Abstract Interpretation

SAVE 2016,
Changsha, IO December 2016

Patrick Cousot

pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

This is an abstract interpretation

Scientific research

Scientific research

- In Mathematics/Physics:
trend towards unification and synthesis through universal principles
- In Computer science:
trend towards dispersion and parcellation through a ever-growing collection of local ad-hoc techniques for specific applications

An exponential process, will stop!

Example: reasoning on computational structures

WCET

Axiomatic semantics Confidentiality analysis

Security protocole verification

Systems biology
Operational
semantics analysis
Dataflow Model $\left.\begin{array}{c}\text { Database } \\ \text { analysis checking query }\end{array}\right]$ Obfuscation Program evaluation synthesis

Grammar analysis
Statistical model-checking semantics

Effect Denotational semantics
Theories

Dependence inference analysis CEGAR

Program
Separation logic
Termination combination transformation proof Code Interpolants Abstract Shape Invariance Symbolic contracts Integrity model analysis proof execution contracts analysis checking Malware
$\begin{array}{ccccc}\begin{array}{c}\text { Probabilistic } \\ \text { verification }\end{array} & \text { Quantum entanglement } & \text { detection } & \text { Bisimulation } & \text { detection } \\ \text { Parsing } & \text { Type theory Solvers } & \text { Code } \\ & \text { Steganography } & \text { Tautology testers } & \end{array}$

Example: reasoning on computational structures

WCET

Axiomatic semantics Confidentiality analysis

Security protocole verification Dataflow Model $\begin{gathered}\text { Database } \\ \text { analysis checking query }\end{gathered}$

Operational

 semantics Abstraction refinement TypeProgram synthesis

Grammar analysis Statistical Statistical
model-checking

Partial Obfuscation evaluation

Effect
systems

Theories
Denotational semantics proof Probabilistic verification Dependence inference analysis

CESAR
Program

Separation logic
Termination combination transformation proof Code Interpolants Abstract Shape Symbolic contracts Integrity model analysis execution analysis checking Malware Quantum entanglement Bisimulation detection detection Parsing Type theory Steganography Tautology testers

Example: reasoning on computational structures

Abstract interpretation

WCET

Security protocol Systems biology verification

Operational

 semanticsAxiomatic semantics Confidentiality analysis

$$
\begin{array}{cc}
\text { Dataflow Model } & \text { Database } \\
\text { analysis checking } & \text { query }
\end{array}
$$ Abstraction refinement Type Dependence inference analysis

CEGAR
Program

Separation logic
Termination analysis

Denotational semantics

Theories

Statistical model-checking

Partial Obfuscation Program synthesis

Grammar analysis evaluation

Effect
systems
Trace combination transformation semantics Code Interpolants Abstract Shape Invariance Symbolic contracts Integrity model analysis proof execution contracts analysis checking Malware Probabilistic verification
detection Code refactoring

Intuition I

Concrete

Abstraction I

Abstraction 2

Concretization 2

Concretization I

Abstract interpretations

Abstract interpretations

Intuition 2

Fingerprint
(c)

Phone metadata

Individual heights

Interval abstraction

- Example: interval abstraction (also called box abstraction)

Set of points

Interval abstraction

$$
\left[\mathrm{m}_{\mathrm{x}}, \mathrm{M}_{\mathrm{x}}\right] \times\left[\mathrm{m}_{\mathrm{y}}, \mathrm{M}_{\mathrm{y}}\right]
$$

Intuition 3

A C progrann and one ofits executions

int main()
{
printf("Enter two integers: ");
scanf("%d %d",\&x, \&y);
/* 1: */ while ((x != 6) || (y != 0)) {
printf("x = %d, y = %d\n",x,y);
x = x + 3;
/* 3: */ if (x > 10) x = -x;
/* 4: */ y y y - 2;
/* 5: */ if (y < -5) y = -y;
}
printf("x = %d, y = %d\n",x,y);
/* 6: */
}
/* 2: */

```

\section*{int \(x, y\);}
```

```
#include <stdio.h>
```

```
```

\#include <stdio.h>

```

Enter two integers: \(\mathrm{x}=0, \mathrm{y}=0\)
\(x=3, y=-2\)
\(x=6, y=-4\)
\(x=9, y=6\)
\(x=-12, y=4\)
\(\mathrm{x}=-9, \mathrm{y}=2\)
\(x=-6, y=0\)
\(x=-3, y=-2\)
\(x=0, y=-4\)
\(x=3, y=6\)
\(x=6, y=4\)
\(x=9, y=2\)
\(\mathrm{x}=-12, \mathrm{y}=0\)
\(x=-9, y=-2\)
\(x=-6, y=-4\)
\(x=-3, y=6\)
\(\mathrm{x}=0, \mathrm{y}=4\)
\(\mathrm{x}=3, \mathrm{y}=2\)
\(\mathrm{x}=6, \mathrm{y}=0\)

\section*{Graphical representation of the execution (I)}


\section*{Graphical representation of the execution (2)}


\section*{Semantics}

Formalize what it means to run a program


\section*{Properties (Collecting semantics)}

Formalize what you are interested to know about program behaviors


\section*{Specification}

Formalize what you are interested to prove about program behaviors
Forbiden zone
\[
\longrightarrow
\]

\section*{Abstraction}

Abstract away all information on program behaviors irrelevant to the proof


\section*{Verification}

The proof is fully automatic
Forbidden zone


\section*{Soundness}

Never forget any possible case so the abstract proof is correct in the concrete Forbidden zone


\section*{Unsound methods: testing}

Try a few cases


Test of a few trajectories

\section*{Unsound methods: bounded model checking}

Simulate the beginning of all executions (so called bounded model-checking)


\section*{Unsound methods: soundiness}

Many static analysis tools are unsound (e.g. Coverity, etc.) so inconclusive


\section*{Alarms}

When abstract proofs may fail while concrete proofs would succeed


By soundness an alarm must be raised for this over-approximation!

\section*{True alarm}

The abstract alarm may correspond to a concrete error


\section*{False alarm}

The abstract alarm may correspond to no concrete error (false negative)


\title{
What to do in presence of false alarms
}
- False alarms are ultimately unavoidable (Gödel's incompleteness)
- Consider finite cases or decidable cases only (modelchecking, does not scale)
- Ask for human help by providing information on the program behavior (theorem provers, SMT solvers), program specific and labor costly
- Have specialists refine the abstract interpretation (e.g. Astrée, http://www.absint.com/astree/index.htm), shared cost


Collecting semantics: partial traces


Octagons:
\[
\pm \mathrm{x} \pm \mathrm{y} \leqslant a
\]


Intervals:
\[
\mathbf{x} \in[a, b]
\]


Ellipses:
\(\mathrm{x}^{2}+b \mathrm{y}^{2}-a \mathrm{xy} \leqslant d\)


Simple congruences:
\[
\mathbf{x} \equiv a[b]
\]


Exponentials:
\[
-a^{b t} \leqslant \mathrm{y}(t) \leqslant a^{b t}
\]

\section*{The very first static analysis}

\section*{Brahmagupta}

Brahmagupta (Sanskrit: ब्रह्मगुप्त; (598-c. 670 CE) was an Indian mathematician and astronomer who wrote two important works on Mathematics and Astronomy: the Brāhmasphuțasiddhānta (Extensive Treatise of Brahma) (628), a theoretical treatise, and the Khanḍakhādyaka, a more practical text.


\section*{The rule of signs by Brahmagupta (628)}
18.30. [The sum] of two positives is positives, of two negatives negative;

\section*{The rule of signs by Brahmagupta (628)}
18.30. [The sum] of two positives is positives, of two negatives negative;
- The abstraction is that you do not (always) need to known the absolute value of the arguments to know the sign of the result;

\section*{The rule of signs by Brahmagupta (628)}
18.30. [The sum] of two positives is positives, of two negatives negative;
- The abstraction is that you do not (always) need to known the absolute value of the arguments to know the sign of the result;
- Sometimes imprecise (don't know the sign of the sum of a positive and a negative)

\section*{The rule of signs by Brahmagupta (628)}
18.30. [The sum] of two positives is positives, of two negatives negative;
- The abstraction is that you do not (always) need to known the absolute value of the arguments to know the sign of the result;
- Sometimes imprecise (don't know the sign of the sum of a positive and a negative)
- Useful in practice (if you know what to do when you don't know the sign)

\section*{The rule of signs by Brahmagupta (628)}
18.30. [The sum] of two positives is positives, of two negatives negative;
- The abstraction is that you do not (always) need to known the absolute value of the arguments to know the sign of the result;
- Sometimes imprecise (don't know the sign of the sum of a positive and a negative)
- Useful in practice (if you know what to do when you don't know the sign)
- e.g. in compilation: do not optimize (a division by 2 into a shift when positive \({ }^{*}\) )

\section*{The rule of signs by Brahmagupta (628)}
18.30. [The sum] of two positives is positives, of two negatives negative; [...]
18.32. A negative minus zero is negative, a positive [minus zero] positive; zero [minus zero] is zero. When a positive is to be subtracted from a negative or a negative from a positive, then it is to be added.

\section*{The rule of signs by Brahmagupta (628)}
18.30. [The sum] of two positives is positives, of two negatives negative; [...]
18.32. A negative minus zero is negative, a positive [minus zero] positive; zero [minus zero] is zero. When a positive is to be subtracted from a negative or a negative from a positive, then it is to be added.
18.33. The product of a negative and a positive is negative, of two negatives positive, and of positives positive; the product of zero and a negative, of zero and a positive, or of two zeros is zero.

\section*{The rule of signs by Brahmagupta (628)}
18.30. [The sum] of two positives is positives, of two negatives negative;
[...]
18.32. A negative minus zero is negative, a positive [minus zero] positive; zero [minus zero] is zero. When a positive is to be subtracted from a negative or a negative from a positive, then it is to be added.
18.33. The product of a negative and a positive is negative, of two negatives positive, and of positives positive; the product of zero and a negative, of zero and a positive, or of two zeros is zero.
18.34. A positive divided by a positive or a negative divided by a negative is positive; a zero divided by a zero is zero; a positive divided by a negative is negative; a negative divided by a positive is [also] negative.

\section*{The rule of signs by Michel Sintzoff (I972)}

For example, \(a \times a+b \times b\) yields the value 25
when \(a\) is 3 and \(b\) is -4 , and when + and \(x\) are the arithmetic multiplication and addition.
But \(a \times a+b \times b\) yields always the object "pos" when \(a\) and \(b\) are the objects "pos" or "neg", and when the valuation is defined as follows :
pos+pos=pos
pos+neg=pos,neg
neg+pos=pos,neg
neg+neg=neg
\(\mathrm{V}(\mathrm{p}+\mathrm{q})=\mathrm{V}(\mathrm{p})+\mathrm{V}(\mathrm{q})\)
\(V(0)=V(1)=\ldots\) pos \(V(-1)=V(-2)=\ldots\) neg
The valuation of \(a \times a+b \times b\) yields "pos" by the following computations :

\(V(a \times a+b \times b)=V(a \times a)+V(b \times b)=\) pos + pos \(=\) pos
This valuation proves that the result of \(a \times a+b \times b\) is always positive and hence allows to compute its square root without any preliminary dynamic test on its sign. On the other hand, the

\section*{The rule of signs by Michel Sintzoff (I972)}

For example, \(a \times a+b \times b\) yields the value 25
when \(a\) is 3 and \(b\) is -4 , and when + and \(x\) are the arithmetic multiplication and addition.
But \(a \times a+b \times b\) yields always the object "pos" when \(a\) and \(b\) are the objects "pos" or "neg", and when the valuation is defined as follows :
pos+pos=pos
pos+neg=pos,neg
neg+pos=pos,neg
neg+neg=neg
\(\mathrm{V}(\mathrm{p}+\mathrm{q})=\mathrm{V}(\mathrm{p})+\mathrm{V}(\mathrm{q})\)
\(V(0)=V(1)=\ldots\) pos
\(V(-1)=V(-2)=\ldots=n e g\)
The valuation of \(a \times a+b \times b\) yields "pos" by the
following computations :
\begin{tabular}{|c|c|}
\hline \(V(a)=p o s, n e g\) & \(V(\mathrm{~b})=\) pos, neg \\
\hline \(V(a \times a)=\) pos \(\times\) pos, neg \(\times\) neg & \(V(b \times b)=\) pos \(\times\) pos, neg \(\times\) neg \\
\hline =pos, pos=pos & mpos,pos=pos \\
\hline
\end{tabular}
\(V(a \times a+b \times b)=V(a \times a)+V(b \times b)=\) pos + pos \(=\) pos
This valuation proves that the result of \(a \times a+b \times b\) is always positive and hence allows to compute its square root without any preliminary dynamic test on its sign. On the other hand, the

\section*{The rule of signs by Michel Sintzoff (I972)}

For example, \(a \times a+b \times b\) yields the value 25
when \(a\) is 3 and \(b\) is -4 , and when + and \(x\) are the arithmetic multiplication and addition.
But \(a \times a+b \times b\) yields always the object "pos" when \(a\) and \(b\) are the objects "pos" or "neg", and when the valuation is defined as follows :
pos+pos=pos
pos+neg=pos,neg
neg+pos=pos,neg
neg+neg=neg
\(\mathrm{V}(\mathrm{p}+\mathrm{q})=\mathrm{V}(\mathrm{p})+\mathrm{V}(\mathrm{q})\)
\(V(0)=V(1)=\ldots\) pos
pos×pos=pos
pos×negrneg
neg×pos=neg
neg×neg=pos
\(V(p \times q)=V(p) \times V(q)\)
\(0 \in \operatorname{pos} x-I \in n e g\) \(V(-1)=V(-2)=\ldots=n e g\)
The valuation of \(a \times a+b \times b\) yields "pos" by the following computations :
\begin{tabular}{|c|c|}
\hline \(V(\mathrm{a})\) mpos, neg & \(V(\mathrm{~b})=\) pos, neg \\
\hline \[
V(a \times a)=\text { pos } \times \text { pos, neg } \times \text { neg }
\] & \[
V(b \times b)=p o s \times p o s, \text { neg } \times \text { neg }
\] \\
\hline , ,pos & Os \\
\hline
\end{tabular}
\(V(a \times a+b \times b)=V(a \times a)+V(b \times b)=\) pos + pos \(=\) pos
This valuation proves that the result of \(a \times a+b \times b\) is always positive and hence allows to compute its square root without any preliminary dynamic test on its sign. On the other hand, the

\section*{The rule of signs Cousot \& Cousot (1979)}


\section*{The rule of signs Cousot \& Cousot (I979)}


\section*{The rule of signs Cousot \& Cousot (I979)}
\[
+++\quad=\quad+
\]

> calculational design method

\section*{Application of abstract interpretation to static analysis}

\section*{All computer scientists have experienced bugs}


Ariane 5.0I failure (overflow)


Patriot failure (float rounding)


Mars orbiter loss (unit error)


Heartbleed
(buffer overrun)
- Checking the presence of bugs by debugging is great
- Proving their absence by static analysis is even better!

\section*{Static analysis}
- Check program properties (automatically, using the program text only, without running the program)
- Difficulties:
- Undecidability / complexity:
- Precision
- Scalability
- Soundness (correctness)
- Induction: widening/narrowing

\section*{Fixpoint}
\(\{y \geqslant 0\} \leftarrow\) hypothesis
Fixpoint equation
\[
x=y
\]
\(\{I(x, y)\} \leftarrow\) loop invariant
while ( \(x\) > 0) \{
\[
x=x-1 ;
\]
\}
Floyd-Naur-Hoare verification conditions:
\[
\begin{array}{ll}
(y \geqslant 0 \wedge x=y) \Longrightarrow I(x, y) & \text { initialisat } \\
\left(I(x, y) \wedge x>0 \wedge x^{\prime}=x-1\right) \Longrightarrow I\left(x^{\prime}, y\right) & \\
\text { iteration }
\end{array}
\]

Equivalent fixpoint equation:
\[
\left.I(x, y)=x \geqslant 0 \wedge(x=y \vee I(x+1, y)) \quad \text { (i.e. } I=F(I)^{(5)}\right)
\]
(5) We look for the most precise invariant \(I\), implying all others, that is \(\mathrm{Ifp} \Rightarrow\).

\section*{Iterates}
\[
\begin{aligned}
& \text { Iterates } I=\lim _{n \rightarrow \infty} F^{n}(\text { false }) \\
& I^{0}(x, y)=\text { false }
\end{aligned}
\]

\section*{Iterates}
\[
\begin{aligned}
& \quad \text { Iterates } I=\lim _{n \rightarrow \infty} F^{n}(\text { false })^{y \uparrow} \\
& I^{0}(x, y)=\text { false } \\
& I^{1}(x, y)=x \geqslant 0 \wedge\left(x=y \vee I^{0}(x+1, y)\right) \\
&=0 \leqslant x=y
\end{aligned}
\]

\section*{Iterates}
\[
\begin{aligned}
& \quad \text { Iterates } I=\lim _{n \rightarrow \infty} F^{n}(\text { false }) \\
& I^{0}(x, y)=\text { false } \\
& I^{1}(x, y)=x \geqslant 0 \wedge\left(x=y \vee I^{0}(x+1, y)\right) \\
&=0 \leqslant x=y \\
& I^{2}(x, y)=x \geqslant 0 \wedge\left(x=y \vee I^{1}(x+1, y)\right) \\
&=0 \leqslant x \leqslant y \leqslant x+1
\end{aligned}
\]

\section*{Iterates}
\[
\begin{aligned}
& \text { Iterates } I=\lim _{n \rightarrow \infty} F^{n}(\text { false }) \\
I^{0}(x, y) & =\text { false } \\
I^{1}(x, y) & =x \geqslant 0 \wedge\left(x=y \vee I^{0}(x+1, y)\right) \\
& =0 \leqslant x=y \\
I^{2}(x, y) & =x \geqslant 0 \wedge\left(x=y \vee I^{1}(x+1, y)\right) \\
& =0 \leqslant x \leqslant y \leqslant x+1
\end{aligned}
\]

\section*{Convergence acceleration: widening}
\[
\begin{aligned}
& \text { Accelerated Iterates } I=\lim _{n \rightarrow \infty} F^{n}(\text { false }) \\
& \begin{aligned}
I^{0}(x, y) & =\text { false } \\
I^{1}(x, y) & =x \geqslant 0 \wedge\left(x=y \vee I^{0}(x+1, y)\right) \\
& =0 \leqslant x=y
\end{aligned} \\
& \begin{aligned}
I^{2}(x, y) & =x \geqslant 0 \wedge\left(x=y \vee I^{1}(x+1, y)\right) \\
& =0 \leqslant x \leqslant y \leqslant x+1
\end{aligned} \\
& \begin{aligned}
I^{3}(x, y) & =x \geqslant 0 \wedge\left(x=y \vee I^{2}(x+1, y)\right) \\
& =0 \leqslant x \leqslant y \leqslant x+2
\end{aligned} \\
& \begin{aligned}
I^{4}(x, y) & =I^{2}(x, y) \nabla I^{3}(x, y) \leftarrow \text { widening } \\
& =0 \leqslant x \leqslant y
\end{aligned}
\end{aligned}
\]

\section*{Fixed point}
\[
\begin{aligned}
& \text { Accelerated Iterates } I=\lim _{n \rightarrow \infty} F^{n}(\text { false }) \\
& I^{0}(x, y)
\end{aligned}=\text { false } \quad \begin{aligned}
I^{1}(x, y) & =x \geqslant 0 \wedge\left(x=y \vee I^{0}(x+1, y)\right) \\
& =0 \leqslant x=y \\
I^{2}(x, y) & =x \geqslant 0 \wedge\left(x=y \vee I^{1}(x+1, y)\right) \\
& =0 \leqslant x \leqslant y \leqslant x+1 \\
I^{3}(x, y) & =x \geqslant 0 \wedge\left(x=y \vee I^{2}(x+1, y)\right) \\
& =0 \leqslant x \leqslant y \leqslant x+2 \\
I^{4}(x, y) & =I^{2}(x, y) \nabla I^{3}(x, y) \leftarrow \text { widening } \\
& =0 \leqslant x \leqslant y \\
I^{5}(x, y) & =x \geqslant 0 \wedge\left(x=y \vee I^{4}(x+1, y)\right) \\
& =I^{4}(x, y) \text { fixed point! }
\end{aligned}
\]

\section*{Octagons}
\[
\begin{aligned}
& \text { Accelerated Iterates } I=\lim _{n \rightarrow \infty} F^{n}(\text { false }) \\
& \begin{aligned}
I^{0}(x, y) & =\text { false } \\
I^{1}(x, y) & =x \geqslant 0 \wedge\left(x=y \vee I^{0}(x+1, y)\right) \\
& =0 \leqslant x=y \\
I^{2}(x, y) & =x \geqslant 0 \wedge\left(x=y \vee I^{1}(x+1, y)\right) \\
& =0 \leqslant x \leqslant y \leqslant x+1
\end{aligned} \\
& \begin{aligned}
I^{3}(x, y) & =x \geqslant 0 \wedge\left(x=y \vee I^{2}(x+1, y)\right) \\
& =0 \leqslant x \leqslant y \leqslant x+2 \\
I^{4}(x, y) & =I^{2}(x, y) \nabla I^{3}(x, y) \leftarrow \text { widening } \\
& =0 \leqslant x \leqslant y \\
I^{5}(x, y) & =x \geqslant 0 \wedge\left(x=y \vee I^{4}(x+1, y)\right) \\
& =I^{4}(x, y) \text { fixed point! }
\end{aligned} \\
& \text { The invariants are computer representable } \\
& \text { with octagons! }
\end{aligned}
\]

\section*{Industrialisation: Development in cooperation with Airbus France}
- Automatic proofs of absence of runtime errors in Electric Flight Control Software:
- A340/600: 132.000 lines of C, 40 mn on a PC \(2.8 \mathrm{GHz}, 300 \mathrm{Mb}\) (Nov. 2003)
- A380: 1.000.000 lines of C, 34h, 8 Gb (Nov. 2005) no false alarm, World premières!
- Automatic proofs of absence of runtime errors in the ATV software \({ }^{(2)}\) :
- C version of the automatic docking software: 102.000 lines of C, 23s on a Quad-Core AMD Opteron \({ }^{\text {TM }}\) processor, 16 Gb (Apr. 2008)
(2) the Jules Vernes Automated Transfer Vehicle (ATV) enabling ESA to transport payloads to the International Space Station.

\title{
Application of abstract interpretation to program proof methods
}

\section*{Maximal execution trace}
```

```
#include <stdio.h>
```

```
#include <stdio.h>
int main() {
int main() {
    int x,y;
    int x,y;
    int x,y;
    int x,y;
    scanf("%d",&x); y = x;
    scanf("%d",&x); y = x;
/* 2: */ 
/* 2: */ 
    }
    }
/* 4: */ printf("x = %d, y = %d\n",x,y); }
```

/* 4: */ printf("x = %d, y = %d\n",x,y); }

```
```

 printf("x = %d, y = %d\n",x,y);
    ```
        printf("x = %d, y = %d\n",x,y);
```

 printf("x = %d, y = %d\n",x,y);
    ```
/* 1: */ while (x != 0) {
```

```
/* 1: */ while (x != 0) {
```

```
/* 1: */ while (x != 0) {
```

```
    ile (x != 0) {
```

 ile (x != 0) {
    ```
    ile (x != 0) {
        y = y + 2;
```

 y = y + 2;
    ```

Enter an integer: 3
\(x=3, y=3\)
\(x=2, y=5\)
\(x=1, y=7\)
\(x=0, y=9\)
Enter an integer: -1
\(x=-1, y=-1\)
\(x=-2, y=1\)
\(x=-3, y=3\)
\(x=-4, y=5\)
\(\bar{x}=-738245, y=1476487\)
\[
x=-738245, y=1476487
\]
\[
\begin{aligned}
& \langle 1:, 3,3,3\rangle \rightarrow\langle 2:, 3,3,3\rangle \rightarrow\langle 3:, 3,2,3\rangle \rightarrow\langle 1:, 3,2,5\rangle \rightarrow\langle 2:, 3,2,5\rangle \\
& \rightarrow\langle 3:, 3,1,5\rangle \rightarrow\langle 1:, 3,1,7\rangle \rightarrow\langle 2:, 3,1,7\rangle \rightarrow\langle 3:, 3,0,7\rangle \rightarrow \\
& \langle 1:, 3,0,9\rangle \rightarrow\langle 6:, 3,0,9\rangle
\end{aligned}
\]

\section*{Maximal execution trace}
```

\#include <stdio.h>
int main() {

Enter an integer: 3
$x=3, y=3$
$x=2, y=5$
$x=1, y=7$
$x=0, y=9$
Enter an integer: -1
$x=-1, y=-1$
$x=-2, y=1$
$x=-3, y=3$
$x=-4, y=5$
$\bar{x}=-738245, y=1476487$
/* 2: */
/* 2: */
/* 4: */ printf("x = %d, y = %d\n",x,y); }

```
/* 4: */ printf("x = %d, y = %d\n",x,y); }
```

```
/* 1: */ while (x != 0) {
```

```
/* 1: */ while (x != 0) {
```

```
        int x,y;
```

 int x,y;
    ```
        int x,y;
        printf("Enter an integer: ");
        printf("Enter an integer: ");
        printf("Enter an integer: ");
        scanf("%d",&x); y = x;
        scanf("%d",&x); y = x;
        scanf("%d",&x); y = x;
        while (x != 0) {
        printf("x = %d, y = %d\n",x,y);
        }
        }
        }
        }
```

 y = y + 2;
    ```
        y = y + 2;
```

 y = y + 2;
    ```
        y = y + 2;
    =0, y = 9
    x = -738245, y = 1476487
```

state \(-\left[\begin{array}{r}value y of y

memory

state x of x\end{array}\right\}\)| value x_{0} of x |
| ---: |
| initial |
| control point |

```
initial state \in init \llbracketP\rrbracket
```



```
                transition \in trans \llbracketP\rrbracket
initial state \(\in\) init \(\llbracket P \rrbracket\)
\begin{tabular}{l} 
transition \(\in \operatorname{trans} \llbracket P \rrbracket\) \\
\(\langle 1:, 3,3,3\rangle \rightarrow\langle 2:, 3,3,3\rangle \rightarrow\langle 3:, 3,2,3\rangle \rightarrow\langle 1:, 3,2,5\rangle \rightarrow\langle 2:, 3,2,5\rangle\) \\
\(\rightarrow\langle 3:, 3,1,5\rangle \rightarrow\langle 1:, 3,1,7\rangle \rightarrow\langle 2:, 3,1,7\rangle \rightarrow\langle 3:, 3,0,7\rangle \rightarrow\) \\
\(\langle 1:, 3,0,9\rangle \rightarrow\langle 6:, 3,0,9\rangle\)
\end{tabular}
```


Maximal trace semantics

- The trace semantics of a program is the set of all possible maximal finite or infinite execution traces for that program
- The trace semantics of a programing language maps programs to their trace semantics

Inductive definition

- Partial traces:
- A trace with one initial state is a partial trace
- A partial trace extended by a transition is a partial trace
- Maximal traces:
- Finite traces with no extension by a transition
- Infinite traces which prefixes are all partial traces

Fixpoint partial trace semantics

- initial states of program P: init $\llbracket \mathrm{P} \rrbracket$
- transitions of programs P: trans $\llbracket \mathrm{P} \rrbracket$
- $\mathrm{F}^{\mathrm{t}} \llbracket \mathrm{P} \rrbracket X=\{\mathrm{s} \mid \mathrm{s} \in$ init $\llbracket \mathrm{P} \rrbracket\} \cup$ $\left\{\sigma \mathrm{ss}^{\prime} \mid \sigma \mathrm{s} \in X \wedge \mathrm{ss}^{\prime} \in \operatorname{trans} \llbracket \mathrm{P} \rrbracket\right\}$
- $S^{t} \llbracket \mathrm{P} \rrbracket=\mathrm{Ifp}^{\complement} \mathrm{F}^{\mathrm{t}} \llbracket \mathrm{P} \rrbracket$

Invariance abstraction

- Collect at each control point the possible values of variables when execution reaches that control point
- $\alpha(X) \mathrm{c}=\left\{\mathrm{m} \mid \exists \sigma, \sigma^{\prime} . \sigma\langle\mathrm{c}, \mathrm{m}\rangle \sigma^{\prime} \in X\right\}$
- Invariance semantics: $\mathrm{Si} \llbracket \mathrm{P} \rrbracket=\alpha\left(\mathrm{S}^{\mathrm{t}} \llbracket \mathrm{P} \rrbracket\right)$

Invariance abstraction

- Collect at each control point the possible values of variables when execution reaches that control point
- $\mathrm{Si}^{\mathrm{i}} \llbracket \mathrm{P} \rrbracket=\alpha\left(\mathrm{S}^{\mathrm{t}} \llbracket \mathrm{P} \rrbracket\right) \mathrm{c}=\left\{\mathrm{m} \mid \exists \sigma, \sigma^{\prime} \cdot \sigma\langle\mathrm{c}, \mathrm{m}\rangle \sigma^{\prime} \in \mathrm{S}^{\mathrm{t}} \llbracket \mathrm{P} \rrbracket\right\}$

$$
\left\{\left\langle x_{0}, x, \mathrm{y}\right\rangle \mid \mathrm{y}=3 x_{0}-2 x\right\}
$$

$$
\left\{\left\langle x_{0}, x, \mathrm{y}\right\rangle \mid \mathrm{y}=3 x_{0}-2 x-2\right\}, / * 3: * / \quad \begin{aligned}
& \hat{y}=\hat{y}+2 ;
\end{aligned}
$$

$$
\left\{\langle x 0, x, y\rangle \mid y=3 x_{0} \wedge x=0\right\}\{1 * 4: * / \quad \operatorname{printf}(" \mathrm{x}=\% \mathrm{y}, \mathrm{y}=\% \mathrm{~d} \backslash \mathrm{n} ", \mathrm{x}, \mathrm{y}) ;\}
$$

$$
\begin{aligned}
& \text { \#include <stdio.h> } \\
& \text { int main() \{ } \\
& \text { int } x, y \text {; } \\
& \text { printf("Enter an integer: "); } \\
& \text { scanf("\%d", \&x) ; } y=x \text {; } \\
& \text { while (x != 0) \{ } \\
& \text { printf("x = \%d, } y=\% d \backslash n ", x, y) \text {; } \\
& x=x-1 ;
\end{aligned}
$$

Calculations design of the verification conditions

- $\alpha\left(\mathrm{F}^{\mathrm{t}} \llbracket \mathrm{P} \rrbracket X\right)$
$=\boldsymbol{\lambda} \mathrm{c} .\left\{\mathrm{m} \mid \exists \sigma, \sigma^{\prime} . \sigma\langle\mathrm{c}, \mathrm{m}\rangle \sigma^{\prime} \in X\right\}$
$=\mathrm{F}^{\mathrm{i}} \llbracket \mathrm{P} \rrbracket(\alpha(X))$
where $\mathrm{F}^{\mathrm{i}} \llbracket \mathrm{P} \rrbracket$ are the Turing/Floyd/Naur/Hoare verification conditions
- It follows that $\mathrm{Si} \llbracket \mathrm{P} \rrbracket=\mathrm{Ifp}{ }^{\dot{\underline{\varepsilon}}} \mathrm{Fi} \llbracket \mathrm{P} \rrbracket$
- The proof method is then by fixpoint induction (Tarski 1955)

Application to the semantics
 of programming languages

General idea

- All known semantics are abstractions of a most precise semantics

Abstraction to denotational semantics

- The maximal trace semantics $\mathrm{S}^{\mathrm{m}} \llbracket \mathrm{P} \rrbracket$ (maximal finite and infinite execution traces
- Denotational semantics abstraction:
- $S^{d} \llbracket P \rrbracket=\alpha\left(S^{m} \llbracket P \rrbracket\right)$
- $\alpha(X)=\lambda \mathrm{s} .\left\{\mathrm{s}^{\prime} \mid \exists \sigma . \mathrm{s} \sigma \mathrm{s}^{\prime} \in X\right\} \cup$

$$
\{\perp \mid \exists \sigma . \mathrm{s} \sigma \ldots \in X\}
$$

i.e. a map of initial states to the set of final states plus \perp in case of non-termination

Hierarchy of abstractions

idem for Prolog

- all semantics are abstractions of $\mathrm{S}^{\mathrm{d}} \llbracket P \rrbracket$

Conclusion

Abstract interpretation

- A well-developed theory, still in progress
- Active research e.g.
- abstract domains to handle e.g. complex data structures
- abstraction of parallelism with weak memory models
- applications to biology, ...
- Industrial-quality static analyzers

Industrialisation:Astrée

Industrialisation:Astrée

Many other static analyzers

- Julia (Java) http://www.juliasoft.com
- Ikos, NASA https://ti.arc.nasa.gov/opensource/ikos/
- Clousot for code contract, Microsoft, https:// github.com/Microsoft/CodeContracts
- Infer (Facebook) http://fbinfer.com
- Zoncolan (Facebook)
- Google

Static analysis for software development

- Users of Astrée:
(0) AIRBUS AREVA © Cold ebmpapst ©esa ...
- Why not all software developers use static analysis tools?

Irresponsibility

- Computer engineering is the only technology where developers are not responsible for their errors, even the trivial ones:

[^0]
The future

- Safety and security does matter to the general public
- Computer scientists will ultimately be held responsible for there errors
- At least the automatically discoverable ones
- Since this is now part of the state of the art
- Automatic static analysis, verification, etc has a brilliant future.

Francesco Logozzo, designer of the Zoncolan static analyzer at Facebook wrote me on 09/12/2016:

" Finding people who really know static analysis is very hard, you should tell your students that if they want a great job in a Silicon Valley company they should study abstract interpretation not JavaScript. Feel free to quote me on that ;-)"

Selected bibliography

- Patrick Cousot, Radhia Cousot:

Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

- Patrick Cousot, Nicolas Halbwachs:

Automatic Discovery of Linear Restraints Among Variables of a Program. POPL 1978: 84-96

- Patrick Cousot, Radhia Cousot:

Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

- Patrick Cousot, Radhia Cousot:

Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpretation. PLILP 1992: 269-295

- Patrick Cousot:

Types as Abstract Interpretations. POPL 1997: 316-331

- Patrick Cousot, Radhia Cousot:

Temporal Abstract Interpretation. POPL 2000: 12-25

- Patrick Cousot, Radhia Cousot:

Systematic design of program transformation frameworks by abstract interpretation. POPL 2002: 178-190

- Patrick Cousot:

Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)

- Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival:

A static analyzer for large safety-critical software. PLDI 2003: 196-207

- Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival:

The ASTREÉ Analyzer. ESOP 2005: 21-30

- Patrick Cousot, Radhia Cousot, Roberto Giacobazzi:

Abstract interpretation of resolution-based semantics. Theor. Comput. Sci. 410(46): 4724-4746 (2009)

- Patrick Cousot, Radhia Cousot:

An abstract interpretation framework for termination. POPL 2012: 245-258

- Patrick Cousot, Radhia Cousot:

A Galois connection calculus for abstract interpretation. POPL 2014: 3-4

- Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival:

Static Analysis and Verification of Aerospace Software by Abstract Interpretation. Foundations and Trends in Programming Languages 2(2-3): 71-190 (2015)

The End,Thank You

[^0]: DISCLAIMER OF WARRANTIES. .. . MICROSOFT AND ITS SUPPLIERS PROVIDE THE SOFTWARE, AND SUPPORT SERVICES (IF ANY) AS IS AND WITH ALL FAULTS, AND MICROSOFT AND ITS SUPPLIERS HEREBY DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY) IMPLIED WARRANTIES, DUTIES OR CONDITIONS OF MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OF RELIABILITY OR AVAILABILITY, OF ACCURACY OR COMPLETENESS OF RESPONSES, OF RESULTS, OF WORKMANLIKE EFFORT, OF LACK OF VIRUSES, AND OF LACK OF NEGLIGENCE, ALL WITH REGARD TO THE SOFTWARE, AND THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT OR OTHER SERVICES, INFORMATION, SOFTWARE, AND RELATED CONTENT THROUGH THE SOFTWARE OR OTHERWISE ARISING OUT OF THE USE OF THE SOFTWARE. ...

