true
13:{false}
```

```
21:{true}
22: {true}
23:
                  r[] Rl1 latch1 \{ \leadsto L1_{m_{\theta}}^{\ell} \}
24:
                  \{\mathtt{Rl1} = \mathtt{L1}^\ell_{\mathtt{m}_\ell} \land
                     (r0Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \vee \frac{1}{\mathbf{r}} \frac{1}{\mathbf{r}} \frac{1}{\mathbf{r}} \frac{1}{\mathbf{r}} \frac{1}{\mathbf{r}})\}
             while (Rl1=0) \{n_\ell\}
             \left\{ r \frac{1}{n_{\ell}} \left[ \Gamma_{\mathsf{ff}} \right] \right\}
             w[] latch1 0
            r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
             if (Rf1 \neq 0) then
                  \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
28:
                  (* critical section *)
                  w[] flag1 0
29:
                  \{\mathrm{r1Rl1}_{\mathrm{n}_{\theta}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge \mathrm{r1Rf1}^{\ell}[\Gamma_{\mathsf{rf}}]\}
                  w[] flag0 1
                  \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{rf}] \wedge r1Rf1^{\ell}[\Gamma_{rf}]\}
30:
                  w[] latch0 1
                  \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
31:
33: { false }
```

- let rf be the communication for such a trace (encoded in Γ_{rf})
- the invariant inside critical sections must be false
- tests (Rf0≠0) and (Rf1≠0)
 must be false (written ***)
- so read of Rf0 and Rf1 is 0 from a reachable write
- impossible for Rf1 so loop 23
 —24 is never exited
 - \Rightarrow we are in case (3), PI stuck in spin loop

(3) Process P1 stuck in spin loop (no hypothesis on P0)

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true}
      do \{i\}
          {true}
           do \{j_i\}
                {true}
                                                                                            23:
               r[] RlO latch0 \{ \rightsquigarrow L0^i_{j_i} \}
                                                                                                            r[] Rl1 latch1 \{ \leadsto L1_{m_a}^{\ell} \}
                \{R10 = L0^{i}_{i} \land
                                                                                            24:
                  (r0Rl0^{i}_{j_{i}}[\Gamma_{\mathsf{rf}}] \vee r1Rl0^{i}_{j_{i}}[\Gamma_{\mathsf{rf}}])\}
           while (R10=0) \{k_i\}
                                                                                                       while (Rl1=0) \{n_\ell\}
                                                                                                       \{\mathrm{r}1\mathrm{Rl1}_{\mathrm{n}_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
           \{r1Rl0_{k}^{i}[\Gamma_{rf}]\}
           w[] latch0 0
                                                                                                       w[] latch1 0
                                                                                                      \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
           \{r1Rl0^{i}_{k}, [\Gamma_{rf}]\}
                                                                                                       r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
           r[] Rf0 flag0 \{ \leadsto F0^i \}
                                                                                                       \{\mathrm{r}1\mathrm{R}l1_{\mathrm{n}_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge \mathrm{Rf1} = \mathrm{F1}^{\ell} \wedge
           \{r1Rl0^{i}_{k}, [\Gamma_{rf}] \land Rf0 = F0^{i} \land
                                                                                                          (r0Rf1^{\ell}[\Gamma_{\mathsf{rf}}] \vee r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}])
              (r0Rf0^{i}[\Gamma_{rf}] \vee r1Rf0^{i}[\Gamma_{rf}])
           if (Rf0 \neq 0) then
                                                                                                       if (Rf1 \neq 0) then
                \{r1Rl0_{k_i}^i[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^i[\Gamma_{\mathsf{rf}}]\}
                                                                                                            \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                                                                                            28:
                (* critical section *)
                                                                                                            (* critical section *)
                w[] flag0 0
                                                                                                            w[] flag1 0
                                                                                                            \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                \{r1Rl0_{k_i}^{i}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
                                                                                            29:
                w[] flag1 1
                                                                                                            w[] flag0 1
                                                                                                            \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                \{r1Rl0_{k:}^{i}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
                                                                                            30:
10:
                                                                                                            w[] latch0 1
               w[] latch1 1
              \{\mathrm{r}1\mathrm{R}10^{\mathrm{i}}_{\mathrm{k_{i}}}[\Gamma_{\mathsf{rf}}]\wedge\mathrm{r}1\mathrm{R}f0^{\mathrm{i}}[\Gamma_{\mathsf{rf}}]\}
                                                                                            31:
                                                                                                            \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
12: {true}
      while true
13:{false}
```

- let rf be the communication for such a trace (encoded in Γ_{rf})
- the invariant after 25: must be false
- read of latch1 in 23: must be a 0
- only possibility if from 25:
- A contradiction since 25: is unreachable

(4) Process P0 starves in spin loop, no hypothesis on P1

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
      1: {true}
                                                                                                   21:{true}
             do \{i\}
                                                                                                          do \{\ell\}
                                                                          CO
                 {true}
                                                                                                   22: {true}
                  do \{j_i\}
                                                                                                              do \{m_\ell\}
                                                                                                                   {true}
                       {true}
                                                                                                   23:
                                                                                                                  r[] Rl1 latch1 \{ \rightsquigarrow L1_{m_{\ell}}^{\ell} \}
                      r[] R10 latch0 \{ \rightsquigarrow L0_{i_i}^i \}
                       \{R10 = L0^i, \land
                                                                                                   24:
                                                                                                                  \{Rl1 = L1^{\ell}_{m_{\theta}} \land
       4:
                                                                                                                     (r0Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \vee r1Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}])\}
                                                                                                              while (Rl1=0) \{n_\ell\}
                  while (R10\Rightarrow) \{k_i\}
                                                                                                              \{\mathrm{r}1\mathrm{Rl1}_{\mathrm{n}_{\varrho}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
                  \{\mathrm{r}1\mathrm{R}l0^{\scriptscriptstyle 1}_{\mathbf{k}_{\scriptscriptstyle 1}}[\Gamma_{\mathsf{rf}}]\}
                  w[] latch0 0
                                                                                                              w[] latch1 0
                                                                                                   26: \{r1Rl1_{n_{\varrho}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
                  \{r1Rl0_{k:}^{i}[\Gamma_{rf}]\}
                                                                                                              r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
                 r[] Rf0 flag0 \{ \leadsto F0^i \}
                  \{r1Rl0^i_{k_i}[\Gamma_{\text{rf}}] \land \texttt{Rf0} = \texttt{F0}^i \land 
                                                                                                              \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \land \mathtt{Rf1} = \mathtt{F1}^{\ell} \land
                                                                                                                 (r0Rf1^{\ell}[\Gamma_{rf}] \vee r1Rf1^{\ell}[\Gamma_{rf}])
                    (r0Rf0^{i}[\Gamma_{rf}] \vee r1Rf0^{i}[\Gamma_{rf}])
                  if (Rf0 \neq 0) then
                                                                                                              if (Rf1 \neq 0) then
                       \{r1Rl0_{k}^{i}, [\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
                                                                                                                   \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
      8:
                                                                                                   28:
false
                       (* critical section *)
                                                                                                                   (* critical section *)
                      w[] flag0 0
                                                                                                                   w[] flag1 0
                                                                                                                   \{r1Rl1^{\ell}_{n_{\ell}}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                      \{r1Rl0_{k_i}^i[\Gamma_{\text{rf}}] \wedge r1Rf0^i[\Gamma_{\text{rf}}]\}
                                                                                                   29:
      9:
                      w[] flag1 1
                                                                                                                   w[] flag0 1
                      \{r1Rl0_{k;}^{i}[\Gamma_{\text{rf}}] \wedge r1Rf0^{i}[\Gamma_{\text{rf}}]\}
                                                                                                                  \{\mathrm{r1Rl1}_{\mathrm{n}_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge \mathrm{r1Rf1}^{\ell}[\Gamma_{\mathsf{rf}}]\}
       10:
                      w[] latch1 1
                                                                                                                   w[] latch0 1
                                                                                                                   \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                       \{r1Rl0_{\mathbf{k}}^{\mathbf{i}}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{\mathbf{i}}[\Gamma_{\mathsf{rf}}]\}
       11:
                                                                                                   31:
                  fi
                                                                                                   32: {true}
                 {true}
            while true
      13:{false}
                                                                                                   33: { false }
```

- let rf be the communication for such a trace (encoded in Γ_{rf})
- the invariant after 5: must be false so P0 never enters its critical section
- read of latch0 in 3: must be a 0, with 2 possibilities
- cannot be from write at 5: which is unreachable
- so is from initial write 0:
- but PI enters its critical section (otherwise see case I)
- so w[] latch0 1 will be executed later in co order
- so all 3:r[] R10 latch0 arefr to all 30: w[] latch0 1
- by fairness of communications, this write of I to latch0 will eventually be read at 3:
- in contradiction with always reading 0

(4) Process P0 starves in spin loop, P1 does not

Communication fairness hypothesis®

- All writes eventually hit the memory:
 - If, at a cut of the execution, all the processes infinitely often write the same value υ to a shared variable x and only that value υ
 - and from a later cut point of that execution, a process infinitely often repeats reads to that variable
 - \bullet then the reads will end up reading that value υ

^(*) The SPARC Architecture Manual, Version 8, Section K2, p. 283: ``if one processor does an S, and another processor repeatedly does L 's to the same location, then there is an L that will be after the S''.

(5) Process P1 never enters its CS

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {true}
      do \{i\}
         {true}
          do \{j_i\}
              {true}
              r[] R10 latch0 \{ \rightsquigarrow L0^i_{j_i} \}
              {R10 = L0_{i}^{i} \wedge}
4:
                (r0Rl0^{i}_{j_{i}}[\Gamma_{rf}] \vee r1Rl0^{i}_{j_{i}}[\Gamma_{rf}])
          while (R10=0) \{k_i\}
          \{r1Rl0^{i}_{k_{i}}[\Gamma_{\mathsf{rf}}]\}
          w[] latch0 0
          \{r1Rl0_{k_{i}}^{i}\left[\Gamma_{\text{rf}}\right]\}
          r[] RfO flag0 \{ \leadsto F0^i \}
          \{r1Rl0^{i}_{k_{i}}[\Gamma_{rf}] \land Rf0 = F0^{i} \land
            (r0Rf0^{i}[\Gamma_{rf}] \vee r1Rf0^{i}[\Gamma_{rf}])
          if (Rf0 \neq 0) then
              \{r1Rl0^{i}_{k_{i}}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
8:
              (* critical section *)
              w[] flag0 0
              \{\mathrm{r}1\mathrm{R}l0^{\mathrm{i}}_{\mathrm{k}_{\mathrm{i}}}[\Gamma_{\mathsf{rf}}]\wedge\mathrm{r}1\mathrm{R}f0^{\mathrm{i}}[\Gamma_{\mathsf{rf}}]\}
              w[] flag1 1
              \{r1Rl0^{i}_{k_{i}}[\Gamma_{\mathsf{rf}}] \wedge rRf0^{i}[\Gamma_{\mathsf{rf}}]\}
10:
              w[] latch1 1
              \{r1Rl0_{k_{i}}^{i}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
11:
          fi
12: {true}
      while true
13:{false}
```

Proof of mutual exclusion and non-starvation of a program: PostgreSQL Chansha, China, 9 December 2016

```
21:{true}
       do \{\ell\}
22: {true}
           do \{m_\ell\}
23:
                {true}
                r[] Rl1 latch1 \{ \leadsto L1_{m_{\theta}}^{\ell} \}
24:
                  (\mathrm{r0R11}^{\ell}_{\mathrm{m}_{\ell}}[\Gamma_{\mathsf{rf}}] \vee \mathrm{r1Rl1}^{\ell}_{\mathrm{m}_{\ell}}[\Gamma_{\mathsf{rf}}])\}
           while (R11=0) \{n_\ell\}
           \{r1B11^\ell_{n_\ell}[\Gamma_{\mathsf{rf}}]\}
25:
           w[] latch1 0
26:
           r[] Rf1 flag1\{\leadsto F1^\ell\}
              (r0Rf1^{\ell}[\Gamma_{rf}] \vee r1Rf1^{\ell}[\Gamma_{rf}])
           if (Rf1 \neq 0) then
                \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1P_{\mathsf{f}}1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                (* critical section *)
                w[] flag1 0 / rf
                \{{\rm r1Rl1}^{\ell}_{\rm n_{\ell}}[\Gamma_{\sf rf}] \wedge {\rm r1Rf1}^{\ell}[\Gamma_{\sf rf}]\} \Big| \text{false}
29:
                w[] flag0 1
                \{r1Rl1^{\ell}_{n_{\ell}}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
30:
                w[] latch0 1
                \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
31:
```

- let rf be the communication for such a trace (encoded in Γ_{rf})
- P1 exits loop 23:–24: (else see cases (1) or (3))
- must read R11 = I from 0: orI0:
- read of Rf1 at 26: must be 0
- only possibility is from 28:
- impossible from unreachable code

(5) Process P0 leaves spin loop but always fails entering its CS

```
{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
     1: {true}
            do \{i\}
                                                                                                            do \{\ell\}
                                                                                                     22: {true}
               \{\Gamma_{\sf rf}\}
                                                                                                                 do \{m_\ell\}
                 do \{j_i\}
                                                                                                                     {true}
                      {true}
                                                                                                     23:
                                                                                                                     r[] Rl1 latch1 \{ \leadsto L1_{m_{\ell}}^{\ell} \}
                      r[] R10 latch 0 \ {\sim}
fences
                      \{R10 = L0^i_{i:} \land
                                                                                                                     \{\mathtt{Rl1} = \mathtt{L1}^\ell_{\mathtt{m}_{\mathit{o}}} \land
                                                                                                     24:
     4:
                                                                                                                        (r0Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \vee r1Rl1_{m_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}])\}
                        (r0Rl0_{i}^{i} [\Gamma_{rf}] \lor r1Rl0_{i}^{i}
                                                                                                                 while (Rl1=0) \{n_\ell\}
                 while (R10=0) \{k_i\}
                                                                                                    25: \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{rf}]\}
                 \{r1Rl0_{k;}^{i}[\Gamma_{\mathsf{rf}}]\}
                                                                                       CO
                 w[] latch0 0
                                                                                                                 w[] latch1 0
                 \{r1Rl0_{k}^{i}[\Gamma_{rf}]\}
                 f[fdep] {3} {6}
                                                                                                                \{\mathrm{r}1\mathrm{Rl1}_{\mathrm{n}_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}]\}
                 \{r1Rl0^1_{k}, [\Gamma_{\mathsf{rf}}]\}
                                                                                                     26:
                                                                                                                 r[] Rf1 flag1 \{ \leadsto F1^{\ell} \}
                 r[] Rf0 flag0 \{ \rightarrow F0^i \}
                 \{r1Rl0^{i}_{k}, [\Gamma_{rf}] \land Rf0 = F0^{i}\}
                                                                                                                 \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \land \mathsf{Rf1} = \mathsf{F1}^{\ell} \land
     7:
                                                                                                                   (\mathrm{r0Rf1}^{\rlap/\ell}[\Gamma_{\mathsf{rf}}] \vee \mathrm{r1Rf1}^{\rlap/\ell}[\Gamma_{\mathsf{rf}}])\}
                   (r0Rf0^{i}[\Gamma_{\mathsf{rf}}] \vee r1Rf0^{i}[\Gamma_{\mathsf{rf}}])
                                                                                                                 if (Rf1 \neq 0) then
                 if (Rf0 \neq 0) then
                  \lceil \{\text{r}1\text{R}10^{1}_{k:}[\Gamma_{\mathsf{rf}}] \wedge \text{r}1\text{R}f0^{i}[\Gamma_{\mathsf{rf}}] \}
                                                                                                                     \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rf1^{\ell}[\Gamma_{\mathsf{rf}}]\}
     8:
                      (* critical section *)
                                                                                                                     (* critical section *)
                      w[] flag0 0
                                                                                                                     w[] flag1 0
                                                                                                                  \{\operatorname{r1Rl1}_{\operatorname{n}_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge \operatorname{r1Rf1}^{\ell}[\Gamma_{\mathsf{rf}}]\}
                      \{r1Rl0_{k:}^{i}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
     9:
                      w[] flag1 1
                                                                                                                     w[] flag0 1
                                                                                                                      \{r1Rl1_{n_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge r1Rfi^{\ell}[\Gamma_{\mathsf{rf}}]\}
                      \{r1Rl0_{\mathbf{k}_{:}}^{i}[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^{i}[\Gamma_{\mathsf{rf}}]\}
     10:
                                                                                                                     f[flw] {29} {30}
    false
                                                                                                                      \{\mathrm{r}1\mathrm{R}l1_{\mathrm{n}_{\ell}}^{\ell}[\Gamma_{\mathsf{rf}}]\wedge\mathrm{r}1\mathrm{R}f1^{\ell}[\Gamma_{\mathsf{rf}}]\}
                                                                                                     30:
                                                                                                                     w[] latch0 1
                      w[] latch1 1
                                                                                                                                                                         tences
                      \{r1Rl0_{k_i}^i[\Gamma_{\mathsf{rf}}] \wedge r1Rf0^i[\Gamma_{\mathsf{rf}}]\}
                                                                                                                     \{\mathrm{r1Rl1}_{\mathrm{n}_{\theta}}^{\ell}[\Gamma_{\mathsf{rf}}] \wedge \mathrm{r1Rf1}^{\ell}[\Gamma_{\mathsf{rf}}]\}
                                                                                                     31:
                 fi
     12: {true}
                                                                                                                {true}
            while true
                                                                                                            while true
     13:{false}
                                                                                                     33:{false}
```

- let rf be the communication for such a trace (encoded in Γ_{rf})
- loop 2:–4: exited
- read of R10 = I at 3: is from 30:
- invariant false in critical section8:-11:
- read of Rf0 = 0 at 6: is from 0: (8: not reachable)

In TSO there is no need for a fence since it is MP. For weaker than PSO, a fence is needed.

(6) Both processes eventually starve in spin loop

```
w latch0 0;
      w flag0 0;
3: r R10 latch0 1
   w latch0 0
  r RfO flag0 1
8: (* critical section *)
   w flag0 0
9: w flag1 1
   f[bar] {5:} {10:} CO
10: w latch1 1
   r RlO latchO 1
   w latch0 0
6: r RfO flag0 1
8: (* critical section *)
    w flag0 0
9: w flag1 1
    f[bar] {5:}/{10:}
10: w latch1 1
    r R10 latch0 0
    r R10 latch0 0
```

```
w latch1 1;
      w flag1 1;}
23: r Rl1 latch1 1
25: w latch1 0
26 r Rf1 flag1 1
28: (* critical section *)
    tı flaci ()
   f[bar] {25:} {29
29: w ilag0 1
30: w latch0 1
                    bar
23: r Rl1 latch1 1
25: w latch1 0 •••
26: r Rf1 flag1 1
28: (* critical section **)
    w flag1 0
    f[bar] {25:} {29:}
29: w flag0 1
30: w latch0 1
23: r Rl1 latch1 0
23: r Rl1 latch1 0
```

- let rf be the communication for such a trace (encoded in Γ_{rf})
- so latch0 is always 0 and latch1 is always 0
- so latch0 in 23 is always read from 25:
- so 10: w latch1 1 was cobefore (since otherwise by the communication hypothesis it would be eventually read)
- and 3: R10 latch0 0 is from 0: or 5:
- so 30: w latch0 1 is cobefore them (since otherwise by the communication hypothesis it would be eventually read)
- impossible by fences
- irreflexive co; bar; co; bar

(7) Eventually, P0 starves in spin loop, P1 never enters its CS

```
{0: , w latch0 0;
                  w flag0 0;
                 r RlO latchO 1
                 w latch0 0
                 r Rf0 flag0 1
                 (* critical section *)
                 w flag0 0
Process
                 w flag1 1
  P0
                 w latch1 1
enters &
                 r RlO latch0 1
exits CS
                 w latch0 0
multiple
                r RfO flag0 1
 times
                 (* critical section *)
                 w flag0 0
                 w flag1 1
                 w latch1 1
  then,
                 r R10 latch0 0
  never
                 r R10 latch0 0
  exits
   the
                 r RlO latch0 0
 waiting
   loop
```

```
w latch1 1;
    w flag1 1;}
                     last
                     CS
   r Rl1 latch1 1
                    entr-
25: w latch1 0
                    ance
26: r Rf1 flag1 1
28: (* critical sedtion *)
    w[] flag1 0
29: w[] flag0 1
   w[] latch0 1 *
23: r Rl1 latch1 1
25: w latch1 0
26: r Rf1 flag1 0
23: r Rl1 latch1 1
25: w latch1 0
26: r Rf1 flag1 0
```

- P1 does not eventually starves in spin loop (otherwise case 6)
- case P1 eventually never starves and never enters its critical section
- P1 then does a last write of I to latch0
- P0 eventually makes infinitely many reads of latch0
- A contradiction (since otherwise by the communication hypothesis, this I would be eventually read)

(8) Eventually, P1 starves in spin loop, P0 never enters its CS

symmetric of (7)

(9) P0 and P1 always leave spin loop and never enter their CS

```
{0: w[] latch0 0;
                                   w[] latch1 1;
                                   w[] flag1 1;}
      w[] flag0 0;
   r[] RlO latchO 1
                             23: r[] Rl1 latch1 1
   w[] latch0 0
                             25: w[] latch1 0
   r[] RfO flagO 1
                             26: r[] Rf1 flag1 1
8: (* critical section *)
                             28: (* critical section *)
    w[] flag0 0
                                 w[] flag1 0
                             29: w[] flag0 1
9: w[] flag1 1
10: w[] latch1 1
                             30 w[] latch0 1
                             23: r[] R11 latch1 1
3: r R10 latch0 1
                             25. w[] lateh1 0
5: w[] latch0 0
                             26: r[] Rf1 flag1 0
6: r[] RfO flag0 1
8: (* critical section *)
                             28: (* critical section *)
    w[] flag0 0
                             23: w[] flag1 0
9: w[] flag1 1
                             29: w[] flag0 1
10: w[] latch1 1
                             30: w[] latch0 1
3: r[] RlO latch0 1
                             23: r[] Rl1 latch1 1
5: w[] latch0 0
                             25: w[] latch1 0
6: r[] Rf0 flag0 0
                             26: r[] Rf1 flag1 0
3: r □ R10 latch0 1
                             23: r ☐ Rl1 latch1 1
5: w[] latch0 0
                             25: w[] latch1 0
   r[] RfO flag0 0
                             26: r[] Rf1 flag1 0
                             23: r ☐ Rl1 latch1 1
   r[] RlO latchO 1
   w[] latch0 0
                             25: w[] latch1 0
                             26: r[] Rf1 flag1 0
   r[] RfO flag0 0
```

- P0 and P1 eventually never starve and never enter their critical sections
- They both have a last entrance in their critical sections
- This last write of I to the latches will, by communication fairness, eventually reach the memory
- Then we only have infinitely many writes of 0 to the latches
- So the read of the latches in the spin loops will eventually always read 0
- So from then on, by communication fairness, all the reads will be from 0, in reads of the latch will be zero
- In contradiction with the fact that the spin loop is always exited
- The barrier prevents infinitely postponing the write 0 actions

Conclusion

Conclusion

- The proof method is parameterized by consistency hypotheses, expressed in
 - Invariance form: S_{com}
 - Consistency form: H_{com} (e.g. in cat)
- Program not logic/architecture/consistency model dependent (hence the proof is portable)
- Can reason on arbitrary subsets of anarchic executions (hence flexible e.g. non-starvation)

Proposed design methodology

- I. Design the algorithm A and its specification S_{inv} (e.g. in the sequential consistency model of parallelism)
- 2. Consider the anarchic semantics of algorithm A
- 3. Add communication specifications S_{com} to restrict anarchic communications and ensure the correctness of A with respect to specification S_{inv}
- 4. Do the invariance proof under WCM with S_{com}
- 5. Infer H_{com} (in cat) from invariant S_{com}
- 6. Prove that the machine memory model M in cat implies H_{cm}

Challenges

- Modern machines have complex memory models
 - ⇒ portability has a price (refencing)
 - ⇒ debugging is very hard/quasi-impossible
 - ⇒ proofs are much harder than with sequential consistency (but still feasible?, mechanically?)
 - ⇒ static analysis parameterized by a WCM will be a challenge
 - \Rightarrow but we can start with S_{com}

Thanks

 Patrick Cousot thanks Luc Maranget for his precious help at Dagstuhl on the non-starvation part.

The End, Thank You