Proof of mutual-exclusion and nonstarvation of a program with weak memory model: PostgreSQL

Patrick Cousot (NYU, Emer. ENS, PSL) (joint work with Jade Alglave)

International joint research project " $A n a l y s i s ~ a n d ~ v e r i f i c a t i o n ~ o f ~$ of dependable cyber physical software"
National Natural Science Foundation of China
Changsha, December 9, 2016

PostgreSQL

1: do	21: do
2: do	22: do
3: r[] Rl0 latch0	23: r[] Rl1 latch1
4: while (R10=0)	24: while (Rl1=0)
5: w[] latch0 0	25: w[] latch1 0
6: r[] Rf0 flag0	26: r[] Rf1 flag1
7: if ($\mathrm{Rf} 0 \neq 0$) then	27: if (Rf1 $=0$) then
```8: (* critical section *) w[] flag0 0```	```28: (* critical section *) w[] flag1 0```
9: w[] flag1 1	29: w[] flag0 1
10: w[] latch1 1	30: w[] latch0 1
11: fi	31: fi
12:while true	32:while true
13:	$33:$

## Methodology



## Methodology

## Methodology



## Methodology



## Methodology



## Methodology



## Conditional invariance

## proof:

Mutual exclusion

## Algorithm



## PostgreSQL

1: do $\{i\}$	21:do $\{\ell\}$
2: do $\left\{j_{i}\right\}$	22: do $\left\{m_{\ell}\right\}$
3: r[] Rl0 latch0 $\left\{\leadsto L 0_{j_{i}}^{i}\right\}$	23: r[] Rl1 latch1 $\left\{\leadsto L 1_{m_{\ell}}^{\ell}\right\}$
4: while (R10=0) $\left\{k_{i}\right\}$	24: while (Rl1=0) $\left\{n_{\ell}\right\}$
5: w[] latch0 0	25: w[] latch1 0
6: r[] Rf0 flag0 $\left\{\rightsquigarrow F 0^{i}\right\}$	26: r[] Rf1 flag1 $\left\{\rightsquigarrow F 1^{\ell}\right\}$
7: if ( $\mathrm{Rf} 0 \neq 0$ ) then	27: if ( $\mathrm{Rf} 1 \neq 0$ ) then
```8: (* critical section *) w[] flag0 0```	```28: (* critical section *) w[] flag1 0```
9: w[] flag1 1	29: w[] flag0 1
10: w[] latch1 1	30: w[] latch0 1
11: fi	31: fi
12:while true	32:while true
13:	33:

Stamps

1: do $\{i\}$	21:do $\{\ell\}$
2: do $\left\{j_{i}\right\}$	22: do $\left\{m_{\ell}\right\}$
3: r[] Rl0 latch0 $\left\{\rightsquigarrow L 0_{j_{i}}^{i}\right\}$	23: r [] Rl1 latch1 $\left\{\rightsquigarrow L 1_{m_{\ell}}^{\ell}\right\}$
4: while (R10=0) $\left\{k_{i}\right\}$	24: while (Rl1=0) $\left\{n_{\ell}\right\}$
5: w[] latch0 0	25: w[] latch1 0
6: r[] Rf0 flag0 $\left\{\rightsquigarrow F 0^{i}\right\}$	26: r [] Rf1 flag1 $\left\{\leadsto F 1^{\ell}\right\}$
7: if ($\mathrm{Rf} 0 \neq 0$) then	27: if (Rf1 10) then
$\begin{array}{ll} \text { 8: } & (* \text { critical section } *) \\ \text { w[] flag0 } 0 \end{array}$	```28: (* critical section *) w[] flag1 0```
9: w[] flag1 1	29: w[] flag0 1
10: w[] latch1 1	30: w[] latch0 1
11: fi	31: fi
12:while true	32:while true
13:	33:

Ensure that events are unique (your choice)

Variables in Hoare logic \& L/O-G

- program variables: int x;
- in predicates you need to name the value of variable x to express properties of this value of x :
- valueof (x)
- x
- WCM: no notion of "the" value of a shared variable x
- The only way to know something about "the" value of a shared variable x is to read it
- Pythia variable: name given to the read value
- Not necessary in the semantics, only in assertions (but we put them in the semantics)

Pythia variables

Invariant specification $S_{i n v}$

Mutual exclusion

```
\(\{0:\) latch \(0=0 ; f l a g 0=0 ;\) latch1 \(=1 ; f \operatorname{lag} 1=1 ;\}\)
1: do \(\{i\}\)
2: do \(\left\{j_{i}\right\}\)
3: \(\quad r[]\) Rl0 latch0 \(\left\{\leadsto L 0_{j_{i}}^{i}\right\}\)
4: while (Rl0=0) \(\left\{k_{i}\right\}\)
5: w[] latch0 0
6: \(\quad \mathrm{r}[] \operatorname{Rf0}\) flag0 \(\left\{\rightsquigarrow F 0^{i}\right\}\)
7: if (Rf0\(=0\) ) then
8: \(\neg\) at \(\{28\}\)
    (* critical section *)
        w[] flag0 0
9: w[] flag1 1
10: w[] latch1 1
11: fi
12:while true
13:
21:do \(\{\ell\}\)
    22: do \(\left\{m_{\ell}\right\}\)
    23: \(r[]\) Rl1 latch1 \(\left\{\rightsquigarrow L 1_{m_{\ell}}^{\ell}\right\}\)
    24: while (Rl1=0) \(\left\{n_{\ell}\right\}\)
    25: w[] latch1 0
    26: r[] Rf1 flag1 \(\left\{\rightsquigarrow F 1^{\ell}\right\}\)
    27: if (Rf1 \(=0\) ) then
    28: \(\neg\) at \(\{8\}\)
    (* critical section *)
        w[] flag1 0
    29: w[] flag0 1
    30: w[] latch0 1
    31: fi
    32:while true
    33:
```


(invariant i_{nv} is elsewhere true)

Analytic semantics $=$ Anarchic semantics + communication constraints

Analytics semantics with cuts

- Anarchic semantics: set of executions:
$\pi=\varsigma \times \pi \times \mathrm{rf}$
- ς is the computation
- π is the cut sequence
- rf is the communication

- Communication semantics: restrictions on rf in cat

Local invariants

Local invariant

- Attached to each program point ℓ of each process p
- Depends on
- Program points of all other processes κ
- Stamps θ of all processes
- Local registers of all processes ρ
- Pythia variables ν
- Communications (rf)

Communication relation rf

- rf: relation between write and read events
- Each rf is encoded by Γ, a set of pairs

Pythia variable of the read event

Program
label of the write action

Stamp of the Value write

- $\Gamma \in \Gamma$. (the set of all possible communications rf)

Anarchic communications

Anarchic communications

- Any read can read from any write on the same shared variable (location)

$$
\operatorname{RLO}_{j_{i}}^{i} \triangleq\left\{\mathfrak{r f}\left\langle L 0_{j_{i}}^{i},\langle 0:,-, 0\rangle\right\rangle, \mathfrak{r f}\left\langle L 0_{j_{i}}^{i},\left\langle 5:, i_{5}, 0\right\rangle\right\rangle, \mathfrak{r f}\left\langle L 0_{j_{i}}^{i},\left\langle 30:, \ell_{30}, 1\right\rangle\right\rangle \mid i_{5} \in \mathbb{N} \wedge \ell_{30} \in \mathbb{N}\right\}
$$

Anarchic communications

- Possible communications for each read at each stamp (point in the execution):

$$
\begin{aligned}
\mathrm{RLO}_{j_{i}}^{i} & \triangleq\left\{\mathfrak{r f}\left\langle L 0_{j_{i}}^{i},\left\langle 0:,{ }_{-}, 0\right\rangle\right\rangle, \mathfrak{r f}\left\langle L 0_{j_{i}}^{i},\left\langle 5:, i_{5}, 0\right\rangle\right\rangle, \mathfrak{r f}\left\langle L 0_{j_{i}}^{i},\left\langle 30:, \ell_{30}, 1\right\rangle\right\rangle \mid i_{5} \in \mathbb{N} \wedge \ell_{30} \in \mathbb{N}\right\} \\
\mathrm{RFO}^{i} & \triangleq\left\{\mathfrak{r f}\left\langle F 0^{i},\langle 0:,-, 0\rangle\right\rangle, \mathfrak{r f}\left\langle F 0^{i},\left\langle 8:, i_{8}, 0\right\rangle\right\rangle, \mathfrak{r f}\left\langle F 0^{i},\left\langle 29:, \ell_{29}, 1\right\rangle\right\rangle \mid i_{8} \in \mathbb{N} \wedge \ell_{29} \in \mathbb{N}\right\} \\
\mathrm{RL1}_{m_{\ell}}^{\ell} & \triangleq\left\{\mathfrak{r f}\left\langle L 1_{m_{\ell}}^{\ell},\langle 0:,-, 1\rangle\right\rangle, \mathfrak{r f}\left\langle L 1_{m_{\ell}}^{\ell},\left\langle 25:, \ell_{25}, 0\right\rangle\right\rangle, \mathfrak{r f}\left\langle L 1_{m_{\ell}}^{\ell},\left\langle 10:, i_{10}, 1\right\rangle\right\rangle \mid \ell_{25} \in \mathbb{N} \wedge i_{10} \in \mathbb{N}\right\} \\
\mathrm{RF}^{\ell} & \triangleq\left\{\mathfrak{r f}\left\langle F 1^{\ell},\langle 0:,-, 1\rangle\right\rangle, \mathfrak{r f}\left\langle F 1^{\ell},\left\langle 28:, \ell_{28}, 0\right\rangle\right\rangle, \mathfrak{r f}\left\langle F 1^{\ell},\left\langle 9:, i_{9}, 1\right\rangle\right\rangle \mid \ell_{28} \in \mathbb{N} \wedge i_{9} \in \mathbb{N}\right\}
\end{aligned}
$$

- Anarchic communications:

$$
\begin{aligned}
\bar{\Gamma}= & \left\{\left\{\operatorname{rrl}_{j_{i}}^{i}, \operatorname{rf0}^{i}, \operatorname{rl1}_{m_{\ell}}^{\ell}, \mathrm{rf1}^{\ell} \mid i \in \mathbb{N} \wedge j_{i} \in\left[0, k_{i}\right] \wedge \ell \in \mathbb{N} \wedge j \in\left[0, n_{\ell}\right]\right\} \mid \forall i \in \mathbb{N} . \forall j_{i} \in\left[1, k_{i}\right] .\right. \\
& \left.\mathrm{rlO}_{j_{i}}^{i} \in \operatorname{RLO}_{j_{i}}^{i} \wedge \operatorname{rf0}^{i} \in \operatorname{RFO}^{i} \wedge \forall \ell \in \mathbb{N} . \forall m_{\ell} \in\left[1, m_{\ell}\right] . \operatorname{rl1}_{m_{\ell}}^{\ell} \in \operatorname{RL1}_{m_{\ell}}^{\ell} \wedge \operatorname{rf1}^{\ell} \in \mathrm{RF}^{\ell}\right\}
\end{aligned}
$$

- Anarchic semantics: $\Gamma \in \bar{\Gamma}$
- WCM semantics: $\quad \Gamma \in \Gamma, \Gamma \subseteq \bar{\Gamma}$

Inductive invariant $S_{\text {ind }}$

Inductive invariant

- $S_{\text {ind }}$ is inductive under hypothesis $S_{\text {com }}$ iff, assuming $S_{\text {com }}$, we have:
- $S_{\text {ind }}$ is true at the beginning of an execution
- If $S_{\text {ind }}$ is true during execution is remains true after one more computation or communication step
$S_{i n v}$ holds under hypothesis $S_{\text {com }}$

$$
S_{i n d} \Rightarrow S_{i n v}
$$

$$
S_{c o m} \Rightarrow S_{i n v}
$$

Inductive invariant

```
\{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; \}
1: \(\{\Gamma \in \Gamma\}\)
    do \(\{i\}\)
        \(\{\Gamma \in \Gamma\}\)
        do \(\left\{j_{i}\right\}\)
            \(\{\Gamma \in \Gamma\}\)
            r[] Rl0 latch0 \(\left\{\sim L 0_{j_{i}}^{i}\right\}\)
            \(\left\{\Gamma \in \Gamma \wedge \mathrm{RlO}=L 0_{j_{i}}^{i} \wedge\left(\mathrm{rORlO}_{j_{i}}^{i}[\Gamma] \vee \mathrm{rlRlO}_{j_{i}}^{i}[\Gamma]\right)\right\}\)
        while ( \(\mathrm{RlO}=0\) ) \(\left\{k_{i}\right\}\)
        \(\left\{\Gamma \in \Gamma \wedge \operatorname{r1R10} \hat{k}_{k_{i}}^{i}[\Gamma]\right\}\)
        w[] latch0 0
6: \(\quad\left\{\Gamma \in \Gamma \wedge \mathrm{rlRlo}_{k_{i}}^{i}[\Gamma]\right\}\)
        r[] Rf0 flag0 \(\left\{\sim F 0^{i}\right\}\)
        \(\left\{\Gamma \in \Gamma \wedge \mathrm{r} 1 \mathrm{Rl}_{k_{i}}^{i}[\Gamma] \wedge \mathrm{Rf} 0=F 0^{i}\right.\)
                        \(\left.\wedge\left(\operatorname{rORf}^{i}[\Gamma] \vee \operatorname{r1Rf} 0^{i}[\Gamma]\right)\right\}\)
        if ( \(\operatorname{Rf} 0 \neq 0\) ) then
8: \(\quad\left\{\Gamma \in \Gamma \wedge \operatorname{rlR10}_{k_{i}}^{i}[\Gamma] \wedge \operatorname{r1Rf}^{i}[\Gamma]\right\}\)
        (* critical section *)
        w[] flag0 0
9: \(\quad\left\{\Gamma \in \Gamma \wedge \operatorname{rlRlo}_{k_{i}}^{i}[\Gamma] \wedge \operatorname{r1Rf}^{i}[\Gamma]\right\}\)
        w[] flag1 1
10: \(\quad\left\{\Gamma \in \Gamma \wedge \operatorname{rlR10} 0_{k_{i}}^{i}[\Gamma] \wedge \operatorname{r1Rf}^{i}[\Gamma]\right\}\)
        w[] latch1 1
11: \(\quad\left\{\Gamma \in \Gamma \wedge \operatorname{rlRlo}_{k_{i}}^{i}[\Gamma] \wedge \operatorname{r1Rf}^{i}[\Gamma]\right\}\)
        fi
12: \(\{\Gamma \in \Gamma\}\)
    while true
13: \{false\}
```

21: $\{\Gamma \in \Gamma\}$

```
21: \(\{\Gamma \in \Gamma\}\)
    do \(\{\ell\}\)
    do \(\{\ell\}\)
22: \(\{\Gamma \in \Gamma\}\)
22: \(\{\Gamma \in \Gamma\}\)
    do \(\left\{m_{\ell}\right\}\)
    do \(\left\{m_{\ell}\right\}\)
    \(\{\Gamma \in \Gamma\}\)
    \(\{\Gamma \in \Gamma\}\)
        r[] Rl1 latch1 \(\left\{\sim L 1_{m_{\ell}}^{\ell}\right\}\)
        r[] Rl1 latch1 \(\left\{\sim L 1_{m_{\ell}}^{\ell}\right\}\)
24: \(\quad\left\{\Gamma \in \Gamma \wedge \mathrm{Rl1}=L 1_{m_{\ell}}^{\ell} \wedge\left(\mathrm{rORl1} 1_{m_{\ell}}^{\ell}[\Gamma] \vee \mathrm{r} 1 \mathrm{Rl} 1_{m_{\ell}}^{\ell}[\Gamma]\right)\right\}\)
24: \(\quad\left\{\Gamma \in \Gamma \wedge \mathrm{Rl1}=L 1_{m_{\ell}}^{\ell} \wedge\left(\mathrm{rORl1} 1_{m_{\ell}}^{\ell}[\Gamma] \vee \mathrm{r} 1 \mathrm{Rl} 1_{m_{\ell}}^{\ell}[\Gamma]\right)\right\}\)
    while (R11=0) \(\left\{n_{\ell}\right\}\)
    while (R11=0) \(\left\{n_{\ell}\right\}\)
25: \(\quad\left\{\Gamma \in \Gamma \wedge \operatorname{r1R11} n_{n_{\ell}}^{\ell}[\Gamma]\right\}\)
25: \(\quad\left\{\Gamma \in \Gamma \wedge \operatorname{r1R11} n_{n_{\ell}}^{\ell}[\Gamma]\right\}\)
        w[] latch1 0
        w[] latch1 0
26: \(\quad\left\{\Gamma \in \Gamma \wedge \operatorname{rlR11} n_{n_{\ell}}^{\ell}[\Gamma]\right\}\)
26: \(\quad\left\{\Gamma \in \Gamma \wedge \operatorname{rlR11} n_{n_{\ell}}^{\ell}[\Gamma]\right\}\)
        r[] Rf1 flag1 \(\left\{\sim F 1^{\ell}\right\}\)
        r[] Rf1 flag1 \(\left\{\sim F 1^{\ell}\right\}\)
27: \(\quad\left\{\Gamma \in \Gamma \wedge \mathrm{r} 1 \mathrm{Rl} 11_{n_{\ell}}^{\ell}[\Gamma] \wedge \mathrm{Rf} 1=F 1^{\ell}\right.\)
27: \(\quad\left\{\Gamma \in \Gamma \wedge \mathrm{r} 1 \mathrm{Rl} 11_{n_{\ell}}^{\ell}[\Gamma] \wedge \mathrm{Rf} 1=F 1^{\ell}\right.\)
                            \(\left.\wedge\left(\operatorname{r0Rf} 1^{\ell}[\Gamma] \vee \operatorname{r1Rf} 1^{\ell}[\Gamma]\right)\right\}\)
                            \(\left.\wedge\left(\operatorname{r0Rf} 1^{\ell}[\Gamma] \vee \operatorname{r1Rf} 1^{\ell}[\Gamma]\right)\right\}\)
        if ( \(\operatorname{Rf} 1 \neq 0\) ) then
        if ( \(\operatorname{Rf} 1 \neq 0\) ) then
28: \(\quad\left\{\Gamma \in \Gamma \wedge \mathrm{r} 1 \mathrm{Rl} 1_{n_{\ell}}^{\ell}[\Gamma] \wedge \mathrm{r} 1 \operatorname{Rf} 1^{\ell}[\Gamma]\right\}\)
28: \(\quad\left\{\Gamma \in \Gamma \wedge \mathrm{r} 1 \mathrm{Rl} 1_{n_{\ell}}^{\ell}[\Gamma] \wedge \mathrm{r} 1 \operatorname{Rf} 1^{\ell}[\Gamma]\right\}\)
    (* critical section *)
    (* critical section *)
        w[] flag1 0
        w[] flag1 0
29: \(\quad\left\{\Gamma \in \Gamma \wedge \operatorname{r1R11} 1_{n_{\ell}}^{\ell}[\Gamma] \wedge \operatorname{r1Rf} 1^{\ell}[\Gamma]\right\}\)
29: \(\quad\left\{\Gamma \in \Gamma \wedge \operatorname{r1R11} 1_{n_{\ell}}^{\ell}[\Gamma] \wedge \operatorname{r1Rf} 1^{\ell}[\Gamma]\right\}\)
        w[] flag0 1
        w[] flag0 1
30: \(\quad\left\{\Gamma \in \Gamma \wedge \operatorname{rlR1} 1_{n_{\ell}}^{\ell}[\Gamma] \wedge \operatorname{r1Rf} 1^{\ell}[\Gamma]\right\}\)
30: \(\quad\left\{\Gamma \in \Gamma \wedge \operatorname{rlR1} 1_{n_{\ell}}^{\ell}[\Gamma] \wedge \operatorname{r1Rf} 1^{\ell}[\Gamma]\right\}\)
        w[] latch0 1
        w[] latch0 1
31: \(\quad\left\{\Gamma \in \Gamma \wedge \operatorname{r1R11} 1_{n_{\ell}}^{\ell}[\Gamma] \wedge \operatorname{r1Rf} 1^{\ell}[\Gamma]\right\}\)
31: \(\quad\left\{\Gamma \in \Gamma \wedge \operatorname{r1R11} 1_{n_{\ell}}^{\ell}[\Gamma] \wedge \operatorname{r1Rf} 1^{\ell}[\Gamma]\right\}\)
        fi
        fi
32: \(\{\Gamma \in \Gamma\}\)
32: \(\{\Gamma \in \Gamma\}\)
    while true
    while true
33: \{false\}
```

```
33: \{false\}
```

```

\section*{Inductive invariant}


\section*{Inductive invariant}


\section*{Inductive invariant}
```

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }

```

```

21: $\{\Gamma \in \Gamma\}$
do $\{\ell\}$
22: $\{\Gamma \in \Gamma\}$
do $\left\{m_{\ell}\right\}$
23: $\quad\{\Gamma \in \Gamma\}$
r[] Rl1 latch1 $\left\{\sim L 1_{m_{\ell}}^{\ell}\right\}$
24: $\quad\left\{\Gamma \in \Gamma \wedge \mathrm{Rl1}=L 1_{m_{\ell}}^{\ell} \wedge\left(\mathrm{rORl1} 1_{m_{\ell}}^{\ell}[\Gamma] \vee \mathrm{r} 1 \mathrm{Rl1} 1_{m_{\ell}}^{\ell}[\Gamma]\right)\right\}$
while (Rl1=0) $\left\{n_{\ell}\right\}$
25: $\quad\left\{\Gamma \in \Gamma \wedge \mathrm{r} 1 \mathrm{Rl} 1_{n_{\ell}}^{\ell}[\Gamma]\right\}$
w[] latch1 0

```

\section*{Possible values of Pythia variables depending on communications}
\[
\begin{aligned}
& \operatorname{rORlo}_{j_{i}}^{i}[\Gamma] \triangleq\left(\mathfrak{r f}\left\langle L 0_{j_{i}}^{i},\langle 0:,-0\rangle\right\rangle \in \Gamma \wedge L 0_{j_{i}}^{i}=0\right) \vee\left(\exists i_{5} \in \mathbb{N} \cdot \mathfrak{r f}\left\langle L 0_{j_{i}}^{i},\left\langle 5:, i_{5}, 0\right\rangle\right\rangle \in \Gamma \wedge L 0_{j_{i}}^{i}=0\right) \\
& \operatorname{rlR10}_{j_{i}}^{i}[\Gamma] \triangleq\left(\exists \ell_{30} \in \mathbb{N} \cdot \mathfrak{r f}\left\langle L 0_{j_{i}}^{i},\left\langle 30:, \ell_{30}, 1\right\rangle\right\rangle \in \Gamma \wedge L 0_{j_{i}}^{i}=1\right)
\end{aligned}
\]
```

 w[J flago 0
 9: $\quad\left\{\Gamma \in \Gamma \wedge \mathrm{r} 1 \operatorname{Rl}_{10}^{i}[\Gamma] \wedge \operatorname{r1Rf}_{k_{i}}^{i}[\Gamma]\right\}$
w[] flag1 1
10: $\quad\left\{\Gamma \in \Gamma \wedge \operatorname{rlR10}_{k_{i}}^{i}[\Gamma] \wedge \operatorname{r1Rf}^{i}[\Gamma]\right\}$
w[] latch1 1
11: $\quad\left\{\Gamma \in \Gamma \wedge \operatorname{rlRlo}_{k_{i}}^{i}[\Gamma] \wedge \operatorname{r1Rf}^{i}[\Gamma]\right\}$
fi
12: $\{\Gamma \in \Gamma\}$
while true
13: \{false\}

```
w[] flag1 0
29: \(\quad\left\{\Gamma \in \Gamma \wedge \operatorname{rlR1} 1 n_{n_{\ell}}^{\ell}[\Gamma] \wedge \operatorname{r1Rf} 1^{\ell}[\Gamma]\right\}\)
w[] flag0 1
\(\left\{\Gamma \in \Gamma \wedge \operatorname{r1R11} 1_{n_{\ell}}^{\ell}[\Gamma] \wedge \operatorname{rlRf}^{\ell}[\Gamma]\right\}\)
w[] latch0 1
31: \(\quad\left\{\Gamma \in \Gamma \wedge \operatorname{rlR1} 1_{n_{\ell}}^{\ell}[\Gamma] \wedge \operatorname{rrRf}^{\ell}[\Gamma]\right\}\)
fi
32: \(\{\Gamma \in \Gamma\}\)
while true
33: \{false\}

\section*{Communicated values}

\[
\begin{aligned}
& \mathfrak{r 0 R 1 0} 0_{j_{i}}^{i}[\Gamma] \triangleq\left(\mathfrak{r f}\left\langle L 0_{j_{i}}^{i},\langle 0:, \quad, \quad 0\rangle\right\rangle \in \Gamma \wedge L 0_{j_{i}}^{i}=0\right) \vee\left(\exists i_{5} \in \mathbb{N} . \mathfrak{r f}\left\langle L 0_{j_{i}}^{i},\left\langle 5:, i_{5}, 0\right\rangle\right\rangle \in \Gamma \wedge L 0_{j_{i}}^{i}=0\right) \\
& \mathrm{r} 1 \mathrm{RlO}_{j_{i}}^{i}[\Gamma] \triangleq\left(\exists \ell_{30} \in \mathbb{N} . \operatorname{rf}\left\langle L 0_{j_{i}}^{i},\left\langle 30:, \ell_{30}, 1\right\rangle\right\rangle \in \Gamma \wedge L 0_{j_{i}}^{i}=1\right) \\
& \operatorname{r0Rf} 0^{i}[\Gamma] \triangleq\left(\mathfrak{r f}\left\langle F 0^{i},\langle 0:,-, 0\rangle\right\rangle \in \Gamma \wedge F 0^{i}=0\right) \vee\left(\exists i_{8} \in \mathbb{N} . \mathfrak{r f}\left\langle F 0^{i},\left\langle 8:, i_{8}, 0\right\rangle\right\rangle \in \Gamma \wedge F 0^{i}=0\right) \\
& \operatorname{r1Rf} 0^{i}[\Gamma] \triangleq\left(\exists \ell_{29} \in \mathbb{N} . \operatorname{rf}\left\langle F 0^{i},\left\langle 29:, \ell_{29}, 1\right\rangle\right\rangle \in \Gamma \wedge F 0^{i}=1\right) \\
& \operatorname{rOR11} 1_{m_{\ell}}^{\ell}[\Gamma] \triangleq\left(\exists \ell_{25} \in \mathbb{N} . \operatorname{rf}\left\langle L 1_{m_{\ell}}^{\ell},\left\langle 25:, \ell_{25}, 0\right\rangle\right\rangle \in \Gamma \wedge L 1_{m_{\ell}}^{\ell}=0\right) \\
& \mathfrak{r 1 R 1 1}{m_{\ell}}_{\ell}^{\ell}[\Gamma] \triangleq\left(\mathfrak{r f}\left\langle L 1_{m_{\ell}}^{\ell},\langle 0:, \quad, 1\rangle\right\rangle \in \Gamma \wedge L 1_{m_{\ell}}^{\ell}=1\right) \vee\left(\exists i_{10} \in \mathbb{N} \cdot \mathfrak{r f}\left\langle L 1_{m_{\ell}}^{\ell},\left\langle 10:, i_{10}, 1\right\rangle\right\rangle \in \Gamma \wedge L 1_{m_{\ell}}^{\ell}=1\right) \\
& \operatorname{r0Rf} 1^{\ell}[\Gamma] \triangleq\left(\exists m_{28} \in \mathbb{N} . \mathfrak{r f}\left\langle F 1^{\ell},\left\langle 28:, m_{28}, 0\right\rangle\right\rangle \in \Gamma \wedge F 1^{\ell}=0\right) \\
& \operatorname{rlRf}^{\ell}[\Gamma] \triangleq\left(\mathfrak{r f}\left\langle F 1^{\ell},\langle 0:,-1\rangle\right\rangle \in \Gamma \wedge F 1^{\ell}=1\right) \vee\left(\exists i_{9} \in \mathbb{N} . \operatorname{rf}\left\langle F 1^{\ell},\left\langle 9:, i_{9}, 1\right\rangle\right\rangle \in \Gamma \wedge F 1^{\ell}=1\right)
\end{aligned}
\]

\section*{Communication specification}


\section*{Calculational design of the communication specification}
\[
\begin{aligned}
& \left(\neg S_{\text {inv }}(\Gamma, \Gamma)\right) \wedge S_{\text {ind }}(\Gamma, Г) \\
& \triangleq \quad \text { at }\{8\} \wedge \text { at }\{28\} \wedge S_{\text {ind }}(\Gamma, \Gamma) \quad \text { 2def. invariance specification } S_{\text {inv }} S \\
& \Rightarrow \quad \text { at }\{8\} \wedge \text { at }\{28\} \wedge\left(\exists i, k_{i}, \ell, n_{\ell} \in \mathbb{N} . \Gamma \in \Gamma \wedge \operatorname{rlRlo}_{k_{i}}^{i}[\Gamma] \wedge\right. \\
& \left.\operatorname{rlRf} 0^{i}[\Gamma] \wedge \operatorname{rlR11}_{n_{\ell}}^{\ell}[\Gamma] \wedge \operatorname{rlRf}^{\ell}[\Gamma]\right) \quad \text { bby invariant } S_{\text {ind }}(\Gamma, \Gamma) S \\
& \Rightarrow \quad \operatorname{at}\{8\} \wedge \text { at }\{28\} \wedge\left(\exists i, k_{i}, \ell, n_{\ell}, \ell_{30}, \ell_{29} \in \mathbb{N} . \Gamma \in \Gamma \wedge\left(\mathfrak { r f } \left\langleL 0_{k_{i}}^{i},\right.\right.\right. \\
& \left.\left.\left\langle 30:, \ell_{30}, 1\right\rangle\right\rangle \in \Gamma\right) \wedge\left(\mathfrak{r f}\left\langle F 0^{i},\left\langle 29:, \ell_{29}, 1\right\rangle\right\rangle \in \Gamma\right) \wedge\left(\mathfrak { r f } \left\langleL 1_{n_{\ell}}^{\ell},\right.\right. \\
& \left.\langle 0:,-1\rangle\rangle \in \Gamma) \wedge\left(\mathfrak{r f}\left\langle F 1^{\ell},\langle 0:,-, 1\rangle\right\rangle \in \Gamma\right)\right) \vee \\
& \left(\exists i, k_{i}, \ell, n_{\ell}, \ell_{30}, \ell_{29}, i_{9} \in \mathbb{N} . \Gamma \in \Gamma \wedge\left(\mathfrak { r f } \left\langleL 0_{k_{i}}^{i},\left\langle 30:, \ell_{30},\right.\right.\right.\right. \\
& 1\rangle\rangle \in \Gamma) \wedge\left(\mathfrak{r f}\left\langle F 0^{i},\left\langle 29:, \ell_{29}, 1\right\rangle\right\rangle \in \Gamma\right) \wedge\left(\mathfrak { r f } \left\langleL 1_{n_{\ell}}^{\ell},\langle 0:,-,\right.\right. \\
& \left.1\rangle\rangle \in \Gamma) \wedge\left(\mathfrak{r f}\left\langle F 1^{\ell},\left\langle 9:, i_{9}, 1\right\rangle\right\rangle \in \Gamma\right)\right) \vee \\
& \left(\exists i, k_{i}, \ell, n_{\ell}, \ell_{30}, \ell_{29}, i_{10} \in \mathbb{N} . \Gamma \in \Gamma \wedge\left(\mathfrak { r f } \left\langleL 0_{k_{i}}^{i},\left\langle 30:, \ell_{30}\right. \text {, }\right.\right.\right. \\
& 1\rangle\rangle \in \Gamma) \wedge\left(\mathfrak{r f}\left\langle F 0^{i},\left\langle 29:, \ell_{29}, 1\right\rangle\right\rangle \in \Gamma\right) \wedge\left(\mathfrak { r f } \left\langleL 1_{n_{\ell}}^{\ell},\left\langle 10:, i_{10},\right.\right.\right. \\
& \text { 1 } \left.\rangle\rangle \in \Gamma) \wedge\left(\mathfrak{r f}\left\langle F 1^{\ell},\langle 0:,-, 1\rangle\right\rangle \in \Gamma\right)\right) \vee \\
& \left(\exists i, k_{i}, \ell, n_{\ell}, \ell_{30}, \ell_{29}, i_{10}, i_{9} \in \mathbb{N} . \Gamma \in \Gamma \wedge\left(\mathfrak { r f } \left\langleL 0_{k_{i}}^{i},\left\langle 30:, \ell_{30}\right. \text {, }\right.\right.\right. \\
& 1\rangle\rangle \in \Gamma) \wedge\left(\mathfrak{r f}\left\langle F 0^{i},\left\langle 29:, \ell_{29}, 1\right\rangle\right\rangle \in \Gamma\right) \wedge\left(\mathfrak { r f } \left\langleL 1_{n_{\ell}}^{\ell},\left\langle 10:, i_{10},\right.\right.\right. \\
& \left.1\rangle\rangle \in \Gamma) \wedge\left(\mathfrak{r f}\left\langle F 1^{\ell},\left\langle 9:, i_{9}, 1\right\rangle\right\rangle \in \Gamma\right)\right) \\
& \text { 2def. } \mathrm{rlR10} 0_{k_{i}}^{i}[\Gamma], \mathrm{rlRf} 0^{i}[\Gamma], \mathrm{r} 1 \mathrm{Rl1} 1_{n_{\ell}}^{\ell}[\Gamma] \text {, and } \operatorname{r1Rf} 1^{\ell}[\Gamma], \mathfrak{r f}\left\langle x_{\theta}\right. \text {, } \\
& \left.\left\langle\ell:, \theta^{\prime}, v\right\rangle\right\rangle \text { implies that } x_{\theta}=v, A \wedge(B \vee C)=(A \wedge B) \vee \\
& (A \wedge C), \exists \text { distributes over } \vee \text {, and }(\exists x \cdot A(x)) \wedge B=\exists x \text {. } \\
& (A(x) \wedge B) \text { when } x \text { is not free in } B \rho \\
& \Rightarrow \quad \operatorname{at}\{8\} \wedge \text { at }\{28\} \wedge\left(\neg S_{\text {com }_{1}}(\Gamma, \Gamma) \vee \neg S_{\text {com }_{2}}(\Gamma, \Gamma) \vee \neg S_{\text {com }_{3}}(\Gamma, \Gamma) \vee\right. \\
& \left.\neg S_{\text {com }_{4}}(\Gamma, \Gamma)\right) \\
& \Rightarrow \quad \neg S_{\text {com }}(Г, Г)
\end{aligned}
\]

\section*{Calculational design of the communication specification}
- where
\[
S_{\text {com }}(\Gamma, \bar{\Gamma}) \triangleq(\operatorname{at}\{8\} \wedge \operatorname{at}\{28\}) \Longrightarrow\left(S_{\text {com }}(\Gamma, \bar{\Gamma}) \wedge S_{\text {com }}(\Gamma, \bar{\Gamma}) \wedge S_{\text {com }}(\Gamma, \bar{\Gamma}) \wedge S_{\text {com }}(\Gamma, \bar{\Gamma})\right)
\]
\[
\begin{aligned}
& S_{c_{c o m}^{1}} \triangleq \neg\left(\exists i, k_{i}, \ell, n_{\ell}, \ell_{30}, \ell_{29} \in \mathbb{N} . \Gamma \in \Gamma \wedge \mathfrak{r f}\left\langle L 0_{k_{i}}^{i},\langle 30:,\right.\right. \\
&\left.\left.\ell_{30}, 1\right\rangle\right\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle F 0^{i},\left\langle 29:, \ell_{29}, 1\right\rangle\right\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle L 1_{n_{\ell}}^{\ell},\right. \\
&\langle 0:,-1\rangle\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle F 1^{\ell},\langle 0:,-1\rangle\right\rangle \in \Gamma \\
& S_{c_{c o m}^{2}} \triangleq \neg \neg\left(\exists i, k_{i}, \ell, n_{\ell}, \ell_{30}, \ell_{29}, i_{9} \in \mathbb{N} . \Gamma \in \Gamma \wedge \mathfrak{r f}\left\langle L 0_{k_{i}}^{i},\langle 30:,\right.\right. \\
&\left.\left.\ell_{30}, 1\right\rangle\right\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle F 0^{i},\left\langle 29:, \ell_{29}, 1\right\rangle\right\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle L 1_{n_{\ell}}^{\ell},\right. \\
&\langle 0:,-1\rangle\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle F 1^{\ell},\left\langle 9:, i_{9}, 1\right\rangle\right\rangle \in \Gamma \\
& S_{c o m_{3}} \triangleq \neg\left(\exists i, k_{i}, \ell, n_{\ell}, \ell_{30}, \ell_{29}, i_{10} \in \mathbb{N} . \Gamma \in \Gamma \wedge \mathfrak{r f}\left\langle L 0_{k_{i}}^{i},\langle 30:,\right.\right. \\
&\left.\left.\ell_{30}, 1\right\rangle\right\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle F 0^{i},\left\langle 29:, \ell_{29}, 1\right\rangle\right\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle L 1_{n_{\ell}}^{\ell},\right. \\
&\left.\left\langle 10:, i_{10}, 1\right\rangle\right\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle F 1^{\ell},\langle 0:,-1\rangle\right\rangle \in \Gamma \\
& S_{c_{c o m_{4}} \triangleq} \triangleq \neg\left(\exists i, k_{i}, \ell, n_{\ell}, \ell_{30}, \ell_{29}, i_{10}, i_{9} \in \mathbb{N} . \Gamma \in \Gamma \wedge \mathfrak{r f}\left\langle L 0_{k_{i}}^{i},\right.\right. \\
&\left.\left\langle 30:, \ell_{30}, 1\right\rangle\right\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle F 0^{i},\left\langle 29:, \ell_{29}, 1\right\rangle\right\rangle \in \Gamma \wedge \\
& \mathfrak{r f}\left\langle L 1_{n_{\ell},}^{\ell},\left\langle 10:, i_{10}, 1\right\rangle\right\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle F 1^{\ell},\left\langle 9:, i_{9}, 1\right\rangle\right\rangle \in \Gamma
\end{aligned}
\]
- This proves \(S_{\text {com }}\) sufficient for correctness
- Counter-examples prove \(S_{c o m}\) necessary \(\Rightarrow S_{c o m}\) is the weakest WCM requirement for correctness

\section*{Example of counter-example to \(S_{\mathrm{com}_{I}}\)}


\section*{Proof of mutual exclusion}
- \(S_{c o m}\) implies mutual exclusion (for any \(\Gamma\) )
\[
\begin{aligned}
& \left(\neg S_{\text {inv }}(\Gamma, \Gamma) \wedge S_{\text {ind }}(\Gamma, \Gamma)\right) \Longrightarrow \neg\left(S_{\text {com }}(\Gamma, \Gamma)\right) \\
\Longrightarrow & S_{\text {com }}(\Gamma, \Gamma) \Longrightarrow\left(S_{\text {inv }}(\Gamma, \Gamma) \vee \neg S_{\text {ind }}(\Gamma, \Gamma)\right) \text { 2contraposition } S \\
\Longrightarrow & S_{\text {com }}(\Gamma, \Gamma) \Longrightarrow\left(S_{\text {ind }}(\Gamma, \Gamma) \Longrightarrow S_{\text {inv }}(\Gamma, \Gamma)\right) \quad \text { 2mplication } S \\
\Longrightarrow & \left(S_{\text {com }}(\Gamma, \Gamma) \wedge S_{\text {ind }}(\Gamma, \Gamma)\right) \Longrightarrow S_{\text {inv }}(\Gamma, \Gamma) \quad \text { 2implication } S \\
\Longrightarrow & S_{\text {com }}(\Gamma, \bar{\Gamma}) \Rightarrow S_{\text {inv }}(\Gamma, \bar{\Gamma}) \quad \text { (since } S_{\text {com }}(\Gamma, \bar{\Gamma}) \Rightarrow S_{\text {ind }}(\Gamma, \bar{\Gamma}) S
\end{aligned}
\]

\section*{Conditional invariance}

\section*{proof}


\section*{Sequential proof \(\ell=\kappa\) and \(p=q\)}
```

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
1: {\Gamma\in\Gamma}
|21:{\Gamma\in\Gamma}

```

```

 if (Rf0\not=0) then
    ```

```

 (* critical section *)
 w[] flag0 0
 9: }\quad{\Gamma\in\Gamma\wedge\mp@subsup{\textrm{rlRlO}}{\mp@subsup{k}{i}{}}{i}[\Gamma]\wedge\mp@subsup{\operatorname{r1Rf0}}{}{i}[\Gamma]
w[] flag1 1

```

```

 w[] latch1 1
    ```

```

 fi
 12: {\Gamma\in\Gamma}
while true
13:{false}
For a read instruction $\kappa: \mathrm{r}[t s] \mathrm{R} \times \kappa^{\prime}$:
$\mathrm{PRE}_{p, r}^{\ell, \kappa}\left[\theta_{r}, \rho_{r}, \nu_{r}, \mathrm{rf}\right] \wedge r f\left[\mathfrak{w}\left(\left\langle q, \ell^{\prime}, \mathrm{w}[t s] \mathrm{x} r\right.\right.\right.$-value,$\left.\left.\theta^{\prime}\right\rangle, v\right)$, $\left.\mathfrak{r}\left(\left\langle r, \ell, \mathrm{r}[t s] \mathrm{Rx}, \theta_{r}\right\rangle, \mathrm{x}_{\theta_{r}}\right)\right] \in \mathrm{rf}$
$\Rightarrow \operatorname{POST}_{p, r}^{\ell, \kappa^{\prime}}\left[\rho_{r} \leftarrow \rho_{r}\left[\mathrm{R}:=\mathrm{x}_{\theta_{r}}\right], \nu_{r} \leftarrow \nu_{r}\left[\mathrm{x}_{\theta_{r}}:=v\right]\right]$ while (R10=0)

```



```

```
    w[] latch1 0
```

```
```

```
    w[] latch1 0
```

```


```

```
    r[] Rf1 flag1 {~ F1 
```

```
    r[] Rf1 flag1 {~ F1 
27: {\Gamma\in\Gamma\wedge r1R111秃 [\Gamma]^Rf1 = F1 
27: {\Gamma\in\Gamma\wedge r1R111秃 [\Gamma]^Rf1 = F1 
                                    \wedge(r0Rf1 [ [ ] \vee r1Rf1 [ [ ] )}
                                    \wedge(r0Rf1 [ [ ] \vee r1Rf1 [ [ ] )}
    if (Rf1\not=0) then
```

 if (Rf1\not=0) then
    ```
```

28:}\quad{\Gamma\in\Gamma\wedge\operatorname{rlRl1}\mp@subsup{1}{\mp@subsup{n}{\ell}{\prime}}{\ell}[\Gamma]\wedge\operatorname{rrRf}\mp@subsup{1}{}{\ell}[\Gamma]

```
28:}\quad{\Gamma\in\Gamma\wedge\operatorname{rlRl1}\mp@subsup{1}{\mp@subsup{n}{\ell}{\prime}}{\ell}[\Gamma]\wedge\operatorname{rrRf}\mp@subsup{1}{}{\ell}[\Gamma]
    (* critical section *)
    (* critical section *)
    w[] flag1 0
```

 w[] flag1 0
    ```


```

 w[] flag0 1
    ```
    w[] flag0 1
30: {}\quad{\Gamma\in\Gamma\wedge\textrm{rlRl1}\mp@subsup{1}{\mp@subsup{n}{\ell}{\prime}}{\ell}[\Gamma]\wedge\operatorname{rrRf}1\ell[\Gamma]
30: {}\quad{\Gamma\in\Gamma\wedge\textrm{rlRl1}\mp@subsup{1}{\mp@subsup{n}{\ell}{\prime}}{\ell}[\Gamma]\wedge\operatorname{rrRf}1\ell[\Gamma]
    w[] latch0 1
    w[] latch0 1
31:}\quad{\Gamma\in\Gamma\wedge\operatorname{rlR11}\mp@subsup{n}{\mp@subsup{n}{\ell}{\prime}}{\ell}[\Gamma]\wedge\operatorname{rlRf1}1\ell[\Gamma]
31:}\quad{\Gamma\in\Gamma\wedge\operatorname{rlR11}\mp@subsup{n}{\mp@subsup{n}{\ell}{\prime}}{\ell}[\Gamma]\wedge\operatorname{rlRf1}1\ell[\Gamma]
    fi
    fi
32: {\Gamma\in\Gamma}
32: {\Gamma\in\Gamma}
    while true
    while true
33:{false}
```

33:{false}

```

\section*{Sequential proof \(\ell=\kappa\) and \(p=q\)}
```

{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; }
3: }\quad{\Gamma\in\Gamma
r[] RlO lat
{\Gamma\in\Gamma\wedgeR1Q
while (RlO=0)
{\Gamma\in\Gamma ^ r1R10
w[] latch0 0
For a test instruction }\kappa:\textrm{b}[ts]\mathrm{ operation l}\mp@subsup{l}{t}{\prime}\mp@subsup{\kappa}{}{\prime}
PRE
PRE

```

```

 r[] Rf0 flag0 {~ F0'}
 26: {\Gamma\in\Gamma^r1R11傽 [\Gamma]}
r[] Rf1 flag1 {~ F1 }
7: {\Gamma\in\Gamma\wedge \1R10}\mp@subsup{k}{i}{i}[\Gamma]\wedgeRf0=F\mp@subsup{0}{}{i
\wedge(r0Rf0}[\mp@code{i \]\vee r1Rf0}\mp@subsup{}{}{i}[\Gamma])

 if (Rf0\not=0) then
 {\Gamma\in\Gamma\wedger1R10}\mp@subsup{0}{\mp@subsup{k}{i}{}}{i}[\Gamma]\wedge\operatorname{r1Rf0}\mp@subsup{|}{}{i}[\Gamma]
 (* critical section *)
 w[] flag0 0
 9: }\quad{\Gamma\in\Gamma\wedge\operatorname{rlRlo}\mp@subsup{|}{i}{i}[\Gamma]\wedge\operatorname{r1Rf0}\mp@subsup{0}{}{i}[\Gamma]
w[] flag1 1

```

```

 w[] latch1 1
 11: }\quad{\Gamma\in\Gamma\wedge r1R10 ikil [\Gamma]^\operatorname{r1Rf0}\mp@subsup{0}{}{i}[\Gamma]
fi
12: {\Gamma\in\Gamma}
while true
13:{false}

```
```

1: {\Gamma 价 (%)

```
```

1: {\Gamma 价 (%)

```
                                    (test)

\section*{Sequential proof \(\ell=\kappa\) and \(p=q\)}
\{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; \}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
1: & \{\Gamma \in \Gamma\} \\
& \text { do }\{i\}
\end{aligned}
\] & \[
\begin{aligned}
21: & \{\Gamma \in \Gamma\} \\
& \text { do }\{\ell\}
\end{aligned}
\] \\
\hline 2: \(\quad\{\Gamma \in \Gamma\}\) & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { do }\{\ell\} \\
& \text { 22: }\{\Gamma \in \Gamma\} \\
& \text { do }\left\{m_{\ell}\right\}
\end{aligned}
\]} \\
\hline do \(\left\{j_{i}\right\}\) & \\
\hline 3: \(\quad\{\Gamma \in \Gamma\}\) & 23: \(\quad\{\Gamma \in \Gamma\}\) \\
\hline r [] Rl0 latch0 \(\left\{\sim L 0_{j_{i}}^{i}\right\}\) & r[] Rl1 latch1 \(\left\{\sim L 1_{m_{\ell}}^{\ell}\right\}\) \\
\hline  &  \\
\hline \multicolumn{2}{|l|}{For local side-effect free marker instructions \(\kappa\) : instr \(\kappa^{\prime}\)} \\
\hline 5: \(\begin{aligned} & \{\Gamma \in \Gamma \wedge \mathrm{r} 1 \mathrm{R10} \\ & \mathrm{w}[] \text { latch0 } 0\end{aligned} \quad\) Where instr \(=\mathbf{f}[t s]\) & \(\left.\left\{l_{1}^{0} \ldots l_{1}^{m}\right\}\left\{l_{2}^{0} \ldots l_{2}^{q}\right\}\right], \mathrm{w}[t s] \mathrm{x} r\)-value , \\
\hline \multicolumn{2}{|l|}{\[
\mathrm{r}[] \operatorname{Rf0} \text { flagd } \quad \mathrm{PRE}_{p, r}^{\ell, \kappa} \Rightarrow \mathrm{POST}_{p, r}^{\ell, \kappa^{\prime}}
\]} \\
\hline 7: \(\begin{aligned} \quad\left\{\Gamma \in \Gamma \wedge \mathrm{rlR10} k_{\left.k^{1}\right]}\right. & \wedge\left(\mathrm{rORf}^{i}[\Gamma] \vee \mathrm{rl}\right. \\ & \left.\left.\text { if }(\operatorname{Rf} 0 \neq 0) \text { then } 0^{i}[\Gamma]\right)\right\}\end{aligned}\) &  \\
\hline 8: \(\quad\)\begin{tabular}{l}
\(\left\{\Gamma \in \Gamma \wedge \operatorname{r1R10} 0_{k_{i}}^{i}[\Gamma] \wedge \mathrm{rlRf}^{i}[\Gamma]\right\}\) \\
\((*\) critical section \(*)\) \\
w[] flag0 0
\end{tabular} & ```
28: }\quad{\Gamma\in\Gamma\wedge\operatorname{rlRl1}\mp@subsup{n}{\mp@subsup{n}{\ell}{\prime}}{\ell}[\Gamma]\wedge\operatorname{rlRf}1\ell[\Gamma]
    (* critical section *)
w[] flag1 0
``` \\
\hline & \begin{tabular}{l}
29: \(\quad\left\{\Gamma \in \Gamma \wedge \mathrm{rlR11} 1_{n_{\ell}}[\Gamma] \wedge \operatorname{r1Rf} 1^{\ell}[\Gamma]\right\}\) \\
w[] flag0 1
\end{tabular} \\
\hline \begin{tabular}{l}
10: \(\quad\left\{\Gamma \in \Gamma \wedge \mathrm{r} 1 \mathrm{Rl}_{k_{i}}^{i}[\Gamma] \wedge \mathrm{rrRf}^{i}[\Gamma]\right\}\) \\
w[] latch1 1
\end{tabular} & \begin{tabular}{l}
30: \(\quad\left\{\Gamma \in \Gamma \wedge \operatorname{r1R11} 1_{n_{\ell}}^{\ell}[\Gamma] \wedge \operatorname{rlRf}^{\ell}[\Gamma]\right\}\) \\
w[] latch0 1
\end{tabular} \\
\hline 11: \(\quad\left\{\Gamma \in \Gamma \wedge \mathrm{rlRlo}^{\text {d }} 0_{k_{i}}^{i}[\Gamma] \wedge \operatorname{rlRf}^{i}[\Gamma]\right\}\) & \multirow[t]{2}{*}{31: \({ }_{\text {fi }}\left\{\Gamma \in \Gamma \wedge \operatorname{rlR11} 1_{n_{\ell}}^{\ell}[\Gamma] \wedge \operatorname{rlRf} 1^{\ell}[\Gamma]\right\}\)} \\
\hline fi & \\
\hline 12: \(\{\Gamma \in \Gamma\}\) & \multirow[t]{2}{*}{32: \(\quad\{\Gamma \in \Gamma\}\) while true} \\
\hline while true & \\
\hline 13: \{false\} & 33: \(\{\) false \(\}\) \\
\hline
\end{tabular}

\section*{Non-interference proof}
```

\{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; \}

```

```

        w[] latch0 0
        if ( \(\mathrm{Rf} 0 \neq 0\) ) then
        \(\left\{\Gamma \in \Gamma \wedge \operatorname{r1R10} 0_{k_{i}}^{i}[\Gamma] \wedge \operatorname{rlRf}^{i}[\Gamma]\right\}\)
        (* critical section *)
        w[] flag0 0
    9: $\quad\left\{\Gamma \in \Gamma \wedge \mathrm{rlRlO}_{k_{i}}^{i}[\Gamma] \wedge \operatorname{r1Rf}^{i}[\Gamma]\right\}$
w[] flag1 1
10: $\quad\left\{\Gamma \in \Gamma \wedge \mathrm{rlRlo}_{k_{i}}^{i}[\Gamma] \wedge \mathrm{rlRf}^{i}[\Gamma]\right\}$
w[] latch1 1
11: $\quad\left\{\Gamma \in \Gamma \wedge \operatorname{rrR1O}_{k_{i}}^{i}[\Gamma] \wedge \operatorname{r1Rf}^{i}[\Gamma]\right\}$
fi
12: $\{\Gamma \in \Gamma\}$
while true
13: \{false\}

```
26: {\Gamma\in\Gamma^\operatorname{rlR11}\mp@subsup{n}{\ell}{\ell}[\Gamma]}
```

26: {\Gamma\in\Gamma^\operatorname{rlR11}\mp@subsup{n}{\ell}{\ell}[\Gamma]}
r[] Rf1 flag1 {~F1 F1 }
r[] Rf1 flag1 {~F1 F1 }
27: {\Gamma\in\Gamma\wedge r1R111稆 [\Gamma]^Rf1 = F1
27: {\Gamma\in\Gamma\wedge r1R111稆 [\Gamma]^Rf1 = F1
\wedge(r0Rf1\ell[\Gamma]\vee r1Rf1\ell [\Gamma])}
\wedge(r0Rf1\ell[\Gamma]\vee r1Rf1\ell [\Gamma])}
if (Rf1\not=0) then
if (Rf1\not=0) then
28: {}\quad{\Gamma\in\Gamma\wedge\textrm{rlR11}\mp@subsup{1}{\mp@subsup{n}{\ell}{\prime}}{\ell}[\Gamma]\wedge\operatorname{rrRf}1\ell[\Gamma]
28: {}\quad{\Gamma\in\Gamma\wedge\textrm{rlR11}\mp@subsup{1}{\mp@subsup{n}{\ell}{\prime}}{\ell}[\Gamma]\wedge\operatorname{rrRf}1\ell[\Gamma]
(* critical section *)
(* critical section *)
w[] flag1 0

```
```

    w[] flag1 0
    ```
```




```
```

    w[] flag0 1
    ```
```

```
```

    w[] flag0 1
    ```
```




```
```

    w[] latch0 1
    ```
```

    w[] latch0 1
    31: }\quad{\Gamma\in\Gamma\wedge\operatorname{rlR11}\mp@subsup{n}{\ell}{\ell}[\Gamma]\wedge\operatorname{rrRf}1\ell[\Gamma]
31: }\quad{\Gamma\in\Gamma\wedge\operatorname{rlR11}\mp@subsup{n}{\ell}{\ell}[\Gamma]\wedge\operatorname{rrRf}1\ell[\Gamma]
fi
fi
32: {\Gamma\in\Gamma}
32: {\Gamma\in\Gamma}
while true
while true
33:{false}

```
```

33:{false}

```
```


## Communication proof



## Communication proof



## Communication proof



## Inclusion proof



## Method

- The communication specification is
$S_{\text {com }}(\Gamma, \bar{\Gamma}) \triangleq(\operatorname{at}\{8\} \wedge \operatorname{at}\{28\}) \Longrightarrow\left(S_{\text {com }}(\Gamma, \bar{\Gamma}) \wedge S_{\text {com }}(\Gamma, \bar{\Gamma}) \wedge S_{\text {com }}^{3}(\Gamma, \bar{\Gamma}) \wedge S_{\text {com }}(\Gamma, \bar{\Gamma})\right)$
- The consistency specification must satisfy

$$
H_{c o m}(\Gamma, \bar{\Gamma}) \Rightarrow S_{c o m}(\Gamma, \bar{\Gamma}) \quad \text { i.e. } \quad \neg S_{c o m}(\Gamma, \bar{\Gamma}) \Rightarrow \neg H_{c o m}(\Gamma, \bar{\Gamma})
$$

- So the design of $H_{\text {com }}(\Gamma, \bar{\Gamma})$ must forbid the erroneous communications specified by the communication specification

$$
\left(\operatorname{at}\{8\} \wedge \operatorname{at}\{28\} \wedge \bigvee_{i=1}^{4} \neg S_{\mathrm{com}}^{i}(~(\Gamma, \bar{\Gamma})) \Longrightarrow \bigvee_{i=1}^{4} \neg H_{\mathrm{com}}(\Gamma, \bar{\Gamma})\right.
$$

```
\[
S_{c o m_{1}} \triangleq \neg\left(\exists i, k_{i}, \ell, n_{\ell}, \ell_{30}, \ell_{29} \in \mathbb{N} . \Gamma \in \Gamma \wedge \mathfrak{r f}\left\langle L 0_{k_{i}}^{i},\langle 30:\right.\right.
\]
\[
\left.\left.\ell_{30}, 1\right\rangle\right\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle F 0^{i},\left\langle 29:, \ell_{29}, 1\right\rangle\right\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle L 1_{n_{\ell}}^{\ell},\right.
\]
\[
\langle 0:,-, 1\rangle\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle F 1^{\ell},\langle 0:,-, 1\rangle\right\rangle \in \Gamma
\]
\{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; \}
1: do \(\{i\}\)
2: do \(\left\{j_{i}\right\}\)
3: \(\quad \mathrm{r}[]\) Rl0 latch0 \(\left\{\underset{\sim}{\sim} L 0_{j_{i}}^{i}\right\}\)
4: while (RIO=0) \(\left\{k_{i}\right\}\)
5: w[] latch0 0
6: r[] RfO flag0 \(\left\{\leadsto F 0^{i}\right\}\)
7: if (\(\mathrm{Rf} 0 \neq 0\)) then
-- 8:----- - (*-critical-section *) w[] flago 0
9: w[] flag1 1
10: w[] latch1 1
11: fi
12:while true
13:
```


no prophecy beyond cut during execution

$S_{\text {com }_{2}} \triangleq \neg\left(\exists i, k_{i}, \ell, n_{\ell}, \ell_{30}, \ell_{29}, i_{9} \in \mathbb{N} . \Gamma \in \Gamma \wedge \mathfrak{r f}\left\langle L 0_{k_{i}}^{i},\langle 30:\right.\right.$, $\left.\left.\ell_{30}, 1\right\rangle\right\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle F 0^{i},\left\langle 29:, \ell_{29}, 1\right\rangle\right\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle L 1_{n_{\ell}}^{\ell}\right.$, $\langle 0:,-1\rangle\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle F 1^{\ell},\left\langle 9:, i_{9}, 1\right\rangle\right\rangle \in \Gamma$
\{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; \}
1: do $\{i\}$
2: do $\left\{j_{i}\right\}$
3: $\quad \mathrm{r}\left[\mathrm{]}\right.$ R10 latch0 $\left\{\underset{\sim}{\omega} 0_{j_{i}}^{i}\right\}$
4: while (R10=0) $\left\{k_{i}\right\}$
24: while (Rl1=0) $\left\{n_{\ell}\right\}$
25: w[] latch1 0
26: $r[]$ Rf1 flag1 $\left\{\leadsto F 1^{\ell}\right\}$
27: if ( $\operatorname{Rf} 1 \neq 0$ ) then
28-- - - -(*- crítical- -section- *)- -----
w[] flag1 0
29: w[] flag0 1
30: w[] latch0 1
31: fi
32:while true
33:
no prophecy beyond cut during execution

$S_{\text {com }}^{3} \triangleq \neg\left(\exists i, k_{i}, \ell, n_{\ell}, \ell_{30}, \ell_{29}, i_{10} \in \mathbb{N} . \Gamma \in \Gamma \wedge \mathfrak{r f}\left\langle L 0_{k_{i}}^{i},\langle 30:\right.\right.$,

$$
\begin{aligned}
& \left.\left.\ell_{30}, 1\right\rangle\right\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle F 0^{i},\left\langle 29:, \ell_{29}, 1\right\rangle\right\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle L 1_{n_{\ell}}^{\ell},\right. \\
& \left.\left\langle 10:, i_{10}, 1\right\rangle\right\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle F 1^{\ell},\langle 0:,-1\rangle\right\rangle \in \Gamma
\end{aligned}
$$

\{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; \}
1: do $\{i\}$
2: do $\left\{j_{i}\right\}$
3: $\quad \mathrm{r}\left[\mathrm{]}\right.$ R10 latch0 $\left\{\underset{\sim}{\omega} 0_{j_{i}}^{i}\right\}$
4: while (R10=0) $\left\{k_{i}\right\}$
5: w[] latch0 0
6: r[] Rf0 flag0 $\left\{\leadsto F 0^{i}\right\}$
7: if ( $\mathrm{Rf} 0 \neq 0$ ) then
27: if ( $\mathrm{Rf} 1 \neq 0$ ) then

29:
30: w[] latch0 1
31: fi
32:while true
33:
no prophecy beyond cut during execution

$$
\begin{aligned}
S_{c o m_{4}} \triangleq & \neg\left(\exists i, k_{i}, \ell, n_{\ell}, \ell_{30}, \ell_{29}, i_{10}, i_{9} \in \mathbb{N} . \Gamma \in \Gamma \wedge \mathfrak{r f}\left\langle L 0_{k_{i}}^{i}\right.\right. \\
& \left.\left\langle 30:, \ell_{30}, 1\right\rangle\right\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle F 0^{i},\left\langle 29:, \ell_{29}, 1\right\rangle\right\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle L 1_{n_{\ell}}^{\ell}\right. \\
& \left.\left\langle 10:, i_{10}, 1\right\rangle\right\rangle \in \Gamma \wedge \mathfrak{r f}\left\langle F 1^{\ell},\left\langle 9:, i_{9}, 1\right\rangle\right\rangle \in \Gamma
\end{aligned}
$$

$$
\{0: \text { latch } 0=0 ; \text { flag } 0=0 ; \text { latch } 1=1 ; \text { flag } 1=1 ;\}
$$

1: do $\{i\}$
2: do $\left\{j_{i}\right\}$
3: $\quad \mathrm{r}[]$ Rl0 latch0 $\left\{\underset{\sim}{\sim} 0_{j_{i}}^{i}\right\}$
4: while (R10=0) $\left\{k_{i}\right\}$
5: w[] latch0 0
6: $\quad \mathrm{r}[] \operatorname{Rf0}$ flag0 $\left\{\rightsquigarrow F 0^{i}\right\}$
7: if ( $\mathrm{Rf} 0 \neq 0$ ) then

-     - 8:- - - - - (*- crit-ical
W[] flag0 0

9. 

10: w[] latch1 1
11: fi
12:while true
13:

21: do $\{\ell\}$
22: do $\left\{m_{\ell}\right\}$
23: $\quad \mathrm{r}[] \mathrm{Rl1} \xrightarrow{\longrightarrow}$ latch1 $\left\{\rightsquigarrow L 1_{m_{\ell}}^{\ell}\right\}$
24. while (Rl1=0) $\left\{n_{\ell}\right\}$

25: w[] latch1 0
26: $\quad$ rl] Rf1 flag1 $\left\{\rightsquigarrow F 1^{\ell}\right\}$
27: if ( $\mathrm{Rf} 1 \neq 0$ ) then
28-- - - - (**- critical- section- *)- - -- w[] flag1 0
29:
30: w[] latch0 1
31: fi
32:while true
33:
no prophecy beyond cut during execution

## Conclusion on mutual exclusion

- PostgreSQL is correct on architectures satisfying the "no prophecy beyond cut during execution" property

- Intuition on necessity: when waiting for a spinlock, you should look at its current value, not at later ones!


## in cat

## - A static condition to impose a dynamic condition:



## Prevents valid executions


irreflexive rf; po; cut; po

## Non-starvation

## Difference with Lamport/Owicki-Gries

- The communications in L/O-G are fixed in the semantics (SC) for all executions:

(a) No prophecy beyond cuts

(b) Read from last write
$\Longrightarrow$ entangled with the verification conditions
$\Rightarrow$ impossible to reason on one execution trace only


## Reasoning on only one execution

- An execution is entirely determined by its read-from relation rf
- The verification conditions depend on a set $\Gamma$ of verification conditions
- By choosing $\Gamma=\{r f\}$, we can reason on this execution
- This execution satisfies the inductive invariant $S_{\text {ind }}(\{r f\})$
- To prove that this execution is impossible it is sufficient to prove that $S_{\text {ind }}(\{r f\})$ cannot hold (according to the verification conditions)
- Since the method is sound, if the verification conditions are not satisfied, the execution is excluded by the semantics


## 9 cases of starvation



## (I) Both processes starve in spin loops



- let rf be the communication for such a trace (encoded in $\Gamma_{\mathrm{rf}}$ )
- invariant false after both spin loops
- so latch1 in 23: can only be read from initialization
- so latch1 is I not $0, a$ contradiction


## (2) Both processes never enter their critical section

```
\(\{0:\) latch \(0=0 ; f l a g 0=0 ;\) latch1 = 1; flag1 = 1; \}
1: \{true\}
 do \(\{i\}\)
 \{true\}
 do \(\left\{j_{i}\right\}\)
 \{true\}
 r[] Rl0 latch0 \(\left\{\leadsto L 0_{j_{i}}^{i}\right\}\)
 \(\left\{\mathrm{RlO}=\mathrm{LO}_{\mathrm{j}_{\mathrm{i}}}^{\mathrm{i}} \wedge\right.\)
 \(\left.\left(\mathrm{rORlO}_{\mathrm{j}_{\mathrm{i}}}^{\mathrm{i}}\left[\Gamma_{\mathrm{rf}}\right] \vee \mathrm{r} 1 \mathrm{RlO}_{\mathrm{j}_{\mathrm{i}}}^{\mathrm{i}}\left[\Gamma_{\mathrm{rf}}\right]\right)\right\}\)
 while (\(\mathrm{RlO}=0\)) \(\left\{k_{i}\right\}\)
5: \(\quad\left\{\mathrm{r} 1 \mathrm{RlO}_{\mathrm{k}_{\mathrm{i}}}^{i}\left[\Gamma_{\mathrm{rf}}\right]\right\}\)
 w[] latch0 0
6: \(\quad\left\{\mathrm{r} 1 \mathrm{RlO}_{\mathrm{k}_{\mathrm{i}}}^{\mathrm{i}}\left[\Gamma_{\mathrm{rf}}\right]\right\}\)
 r[] Rf0 flag0 \(\left\{\rightsquigarrow F^{i}\right\}\)
7: \(\quad\left\{\mathrm{r}_{1 \mathrm{RlO}_{\mathrm{k}_{\mathrm{i}}}^{\mathrm{i}}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{Rf} 0=\mathrm{FO}^{i} \wedge, ~}^{\text {in }}\right.\)
 \(\left.\left(\mathrm{rORfO}^{1}\left[\Gamma_{\mathrm{rf}}\right] \vee \mathrm{r} 1 \mathrm{RfO}^{\mathrm{i}}\left[\Gamma_{\mathrm{rf}}\right]\right)\right\}\)
 if (\(\mathrm{Rf} 0 \neq 0\)) then
 \(\left\{r 1 \operatorname{RlO}_{\mathrm{k}_{\mathrm{i}}}^{\mathrm{i}}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{rrffo}^{\mathrm{i}}\left[\Gamma_{\mathrm{rf}}\right]\right\}\)
 (* critical section *)
 w[] flago 0
9: \(\quad\left\{\mathrm{r} 1 \mathrm{RlO}_{\mathrm{k}_{\mathrm{i}}}^{\mathrm{i}}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{r} 1 \operatorname{RfO}^{\mathrm{i}}\left[\Gamma_{\mathrm{rf}}\right]\right\}\)
 w[] flag1 1
```



```
 w[] latch1 1
```



```
 fi
12: \{true\}
 while true
13: \{false \}
 \(r[]\) Rl1 latch1 \(\left\{\rightsquigarrow L 1_{m_{\ell}}^{\ell}\right\}\)
 \(\left\{\mathrm{Rl1}=\mathrm{L} 1_{\mathrm{m}_{\ell}}^{\ell} \wedge\right.\)
 \(\left.\left(\operatorname{rORl}_{\mathrm{m}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right] \vee \mathrm{r} 1 \mathrm{Rl}_{\mathrm{m}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right)\right\}\)
 while (R11=0) \(\left\{n_{\ell}\right\}\)
```

21: $\{$ true $\}$
do $\{\ell\}$
22: \{true\}
do $\left\{m_{\ell}\right\}$
\{true\}

25: $\left\{\operatorname{rrRl1}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right\}$
w[] latch1 0
26: $\left\{\mathrm{r} 1 \mathrm{Rl}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right\}$
r[] Rf1 flag1 $\left\{\leadsto F 1^{\ell}\right\}$
27: $\quad\left\{\mathrm{r} 1 \mathrm{Rl}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{Rf} 1=\mathrm{F} 1^{\ell} \wedge\right.$ $\left.\left(r 0 R f 1{ }^{\ell}\left[\Gamma_{\mathrm{rf}}\right] \vee \mathrm{r} 1 \mathrm{Rf}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right)\right\}$ if ( $\mathrm{Rf} 1 \neq 0$ ) then
$\left\{\mathrm{r} 1 \mathrm{Rl}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{rrRf}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right\}$
(* critical section *)
w[] flag1 0
29: $\quad\left\{\mathrm{r} 1 \mathrm{Rl}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{r}_{\mathrm{Rf}} 1^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right\}$
w[] flag0 1
$30: \quad\left\{\mathrm{r} 1 \mathrm{Rl}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{r} 1 \operatorname{Rf}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right\}$
w[] latch0 1
31: $\quad\left\{\mathrm{rrRl1}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right] \wedge \operatorname{r1Rf}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right\}$ fi
32: \{true\}
while true
33: \{false\}

- let rf be the communication for such a trace (encoded in $\Gamma_{\text {rf }}$ )


## (2) Both processes never enter their critical section

```
\{0: latch0 \(=0 ;\) flag0 \(=0 ;\) latch1 = 1; flag1 = 1; \}
1: \{true\}
 do \(\{i\}\)
 \{true\}
 do \(\left\{j_{i}\right\}\)
 \{true\}
 r[] RlO latch0 \(\left\{\rightsquigarrow L 0_{j_{i}}^{i}\right\}\)
 \(\left\{\mathrm{RlO}=\mathrm{LO}_{\mathrm{j}_{\mathrm{i}}}^{\mathrm{i}} \wedge\right.\)
```



```
 while (\(\mathrm{RlO}=0\)) \(\left\{k_{i}\right\}\)
5: \(\quad\left\{\mathrm{r} 1 \mathrm{RlO}_{\mathrm{k}_{\mathrm{i}}}^{\mathrm{i}}\left[\Gamma_{\mathrm{rf}}\right]\right\}\)
 w[] latch0 0
6: \(\quad\left\{\mathrm{r}_{1 \mathrm{RlO}_{\mathrm{k}_{\mathrm{i}}}^{\mathrm{i}}}\left[\Gamma_{\mathrm{rf}}\right]\right\}\)
 r[] Rf0 flag0 \(\left\{\leadsto F 0^{i}\right\}\)
7: \(\quad\left\{\mathrm{r}_{1 \mathrm{Rl0}}^{\mathrm{k}_{\mathrm{i}}} \mathrm{i}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{Rf} 0=\mathrm{FO}^{i} \wedge\right.\)
 \(\left.\left(\mathrm{rORfO}^{1}\left[\Gamma_{\mathrm{rf}}\right] \vee \mathrm{r} 1 \mathrm{RfO}^{\mathrm{i}}\left[\Gamma_{\mathrm{rf}}\right]\right)\right\}\)
 if (\(R f 0 \neq 0\)) then
```



```
 (* critical section *)
 w[] flago 0
```



```
 false w[] flag1 1
10: \(\quad\left\{\mathrm{r}_{1 \mathrm{RlO}_{\mathrm{k}_{\mathrm{i}}}^{\mathrm{i}}}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{r}_{\mathrm{Rf}} \mathrm{R}^{\mathrm{i}}\left[\Gamma_{\mathrm{rf}}\right]\right\}\)
 w[] latch1 1
```



```
 fi
12: \{true\}
 while true
13: \{false \}
 \(r[]\) Rl1 latch1 \(\left\{\rightsquigarrow L 1_{m_{\ell}}^{\ell}\right\}\)
 \(\left\{\mathrm{Rl1}=\mathrm{L} 1_{\mathrm{m}}^{\ell}{ }_{\ell}^{\ell} \wedge\right.\)
 \(\left.\left(\operatorname{rORl}_{\mathrm{m}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right] \vee \mathrm{rlRl}_{\mathrm{m}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right)\right\}\)
 while (R11=0) \(\left\{n_{\ell}\right\}\)
```

21: $\{$ true $\}$
do $\{\ell\}$
22: \{true\}
do $\left\{m_{\ell}\right\}$
\{true\}

25: $\left\{\operatorname{rrRl1}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right\}$
w[] latch1 0
26: $\left\{\mathrm{r} 1 \mathrm{Rl}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right\}$
r[] Rf1 flag1 $\left\{\rightsquigarrow F 1^{\ell}\right\}$
27: $\quad\left\{\mathrm{r} 1 \mathrm{Rl}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{Rf} 1=\mathrm{F} 1^{\ell} \wedge\right.$ $\left.\left(r 0 R f 1{ }^{\ell}\left[\Gamma_{\mathrm{rf}}\right] \vee \mathrm{r} 1 \mathrm{Rf}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right)\right\}$ if ( $\mathrm{Rf} 1 \neq 0$ ) then
 (* critical section *)
w[] flag1 0
$\left\{\mathrm{r} 1 \operatorname{Rl1}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{r} 1 \operatorname{Rf} 1^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right\}$
w[] flag0 1
false
$\left\{\mathrm{r} 1 \mathrm{Rl}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{rlRf}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right\}$
w[] latch0 1
31: $\quad\left\{\mathrm{r} 1 \mathrm{Rl}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{r} 1 \mathrm{Rf}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right\}$ fi
32: \{true\}
while true
33: \{false\}

- let rf be the communication for such a trace (encoded in $\Gamma_{\mathrm{rf}}$ )
- the invariant inside critical sections must be false


## (2) Both processes never enter their critical section

```
\{0: latch0 = 0; flag0 = 0; latch1 = 1; flag1 = 1; \}
1: \{true\}
 do \(\{i\}\)
 \{true\}
 do \(\left\{j_{i}\right\}\)
 \{true\}
 r[] RlO latch0 \(\left\{\rightsquigarrow L 0_{j_{i}}^{i}\right\}\)
 \(\left\{\mathrm{RlO}=\mathrm{LO}_{\mathrm{j}_{\mathrm{i}}}^{\mathrm{i}} \wedge\right.\)
```



```
 while (\(\mathrm{Rl} 10=0\)) \(\left\{k_{i}\right\}\)
5: \(\quad\left\{\mathrm{r} 1 \mathrm{RlO}_{\mathrm{k}_{\mathrm{i}}}^{\mathrm{i}}\left[\Gamma_{\mathrm{rf}}\right]\right\}\)
 w[] latch0 0
6: \(\quad\left\{\mathrm{r} 1 \mathrm{RlO}_{\mathrm{k}_{\mathrm{i}}}^{\mathrm{i}}\left[\Gamma_{\mathrm{rf}}\right]\right\}\)
 r[] Rf0 flag0 \(\left\{\leadsto F 0^{i}\right\}\)
```




```
 if (\(\mathrm{Rf} 0 \neq 0\)) then
```



```
 (* critical section *)
 w[] flago 0
```



```
 false w[] flag1 1
10: \(\quad\left\{\mathrm{r}_{1 \mathrm{RlO}_{\mathrm{k}_{\mathrm{i}}}^{\mathrm{i}}}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{r}_{\mathrm{Rf}} \mathrm{R}^{\mathrm{i}}\left[\Gamma_{\mathrm{rf}}\right]\right\}\)
 w[] latch1 1
 \(_\left\{\mathrm{r} 1 \mathrm{RlO}_{\mathrm{k}_{\mathrm{i}}}^{\mathrm{i}}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{r} 1 \mathrm{Rf}^{\mathrm{i}}\left[\Gamma_{\mathrm{rf}}\right]\right\}\)
 fi
12: \{true\}
 while true
13: \{false\}
 \(r[]\) Rl1 latch1 \(\left\{\rightsquigarrow L 1_{m_{\ell}}^{\ell}\right\}\)
 \(\left\{\mathrm{Rl1}=\mathrm{L} 1_{\mathrm{m}}^{\ell}{ }_{\ell}^{\ell} \wedge\right.\)
 \(\left.\left(\operatorname{rORl}_{\mathrm{m}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right] \vee \mathrm{rlRl}_{\mathrm{m}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right)\right\}\)
 while (R11=0) \(\left\{n_{\ell}\right\}\)
```

21: $\{$ true $\}$
do $\{\ell\}$
22: \{true\}
do $\left\{m_{\ell}\right\}$
\{true\}

25: $\left\{\operatorname{rrRl1}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right\}$
w[] latch1 0
26: $\left\{\mathrm{r} 1 \mathrm{Rl}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right\}$
r[] Rf1 flag1 $\left\{\leadsto F 1^{\ell}\right\}$
27: $\quad\left\{\mathrm{r} 1 \mathrm{Rl}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{Rf} 1=\mathrm{F} 1^{\ell} \wedge\right.$ $\left.\left(r 0 R f 1 \ell\left[\Gamma_{r f}\right] \vee \operatorname{r1Pf1} \ell_{\left[\Gamma_{n}\right]}\right)\right\}$ if ( $\mathrm{Rf} 1 \neq 0$ ) then
$\left\{\mathrm{r} 1 \mathrm{Rl}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{rrRf}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right\}$ (* critical section *)
w[] flag1 0
$\left\{\mathrm{r} 1 \operatorname{Rl1}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{r} 1 \operatorname{Rf} 1^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right\}$ w[] flag0 1
$\left\{\mathrm{r} 1 \mathrm{Rl}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{r} 1 \operatorname{Rf}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right\}$ w[] latch0 1
31: $\quad\left\{\mathrm{r} 1 \mathrm{Rl}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{r} 1 \mathrm{Rf}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right\}$ fi
32: \{true\}
while true
33: \{false\}

- let rf be the communication for such a trace (encoded in $\Gamma_{\mathrm{rf}}$ )
- the invariant inside critical sections must be false
- tests $(\operatorname{Rf} 0 \neq 0)$ and $(\operatorname{Rf} 1 \neq 0)$ must be false (written $\quad$ *丷天)


## (2) Both processes never enter their critical section

$\begin{aligned} & \text { \{0: latch0 }=0 ; \text { flag } 0=0 ; \text { latch } 1 \\ & \text { 1: \{true }\} \end{aligned}$	$\begin{aligned} & \text { flag } 1=1 ; \\ & 21:\{\text { true }\} \end{aligned}$
do $\{i\}$	do $\{\ell\}$
2: $\left.\quad \begin{array}{l}\text { \{true }\} \\ \text { do }\end{array} j_{i}\right\}$	22: $\begin{aligned} & \text { true }\} \\ & \\ & \text { do }\end{aligned}$
3: $\quad \begin{gathered}\text { do }\left\{j_{i}\right\} \\ \text { true }\}\end{gathered}$	$\text { 23: } \begin{gathered} \text { do }\left\{m_{\ell}\right\} \\ \{\text { true }\} \end{gathered}$
	24. $\quad \begin{aligned} & \text { [] Rl1 latch1 }\end{aligned}\left\{\leadsto L 1_{m_{\ell}}^{\ell}\right\}$
4:    while ( $\mathrm{Rl} 0=0$ ) $\left\{k_{i}\right\}$	$\text { 24: } \begin{aligned} & \left\{\mathrm{Rl1}=\mathrm{L1}_{\mathrm{m}_{\ell}}^{\ell} \wedge\right. \\ & \left.\left(\mathrm{r0Rl1} \mathrm{~m}_{\ell}\left[\Gamma_{\mathrm{rf}}\right] \vee \mathrm{rrRll}_{\mathrm{m}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right)\right\} \\ & \text { while }(\mathrm{Rl1}=0)\left\{n_{\ell}\right\} \end{aligned}$
$\text { 5: } \quad \begin{aligned} \left\{r 1 \mathrm{Rlo}_{\mathrm{k}_{\mathrm{i}}}^{\mathrm{i}}\left[\Gamma_{\mathrm{ff}}\right]\right\} \\ \mathrm{w}[] \text { latch0 } 0 \end{aligned}$	25: $\left.\quad \begin{array}{l}\left\{r 1 R 11_{\mathrm{n} \ell}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right\} \\ \mathrm{w}[] \\ \text { latch1 }\end{array}\right\}$
6: $\quad\left\{\mathrm{rr}^{\text {Rl0 }}{ }_{\mathrm{k}_{\mathrm{k}_{\mathrm{i}}}^{1}}\right.$	26: $\quad\left\{\mathrm{r} 1 \mathrm{Rl1}_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right\}$
r[] RfO flago ${ }_{\text {d }} \longrightarrow$	r[] Rf1 flag1 \{
7: $\quad\left\{\mathrm{rrRlo}_{\mathrm{k}_{\mathrm{i}}}^{i}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{RfO}=\mathrm{ro}^{\mathrm{i}} \wedge\right.$	
	$\text { 29: } \begin{array}{ll}  & \left\{r 1 R 11_{\mathrm{n}}^{\ell}\right. \\ & \mathrm{w}[] \text { flago } \end{array}$
	$\text { 30: } \quad \begin{aligned} & \left\{r 1 R 11_{\mathrm{a}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right. \\ & \mathrm{w}[] \text { latch0 } 1 \end{aligned}$
	31: $\quad\left\{\mathrm{r} 1 \mathrm{Rl1} 1_{\mathrm{n}_{\ell}}^{\ell}\left[\Gamma_{\mathrm{rf}}\right] \wedge \mathrm{r} 1 \mathrm{Rf1} 1^{\ell}\left[\Gamma_{\mathrm{rf}}\right]\right\}$
$\text { 12: } \begin{aligned} & \text { fi } \\ & \{\text { true }\} \end{aligned}$	32: $\stackrel{\text { fi }}{\text { frue }\}}$
hile tr	tru
13: $\{$ false $\}$	33: \{false\}

- let rf be the communication for such a trace (encoded in $\Gamma_{\mathrm{rf}}$ )
- the invariant inside critical sections must be false
- tests $(\operatorname{Rf} 0 \neq 0)$ and $(\operatorname{Rf} 1 \neq 0)$ must be false (written $\quad$ *丷天)
- so read of Rf0 and Rf1 is 0 from a reachable write


## (2) Both processes never enter their critical section



- let rf be the communication for such a trace (encoded in $\Gamma_{\mathrm{rf}}$ )
- the invariant inside critical sections must be false
- tests $(\operatorname{Rf} 0 \neq 0)$ and $(\operatorname{Rf} 1 \neq 0)$ must be false (written ${ }^{*}$ (*)
- so read of Rf0 and Rf1 is 0 from a reachable write
- impossible for Rf1 so loop 23 -24 is never exited
$\Rightarrow$ we are in case (3), PI stuck in spin loop


## (3) Process P1 stuck in spin loop (no hypothesis on P0)



- let rf be the communication for such a trace (encoded in $\Gamma_{\mathrm{rf}}$ )
- the invariant after 25 : must be false
- read of latch1 in 23: must be a 0
- only possibility if from 25 :
- A contradiction since 25 : is unreachable


## (4) Process P0 starves in spin loop, no hypothesis on P1



- let rf be the communication for such a trace (encoded in $\Gamma_{\mathrm{rf}}$ )
- the invariant after 5 : must be false so P0 never enters its critical section
- read of latch0 in 3: must be a 0 , with 2 possibilities
- cannot be from write at 5 : which is unreachable
- so is from initial write 0 :
- but PI enters its critical section (otherwise see case I)
- so w[] latch0 1 will be executed later in co order
- so all 3:r[] R10 latch0 are fr to all 30: w[] latch0 1
- by fairness of communications, this write of $I$ to latch0 will eventually be read at 3:
- in contradiction with always reading 0
(4) Process P0 starves in spin loop, P1 does not



## Communication fairness hypothesis*

- All writes eventually hit the memory:
- If, at a cut of the execution, all the processes infinitely often write the same value $v$ to a shared variable $x$ and only that value $v$
- and from a later cut point of that execution, a process infinitely often repeats reads to that variable x
- then the reads will end up reading that value $v$

[^0]
## (5) Process P1 never enters its CS



- let rf be the communication for such a trace (encoded in $\Gamma_{\text {rf }}$ )
- P1 exits loop 23:-24: (else see cases (I) or (3))
- must read Rl1 = I from 0: or 10 :
- read of Rf 1 at 26 : must be 0
- only possibility is from 28:
- impossible from unreachable code


## (5) Process P0 leaves spin loop but always fails entering its CS



- let rf be the communication for such a trace (encoded in $\Gamma_{\mathrm{rf}}$ )
- loop 2:-4: exited
- read of RIO $=\mathrm{I}$ at 3 : is from 30 :
- invariant false in critical section 8:-11:
- read of $\mathrm{Rf} 0=0$ at 6 : is from 0 : (8: not reachable)


## withco

let l-fencerel(S) =
((po\& (_*S)); po) \&fromto (S)
let $F$ dep $=F \&$ tag2events ('fdep)
let deps = l-fencerel(Fdep) \& (R*_)
let Flw = F \& tag2events('flw)
let flw = l-fencerel(Flw)
let fences = deps | flw
let fre = (rf^-1;co) \& ext
irreflexive fre;fences;rfe;fences

In TSO there is no need for a fence since it is MP. For weaker than PSO, a fence is needed.

## (6) Both processes eventually starve in spin loop



- let rf be the communication for such a trace (encoded in $\Gamma_{\mathrm{rf}}$ )
- so latch0 is always 0 and latch1 is always 0
- so latch0 in 23 is always read from 25:
- so 10: w latch1 1 was cobefore (since otherwise by the communication hypothesis it would be eventually read)
- and 3: Rl0 latch0 0 is from 0: or 5:
- so 30: w latch0 1 is cobefore them (since otherwise by the communication hypothesis it would be eventually read)
- impossible by fences
- irreflexive co; bar; co; bar


## (7) Eventually, P0 starves in spin loop, P1 never enters its CS



## (8) Eventually, P1 starves in spin loop, P0 never enters its CS

## symmetric of (7)

## (9) P0 and P1 always leave spin loop and never enter their CS



- P0 and P1 eventually never starve and never enter their critical sections
- They both have a last entrance in their critical sections
This last write of I to the latches will, by communication fairness, eventually reach the memory
- Then we only have infinitely many writes of 0 to the latches
- So the read of the latches in the spin loops will eventually always read 0
- So from then on, by
communication fairness, all the reads will be from 0 , in reads of the latch will be zero
- In contradiction with the fact that the spin loop is always exited
- The barrier prevents infinitely postponing the write 0 actions


## Conclusion

## Conclusion

- The proof method is parameterized by consistency hypotheses, expressed in
- Invariance form: $S_{c o m}$
- Consistency form: $H_{\text {com }}$ (e.g. in cat)
- Program not logic/architecture/consistency model dependent (hence the proof is portable)
- Can reason on arbitrary subsets of anarchic executions (hence flexible e.g. non-starvation)


## Proposed design methodology

I. Design the algorithm $A$ and its specification $S_{i n v}$ (e.g. in the sequential consistency model of parallelism)
2. Consider the anarchic semantics of algorithm $A$
3. Add communication specifications $S_{c o m}$ to restrict anarchic communications and ensure the correctness of $A$ with respect to specification $S_{i n v}$
4. Do the invariance proof under WCM with $S_{\text {com }}$
5. Infer $H_{c o m}$ (in cat) from invariant $S_{\text {com }}$
6. Prove that the machine memory model $M$ in cat implies $\mathrm{H}_{\mathrm{cm}}$

## Challenges

- Modern machines have complex memory models
$\Rightarrow$ portability has a price (refencing)
$\Rightarrow$ debugging is very hard/quasi-impossible
$\Rightarrow$ proofs are much harder than with sequential consistency (but still feasible?, mechanically?)
$\Rightarrow$ static analysis parameterized by a WCM will be a challenge
$\Rightarrow$ but we can start with $S_{\text {com }}$


## Thanks

- Patrick Cousot thanks Luc Maranget for his precious help at Dagstuhl on the non-starvation part.


## The End,Thank You


[^0]:    ${ }^{(*)}$ The SPARC Architecture Manual,Version 8, Section K2, p. 283: "if one processor does an $S$, and another processor repeatedly does $L$ 's to the same location, then there is an $L$ that will be after the $S$ ".

