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1. Abstract Interpretation
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The Theory of Abstract Interpretation

– A theory of sound approximation of mathematical struc-
tures, in particular those involved in the behavior of
computer systems

– Systematic derivation of sound methods and algorithms
for approximating undecidable or highly complex prob-
lems in various areas of computer science

– Main practical application is on the safety and security
of complex hardware and software computer systems

– Abstraction: extracting information from a system de-
scription that is relevant to proving a property
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Applications of Abstract Interpretation (Cont’d)

– Static Program Analysis [CC77], [CH78], [CC79] in-
cluding Dataflow Analysis; [CC79], [CC00], Set-based
Analysis [CC95], Predicate Abstraction [Cou03], . . .

– Grammar Analysis and Parsing [CC03];

– Hierarchies of Semantics and Proof Methods [CC92b],
[Cou02];

– Typing & Type Inference [Cou97];

– (Abstract) Model Checking [CC00];

– Program Transformation (including program optimiza-
tion, partial evaluation, etc) [CC02];
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Applications of Abstract Interpretation (Cont’d)

– Software Watermarking [CC04];

– Bisimulations [RT04, RT06];

– Language-based security [GM04];

– Semantics-based obfuscated malware detection [PCJD07].

– Databases [AGM93, BPC01, BS97]

– Computational biology [Dan07]

– Quantum computing [JP06, Per06]
All these techniques involve sound approximations that
can be formalized by abstract interpretation
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2. Astrée
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Project Members
http://www.astree.ens.fr/

Bruno Blanchet 1 Patrick Cousot Radhia Cousot Jérôme Feret

Laurent Mauborgne Antoine Miné David Monniaux 2 Xavier Rival
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2 Nov. 2001 —– Aug. 2007.
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3. Motivation
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The Complexity of Software Design

– The design of complex software is difficult and econom-
ically critical

– Example (www.designnews.com/article/CA6475332.html):
Boeing Confirms 787 Delay, Fasteners, Flight Control Software Code Blamed
John Dodge, Editor-in-Chief – Design News, September 5, 2007

Boeing officials confirmed today that a fastener shortage and
problems with flight control software have pushed “first flight” of
the Boeing 787 Dreamliner to sometime between mid-November
and mid-December.
...
The software delays involve Honeywell Aerospace, which is re-
sponsible for flight control software. The work on this part of
the 787 was simply underestimated, said Bair.
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Tool-Based Software Design Methods

– New tool-based software design methods will have to
emerge to face the unprecedented growth and complex-
ification of critical software

– E.g. FCPC (Flight Control Primary Computer)
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4. Problematics
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Requirements of Verification Static Analysis 3

A verifying static program analyzer must be (at least)
– useful (with respect to a correctness proof objective)
– sound (with respect to a concrete semantics)
– conclusive (with respect to a specification)
– non-intrusive (with respect to a system development
practice)

– realistic (applicable in an weird industrial environment)
– scalable (to actual industrial code)

3 As opposed to bug-finding static/dynamic analysis
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Making Static Analysis Easy (and Ultimately Useless)

Drop any of the requirements
– usefulness
– soundness
– conclusiveness
– non-intrusiveness
– realism
– scalability

Verification group, CS, NYU, 04/30/2008 — 13 — ľ P. Cousot



Abstract Static Analysis

– Sound unprecise abstraction is mandatory to scale up,
but

– Sound precise abstraction is mandatory to be conclu-
sive.

Counter-example: brute force methods (like software
model checking) simply fail.
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Difficulties of Static Analysis

– Floyd/Naur proof method 8P 2 L, 8S 2 SJP K, let
DJP K « SJP K, and F JP K 2 DJP K 7! DJP K:

lfp
„
F JP K „ S , 9I 2 DJP K : F JP K(I) „ I ^ I „ S

– Abstraction hDJP K; „i `̀`!̀! ̀`̀`
¸

‚
h¸(DJP K); vi:

( 9—I 2 ¸(DJP K) : lfp
v
¸ ‹ F JP K ‹ ‚ v —I ^ ‚(—I) „ S

– Main difficulty: in general, there is no inductive invari-
ant —I in the abstract:

8—I 2 ¸(DJP K) : ¸ ‹ F JP K ‹ ‚(—I) 6v —I
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5. Astrée Fundamental Choices
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Language
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Choice of the Language 8P 2 L
Typical choices:
– Deductive methods and model checking: L = fPg, for
one (model of a) program

– Data flow analysis: L = C, C++, . . . , one program-
ming language

– Astrée: the family of control/command C codes auto-
matically generated from a synchronous specification
(SAO/SCADE) 4

4 Outside this scope, Astrée is likely not be useful, conclusive, non-intrusive, realistic, and/or scalable!
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Programs analysed by Astrée

– Application Domain: large safety critical embedded
real-time synchronous software for non-linear control
of very complex control/command systems.

– C programs:
- with
´ basic numeric datatypes, structures and arrays
´ pointers (including on functions),
´ floating point computations
´ tests, loops and function calls
´ limited branching (forward goto, break, continue)
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– with (cont’d)
- union [Min06a]
- pointer arithmetics & casts [Min06a]

– without
- dynamic memory allocation
- recursive function calls
- unstructured/backward branching
- conflicting side effects
- C libraries, system calls (parallelism)

Such limitations are quite common for embedded safety-critical software.
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The Class of Considered Periodic Synchronous Programs

declare volatile input, state and output variables;
initialize state and output variables;
loop forever

- read volatile input variables,
- compute output and state variables,
- write to output variables;
__ASTREE_wait_for_clock ();

end loop

Task scheduling is static:
– Requirements: the only interrupts are clock ticks;
– Execution time of loop body less than a clock tick,
as verified by the aiT WCET Analyzers [FHL+01].
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Concrete Semantics
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Choice of the Concrete Semantics DJP K; F JP K; P 2 L

Set of prefix-closed traces for a transition relation defined
by
– the international norm of C (ISO/IEC 9899:1999)
– restricted by implementation-specific behaviors depending upon
the machine and compiler (e.g. representation and size of in-
tegers, IEEE 754-1985 norm for floats and doubles)

– restricted by user-defined programming guidelines (such as no
modular arithmetic for signed integers, even though this might
be the hardware choice)

– restricted by program specific user requirements (e.g. assert,
execution stops on first runtime error 5)

5 semantics of C unclear after an error, equivalent if no alarm
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The Semantics of C is Hard (Ex. 1: Floats)

“Put x in [m; M] modulo (M` m)”:

x’ = x - (int) ((x-m)/(M-m))*(M-m);

– The programmer thinks x’ 2 [m; M]

– But with M = 4095, m = `M, IEEE double precision,
and x is the greatest float strictly less than M, then
x’ = m` › (› very small).

Floats are not real.
Astrée has an abstraction to handle this modulo prob-
lem (J. Feret, unpublished)
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The Semantics of C is Hard (Ex. 2: Runtime Errors)
What is the effect of out-of-bounds array indexing?
% cat unpredictable.c
#include <stdio.h>
int main () { int n, T[1];
n = 2147483647;
printf("n = %i, T[n] = %i\n", n, T[n]);

}

Yields different results on different machines:
n = 2147483647, T[n] = 2147483647 Macintosh PPC
n = 2147483647, T[n] = -1208492044 Macintosh Intel
n = 2147483647, T[n] = -135294988 PC Intel 32 bits
Bus error PC Intel 64 bits

Execution stops after a runtime error with unpredictable results 6.

6 Equivalent semantics if no alarm.
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Different Classes of Run-time Errors

1. Errors terminating the execution 7. Astrée warns and
continues by taking into account only the executions that
did not trigger the error.

2. Errors not terminating the execution with predictable outcome 8.
Astrée warns and continues with worst-case assumptions.

3. Errors not terminating the execution with unpredictable
outcome 9. Astrée warns and continues by taking into ac-
count only the executions that did not trigger the error.

) Astrée is sound with respect to C standard, unsound with
respect to C implementation, unless no false alarm.

7 floating-point exceptions e.g. (invalid operations, overflows, NaN, etc.) when traps are activated
8 e.g. overflows over signed integers resulting in some signed integer.
9 e.g. memory corruptions.
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Why prefix-closed traces?

– Burstall’s proof method (using traces) is equivalent to
Floyd method (with set of states i.e. invariant) but
much easier

while (x > 1) {
if (odd(x)) { x = x + 1; }
else { x = x / 2; }

}

– You can always later abstract sets of (prefix-closed)
traces into sets of states
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Realistic Semantics: Modulo Arithmetics
In C:
% cat -n modulo-c.c

1 #include <stdio.h>
2 int main () {
3 int x,y;
4 x = -2147483647 / -1;
5 y = ((-x) -1) / -1;
6 printf("x = %i, y = %i\n",x,y);
7 }
8

% gcc modulo-c.c
% ./a.out
x = 2147483647, y = -2147483648
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Static Analysis with Astrée
% cat -n modulo.c

1 int main () {
2 int x,y;
3 x = -2147483647 / -1;
4 y = ((-x) -1) / -1;
5 __ASTREE_log_vars((x,y));
6 }
7

% astree –exec-fn main –unroll 0 modulo.c\
|& egrep -A 1 "(<integers)|(WARN)"
modulo.c:4.4-18::[call#main@1:]: WARN: signed int arithmetic range

{2147483648} not included in [-2147483648, 2147483647]
<integers (intv+cong+bitfield+set): y in [-2147483648, 2147483647] /\ Top,
x in {2147483647} /\ {2147483647} >

Astrée signals the overflow and goes on with an unkown value.
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Realistic Semantics: Floats

% cat -n scale.c
1 int main () {
2 float x; x = 0.70000001;
3 while (1) {
4 x = x / 3.0;
5 x = x * 3.0;
6 __ASTREE_log_vars((x));
7 __ASTREE_wait_for_clock(());
8 }
9 }

% gcc scale.c
% ./a.out
x = 0.699999988079071

% cat scale.config
__ASTREE_max_clock((1000000000));

% astree –exec-fn main –config-sem scale.config –unroll 0 scale.c\
|& grep "x in" | tail -1
direct = <float-interval: x in [0.69999986887, 0.700000047684] >
%
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Example of accumulation of small rounding errors

% cat -n rounding-c.c
1 #include <stdio.h>
2 int main () {
3 int i; double x; x = 0.0;
4 for (i=1; i<=1000000000; i++) {
5 x = x + 1.0/10.0;
6 }
7 printf("x = %f\n", x);
8 }

% gcc rounding-c.c
% ./a.out
x = 99999998.745418
%

since (0:1)10 = (0:0001100110011001100 : : :)2
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Static analysis with Astrée
% cat -n rounding.c

1 int main () {
2 double x; x = 0.0;
3 while (1) {
4 x = x + 1.0/10.0;
5 __ASTREE_log_vars((x));
6 __ASTREE_wait_for_clock(());
7 }
8 }

% cat rounding.config
__ASTREE_max_clock((1000000000));

% astree –exec-fn main –config-sem rounding.config –unroll 0 rounding.c\
|& egrep "(x in)|(\|x\|)|(WARN)" | tail -2
direct = <float-interval: x in [0.1, 200000040.938] >

|x| <= 1.*((0. + 0.1/(1.-1))*(1.)^clock - 0.1/(1.-1)) + 0.1
<= 200000040.938
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The Patriot missile failure

– “On February 25th, 1991, a Patriot
missile . . . failed to track and inter-
cept an incoming Scud (˜).”

– The software failure was due to accu-
mulated rounding error (y)

(˜) This Scud subsequently hit an Army barracks, killing 28 Americans.
(y)– “Time is kept continuously by the system’s internal clock in

tenths of seconds”

– “The system had been in operation for over 100 consecutive
hours”

– “Because the system had been on so long, the resulting inac-
curacy in the time calculation caused the range gate to shift
so much that the system could not track the incoming Scud”
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Specification
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Choice of the Specification Language SJP K „ DJP K

– By the choice of DJP K, SJP K can be anything specify-
ing prefix-closed sets of traces (automata, garmmars,
synchronous languages, temporal logic, etc.)

– but
- Intrusive (who will write the formal specification?)
- Costly (e.g. to check ‚(—I) „ S)

– In Astrée, implicit specification (absence of runtime
error) automatically computed from the program text
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Implicit Specification: Absence of Runtime Errors

– No violation of the norm of C (e.g. array index out of
bounds, division by zero)

– No implementation-specific undefined behaviors (e.g.
maximum short integer is 32767, NaN)

– No violation of the programming guidelines (e.g. static
variables cannot be assumed to be initialized to 0)

– No violation of the programmer assertions (must all
be statically verified).
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Example: Dichotomy Search II

% cat dichotomy.c
int main () {

int R[100], X; short lwb, upb, m;
lwb = 0; upb = 99;
while (lwb <= upb) {

m = upb + lwb;
m = m » 1;
if (X == R[m]) { upb = m; lwb = m+1; }
else if (X < R[m]) { upb = m - 1; }
else { lwb = m + 1; }

}
__ASTREE_log_vars((m));

}
% astree –exec-fn main dichotomy.c |& egrep "(WARN)|(m in)"
direct = <integers (intv+cong+bitfield+set): m in [0, 99] /\ Top >
%
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Example: Dichotomy Search II

% diff dichotomy.c dichotomy-bug.c
2,3c2,3
< int R[100], X; short lwb, upb, m;
< lwb = 0; upb = 99;
–-
> int R[30000], X; short lwb, upb, m;
> lwb = 0; upb = 29999;
%
% astree –exec-fn main dichotomy-bug.c |& egrep "WARN" | head -n2
dichotomy-bug.c:5.6-19::[call#main@1:loop@4=2:]: WARN: implicit signed int->signed
short conversion range [14998, 44999] not included in [-32768, 32767]
dichotomy-bug.c:7.15-19::[call#main@1:loop@4=2:]: WARN: invalid dereference:
dereferencing 4 byte(s) at offset(s) [0;4294967295] may overflow the variable R of
byte-size 120000 or mis-aligned pointer (1Z+0) may not a multiple of 4
%

Astrée finds bugs in programs based on algorithms which have been formally proved correct.
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Iterator
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Choice of the Abstract Iterator lfp
v
¸ ‹ F JP K ‹ ‚

– Control graph (would loose useful information), or
– Astrée:
- isomorphic projection of the set of prefix-closed traces
to contexts = call stack + program point

- by structural induction on the abstract syntax tree
´ initialize (empty traces at program entry point)
´ given a prefix-closed set of traces up to the prececes-
sor contexts, extend each trace by one computation
step/transition to the next contexts
´ repeat with widening/narrowing until stabilization
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Abstract Iterator lfp
v
¸ ‹ F JP K ‹ ‚
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Abstraction
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Bad ideas on Abstraction

– Abstract exclusively to finite domains (provably worse
than infinite domain plus widening [CC92a])

– Uniform abstractions (same abstraction everywhere,
everytime, like in dataflow analysis)

– Keep as much disjunctions as possible (e.g. predicate
abstraction, abstraction is all about “how to get rid of
disjunctions”!)

– Cascaded abstractions, one after the other (provably
worse than reduced product)

– . . .
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Choice of the Abstraction h¸; ‚i

– Extremely complex ! divide and conquer using a re-
duced product [CC79]

– ¸ = 1;:::;n(¸i; ¸p; ¸m; ¸1; : : : ; ¸i(¸j) : : : ; ¸n), where
- 1;:::;n is the reduction,
- ¸i is the trace projection (to each context = call
stack + program point),

- ¸p is the trace abstraction (trace partitionning [MR05]),
- ¸m is the state abstraction (memory model [Min06a]),
- ¸1; : : : ; ¸n are the basic abstractions or abstraction
functors on abstract variables X (mutable, remanent)
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Astrée’s Architecture

C-preprocessor
l

C99 parser
l

Link editor
l

Intermediate code generation and typing
l

Constant propagation and simplification
l

Local and global dependence analysis
l

Abstract Interpreter
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The Abstract Interpreter

Iterator ¸i
l

Trace partitionning ¸p
l

Memory model and aliases ¸m
l

Reduced product of numerical abstract domains 1;:::;n

l l l l
Intervals ¸1 Octagons ¸2 Decision trees ¸3(¸1) . . .

l
intervals ¸1
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Trace Partitionning Abstraction ¸p [MR05]
State-based partitionning at control points:

Trace-based partitionning at control points:

Delaying abstract unions in tests and loops is more precise for non-distributive

abstract domains (and much less expensive than disjunctive completion).
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Trace Partitioning
Principle:

– Semantic equivalence:
if (B) { C1 } else { C2 }; C3

+
if (B) { C1; C3 } else { C2; C3 };

– More precise in the abstract: concrete execution
paths are merged later.

Application: if (B)
{ X=0; Y=1; }

else
{ X=1; Y=0; }

R = 1 / (X-Y);

cannot result in a
division by zero
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Case analysis with loop unrolling
– Code Sample:
/* trace_partitionning.c */
void main() {

float t[5] = {-10.0, -10.0, 0.0, 10.0, 10.0};
float c[4] = {0.0, 2.0, 2.0, 0.0};
float d[4] = {-20.0, -20.0, 0.0, 20.0};
float x, r;
int i = 0;
__ASTREE_known_fact(((-30.0 <= x) && (x <= 30.0)));
while ((i < 3) && (x >= t[i+1])) {

i = i + 1;
}
r = (x - t[i]) * c[i] + d[i];
__ASTREE_log_vars((r));

}

% astree –exec-fn main –no-trace –no-relational trace-partitioning.c |& egrep "(WARN)|(r in)"
direct = <float-interval: r in [-20, 20] >
%
% astree –exec-fn main –no-partition –no-trace –no-relational trace-partitioning.c \

|& egrep "(WARN)|(r in)"
direct = <float-interval: r in [-100, 100] >
%
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State Abstraction (Memory Model) ¸m [Min06a]
The union type, pointer arithmetics and pointer transtyping is
handled by allowing aliasing at the byte level [1]:

union {
struct { uint8 al,ah,bl,bh; } b;
struct { uint16 ax,bx; } w;

} r;
r.w.ax = 0; r.b.ah = 2;

– A box (auxiliary variable) in X for each offset and each scalar
type

– intersection semantics for overlapping boxes
Reference

[1] A. Miné. Field-Sensitive Value Analysis of Embedded C Programs with Union Types and Pointer Arithmetics. In LCTES ’2006,
pp. 54–63, June 2006, ACM Press.
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Maximal Abstraction ¸1

– The verification condition (ultimate phase of Astrée)
includes the test

9—I 2 ¸(DJP K) : ::: ^ ‚(—I) „ S

(in the abstract) and so the abstract domain ¸(DJP K)
should contain all possible S 2 SJP K

– In Astrée SJP K is the abstract domain of intervals
[CC76] (plus 6= 0)
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Choice of abstractions ¸2; :::; ¸n in Astrée
The other abstract domains ¸2; :::; ¸n can be chosen thanks
to parameters when launching Astrée, for example:
/* Launching the forward abstract interpreter */
/* Domains: Guard domain, and Boolean packs (based on Absolute
value equality relations, and Symbolic constant propagation
(max_depth=20), and Linearization, and Integer intervals, and
congruences, and bitfields, and finite integer sets, and Float
intervals), and Octagons, and High_passband_domain(10), and
Second_order_filter_domain (with real roots)(10), and
Second_order_filter_domain (with complex roots)(10), and
Arithmetico-geometric series, and new clock, and Dependencies
(static), and Equality relations, and Modulo relations, and
Symbolic constant propagation (max_depth=20), and Linearization,
and Integer intervals, and congruences, and bitfields, and
finite integer sets, and Float intervals. */
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Reduction [CC79, CCF+08]
Example: reduction of intervals [CC76] by simple congruences
[Gra89]

% cat -n congruence.c
1 /* congruence.c */
2 int main()
3 { int X;
4 X = 0;
5 while (X <= 128)
6 { X = X + 4; };
7 __ASTREE_log_vars((X));
8 }

% astree congruence.c –no-relational –exec-fn main |& egrep "(launched)|(WARN)|(X in)"
direct = <integers (intv+cong+bitfield+set): X in {132} >

Intervals : X 2 [129; 132] + congruences : X = 0 mod 4 =)
X 2 f132g.
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Refinement Strategies
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Cost/Precision Ratio Adjustment

– We prefer coarse abstractions (for scalability, this ex-
cludes e.g. polyedra)

– We anticipate the need for necessary refinements (for
precision)
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Abstraction/Refinement

– Parameterized refinement: choose abstractions which
precision can be refined/coarsened thanks to

- manual parametrization
- manual directives
- automated directives

– Unexpected refinement: add a new abstract domain
(and reduction)
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Parameterized Refinement
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Termination
SLAM uses CEGAR and does not terminate 10 on

% cat slam.c
int main() { int x, y;

x = 0; y = 0;
while (x < 2147483647)

{ x = x + 1; y = y + 1; }
__ASTREE_assert((x == y));

}

whereas Astrée uses widening/narrowing-based extrap-
olation techniques to prove the assertion

% astree –exec-fn main slam.c |& egrep "WARN"
%

10 CEGAR cannot generate the invariant y = x - 1 so produces all counter examples x = i + 1 ^ y = i,
i = 0; 1; 2; 3; : : :
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Parameterized Abstraction e.g. Array Smashing

--smash-threshold n (400 by default)

smash elements of arrays of size > n, otherwise individu-
alize array elements (each handled as a simple variable).
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Parameterized Abstract Domains: Intervals and Octagons

X

Y

0

Intervals [CC76]:
1 » x » 9
1 » y » 20

Octagons [Min01]:8>><>>:
1 » x » 9
x+ y » 77
1 » y » 20
x` y » 07

Difficulties: many global variables, arrays (smashed or not), IEEE
754 floating-point arithmetic (in program and analyzer) [CC77,
Min01, Min04a]
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Parameterized Widening e.g. Intervals
Thresholds for integer widening:

let widening_sequence =
[ of_int 0; of_int 1; of_int 2; of_int 3; of_int 4; of_int 5;

of_int 32767; of_int 32768; of_int 65535; of_int 65536;
of_string "2147483647"; of_string "2147483648"; of_string "4294967295" ]

Thresholds for float widening:
let widening_sequence =

[ neg 1.;neg 0.15;neg 0.1;neg 0.01;neg 0.001;neg 0.000001;0.;0.000001;0.001;0.01;1.;
1e1;1e2;1e3;1e4; 70000.25;1e5;1e6;1.5e6;2e6;2.5e6;3e6;3.5e6;4e6;4.5e6;5e6;5.5e6;
6e6;6.5e6;7e6;7.5e6;8e6;8.5e6;9e6;9.5e6;1e7; 10000020.; 1.5e7;2e7;2.5e7;3e7;3.5e7;
4e7;4.5e7;5e7;5.5e7;6e7;6.5e7;7e7;7.5e7;8e7;8.5e7;9e7;9.5e7;1e8;1e9;1e10;1e11;1e12;
1e15;1e18;1e20;1e22;1e25;1e28;1e30;1e32]

Delayed widenings: --forced-union-iterations-at-beginning
n (2 by default)
Enforced widenings: --forced-widening-iterations-after n (250
by default), ...), etc.
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Parameterized Octagons

– Using octagons on all numerical variables would not scale up
– The analysis is parameterized by “packs of variables” stating
which independent subsets of the variables should be related
(everywhere, at which program points, in which context, ...)

– Automatic packing by another analysis (e.g. pre-analysis, on
the fly, etc). In Astrée pre-analysis at the block level.

– Parameters can modify the choice of packs globally (e.g. --fewer-oct:
no packs at the function level, --max-array-size-in-octagons
n: unsmashed array elements of size > n don’t go to octagons
packs)

– Directives can modify the choice of packs locally:
(__ASTREE_octagon_pack((V1,...,Vn));)
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Decision Trees for Boolean Control
– Code Sample:

/* boolean.c */
typedef enum {F=0,T=1} BOOL;
BOOL B;
void main () {

unsigned int X, Y;
while (1) {

...
B = (X == 0);
...
if (!B) {

Y = 1 / X;
}
...

}
}

The boolean relation abstract do-
main is parameterized by the height
of the decision tree (an analyzer
option) and the abstract domain at
the leafs
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Parameterized Decision Trees
– Using decision trees on all variables would not scale up
– The analysis is parameterized by “packs of variables” stating
which booleans go in nodes and numerical variables in leaves

– Automatic packing by a simple dependence analysis: Candi-
dates for packing in a decision tree are the boolean variables
to which a boolean expression is assigned or which are involved
in a test as well as the non-volatile and non-constant variables
which depend directly or indirectly on such a boolean

– Parameters can modify the choice of packs globally (e.g.
--max-bool-var n, n = 3 by default)

– Directives can modify the choice of packs locally to state which
boolean variables to put in internals nodes and numerical vari-
ables to put in abstract domains at the leaves __ASTREE_boolean_pack((V1,...,Vn));

– TODO: partition on small values (other than booleans)
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Example of directive (Cont’d)

% cat repeat1.c
typedef enum {FALSE=0,TRUE=1} BOOL;
int main () {

int x = 100; BOOL b = TRUE;

while (b) {
x = x - 1;
b = (x > 0);

}
}

% astree –exec-fn main repeat1.c |& egrep "WARN"
repeat1.c:5.8-13::[call#main@2:loop@4>=4:]: WARN: signed int arithmetic
range [-2147483649, 2147483646] not included in [-2147483648, 2147483647]
%
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Example of directive (Cont’d)

% cat repeat2.c
typedef enum {FALSE=0,TRUE=1} BOOL;
int main () {

int x = 100; BOOL b = TRUE;
__ASTREE_boolean_pack((b,x));
while (b) {

x = x - 1;
b = (x > 0);

}
}
% astree –exec-fn main repeat2.c |& egrep "WARN"
%

The insertion of this directive could be automated inAstrée (if the considered

family of programs has “repeat” loops).
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Parameterized Loop Partitionning
– No loop unrolling a priori
– Unrolling is controlled by parameters --unroll u and directives
__ASTREE_partition_control((p)) while (B) {C}; C’; __ASTREE_partition_merge(());

so that the analysis is semantically equivalent to:
p[
i=0

“
(B; C)i;:B; C0

”
partitionning of the
first p iterations

[

0@ p[
i=0

(B; C)i

1A ;

0@ u[
i=p+1

“
(B; C)i;:B

”1A ; C0 semantic unrolling of
the next u ` p itera-
tions

[

0@ u[
i=0

(B; C)i

1A ;

„
+1
´

i=u+1
(B; C)i

«
;:B; C0 next iterations with

widening
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Unexpected Refinement

Verification group, CS, NYU, 04/30/2008 — 68 — ľ P. Cousot



Ellipsoid Abstract Domain for
Filters

2d Order Digital Filter:

– Computes Xn =


¸Xn`1 + ˛Xn`2 + Yn
In

– The concrete computation is bounded, which
must be proved in the abstract.

– There is no stable interval or octagon.
– The simplest stable surface is an ellipsoid.

execution trace unstable interval stable ellipsoid
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Filter Example [Fer04]
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;
void filter () {

static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] = X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {
X = 0.9 * X + 35; /* simulated filter input */
filter (); INIT = FALSE; }

}
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Arithmetic-Geometric Progressions [Fer05] Example 1
% cat retro.c
typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST;
volatile BOOL SWITCH;
volatile float E;
float P, X, A, B;

void dev( )
{ X=E;

if (FIRST) { P = X; }
else

{ P = (P - ((((2.0 * P) - A) - B)
* 4.491048e-03)); };

B = A;
if (SWITCH) {A = P;}
else {A = X;}

}

void main()
{ FIRST = TRUE;

while (TRUE) {
dev( );
FIRST = FALSE;
__ASTREE_wait_for_clock(());

}}
% cat retro.config
__ASTREE_volatile_input((E [-15.0, 15.0]));
__ASTREE_volatile_input((SWITCH [0,1]));
__ASTREE_max_clock((3600000));

|P| <= (15. + 5.87747175411e-39
/ 1.19209290217e-07) * (1
+ 1.19209290217e-07)ˆclock
- 5.87747175411e-39 /
1.19209290217e-07 <= 23.0393526881
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Arithmetic-Geometric Progressions [Fer05] (Example 2)
% cat count.c
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
volatile BOOLEAN I; int R; BOOLEAN T;
void main() {

R = 0;
while (TRUE) {

__ASTREE_log_vars((R));
if (I) { R = R + 1; }
else { R = 0; }
T = (R >= 100);
__ASTREE_wait_for_clock(());

}}

% cat count.config
__ASTREE_volatile_input((I [0,1]));
__ASTREE_max_clock((3600000));
% astree –exec-fn main –config-sem count.config count.c|grep ’|R|’

|R| <= 0. + clock *1. <= 3600001.

 potential overflow!
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Overapproximation with an Arithmetic-Geometric Progression
f(k)

k
max k

max | f(k) | 
max k
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Arithmetic-geometric progressions 11 [Fer05]

– Abstract domain: (R+)5

– Concretization:
‚ 2 (R+)5 7 !̀ }(N 7! R)

‚(M;a; b; a0; b0) =

ff j 8k 2 N : jf(k)j »
“
λx . ax+ b ‹ (λx . a0x+ b0)k

”
(M)g

i.e. any function bounded by the arithmetic-geometric
progression.

References

[2] J. Feret. The arithmetic-geometric progression abstract domain. In VMCAI’05, Paris, LNCS 3385, pp. 42–58, Springer, 2005.11 here in R
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Obsolete Abstraction
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Incompleteness
Astrée does not know that

8x; y 2 Z : 7y2 ` 1 6= x2

so on the following program

void main() { int x, y;
if ((-4681 < y) && (y < 4681) && (x < 32767) && (-32767 < x) && ((7*y*y - 1) == x*x))

{ y = 1 / x; };
}

it produces a false alarm (surely forever in this irrealistic
program!)

% astree –exec-fn main false-alarm.c |& egrep "WARN"
false-alarm.c:5.9-14::[call#main@1:]: WARN: integer division by zero ([-32766, 32766]
and {1} / Z)
%
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THE END, THANK YOU
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