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Abstract
Abstract interpretation is a theory of sound approximation of the behavior of dynamic systems, in particular
the semantics of programming languages. This is the formal basis for automatic correctness proofs by static
analysers considering an over-approximation of the set of all possible executions of the program. Contrary
to bug-finding methods (e.g. by test, bounded model-checking or error pattern search), no potential error is
ever omitted. Hence the proof of satisfaction of a specification is always mathematically valid. Contrary to
refinement-based methods, termination is always guaranteed. However, by undecidability of such proofs, the
abstraction may yield false alarms whenever a synthesized inductive argument (e.g. a loop invariant) is too weak
to make the proof. In this case, some executions considered in the abstract, that is in the over-approximation,
might lead to an error while not corresponding to a concrete, that is actual, execution. All the difficulty of the
undecidable verification problem is therefore to design safe/sound over-approximations that are coarse enough to
be effectively computable by the static analyzer and precise enough to avoid false alarms (the errors leading to
true alarms can only be eliminated by correcting the program that does not satisfy the specification).

After a brief introduction to abstract interpretation, we will present theAstrée static analyser (www.astree.ens.fr)
for proving the absence of runtime errors (such as buffer overrun, dangling pointer, division by zero, float overflow,
modular integer arithmetic overflow, . . . ) in real-time synchronous control/command C applications. The
Astrée static analyser uses generalist abstractions (like intervals, octagons, decision trees, symbolic execution,
etc) and abstractions for the specific application domain (to cope with filters, integrators, slow divergences due
to rounding errors, etc). Since 2003, these domain-specific abstractions allowed for the verification of the absence
of runtime errors in several large avionic software, a world première.
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1. The Problem: The Design
of Safe and Secure Computer-
Based Systems
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Bugs Now Show-Up in Everyday Life

– Bugs now appear frequently in everyday life (banks,
cars, telephones, . . . )

– Example (HSBC bank ATM 1 at 19 Boulevard Sébas-
topol in Paris, failure on Nov. 21st 2006 at 8:30 am):

1 cash machine, cash dispenser, automatic teller machine.

Seminar, SUNY SB CS, 18/01/2008 — 5 — ľ P. Cousot



A Strong Need for Software Better Quality

– Poor software quality is not acceptable in safety and
mission critical software applications.

– The present state of the art in software engineering
does not offer sufficient quality garantees
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The Complexity of Software Design
– The design of complex software is difficult and econom-
ically critical

– Example (www.designnews.com/article/CA6475332.html):
“Boeing Confirms 787 Delay, Fasteners, Flight Control Software Code Blamed
John Dodge, Editor-in-Chief – Design News, September 5, 2007

Boeing officials confirmed today that a fastener shortage and
problems with flight control software have pushed “first flight” of
the Boeing 787 Dreamliner to sometime between mid-November
and mid-December 2.
...
The software delays involve Honeywell Aerospace, which is re-
sponsible for flight control software. The work on this part of
the 787 was simply underestimated, said Bair.”

2 Bill Rigby of Reuters announced that Boeing delays 787 by 3 months on Wed Jan 16, 2008 12:37pm EST.
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The Security of Complex Software

– Complex software is subject to security vulnerabilies
– Example (www.wired.com/politics/security/news/2008/01/dreamliner_security)

“FAA: Boeing’s New 787 May Be Vulnerable to Hacker Attack
Kim Zetter, freelance journalist in Oakland, CA, Jan. 4, 2008

Boeing’s new 787 Dreamliner passenger jet may have a serious
security vulnerability in its onboard computer networks ...

According to the FAA document published in the Federal Regis-
ter (mirrored at Cryptome.org), the vulnerability exists because
the plane’s computer systems connect the passenger network with
the flight-safety, control and navigation network. It also con-
nects to the airline’s business and administrative-support net-
work, which communicates maintenance issues to ground crews.
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Tool-Based Software Design Methods

– New tool-based software design methods will have to
emerge to face the unprecedented growth and complex-
ification of critical software

– E.g. FCPC (Flight Control Primary Computer)
- A220: 20 000 LOCs,
- A340 (V1): 130 000 LOCS
- A340 (V2): 250 000 LOCS
- A380: 1.000.000 LOCS
- A350: static analysis to be
integrated in the software production
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Validation/Formal Methods

– Bug-finding methods : unit, integration, and system
testing, dynamic verification, bounded model-checking,
error pattern mining, . . .

– Absence of bug proving methods : formally prove that
the semantics of a program satisfies a specification

- theorem-proving & proof checking
- model-checking
- static analysis

– In practice : complementary methods are used,
very difficult to scale up

Seminar, SUNY SB CS, 18/01/2008 — 10 — ľ P. Cousot



Problems with Formal Methods

– Formal specifications (abstract machines, temporal logic,
. . . ) are costly, complex, error-prone, difficult to main-
tain, not mastered by casual programmers

– Formal semantics of the specification and program-
ming language are inexistant, informal, irrealistic or
complex

– Formal proofs are partial (static analysis), do not scale
up (model checking) or need human assistance (theo-
rem proving & proof assistants)
) High costs (for specification, proof assistance, etc).

Seminar, SUNY SB CS, 18/01/2008 — 11 — ľ P. Cousot



Avantages of Static Analysis

– Formal specifications are implicit (no need for explicit,
user-provided specifications)

– Formal semantics are approximated by the static ana-
lyzer (no user-provided models of the program)

– Formal proofs are automatic (no required user-interaction)
– Costs are low (no modification of the software produc-
tion methodology)

– Scales up to 100.000 to 1.000.000 LOCS
– Rapid and large diffusion in embedded software pro-
duction industries
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Disadvantages of Static Analysis

– Imprecision (acceptable in some applications like WCET
or program optimization)

– Incomplete for program verification
– False alarms are due to unsuccessful automatic proofs
in 5 to 15% of the cases

For example, 1% of 500.000 potential (true or false) alarms is
5.000, too much to be handled by hand!
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Remedies to False Alarms in Astrée

– Astrée is specialized to specific program properties 3

– Astrée is specialized to real-time synchronous con-
trol/command programs written in C

– Astrée offers possibilities of refinement 4

The cost of adapting Astrée to a specific program,
should be a small fraction of the cost to test the
specific program properties verified by Astrée.

3 proof of absence of runtime errors
4 parametrizations and analysis directives
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2. Introduction to Static Analysis
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Principle of Static Analysis
(1) Concrete Semantics

s(t)

t0 1 2 3 4 5 6 7 8 9 10

Error

Finite and infinite discrete execution traces
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Principle of Static Analysis
(2) Specification

s(t)

t0 1 2 3 4 5 6 7 8 9 10

Error

Safety specification of bad states
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Principle of Static Analysis
(3.1) Abstract Semantics

s(t)

t0 1 2 3 4 5 6 7 8 9 10

Error

Abstraction to reachable partial traces
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Principle of Static Analysis
(3.2) Abstract Semantics

s(t)

t0 1 2 3 4 5 6 7 8 9 10

Further abstraction to a pavage of intervals
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Unsoundness
(False Negatives)

Some states are omitted (e.g. bounded model checking)
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Incomplete
(False Positive/Alarms)

Over-approximation containing unreachable states
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3. Abstract Interpretation
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The Theory of Abstract Interpretation

– A theory of sound approximation of mathematical struc-
tures, in particular those involved in the behavior of
computer systems

– Systematic derivation of sound methods and algorithms
for approximating undecidable or highly complex prob-
lems in various areas of computer science

– Main practical application is on the safety and security
of complex hardware and software computer systems

– Abstraction: extracting information from a system de-
scription that is relevant to proving a property
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Applications of Abstract Interpretation (Cont’d)

– Static Program Analysis [CC77], [CH78], [CC79] in-
cluding Dataflow Analysis; [CC79], [CC00], Set-based
Analysis [CC95], Predicate Abstraction [Cou03], . . .

– Grammar Analysis and Parsing [CC03];

– Hierarchies of Semantics and Proof Methods [CC92],
[Cou02];

– Typing & Type Inference [Cou97];

– (Abstract) Model Checking [CC00];

– Program Transformation (including program optimiza-
tion, partial evaluation, etc) [CC02];
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Applications of Abstract Interpretation (Cont’d)

– Software Watermarking [CC04];

– Bisimulations [RT04, RT06];

– Language-based security [GM04];

– Semantics-based obfuscated malware detection [PCJD07].

– Databases [AGM93, BPC01, BS97]

– Computational biology [Dan07]

– Quantum computing [JP06, Per06]
All these techniques involve sound approximations that
can be formalized by abstract interpretation
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4. Principle of Abstract Interpre-
tation
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Syntax of programs

X variables X 2 X
T types T 2 T
E arithmetic expressions E 2 E
B boolean expressions B 2 B
D ::= T X;
j T X ; D0

C ::= X = E; commands C 2 C
j while B C 0

j if B C 0 else C 00

j { C1 . . . Cn }, (n – 0)
P ::= D C program P 2 P
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Postcondition semantics

x(t)

t
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States

Values of given type:

VJT K : values of type T 2 T
VJintK , fz 2 Z j min_int » z » max_intg

Program states ˚JP K 5:

˚JD CK , ˚JDK
˚JT X;K , fXg 7! VJT K

˚JT X; DK , (fXg 7! VJT K) [˚JDK

5 States  2 ˚JP K of a program P map program variables X to their values (X)
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Concrete Semantic Domain of Programs

Concrete semantic domain for reachability properties:

DJP K , }(˚JP K) sets of states

i.e. program properties where „ is implication, ? is false,
[ is disjunction.
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Concrete Reachability Semantics of Programs
SJX = E; KR , f[X  EJEK] j  2 R \ dom(E)g
[X  v](X) , v; [X  v](Y ) , (Y )

SJif B C 0KR , SJC 0K(BJBKR) [ BJ:BKR
BJBKR , f 2 R \ dom(B) j B holds in g

SJif B C 0 else C 00KR , SJC 0K(BJBKR) [ SJC 00K(BJ:BKR)
SJwhile B C 0KR , let W = lfp

„
? λX .R [ SJC 0K(BJBKX )

in (BJ:BKW)
SJfgKR , R

SJfC1 : : : CngKR , SJCnK ‹ : : : ‹ SJC1K n > 0

SJD CKR , SJCK(˚JDK) (uninitialized variables)
Not computable (undecidability).

Seminar, SUNY SB CS, 18/01/2008 — 31 — ľ P. Cousot



Abstract Semantic Domain of Programs

hD]JP K; v; ?; ti

such that:

hDJP K; „i `̀`!̀! ̀`̀`
¸

‚
hD]JP K; vi

i.e.

8X 2 DJP K; Y 2 D]JP K : ¸(X) v Y () X „ ‚(Y )

hence hD]JP K; v; ?; ti is a complete lattice such that
? = ¸(?) and tX = ¸([ ‚(X))
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Example 1 of Abstraction

Traces: set of finite or infinite maximal sequences of
states for the operational transition semantics

¸! Strongest liberal postcondition: final states s reach-
able from a given precondition P
¸(X) = λP . fs j 9ff0ff1 : : : ffn 2 X : ff0 2 P ^ s =

ffng
We have (˚: set of states, _„ pointwise):

h}(˚1); „i `̀`!̀! ̀`̀`
¸

‚
h}(˚) [7 !̀ }(˚); _„i
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Example 2 of Abstraction

Traces: set of finite or infinite maximal sequences of
states for the operational transition semantics

¸1! Set of reachable states: set of states appearing at least
once along one of these traces (global invariant)
¸1(X) = fffi j ff 2 X ^ 0 » i < jffjg

¸2! Partitionned set of reachable states: project along each
control point (local invariant)
¸2(fhci; ii j i 2 ´g) = λ c . fi j i 2 ´ ^ c = cig
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¸3! Partitionned cartesian set of reachable states: project
along each program variable (relationships between
variables are now lost)
¸3(λ c . fi j i 2 ´cg) = λ c . λ X . fi(X) j i 2 ´cg

¸4! Partitionned cartesian interval of reachable states: take
min and max of the values of the variables 6

¸4(λ c . λ X . fvi j i 2 ´c;Xg =
λ c . λ X . hminfvi j i 2 ´c;Xg; maxfvi j i 2 ´c;Xgi

¸1, ¸2, ¸3 and ¸4, whence ¸4 ‹ ¸3 ‹ ¸2 ‹ ¸1 are lower-
adjoints of Galois connections

6 assuming these values to be totally ordered.
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Example 3: Reduced Product of Abstract Domains

To combine abstractions
hD; „i `̀ !̀ ̀ `̀

¸1

‚1 hD]1; v1i and hD; „i `̀ !̀ ̀ `̀
¸2

‚2 hD]2; v2i
the reduced product is

¸(X) , ufhx; yi j X „ ‚1(x) ^X „ ‚2(y)g
such that v , v1 ˆv2 and

hD; „i `̀`̀ `̀ !̀! ̀ `̀ `̀ `̀
¸

‚1ˆ‚2 h¸(D); vi

Example: x 2 [1; 9] ^ xmod 2 = 0 reduces to x 2 [2; 8] ^
xmod 2 = 0
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Approximate Fixpoint Abstraction

F

F

Concrete domain

Abstract domain

F F F F F
F

F
� F

� F
�

F
�

Approximation
relation

⊥

⊥�

�

]

�

F ‹ ‚ v ‚ ‹ F ] ) lfpF v ‚(lfpF ])
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Abstract Reachability Semantics of Programs
S]JX = E; KR , ¸(f[X  EJEK] j  2 ‚(R) \ dom(E)g)
S]Jif B C 0KR , S]JC 0K(B]JBKR) t B]J:BKR

B]JBKR , ¸(f 2 ‚(R) \ dom(B) j B holds in g)
S]Jif B C 0 else C 00KR , S]JC 0K(B]JBKR) t S]JC 00K(B]J:BKR)

S]Jwhile B C 0KR , let W = lfp
v
? λX .R t S]JC 0K(B]JBKX )

in (B]J:BKW)
S]JfgKR , R

S]JfC1 : : : CngKR , S]JCnK ‹ : : : ‹ S]JC1K n > 0

S]JD CKR , S]JCK(>) (uninitialized variables)
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Convergence Acceleration with Widening

F Concrete domain

Abstract domain

F F F F F
F

Approximation
relation

⊥

⊥�

�

]

�

�

F

�

F
�

�

F
�

F
�
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Abstract Semantics with Convergence Acceleration 7

S]JX = E; KR , ¸(f[X  EJEK] j  2 ‚(R) \ dom(E)g)
S]Jif B C 0KR , S]JC 0K(B]JBKR) t B]J:BKR

B]JBKR , ¸(f 2 ‚(R) \ dom(B) j B holds in g)
S]Jif B C 0 else C 00KR , S]JC 0K(B]JBKR) t S]JC 00K(B]J:BKR)

S]Jwhile B C 0KR , let F ] = λX . let Y = R t S]JC 0K(B]JBKX )
in if Y v X then X else X

`
Y

and W = lfp
v
?F

] in (B]J:BKW)
S]JfgKR , R

S]JfC1 : : : CngKR , S]JCnK ‹ : : : ‹ S]JC1K n > 0

S]JD CKR , S]JCK(>) (uninitialized variables)

7 Note: F ] not monotonic!
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5. Application to the Astrée
Static Analyzer
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Programs

Seminar, SUNY SB CS, 18/01/2008 — 43 — ľ P. Cousot



Programs Analysed by Astrée

– Application Domain: large safety critical embedded
synchronous software (for real-time non-linear control
of very complex control/command systems).

– C programs:
- with
´ basic numeric datatypes, structures and arrays
´ pointers (including on functions),
´ floating point computations
´ tests, loops and function calls
´ limited branching (forward goto, break, continue)
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– with (cont’d)
- union

- pointer arithmetics & casts
– without

- dynamic memory allocation
- recursive function calls
- unstructured/backward branching
- conflicting side effects
- C libraries, system calls (parallelism)

Such limitations are quite common for embedded safety-critical software.
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The Class of Considered Periodic Synchronous Programs

declare volatile input, state and output variables;
initialize state and output variables;
loop forever

- read volatile input variables,
- compute output and state variables,
- write to output variables;
__ASTREE_wait_for_clock ();

end loop

Task scheduling is static:
– Requirements: the only interrupts are clock ticks;
– Execution time of loop body less than a clock tick,
as verified by the aiT WCET Analyzers [FHL+01].

Seminar, SUNY SB CS, 18/01/2008 — 46 — ľ P. Cousot



Concrete Semantics
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Concrete Trace Semantics

– International norm of C (ISO/IEC 9899:1999)
– restricted by implementation-specific behaviors depend-
ing upon the machine and compiler (e.g. representa-
tion and size of integers, IEEE 754-1985 norm for floats
and doubles)

– restricted by user-defined programming guidelines (such
as no modular arithmetic for signed integers, even
though this might be the hardware choice)

– restricted by program specific user requirements (e.g.
assert)
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The Semantics of C is Hard (Ex. 1: Floats)

“Put x in [m; M] modulo (M` m)”:

x’ = x - (int) ((x-m)/(M-m))*(M-m);

– The programmer thinks x’ 2 [m; M]
– But with M = 4095, m = `M, IEEE double precision,
and x is the greatest float strictly less than M, then
x’ = m` › (› very small).

Floats are not real.
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The Semantics of C is Hard (Ex. 2: Runtime Errors)
What is the effect of out-of-bounds array indexing?
% cat unpredictable.c
#include <stdio.h>
int main () { int n, T[1];
n = 2147483647;
printf("n = %i, T[n] = %i\n", n, T[n]);

}

Yields different results on different machines:
n = 2147483647, T[n] = 2147483647 Macintosh PPC
n = 2147483647, T[n] = -1208492044 Macintosh Intel
n = 2147483647, T[n] = -135294988 PC Intel 32 bits
Bus error PC Intel 64 bits

Execution stops after a runtime error with unpredictable results 8.
8 Equivalent semantics if no alarm.
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Specification
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Implicit Specification: Absence of Runtime Errors

– No violation of the norm of C (e.g. array index out of
bounds, division by zero)

– No implementation-specific undefined behaviors (e.g.
maximum short integer is 32767, NaN)

– No violation of the programming guidelines (e.g. static
variables cannot be assumed to be initialized to 0)

– No violation of the programmer assertions (must all
be statically verified).
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Example: Dichotomy Search II

% cat dichotomy.c
int main () {

int R[100], X; short lwb, upb, m;
lwb = 0; upb = 99;
while (lwb <= upb) {

m = upb + lwb;
m = m » 1;
if (X == R[m]) { upb = m; lwb = m+1; }
else if (X < R[m]) { upb = m - 1; }
else { lwb = m + 1; }

}
__ASTREE_log_vars((m));

}
% astree –exec-fn main dichotomy.c |& egrep "(WARN)|(m in)"
direct = <integers (intv+cong+bitfield+set): m in [0, 99] /\ Top >
%
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Example: Dichotomy Search II

% diff dichotomy.c dichotomy-bug.c
2,3c2,3
< int R[100], X; short lwb, upb, m;
< lwb = 0; upb = 99;
–-
> int R[30000], X; short lwb, upb, m;
> lwb = 0; upb = 29999;
%
% astree –exec-fn main dichotomy-bug.c |& egrep "WARN" | head -n2
dichotomy-bug.c:5.6-19::[call#main@1:loop@4=2:]: WARN: implicit signed int->signed
short conversion range [14998, 44999] not included in [-32768, 32767]
dichotomy-bug.c:7.15-19::[call#main@1:loop@4=2:]: WARN: invalid dereference:
dereferencing 4 byte(s) at offset(s) [0;4294967295] may overflow the variable R of
byte-size 120000 or mis-aligned pointer (1Z+0) may not a multiple of 4
%

Astrée finds bugs in programs based on algorithms which have been formally proved correct.
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Specification Can Be Tricky

– What is known about the execution environment?
– Warn on integer arithmetic overflows? Including left
shifts (to extract bit fields)? Including in initializers?

– Warn on implicit cast/conversion? When they overflow 9?
– What is an incorrect access to a union field?
– . . .
Astrée proposes “reasonable default choices” (with vari-
ants through analysis parameters)

9 undefined except for unsigned to unsigned.
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Different Classes of Run-time Errors

1. Errors terminating the execution 10. Astrée warns and
continues by taking into account only the executions that
did not trigger the error.

2. Errors not terminating the execution with predictable outcome 11.
Astrée warns and continues with worst-case assumptions.

3. Errors not terminating the execution with unpredictable
outcome 12. Astrée warns and continues by taking into
account only the executions that did not trigger the error.

) Astrée is sound with respect to C standard, unsound with
respect to C implementation, unless no false alarm.
10 floating-point exceptions e.g. (invalid operations, overflows, etc.) when traps are activated
11 e.g. overflows over signed integers resulting in some signed integer.
12 e.g. memory corruptionss.
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Abstraction
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Abstraction is Extremely Hard

– The analysis must be automatic (no user interaction)
– The abstraction must
- ensure termination (and efficiency) of the analysis
- be sound (Astrée is a verifier, not a bug-finder)
- scale up (100.000 to 1.000.000 LOCs)
- be precise (no false alarm)

A grand challenge
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General-Purpose Abstract Domains: Intervals and Octagons

X

Y

0

Intervals:
1 » x » 9
1 » y » 20

Octagons
[Min01]:8>><>>:
1 » x » 9
x+ y » 77
1 » y » 20
x` y » 04

Difficulties: many global variables, arrays (smashed or not), IEEE
754 floating-point arithmetic (in program and analyzer) [CC77,
Min01, Min04a]

Seminar, SUNY SB CS, 18/01/2008 — 59 — ľ P. Cousot



Termination
SLAM uses CEGAR and does not terminate 13 on

% cat slam.c
int main() { int x, y;

x = 0; y = 0;
while (x < 2147483647)

{ x = x + 1; y = y + 1; }
__ASTREE_assert((x == y));

}

whereas Astrée uses widening/narrowing-based extrap-
olation techniques to prove the assertion

% astree –exec-fn main slam.c |& egrep "WARN"
%

13 CEGAR cannot generate the invariant y = x - 1 so produces all counter examples x = i + 1 ^ y = i,
i = 0; 1; 2; 3; : : :
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Boolean Relations for Boolean Control
– Code Sample:

/* boolean.c */
typedef enum {F=0,T=1} BOOL;
BOOL B;
void main () {

unsigned int X, Y;
while (1) {

...
B = (X == 0);
...
if (!B) {

Y = 1 / X;
}
...

}
}

The boolean relation abstract do-
main is parameterized by the height
of the decision tree (an analyzer
option) and the abstract domain at
the leafs
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Trace Partitioning [MR05]
Principle:

– Semantic equivalence:
if (B) { C1 } else { C2 }; C3

+
if (B) { C1; C3 } else { C2; C3 };

– More precise in the abstract: concrete execution
paths are merged later.

Application: if (B)
{ X=0; Y=1; }

else
{ X=1; Y=0; }

R = 1 / (X-Y);

cannot result in a
division by zero
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Case analysis with loop unrolling
– Code Sample:
/* trace_partitionning.c */
void main() {

float t[5] = {-10.0, -10.0, 0.0, 10.0, 10.0};
float c[4] = {0.0, 2.0, 2.0, 0.0};
float d[4] = {-20.0, -20.0, 0.0, 20.0};
float x, r;
int i = 0;
__ASTREE_known_fact(((-30.0 <= x) && (x <= 30.0)));
while ((i < 3) && (x >= t[i+1])) {

i = i + 1;
}
r = (x - t[i]) * c[i] + d[i];
__ASTREE_log_vars((r));

}

% astree –exec-fn main –no-trace –no-relational trace-partitioning.c |& egrep "(WARN)|(r in)"
direct = <float-interval: r in [-20, 20] >
%
% astree –exec-fn main –no-partition –no-trace –no-relational trace-partitioning.c \

|& egrep "(WARN)|(r in)"
direct = <float-interval: r in [-100, 100] >
%
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Ellipsoid Abstract Domain for
Filters2d Order Digital Filter:

– Computes Xn =


¸Xn`1 + ˛Xn`2 + Yn
In

– The concrete computation is bounded, which
must be proved in the abstract.

– There is no stable interval or octagon.
– The simplest stable surface is an ellipsoid.

execution trace unstable interval stable ellipsoid
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Filter Example [Fer04]
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;
void filter () {

static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] = X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {
X = 0.9 * X + 35; /* simulated filter input */
filter (); INIT = FALSE; }

}
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Overapproximation with an Arithmetic-Geometric Progression
f(k)

k
max k

max | f(k) | 
max k
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Arithmetic-geometric progressions 14 [Fer05]

– Abstract domain: (R+)5

– Concretization:
‚ 2 (R+)5 7 !̀ }(N 7! R)

‚(M;a; b; a0; b0) =

ff j 8k 2 N : jf(k)j »
“
λx . ax+ b ‹ (λx . a0x+ b0)k

”
(M)g

i.e. any function bounded by the arithmetic-geometric
progression 15.

14 here in R, in practice in floats, so rounding must be taken into account [].
15 Note that exhaustive enumeration would be simply hopeless.
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Example 1: Bounding Increments [Fer05]
% cat count.c
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
volatile BOOLEAN I; int R; BOOLEAN T;
void main() {

R = 0;
while (TRUE) {

__ASTREE_log_vars((R));
if (I) { R = R + 1; }
else { R = 0; }
T = (R >= 100);
__ASTREE_wait_for_clock(());

}}

% cat count.config
__ASTREE_volatile_input((I [0,1]));
__ASTREE_max_clock((3600000));
% astree –exec-fn main –config-sem count.config count.c|grep ’|R|’

|R| <= 0. + clock *1. <= 3600001.

 potential overflow!
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Example 2: Accumulation of Small Rounding Errors

% cat -n rounding-c.c
1 #include <stdio.h>
2 int main () {
3 int i; double x; x = 0.0;
4 for (i=1; i<=1000000000; i++) {
5 x = x + 1.0/10.0;
6 }
7 printf("x = %f\n", x);
8 }

% gcc rounding-c.c
% ./a.out
x = 99999998.745418
%

since (0:1)10 = (0:0001100110011001100 : : :)2
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Static Analysis with Astrée
% cat -n rounding.c

1 int main () {
2 double x; x = 0.0;
3 while (1) {
4 x = x + 1.0/10.0;
5 __ASTREE_log_vars((x));
6 __ASTREE_wait_for_clock(());
7 }
8 }

% cat rounding.config
__ASTREE_max_clock((1000000000));

% astree –exec-fn main –config-sem rounding.config –unroll 0 rounding.c\
|& egrep "(x in)|(\|x\|)|(WARN)" | tail -2
direct = <float-interval: x in [0.1, 200000040.938] >

|x| <= 1.*((0. + 0.1/(1.-1))*(1.)^clock - 0.1/(1.-1)) + 0.1
<= 200000040.938
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The Patriot missile failure

– “On February 25th, 1991, a Patriot
missile . . . failed to track and inter-
cept an incoming Scud (˜).”

– The software failure was due to accu-
mulated rounding error (y)

(˜) This Scud subsequently hit an Army barracks, killing 28 Americans.
(y)– “Time is kept continuously by the system’s internal clock in

tenths of seconds”

– “The system had been in operation for over 100 consecutive
hours”

– “Because the system had been on so long, the resulting inac-
curacy in the time calculation caused the range gate to shift
so much that the system could not track the incoming Scud”
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Example 3: Time Dependent Deviations [Fer05]
% cat retro.c
typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST;
volatile BOOL SWITCH;
volatile float E;
float P, X, A, B;

void dev( )
{ X=E;

if (FIRST) { P = X; }
else

{ P = (P - ((((2.0 * P) - A) - B)
* 4.491048e-03)); };

B = A;
if (SWITCH) {A = P;}
else {A = X;}

}

void main()
{ FIRST = TRUE;

while (TRUE) {
dev( );
FIRST = FALSE;
__ASTREE_wait_for_clock(());

}}
% cat retro.config
__ASTREE_volatile_input((E [-15.0, 15.0]));
__ASTREE_volatile_input((SWITCH [0,1]));
__ASTREE_max_clock((3600000));

|P| <= (15. + 5.87747175411e-39
/ 1.19209290217e-07) * (1
+ 1.19209290217e-07)ˆclock
- 5.87747175411e-39 /
1.19209290217e-07 <= 23.0393526881
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Incompleteness

Astrée does not know that

8x; y 2 Z : 7y2 ` 1 6= x2

so on the following program

void main() { int x, y;
if ((-4681 < y) && (y < 4681) && (x < 32767) && (-32767 < x) && ((7*y*y - 1) == x*x))

{ y = 1 / x; };
}

it produces a false alarm

% astree –exec-fn main false-alarm.c |& egrep "WARN"
false-alarm.c:5.9-14::[call#main@1:]: WARN: integer division by zero ([-32766, 32766]
and {1} / Z)
%
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Zero False Alarm Objective

Industrial constraints require Astrée to be extremely
precise:
– Astrée is designed for a well-identified family of pro-
grams

– The analysis can be tuned using
- parameters
- analysis directives (which insertion can be automated)
- extensions of the analyzer (by the tool designers)
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Example of directive (Cont’d)

% cat repeat1.c
typedef enum {FALSE=0,TRUE=1} BOOL;
int main () {

int x = 100; BOOL b = TRUE;

while (b) {
x = x - 1;
b = (x > 0);

}
}

% astree –exec-fn main repeat1.c |& egrep "WARN"
repeat1.c:5.8-13::[call#main@2:loop@4>=4:]: WARN: signed int arithmetic
range [-2147483649, 2147483646] not included in [-2147483648, 2147483647]
%
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Example of directive (Cont’d)

% cat repeat2.c
typedef enum {FALSE=0,TRUE=1} BOOL;
int main () {

int x = 100; BOOL b = TRUE;
__ASTREE_boolean_pack((b,x));
while (b) {

x = x - 1;
b = (x > 0);

}
}
% astree –exec-fn main repeat2.c |& egrep "WARN"
%

The insertion of this directive could have been automated in
Astrée.
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Industrial Application

References

[1] D. Delmas and J. Souyris. Astrée from research to industry. 14th SAS, LNCS 4634, Springer, Aug. 2007, pp. 437–451.
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Application to Avionics Software
– Primary flight control software 16

– C program, automatically generated from a propri-
etary high-level specification (à la Simulink/Scade)

– A340/600: 200,000 lines 17, A380: ˆ 5
No false alarm, a world première!

16 “Flight Control and Guidance Unit” (FCGU) running on the “Flight Control Primary Computers” (FCPC).
The A340 electrical flight control system is placed between the pilot’s controls (sidesticks, rudder pedals)
and the control surfaces of the aircraft, whose movement they control and monitor.

17 6 hours on a 2.6 GHz, 16 Gb RAM PC
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6. Conclusion
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Abstract Interpretation

– Abstract interpretation is
- a theory
- with effective applications
- and unprecedented industrial accomplishments.

– Further investigations of the theory are needed (while
its scope of application broaden)

– The demand for applications is quasi-illimited
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THE END, THANK YOU
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