
« Software Verification
by Abstract Interpretation

and the ASTRÉE Static Analyzer »

Patrick Cousot
École normale supérieure

45 rue d’Ulm, 75230 Paris cedex 05, France
Patrick.Cousot@ens.fr www.di.ens.fr/~cousot

Computer Science Department — Stony Brook University
18 January 2008

Seminar, SUNY SB CS, 18/01/2008 — 1 — ľ P. Cousot

Abstract
Abstract interpretation is a theory of sound approximation of the behavior of dynamic systems, in particular
the semantics of programming languages. This is the formal basis for automatic correctness proofs by static
analysers considering an over-approximation of the set of all possible executions of the program. Contrary
to bug-finding methods (e.g. by test, bounded model-checking or error pattern search), no potential error is
ever omitted. Hence the proof of satisfaction of a specification is always mathematically valid. Contrary to
refinement-based methods, termination is always guaranteed. However, by undecidability of such proofs, the
abstraction may yield false alarms whenever a synthesized inductive argument (e.g. a loop invariant) is too weak
to make the proof. In this case, some executions considered in the abstract, that is in the over-approximation,
might lead to an error while not corresponding to a concrete, that is actual, execution. All the difficulty of the
undecidable verification problem is therefore to design safe/sound over-approximations that are coarse enough to
be effectively computable by the static analyzer and precise enough to avoid false alarms (the errors leading to
true alarms can only be eliminated by correcting the program that does not satisfy the specification).

After a brief introduction to abstract interpretation, we will present theAstrée static analyser (www.astree.ens.fr)
for proving the absence of runtime errors (such as buffer overrun, dangling pointer, division by zero, float overflow,
modular integer arithmetic overflow, . . .) in real-time synchronous control/command C applications. The
Astrée static analyser uses generalist abstractions (like intervals, octagons, decision trees, symbolic execution,
etc) and abstractions for the specific application domain (to cope with filters, integrators, slow divergences due
to rounding errors, etc). Since 2003, these domain-specific abstractions allowed for the verification of the absence
of runtime errors in several large avionic software, a world première.

Seminar, SUNY SB CS, 18/01/2008 — 2 — ľ P. Cousot

Contents

The failing software problem . 4
Introduction to static analysis . 15
Abstract interpretation . 22
Principle of abstract interpretation . 26
The Astrée static analyzer . 41
Conclusion . 79
Bibliography . 82

Seminar, SUNY SB CS, 18/01/2008 — 3 — ľ P. Cousot

1. The Problem: The Design
of Safe and Secure Computer-
Based Systems

Seminar, SUNY SB CS, 18/01/2008 — 4 — ľ P. Cousot

Bugs Now Show-Up in Everyday Life

– Bugs now appear frequently in everyday life (banks,
cars, telephones, . . .)

– Example (HSBC bank ATM 1 at 19 Boulevard Sébas-
topol in Paris, failure on Nov. 21st 2006 at 8:30 am):

1 cash machine, cash dispenser, automatic teller machine.

Seminar, SUNY SB CS, 18/01/2008 — 5 — ľ P. Cousot

A Strong Need for Software Better Quality

– Poor software quality is not acceptable in safety and
mission critical software applications.

– The present state of the art in software engineering
does not offer sufficient quality garantees

Seminar, SUNY SB CS, 18/01/2008 — 6 — ľ P. Cousot

The Complexity of Software Design
– The design of complex software is difficult and econom-
ically critical

– Example (www.designnews.com/article/CA6475332.html):
“Boeing Confirms 787 Delay, Fasteners, Flight Control Software Code Blamed
John Dodge, Editor-in-Chief – Design News, September 5, 2007

Boeing officials confirmed today that a fastener shortage and
problems with flight control software have pushed “first flight” of
the Boeing 787 Dreamliner to sometime between mid-November
and mid-December 2.
...
The software delays involve Honeywell Aerospace, which is re-
sponsible for flight control software. The work on this part of
the 787 was simply underestimated, said Bair.”

2 Bill Rigby of Reuters announced that Boeing delays 787 by 3 months on Wed Jan 16, 2008 12:37pm EST.

Seminar, SUNY SB CS, 18/01/2008 — 7 — ľ P. Cousot

The Security of Complex Software

– Complex software is subject to security vulnerabilies
– Example (www.wired.com/politics/security/news/2008/01/dreamliner_security)

“FAA: Boeing’s New 787 May Be Vulnerable to Hacker Attack
Kim Zetter, freelance journalist in Oakland, CA, Jan. 4, 2008

Boeing’s new 787 Dreamliner passenger jet may have a serious
security vulnerability in its onboard computer networks ...

According to the FAA document published in the Federal Regis-
ter (mirrored at Cryptome.org), the vulnerability exists because
the plane’s computer systems connect the passenger network with
the flight-safety, control and navigation network. It also con-
nects to the airline’s business and administrative-support net-
work, which communicates maintenance issues to ground crews.

Seminar, SUNY SB CS, 18/01/2008 — 8 — ľ P. Cousot

Tool-Based Software Design Methods

– New tool-based software design methods will have to
emerge to face the unprecedented growth and complex-
ification of critical software

– E.g. FCPC (Flight Control Primary Computer)
- A220: 20 000 LOCs,
- A340 (V1): 130 000 LOCS
- A340 (V2): 250 000 LOCS
- A380: 1.000.000 LOCS
- A350: static analysis to be
integrated in the software production

Seminar, SUNY SB CS, 18/01/2008 — 9 — ľ P. Cousot

Validation/Formal Methods

– Bug-finding methods : unit, integration, and system
testing, dynamic verification, bounded model-checking,
error pattern mining, . . .

– Absence of bug proving methods : formally prove that
the semantics of a program satisfies a specification

- theorem-proving & proof checking
- model-checking
- static analysis

– In practice : complementary methods are used,
very difficult to scale up

Seminar, SUNY SB CS, 18/01/2008 — 10 — ľ P. Cousot

Problems with Formal Methods

– Formal specifications (abstract machines, temporal logic,
. . .) are costly, complex, error-prone, difficult to main-
tain, not mastered by casual programmers

– Formal semantics of the specification and program-
ming language are inexistant, informal, irrealistic or
complex

– Formal proofs are partial (static analysis), do not scale
up (model checking) or need human assistance (theo-
rem proving & proof assistants)
) High costs (for specification, proof assistance, etc).

Seminar, SUNY SB CS, 18/01/2008 — 11 — ľ P. Cousot

Avantages of Static Analysis

– Formal specifications are implicit (no need for explicit,
user-provided specifications)

– Formal semantics are approximated by the static ana-
lyzer (no user-provided models of the program)

– Formal proofs are automatic (no required user-interaction)
– Costs are low (no modification of the software produc-
tion methodology)

– Scales up to 100.000 to 1.000.000 LOCS
– Rapid and large diffusion in embedded software pro-
duction industries

Seminar, SUNY SB CS, 18/01/2008 — 12 — ľ P. Cousot

Disadvantages of Static Analysis

– Imprecision (acceptable in some applications like WCET
or program optimization)

– Incomplete for program verification
– False alarms are due to unsuccessful automatic proofs
in 5 to 15% of the cases

For example, 1% of 500.000 potential (true or false) alarms is
5.000, too much to be handled by hand!

Seminar, SUNY SB CS, 18/01/2008 — 13 — ľ P. Cousot

Remedies to False Alarms in Astrée

– Astrée is specialized to specific program properties 3

– Astrée is specialized to real-time synchronous con-
trol/command programs written in C

– Astrée offers possibilities of refinement 4

The cost of adapting Astrée to a specific program,
should be a small fraction of the cost to test the
specific program properties verified by Astrée.

3 proof of absence of runtime errors
4 parametrizations and analysis directives

Seminar, SUNY SB CS, 18/01/2008 — 14 — ľ P. Cousot

2. Introduction to Static Analysis

Seminar, SUNY SB CS, 18/01/2008 — 15 — ľ P. Cousot

Principle of Static Analysis
(1) Concrete Semantics

s(t)

t0 1 2 3 4 5 6 7 8 9 10

Error

Finite and infinite discrete execution traces

Seminar, SUNY SB CS, 18/01/2008 — 16 — ľ P. Cousot

Principle of Static Analysis
(2) Specification

s(t)

t0 1 2 3 4 5 6 7 8 9 10

Error

Safety specification of bad states

Seminar, SUNY SB CS, 18/01/2008 — 17 — ľ P. Cousot

Principle of Static Analysis
(3.1) Abstract Semantics

s(t)

t0 1 2 3 4 5 6 7 8 9 10

Error

Abstraction to reachable partial traces

Seminar, SUNY SB CS, 18/01/2008 — 18 — ľ P. Cousot

Principle of Static Analysis
(3.2) Abstract Semantics

s(t)

t0 1 2 3 4 5 6 7 8 9 10

Further abstraction to a pavage of intervals

Seminar, SUNY SB CS, 18/01/2008 — 19 — ľ P. Cousot

Unsoundness
(False Negatives)

Some states are omitted (e.g. bounded model checking)

Seminar, SUNY SB CS, 18/01/2008 — 20 — ľ P. Cousot

Incomplete
(False Positive/Alarms)

Over-approximation containing unreachable states

Seminar, SUNY SB CS, 18/01/2008 — 21 — ľ P. Cousot

3. Abstract Interpretation

Seminar, SUNY SB CS, 18/01/2008 — 22 — ľ P. Cousot

The Theory of Abstract Interpretation

– A theory of sound approximation of mathematical struc-
tures, in particular those involved in the behavior of
computer systems

– Systematic derivation of sound methods and algorithms
for approximating undecidable or highly complex prob-
lems in various areas of computer science

– Main practical application is on the safety and security
of complex hardware and software computer systems

– Abstraction: extracting information from a system de-
scription that is relevant to proving a property

Seminar, SUNY SB CS, 18/01/2008 — 23 — ľ P. Cousot

Applications of Abstract Interpretation (Cont’d)

– Static Program Analysis [CC77], [CH78], [CC79] in-
cluding Dataflow Analysis; [CC79], [CC00], Set-based
Analysis [CC95], Predicate Abstraction [Cou03], . . .

– Grammar Analysis and Parsing [CC03];

– Hierarchies of Semantics and Proof Methods [CC92],
[Cou02];

– Typing & Type Inference [Cou97];

– (Abstract) Model Checking [CC00];

– Program Transformation (including program optimiza-
tion, partial evaluation, etc) [CC02];

Seminar, SUNY SB CS, 18/01/2008 — 24 — ľ P. Cousot

Applications of Abstract Interpretation (Cont’d)

– Software Watermarking [CC04];

– Bisimulations [RT04, RT06];

– Language-based security [GM04];

– Semantics-based obfuscated malware detection [PCJD07].

– Databases [AGM93, BPC01, BS97]

– Computational biology [Dan07]

– Quantum computing [JP06, Per06]
All these techniques involve sound approximations that
can be formalized by abstract interpretation

Seminar, SUNY SB CS, 18/01/2008 — 25 — ľ P. Cousot

4. Principle of Abstract Interpre-
tation

References

[POPL ’77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or
approximation of fixpoints. In 4th ACM POPL.

[Thesis ’78] P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones sur un treillis, analyse
sémantique de programmes. Thèse ès sci. math. Grenoble, march 1978.

[POPL ’79] P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6th ACM POPL.

Seminar, SUNY SB CS, 18/01/2008 — 26 — ľ P. Cousot

Syntax of programs

X variables X 2 X
T types T 2 T
E arithmetic expressions E 2 E
B boolean expressions B 2 B
D ::= T X;
j T X ; D0

C ::= X = E; commands C 2 C
j while B C 0

j if B C 0 else C 00

j { C1 . . . Cn }, (n – 0)
P ::= D C program P 2 P

Seminar, SUNY SB CS, 18/01/2008 — 27 — ľ P. Cousot

Postcondition semantics

x(t)

t

Seminar, SUNY SB CS, 18/01/2008 — 28 — ľ P. Cousot

States

Values of given type:

VJT K : values of type T 2 T
VJintK , fz 2 Z j min_int » z » max_intg

Program states ˚JP K 5:

˚JD CK , ˚JDK
˚JT X;K , fXg 7! VJT K

˚JT X; DK , (fXg 7! VJT K) [˚JDK

5 States 2 ˚JP K of a program P map program variables X to their values (X)

Seminar, SUNY SB CS, 18/01/2008 — 29 — ľ P. Cousot

Concrete Semantic Domain of Programs

Concrete semantic domain for reachability properties:

DJP K , }(˚JP K) sets of states

i.e. program properties where „ is implication, ? is false,
[is disjunction.

Seminar, SUNY SB CS, 18/01/2008 — 30 — ľ P. Cousot

Concrete Reachability Semantics of Programs
SJX = E; KR , f[X EJEK] j 2 R \ dom(E)g
[X v](X) , v; [X v](Y) , (Y)

SJif B C 0KR , SJC 0K(BJBKR) [BJ:BKR
BJBKR , f 2 R \ dom(B) j B holds in g

SJif B C 0 else C 00KR , SJC 0K(BJBKR) [SJC 00K(BJ:BKR)
SJwhile B C 0KR , let W = lfp

„
? λX .R [SJC 0K(BJBKX)

in (BJ:BKW)
SJfgKR , R

SJfC1 : : : CngKR , SJCnK ‹ : : : ‹ SJC1K n > 0

SJD CKR , SJCK(˚JDK) (uninitialized variables)
Not computable (undecidability).

Seminar, SUNY SB CS, 18/01/2008 — 31 — ľ P. Cousot

Abstract Semantic Domain of Programs

hD]JP K; v; ?; ti

such that:

hDJP K; „i `̀`!̀! ̀`̀`
¸

‚
hD]JP K; vi

i.e.

8X 2 DJP K; Y 2 D]JP K : ¸(X) v Y () X „ ‚(Y)

hence hD]JP K; v; ?; ti is a complete lattice such that
? = ¸(?) and tX = ¸([‚(X))

Seminar, SUNY SB CS, 18/01/2008 — 32 — ľ P. Cousot

Example 1 of Abstraction

Traces: set of finite or infinite maximal sequences of
states for the operational transition semantics

¸! Strongest liberal postcondition: final states s reach-
able from a given precondition P
¸(X) = λP . fs j 9ff0ff1 : : : ffn 2 X : ff0 2 P ^ s =

ffng
We have (˚: set of states, _„ pointwise):

h}(˚1); „i `̀`!̀! ̀`̀`
¸

‚
h}(˚) [7 !̀ }(˚); _„i

Seminar, SUNY SB CS, 18/01/2008 — 33 — ľ P. Cousot

Example 2 of Abstraction

Traces: set of finite or infinite maximal sequences of
states for the operational transition semantics

¸1! Set of reachable states: set of states appearing at least
once along one of these traces (global invariant)
¸1(X) = fffi j ff 2 X ^ 0 » i < jffjg

¸2! Partitionned set of reachable states: project along each
control point (local invariant)
¸2(fhci; ii j i 2 ´g) = λ c . fi j i 2 ´ ^ c = cig

Seminar, SUNY SB CS, 18/01/2008 — 34 — ľ P. Cousot

¸3! Partitionned cartesian set of reachable states: project
along each program variable (relationships between
variables are now lost)
¸3(λ c . fi j i 2 ´cg) = λ c . λ X . fi(X) j i 2 ´cg

¸4! Partitionned cartesian interval of reachable states: take
min and max of the values of the variables 6

¸4(λ c . λ X . fvi j i 2 ´c;Xg =
λ c . λ X . hminfvi j i 2 ´c;Xg; maxfvi j i 2 ´c;Xgi

¸1, ¸2, ¸3 and ¸4, whence ¸4 ‹ ¸3 ‹ ¸2 ‹ ¸1 are lower-
adjoints of Galois connections

6 assuming these values to be totally ordered.

Seminar, SUNY SB CS, 18/01/2008 — 35 — ľ P. Cousot

Example 3: Reduced Product of Abstract Domains

To combine abstractions
hD; „i `̀ !̀ ̀ `̀

¸1

‚1 hD]1; v1i and hD; „i `̀ !̀ ̀ `̀
¸2

‚2 hD]2; v2i
the reduced product is

¸(X) , ufhx; yi j X „ ‚1(x) ^X „ ‚2(y)g
such that v , v1 ˆv2 and

hD; „i `̀`̀ `̀ !̀! ̀ `̀ `̀ `̀
¸

‚1ˆ‚2 h¸(D); vi

Example: x 2 [1; 9] ^ xmod 2 = 0 reduces to x 2 [2; 8] ^
xmod 2 = 0

Seminar, SUNY SB CS, 18/01/2008 — 36 — ľ P. Cousot

Approximate Fixpoint Abstraction

F

F

Concrete domain

Abstract domain

F F F F F
F

F
� F

� F
�

F
�

Approximation
relation

⊥

⊥�

�

]

�

F ‹ ‚ v ‚ ‹ F]) lfpF v ‚(lfpF])
Seminar, SUNY SB CS, 18/01/2008 — 37 — ľ P. Cousot

Abstract Reachability Semantics of Programs
S]JX = E; KR , ¸(f[X EJEK] j 2 ‚(R) \ dom(E)g)
S]Jif B C 0KR , S]JC 0K(B]JBKR) t B]J:BKR

B]JBKR , ¸(f 2 ‚(R) \ dom(B) j B holds in g)
S]Jif B C 0 else C 00KR , S]JC 0K(B]JBKR) t S]JC 00K(B]J:BKR)

S]Jwhile B C 0KR , let W = lfp
v
? λX .R t S]JC 0K(B]JBKX)

in (B]J:BKW)
S]JfgKR , R

S]JfC1 : : : CngKR , S]JCnK ‹ : : : ‹ S]JC1K n > 0

S]JD CKR , S]JCK(>) (uninitialized variables)

Seminar, SUNY SB CS, 18/01/2008 — 38 — ľ P. Cousot

Convergence Acceleration with Widening

F Concrete domain

Abstract domain

F F F F F
F

Approximation
relation

⊥

⊥�

�

]

�

�

F

�

F
�

�

F
�

F
�

Seminar, SUNY SB CS, 18/01/2008 — 39 — ľ P. Cousot

Abstract Semantics with Convergence Acceleration 7

S]JX = E; KR , ¸(f[X EJEK] j 2 ‚(R) \ dom(E)g)
S]Jif B C 0KR , S]JC 0K(B]JBKR) t B]J:BKR

B]JBKR , ¸(f 2 ‚(R) \ dom(B) j B holds in g)
S]Jif B C 0 else C 00KR , S]JC 0K(B]JBKR) t S]JC 00K(B]J:BKR)

S]Jwhile B C 0KR , let F] = λX . let Y = R t S]JC 0K(B]JBKX)
in if Y v X then X else X

`
Y

and W = lfp
v
?F

] in (B]J:BKW)
S]JfgKR , R

S]JfC1 : : : CngKR , S]JCnK ‹ : : : ‹ S]JC1K n > 0

S]JD CKR , S]JCK(>) (uninitialized variables)

7 Note: F] not monotonic!

Seminar, SUNY SB CS, 18/01/2008 — 40 — ľ P. Cousot

5. Application to the Astrée
Static Analyzer

Seminar, SUNY SB CS, 18/01/2008 — 41 — ľ P. Cousot

Project Members

Patrick Cousot Radhia Cousot Jérôme Feret

Laurent Mauborgne Antoine Miné Xavier Rival

Bruno Blanchet (Nov. 2001 — Nov. 2003)

David Monniaux (Nov. 2001 — Aug. 2007).

Seminar, SUNY SB CS, 18/01/2008 — 42 — ľ P. Cousot

Programs

Seminar, SUNY SB CS, 18/01/2008 — 43 — ľ P. Cousot

Programs Analysed by Astrée

– Application Domain: large safety critical embedded
synchronous software (for real-time non-linear control
of very complex control/command systems).

– C programs:
- with
´ basic numeric datatypes, structures and arrays
´ pointers (including on functions),
´ floating point computations
´ tests, loops and function calls
´ limited branching (forward goto, break, continue)

Seminar, SUNY SB CS, 18/01/2008 — 44 — ľ P. Cousot

– with (cont’d)
- union

- pointer arithmetics & casts
– without

- dynamic memory allocation
- recursive function calls
- unstructured/backward branching
- conflicting side effects
- C libraries, system calls (parallelism)

Such limitations are quite common for embedded safety-critical software.

Seminar, SUNY SB CS, 18/01/2008 — 45 — ľ P. Cousot

The Class of Considered Periodic Synchronous Programs

declare volatile input, state and output variables;
initialize state and output variables;
loop forever

- read volatile input variables,
- compute output and state variables,
- write to output variables;
__ASTREE_wait_for_clock ();

end loop

Task scheduling is static:
– Requirements: the only interrupts are clock ticks;
– Execution time of loop body less than a clock tick,
as verified by the aiT WCET Analyzers [FHL+01].

Seminar, SUNY SB CS, 18/01/2008 — 46 — ľ P. Cousot

Concrete Semantics

Seminar, SUNY SB CS, 18/01/2008 — 47 — ľ P. Cousot

Concrete Trace Semantics

– International norm of C (ISO/IEC 9899:1999)
– restricted by implementation-specific behaviors depend-
ing upon the machine and compiler (e.g. representa-
tion and size of integers, IEEE 754-1985 norm for floats
and doubles)

– restricted by user-defined programming guidelines (such
as no modular arithmetic for signed integers, even
though this might be the hardware choice)

– restricted by program specific user requirements (e.g.
assert)

Seminar, SUNY SB CS, 18/01/2008 — 48 — ľ P. Cousot

The Semantics of C is Hard (Ex. 1: Floats)

“Put x in [m; M] modulo (M` m)”:

x’ = x - (int) ((x-m)/(M-m))*(M-m);

– The programmer thinks x’ 2 [m; M]
– But with M = 4095, m = `M, IEEE double precision,
and x is the greatest float strictly less than M, then
x’ = m` › (› very small).

Floats are not real.

Seminar, SUNY SB CS, 18/01/2008 — 49 — ľ P. Cousot

The Semantics of C is Hard (Ex. 2: Runtime Errors)
What is the effect of out-of-bounds array indexing?
% cat unpredictable.c
#include <stdio.h>
int main () { int n, T[1];
n = 2147483647;
printf("n = %i, T[n] = %i\n", n, T[n]);

}

Yields different results on different machines:
n = 2147483647, T[n] = 2147483647 Macintosh PPC
n = 2147483647, T[n] = -1208492044 Macintosh Intel
n = 2147483647, T[n] = -135294988 PC Intel 32 bits
Bus error PC Intel 64 bits

Execution stops after a runtime error with unpredictable results 8.
8 Equivalent semantics if no alarm.

Seminar, SUNY SB CS, 18/01/2008 — 50 — ľ P. Cousot

Specification

Seminar, SUNY SB CS, 18/01/2008 — 51 — ľ P. Cousot

Implicit Specification: Absence of Runtime Errors

– No violation of the norm of C (e.g. array index out of
bounds, division by zero)

– No implementation-specific undefined behaviors (e.g.
maximum short integer is 32767, NaN)

– No violation of the programming guidelines (e.g. static
variables cannot be assumed to be initialized to 0)

– No violation of the programmer assertions (must all
be statically verified).

Seminar, SUNY SB CS, 18/01/2008 — 52 — ľ P. Cousot

Example: Dichotomy Search II

% cat dichotomy.c
int main () {

int R[100], X; short lwb, upb, m;
lwb = 0; upb = 99;
while (lwb <= upb) {

m = upb + lwb;
m = m » 1;
if (X == R[m]) { upb = m; lwb = m+1; }
else if (X < R[m]) { upb = m - 1; }
else { lwb = m + 1; }

}
__ASTREE_log_vars((m));

}
% astree –exec-fn main dichotomy.c |& egrep "(WARN)|(m in)"
direct = <integers (intv+cong+bitfield+set): m in [0, 99] /\ Top >
%

Seminar, SUNY SB CS, 18/01/2008 — 53 — ľ P. Cousot

Example: Dichotomy Search II

% diff dichotomy.c dichotomy-bug.c
2,3c2,3
< int R[100], X; short lwb, upb, m;
< lwb = 0; upb = 99;
–-
> int R[30000], X; short lwb, upb, m;
> lwb = 0; upb = 29999;
%
% astree –exec-fn main dichotomy-bug.c |& egrep "WARN" | head -n2
dichotomy-bug.c:5.6-19::[call#main@1:loop@4=2:]: WARN: implicit signed int->signed
short conversion range [14998, 44999] not included in [-32768, 32767]
dichotomy-bug.c:7.15-19::[call#main@1:loop@4=2:]: WARN: invalid dereference:
dereferencing 4 byte(s) at offset(s) [0;4294967295] may overflow the variable R of
byte-size 120000 or mis-aligned pointer (1Z+0) may not a multiple of 4
%

Astrée finds bugs in programs based on algorithms which have been formally proved correct.

Seminar, SUNY SB CS, 18/01/2008 — 54 — ľ P. Cousot

Specification Can Be Tricky

– What is known about the execution environment?
– Warn on integer arithmetic overflows? Including left
shifts (to extract bit fields)? Including in initializers?

– Warn on implicit cast/conversion? When they overflow 9?
– What is an incorrect access to a union field?
– . . .
Astrée proposes “reasonable default choices” (with vari-
ants through analysis parameters)

9 undefined except for unsigned to unsigned.

Seminar, SUNY SB CS, 18/01/2008 — 55 — ľ P. Cousot

Different Classes of Run-time Errors

1. Errors terminating the execution 10. Astrée warns and
continues by taking into account only the executions that
did not trigger the error.

2. Errors not terminating the execution with predictable outcome 11.
Astrée warns and continues with worst-case assumptions.

3. Errors not terminating the execution with unpredictable
outcome 12. Astrée warns and continues by taking into
account only the executions that did not trigger the error.

) Astrée is sound with respect to C standard, unsound with
respect to C implementation, unless no false alarm.
10 floating-point exceptions e.g. (invalid operations, overflows, etc.) when traps are activated
11 e.g. overflows over signed integers resulting in some signed integer.
12 e.g. memory corruptionss.

Seminar, SUNY SB CS, 18/01/2008 — 56 — ľ P. Cousot

Abstraction

Seminar, SUNY SB CS, 18/01/2008 — 57 — ľ P. Cousot

Abstraction is Extremely Hard

– The analysis must be automatic (no user interaction)
– The abstraction must
- ensure termination (and efficiency) of the analysis
- be sound (Astrée is a verifier, not a bug-finder)
- scale up (100.000 to 1.000.000 LOCs)
- be precise (no false alarm)

A grand challenge

Seminar, SUNY SB CS, 18/01/2008 — 58 — ľ P. Cousot

General-Purpose Abstract Domains: Intervals and Octagons

X

Y

0

Intervals:
1 » x » 9
1 » y » 20

Octagons
[Min01]:8>><>>:
1 » x » 9
x+ y » 77
1 » y » 20
x` y » 04

Difficulties: many global variables, arrays (smashed or not), IEEE
754 floating-point arithmetic (in program and analyzer) [CC77,
Min01, Min04a]

Seminar, SUNY SB CS, 18/01/2008 — 59 — ľ P. Cousot

Termination
SLAM uses CEGAR and does not terminate 13 on

% cat slam.c
int main() { int x, y;

x = 0; y = 0;
while (x < 2147483647)

{ x = x + 1; y = y + 1; }
__ASTREE_assert((x == y));

}

whereas Astrée uses widening/narrowing-based extrap-
olation techniques to prove the assertion

% astree –exec-fn main slam.c |& egrep "WARN"
%

13 CEGAR cannot generate the invariant y = x - 1 so produces all counter examples x = i + 1 ^ y = i,
i = 0; 1; 2; 3; : : :

Seminar, SUNY SB CS, 18/01/2008 — 60 — ľ P. Cousot

Boolean Relations for Boolean Control
– Code Sample:

/* boolean.c */
typedef enum {F=0,T=1} BOOL;
BOOL B;
void main () {

unsigned int X, Y;
while (1) {

...
B = (X == 0);
...
if (!B) {

Y = 1 / X;
}
...

}
}

The boolean relation abstract do-
main is parameterized by the height
of the decision tree (an analyzer
option) and the abstract domain at
the leafs

Seminar, SUNY SB CS, 18/01/2008 — 61 — ľ P. Cousot

Trace Partitioning [MR05]
Principle:

– Semantic equivalence:
if (B) { C1 } else { C2 }; C3

+
if (B) { C1; C3 } else { C2; C3 };

– More precise in the abstract: concrete execution
paths are merged later.

Application: if (B)
{ X=0; Y=1; }

else
{ X=1; Y=0; }

R = 1 / (X-Y);

cannot result in a
division by zero

Seminar, SUNY SB CS, 18/01/2008 — 62 — ľ P. Cousot

Case analysis with loop unrolling
– Code Sample:
/* trace_partitionning.c */
void main() {

float t[5] = {-10.0, -10.0, 0.0, 10.0, 10.0};
float c[4] = {0.0, 2.0, 2.0, 0.0};
float d[4] = {-20.0, -20.0, 0.0, 20.0};
float x, r;
int i = 0;
__ASTREE_known_fact(((-30.0 <= x) && (x <= 30.0)));
while ((i < 3) && (x >= t[i+1])) {

i = i + 1;
}
r = (x - t[i]) * c[i] + d[i];
__ASTREE_log_vars((r));

}

% astree –exec-fn main –no-trace –no-relational trace-partitioning.c |& egrep "(WARN)|(r in)"
direct = <float-interval: r in [-20, 20] >
%
% astree –exec-fn main –no-partition –no-trace –no-relational trace-partitioning.c \

|& egrep "(WARN)|(r in)"
direct = <float-interval: r in [-100, 100] >
%

Seminar, SUNY SB CS, 18/01/2008 — 63 — ľ P. Cousot

Ellipsoid Abstract Domain for
Filters2d Order Digital Filter:

– Computes Xn =

¸Xn`1 + ˛Xn`2 + Yn
In

– The concrete computation is bounded, which
must be proved in the abstract.

– There is no stable interval or octagon.
– The simplest stable surface is an ellipsoid.

execution trace unstable interval stable ellipsoid

Seminar, SUNY SB CS, 18/01/2008 — 64 — ľ P. Cousot

Filter Example [Fer04]
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;
void filter () {

static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] = X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {
X = 0.9 * X + 35; /* simulated filter input */
filter (); INIT = FALSE; }

}

Seminar, SUNY SB CS, 18/01/2008 — 65 — ľ P. Cousot

Overapproximation with an Arithmetic-Geometric Progression
f(k)

k
max k

max | f(k) |
max k

Seminar, SUNY SB CS, 18/01/2008 — 66 — ľ P. Cousot

Arithmetic-geometric progressions 14 [Fer05]

– Abstract domain: (R+)5

– Concretization:
‚ 2 (R+)5 7 !̀ }(N 7! R)

‚(M;a; b; a0; b0) =

ff j 8k 2 N : jf(k)j »
“
λx . ax+ b ‹ (λx . a0x+ b0)k

”
(M)g

i.e. any function bounded by the arithmetic-geometric
progression 15.

14 here in R, in practice in floats, so rounding must be taken into account [].
15 Note that exhaustive enumeration would be simply hopeless.

Seminar, SUNY SB CS, 18/01/2008 — 67 — ľ P. Cousot

Example 1: Bounding Increments [Fer05]
% cat count.c
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
volatile BOOLEAN I; int R; BOOLEAN T;
void main() {

R = 0;
while (TRUE) {

__ASTREE_log_vars((R));
if (I) { R = R + 1; }
else { R = 0; }
T = (R >= 100);
__ASTREE_wait_for_clock(());

}}

% cat count.config
__ASTREE_volatile_input((I [0,1]));
__ASTREE_max_clock((3600000));
% astree –exec-fn main –config-sem count.config count.c|grep ’|R|’

|R| <= 0. + clock *1. <= 3600001.

 potential overflow!

Seminar, SUNY SB CS, 18/01/2008 — 68 — ľ P. Cousot

Example 2: Accumulation of Small Rounding Errors

% cat -n rounding-c.c
1 #include <stdio.h>
2 int main () {
3 int i; double x; x = 0.0;
4 for (i=1; i<=1000000000; i++) {
5 x = x + 1.0/10.0;
6 }
7 printf("x = %f\n", x);
8 }

% gcc rounding-c.c
% ./a.out
x = 99999998.745418
%

since (0:1)10 = (0:0001100110011001100 : : :)2
Seminar, SUNY SB CS, 18/01/2008 — 69 — ľ P. Cousot

Static Analysis with Astrée
% cat -n rounding.c

1 int main () {
2 double x; x = 0.0;
3 while (1) {
4 x = x + 1.0/10.0;
5 __ASTREE_log_vars((x));
6 __ASTREE_wait_for_clock(());
7 }
8 }

% cat rounding.config
__ASTREE_max_clock((1000000000));

% astree –exec-fn main –config-sem rounding.config –unroll 0 rounding.c\
|& egrep "(x in)|(\|x\|)|(WARN)" | tail -2
direct = <float-interval: x in [0.1, 200000040.938] >

|x| <= 1.*((0. + 0.1/(1.-1))*(1.)^clock - 0.1/(1.-1)) + 0.1
<= 200000040.938

Seminar, SUNY SB CS, 18/01/2008 — 70 — ľ P. Cousot

The Patriot missile failure

– “On February 25th, 1991, a Patriot
missile . . . failed to track and inter-
cept an incoming Scud (˜).”

– The software failure was due to accu-
mulated rounding error (y)

(˜) This Scud subsequently hit an Army barracks, killing 28 Americans.
(y)– “Time is kept continuously by the system’s internal clock in

tenths of seconds”

– “The system had been in operation for over 100 consecutive
hours”

– “Because the system had been on so long, the resulting inac-
curacy in the time calculation caused the range gate to shift
so much that the system could not track the incoming Scud”

Seminar, SUNY SB CS, 18/01/2008 — 71 — ľ P. Cousot

Example 3: Time Dependent Deviations [Fer05]
% cat retro.c
typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST;
volatile BOOL SWITCH;
volatile float E;
float P, X, A, B;

void dev()
{ X=E;

if (FIRST) { P = X; }
else

{ P = (P - ((((2.0 * P) - A) - B)
* 4.491048e-03)); };

B = A;
if (SWITCH) {A = P;}
else {A = X;}

}

void main()
{ FIRST = TRUE;

while (TRUE) {
dev();
FIRST = FALSE;
__ASTREE_wait_for_clock(());

}}
% cat retro.config
__ASTREE_volatile_input((E [-15.0, 15.0]));
__ASTREE_volatile_input((SWITCH [0,1]));
__ASTREE_max_clock((3600000));

|P| <= (15. + 5.87747175411e-39
/ 1.19209290217e-07) * (1
+ 1.19209290217e-07)ˆclock
- 5.87747175411e-39 /
1.19209290217e-07 <= 23.0393526881

Seminar, SUNY SB CS, 18/01/2008 — 72 — ľ P. Cousot

Incompleteness

Astrée does not know that

8x; y 2 Z : 7y2 ` 1 6= x2

so on the following program

void main() { int x, y;
if ((-4681 < y) && (y < 4681) && (x < 32767) && (-32767 < x) && ((7*y*y - 1) == x*x))

{ y = 1 / x; };
}

it produces a false alarm

% astree –exec-fn main false-alarm.c |& egrep "WARN"
false-alarm.c:5.9-14::[call#main@1:]: WARN: integer division by zero ([-32766, 32766]
and {1} / Z)
%

Seminar, SUNY SB CS, 18/01/2008 — 73 — ľ P. Cousot

Zero False Alarm Objective

Industrial constraints require Astrée to be extremely
precise:
– Astrée is designed for a well-identified family of pro-
grams

– The analysis can be tuned using
- parameters
- analysis directives (which insertion can be automated)
- extensions of the analyzer (by the tool designers)

Seminar, SUNY SB CS, 18/01/2008 — 74 — ľ P. Cousot

Example of directive (Cont’d)

% cat repeat1.c
typedef enum {FALSE=0,TRUE=1} BOOL;
int main () {

int x = 100; BOOL b = TRUE;

while (b) {
x = x - 1;
b = (x > 0);

}
}

% astree –exec-fn main repeat1.c |& egrep "WARN"
repeat1.c:5.8-13::[call#main@2:loop@4>=4:]: WARN: signed int arithmetic
range [-2147483649, 2147483646] not included in [-2147483648, 2147483647]
%

Seminar, SUNY SB CS, 18/01/2008 — 75 — ľ P. Cousot

Example of directive (Cont’d)

% cat repeat2.c
typedef enum {FALSE=0,TRUE=1} BOOL;
int main () {

int x = 100; BOOL b = TRUE;
__ASTREE_boolean_pack((b,x));
while (b) {

x = x - 1;
b = (x > 0);

}
}
% astree –exec-fn main repeat2.c |& egrep "WARN"
%

The insertion of this directive could have been automated in
Astrée.

Seminar, SUNY SB CS, 18/01/2008 — 76 — ľ P. Cousot

Industrial Application

References

[1] D. Delmas and J. Souyris. Astrée from research to industry. 14th SAS, LNCS 4634, Springer, Aug. 2007, pp. 437–451.

Seminar, SUNY SB CS, 18/01/2008 — 77 — ľ P. Cousot

Application to Avionics Software
– Primary flight control software 16

– C program, automatically generated from a propri-
etary high-level specification (à la Simulink/Scade)

– A340/600: 200,000 lines 17, A380: ˆ 5
No false alarm, a world première!

16 “Flight Control and Guidance Unit” (FCGU) running on the “Flight Control Primary Computers” (FCPC).
The A340 electrical flight control system is placed between the pilot’s controls (sidesticks, rudder pedals)
and the control surfaces of the aircraft, whose movement they control and monitor.

17 6 hours on a 2.6 GHz, 16 Gb RAM PC

Seminar, SUNY SB CS, 18/01/2008 — 78 — ľ P. Cousot

6. Conclusion

Seminar, SUNY SB CS, 18/01/2008 — 79 — ľ P. Cousot

Abstract Interpretation

– Abstract interpretation is
- a theory
- with effective applications
- and unprecedented industrial accomplishments.

– Further investigations of the theory are needed (while
its scope of application broaden)

– The demand for applications is quasi-illimited

Seminar, SUNY SB CS, 18/01/2008 — 80 — ľ P. Cousot

THE END, THANK YOU

Seminar, SUNY SB CS, 18/01/2008 — 81 — ľ P. Cousot

7. Bibliography

Seminar, SUNY SB CS, 18/01/2008 — 82 — ľ P. Cousot

[AGM93] G. Amato, F. Giannotti, and G. Mainetto. Data sharing analysis for a database programming language via abstract
interpretation. In R. Agrawal, S. Baker, and D.A.Bell, editors, Proceedings of the Ninthteenth International Conference
on Very Large Data Bases, pages 405–415, Dublin, Ireland, 24–27 August 1993. MORGANKAUFMANN.

[BCC+02] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Design and implementation
of a special-purpose static program analyzer for safety-critical real-time embedded software, invited chapter. In T. Mogensen,
D.A. Schmidt, and I.H. Sudborough, editors, The Essence of Computation: Complexity, Analysis, Transformation.
Essays Dedicated to Neil D. Jones, Lecture Notes in Computer Science 2566, pages 85–108. Springer, Berlin, Germany,
2002.

[BCC+03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A static analyzer for
large safety-critical software. In Proceedings of the ACM SIGPLAN’2003 Conference on Programming Language
Design and Implementation (PLDI), pages 196–207, San Diego, California, United States, 7–14 June 2003. ACM Press,
New York, New York, United States.

[BPC01] J. Bailey, A. Poulovassilis, and C. Courtenage. Optimising active database rules by partial evaluation and abstract
interpretation. In Proceedings of the Eight International Workshop on Database Programming Languages, Lecture
Notes in Computer Science 2397, pages 300–317, Frascati, Italy, 8–10 september 2001. Springer, Berlin, Germany.

[BS97] V. Benzaken and X. Schaefer. Static integrity constraint management in object-oriented database programming languages
via predicate transformers. In M. Aksit and S. Matsuoka, editors, Proceedings of the Eleventh European Conference
on Object-Oriented Programming, ECOOP ’97, Lecture Notes in Computer Science 1241. Springer, Berlin, Germany,
Jyväskylä, Finland, 9–13 June 1997.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction
or approximation of fixpoints. In Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM Press, New York, New York,
United States.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conference Record of the Sixth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 269–282, San Antonio, Texas,
1979. ACM Press, New York, New York, United States.

Seminar, SUNY SB CS, 18/01/2008 — 83 — ľ P. Cousot

[CC92] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpretation. In Conference Record of the
Ninthteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 83–94,
Albuquerque, New Mexico, United States, 1992. ACM Press, New York, New York, United States.

[CC95] P. Cousot and R. Cousot. Formal language, grammar and set-constraint-based program analysis by abstract interpretation.
In Proceedings of the Seventh ACM Conference on Functional Programming Languages and Computer Architecture,
pages 170–181, La Jolla, California, United States, 25–28 June 1995. ACM Press, New York, New York, United States.

[CC00] P. Cousot and R. Cousot. Temporal abstract interpretation. In Conference Record of the Twentyseventh Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 12–25, Boston, Massachusetts,
United States, January 2000. ACM Press, New York, New York, United States.

[CC02] P. Cousot and R. Cousot. Systematic design of program transformation frameworks by abstract interpretation. In
Conference Record of the Twentyninth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 178–190, Portland, Oregon, United States, January 2002. ACM Press, New York, New York, United
States.

[CC03] P. Cousot and R. Cousot. Parsing as abstract interpretation of grammar semantics. Theoretical Computer Science,
290(1):531–544, January 2003.

[CC04] P. Cousot and R. Cousot. An abstract interpretation-based framework for software watermarking. In Conference Record
of the Thirtyfirst Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
173–185, Venice, Italy, 14–16 January 2004. ACM Press, New York, New York, United States.

[CCF+05] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The Astrée analyser. In M. Sagiv,
editor, Proceedings of the Fourteenth European Symposium on Programming Languages and Systems, ESOP ’2005,
Edinburg, Scotland, volume 3444 of Lecture Notes in Computer Science, pages 21–30. Springer, Berlin, Germany, 2–10
April 2005.

[CCF+06] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Combination of abstractions in
the Astrée static analyzer, invited paper. In M. Okada and I. Satoh, editors, Eleventh Annual Asian Computing
Science Conference, ASIAN06, Tokyo, Japan, 6–8 December 2006. Lecture Notes in Computer Science , Springer, Berlin,
Germany. To appear.

Seminar, SUNY SB CS, 18/01/2008 — 84 — ľ P. Cousot

[CCF+07] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Varieties of static analyzers: A
comparison with Astrée, invited paper. In M. Hinchey, He Jifeng, and J. Sanders, editors, Proceedings of the First
IEEE & IFIP International Symposium on Theoretical Aspects of Software Engineering, TASE ’07, pages 3–17,
Shanghai, China, 6–8 June 2007. IEEE Computer Society Press, Los Alamitos, California, United States.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In Conference Record
of the Fifth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 84–97,
Tucson, Arizona, 1978. ACM Press, New York, New York, United States.

[Cou97] P. Cousot. Types as abstract interpretations, invited paper. In Conference Record of the Twentyfourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 316–331, Paris, France, January
1997. ACM Press, New York, New York, United States.

[Cou02] P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theoretical
Computer Science, 277(1—2):47–103, 2002.

[Cou03] P. Cousot. Verification by abstract interpretation, invited chapter. In N. Dershowitz, editor, Proceedings of the
International Symposium on Verification – Theory & Practice – Honoring Zohar Manna’s 64th Birthday, pages
243–268. Lecture Notes in Computer Science 2772, Springer, Berlin, Germany, Taormina, Italy, 29 June – 4 July 2003.

[Cou07] P. Cousot. Proving the absence of run-time errors in safety-critical avionics code, invited tutorial. In Proceedings of the
Seventh ACM & IEEE International Conference on Embedded Software, EMSOFT ’2007, pages 7–9. ACM Press,
New York, New York, United States, 2007.

[Dan07] V. Danos. Abstract views on biological signaling. In Mathematical Foundations of Programming Semantics, Twentythird
Annual Conference (MFPS XXIII), 2007.

[DS07] D. Delmas and J. Souyris. Astrée: from research to industry. In G. Filé and H. Riis-Nielson, editors, Proceedings of
the Fourteenth International Symposium on Static Analysis, SAS ’07, Kongens Lyngby, Denmark, Lecture Notes in
Computer Science 4634, pages 437–451. Springer, Berlin, Germany, 22–24 August 2007.

[Fer04] J. Feret. Static analysis of digital filters. In D. Schmidt, editor, Proceedings of the Thirteenth European Symposium on
Programming Languages and Systems, ESOP ’2004, Barcelona, Spain, volume 2986 of Lecture Notes in Computer
Science, pages 33–48. Springer, Berlin, Germany, March 27 – April 4, 2004.

Seminar, SUNY SB CS, 18/01/2008 — 85 — ľ P. Cousot

[Fer05] J. Feret. The arithmetic-geometric progression abstract domain. In R. Cousot, editor, Proceedings of the Sixth International
Conference on Verification, Model Checking and Abstract Interpretation (VMCAI 2005), pages 42–58, Paris, France,
17–19 January 2005. Lecture Notes in Computer Science 3385, Springer, Berlin, Germany.

[FHL+01] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Reliable
and precise WCET determination for a real-life processor. In T.A. Henzinger and C.M. Kirsch, editors, Proceedings of the
First International Workshop on Embedded Software, EMSOFT ’2001, volume 2211 of Lecture Notes in Computer
Science, pages 469–485. Springer, Berlin, Germany, 2001.

[GM04] R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-interference by abstract interpretation. In
Conference Record of the Thirtyfirst Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 186–197, Venice, Italy, 2004. ACM Press, New York, New York, United States.

[JP06] Ph. Jorrand and S. Perdrix. Towards a quantum calculus. In Proceedings of the Fourth International Workshop on
Quantum Programming Languages, ENTCS, 2006.

[Mau04] L. Mauborgne. Astrée: Verification of absence of run-time error. In P. Jacquart, editor, Building the Information
Society, chapter 4, pages 385–392. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004.

[Min] A. Miné. The Octagon abstract domain library. http://www.di.ens.fr/~mine/oct/.

[Min01] A. Miné. A new numerical abstract domain based on difference-bound matrices. In 0. Danvy and A. Filinski, editors,
Proceedings of the Second Symposium PADO’2001, Programs as Data Objects, Århus, Denmark, 21–23 May 2001,
Lecture Notes in Computer Science 2053, pages 155–172. Springer, Berlin, Germany, 2001.

[Min04a] A. Miné. Relational abstract domains for the detection of floating-point run-time errors. In D. Schmidt, editor, Proceedings
of the Thirteenth European Symposium on Programming Languages and Systems, ESOP ’2004, Barcelona, Spain,
volume 2986 of Lecture Notes in Computer Science, pages 3–17. Springer, Berlin, Germany, March 27 – April 4, 2004.

[Min04b] A. Miné. Weakly Relational Numerical Abstract Domains. Thèse de doctorat en informatique, École polytechnique,
Palaiseau, France, 6 December 2004.

Seminar, SUNY SB CS, 18/01/2008 — 86 — ľ P. Cousot

[Min05] A. Miné. Weakly relational numerical abstract domains: Theory and application, invited paper. In First International
Workshop on Numerical & Symbolic Abstract Domains, NSAD ’05, Maison Des Polytechniciens, Paris, France, 21
January 2005.

[Min06a] A. Miné. Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics. In Proceedings of
the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems, LCTES ’2006,
pages 54–63. ACM Press, New York, New York, United States, June 2006.

[Min06b] A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation, 19:31–100, 2006.

[Min06c] A. Miné. Symbolic methods to enhance the precision of numerical abstract domains. In E.A. Emerson and K.S.
Namjoshi, editors, Proceedings of the Seventh International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI 2006), pages 348–363, Charleston, South Carolina, United States, 8–10, January 2006. Lecture
Notes in Computer Science 3855, Springer, Berlin, Germany.

[Mon05] D. Monniaux. The parallel implementation of the Astrée static analyzer. In Proceedings of the Third Asian Symposium
on Programming Languages and Systems, APLAS ’2005, pages 86–96, Tsukuba, Japan, 3–5 November 2005. Lecture
Notes in Computer Science 3780, Springer, Berlin, Germany.

[MR05] L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation based static analyzer. In M. Sagiv, editor,
Proceedings of the Fourteenth European Symposium on Programming Languages and Systems, ESOP ’2005, Edinburg,
Scotland, volume 3444 of Lecture Notes in Computer Science, pages 5–20. Springer, Berlin, Germany, April 2—-10, 2005.

[PCJD07] M. Dalla Preda, M. Christodorescu, S. Jha, and S. Debray. Semantics-based approach to malware detection. In Conference
Record of the Thirtyfourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 238–252, Nice, France, 17–19 January 2007. ACM Press, New York, New York, United States.

[Per06] S. Perdrix. Modèles formels du calcul quantique : ressources, machines abstraites et calcul par mesure. PhD thesis,
Institut National Polytechnique de Grenoble, Laboratoire Leibniz, 2006.

[Riv05a] X. Rival. Abstract dependences for alarm diagnosis. In Proceedings of the Third Asian Symposium on Programming
Languages and Systems, APLAS ’2005, pages 347–363, Tsukuba, Japan, 3–5 November 2005. Lecture Notes in Computer
Science 3780, Springer, Berlin, Germany.

Seminar, SUNY SB CS, 18/01/2008 — 87 — ľ P. Cousot

[Riv05b] X. Rival. Understanding the origin of alarms in Astrée. In C. Hankin and I. Siveroni, editors, Proceedings of the Twelfth
International Symposium on Static Analysis, SAS ’05, pages 303–319, London, United Kingdom, Lecture Notes in
Computer Science 3672, 7–9 september 2005.

[RT04] F. Ranzato and F. Tapparo. Strong preservation as completeness in abstract interpretation. In D. Schmidt, editor,
Proceedings of the Thirteenth European Symposium on Programming Languages and Systems, ESOP ’04, volume
2986 of Lecture Notes in Computer Science, pages 18–32, Barcelona, Spain, March 29 – April 2 2004. Springer, Berlin,
Germany.

[RT06] F. Ranzato and F. Tapparo. Strong preservation of temporal fixpoint-based operators by abstract interpretation. In A.E.
Emerson and K.S. Namjoshi, editors, Proceedings of the Seventh International Conference on Verification, Model
Checking and Abstract Interpretation (VMCAI 2006), pages 332–347, Charleston, South Carolina, United States, 8–10
January 2006. Lecture Notes in Computer Science 3855 , Springer, Berlin, Germany.

Seminar, SUNY SB CS, 18/01/2008 — 88 — ľ P. Cousot

