
Parameterized Refinement in
Abstract-Interpretation-Based Static Analysis

Patrick Cousot

Verification group — CS — NYU — April 30th, 2008

Verification group, CS, NYU, 04/30/2008 — 1 — ľ P. Cousot

1. Abstract Interpretation

Verification group, CS, NYU, 04/30/2008 — 2 — ľ P. Cousot

The Theory of Abstract Interpretation

– A theory of sound approximation of mathematical struc-
tures, in particular those involved in the behavior of
computer systems

– Systematic derivation of sound methods and algorithms
for approximating undecidable or highly complex prob-
lems in various areas of computer science

– Main practical application is on the safety and security
of complex hardware and software computer systems

– Abstraction: extracting information from a system de-
scription that is relevant to proving a property

Verification group, CS, NYU, 04/30/2008 — 3 — ľ P. Cousot

Applications of Abstract Interpretation (Cont’d)

– Static Program Analysis [CC77], [CH78], [CC79] in-
cluding Dataflow Analysis; [CC79], [CC00], Set-based
Analysis [CC95], Predicate Abstraction [Cou03], . . .

– Grammar Analysis and Parsing [CC03];

– Hierarchies of Semantics and Proof Methods [CC92b],
[Cou02];

– Typing & Type Inference [Cou97];

– (Abstract) Model Checking [CC00];

– Program Transformation (including program optimiza-
tion, partial evaluation, etc) [CC02];
Verification group, CS, NYU, 04/30/2008 — 4 — ľ P. Cousot

Applications of Abstract Interpretation (Cont’d)

– Software Watermarking [CC04];

– Bisimulations [RT04, RT06];

– Language-based security [GM04];

– Semantics-based obfuscated malware detection [PCJD07].

– Databases [AGM93, BPC01, BS97]

– Computational biology [Dan07]

– Quantum computing [JP06, Per06]
All these techniques involve sound approximations that
can be formalized by abstract interpretation

Verification group, CS, NYU, 04/30/2008 — 5 — ľ P. Cousot

2. Astrée

Verification group, CS, NYU, 04/30/2008 — 6 — ľ P. Cousot

Project Members
http://www.astree.ens.fr/

Bruno Blanchet 1 Patrick Cousot Radhia Cousot Jérôme Feret

Laurent Mauborgne Antoine Miné David Monniaux 2 Xavier Rival

1 Nov. 2001 —– Nov. 2003.
2 Nov. 2001 —– Aug. 2007.

Verification group, CS, NYU, 04/30/2008 — 7 — ľ P. Cousot

3. Motivation

Verification group, CS, NYU, 04/30/2008 — 8 — ľ P. Cousot

The Complexity of Software Design

– The design of complex software is difficult and econom-
ically critical

– Example (www.designnews.com/article/CA6475332.html):
Boeing Confirms 787 Delay, Fasteners, Flight Control Software Code Blamed
John Dodge, Editor-in-Chief – Design News, September 5, 2007

Boeing officials confirmed today that a fastener shortage and
problems with flight control software have pushed “first flight” of
the Boeing 787 Dreamliner to sometime between mid-November
and mid-December.
...
The software delays involve Honeywell Aerospace, which is re-
sponsible for flight control software. The work on this part of
the 787 was simply underestimated, said Bair.

Verification group, CS, NYU, 04/30/2008 — 9 — ľ P. Cousot

Tool-Based Software Design Methods

– New tool-based software design methods will have to
emerge to face the unprecedented growth and complex-
ification of critical software

– E.g. FCPC (Flight Control Primary Computer)

Verification group, CS, NYU, 04/30/2008 — 10 — ľ P. Cousot

4. Problematics

Verification group, CS, NYU, 04/30/2008 — 11 — ľ P. Cousot

Requirements of Verification Static Analysis 3

A verifying static program analyzer must be (at least)
– useful (with respect to a correctness proof objective)
– sound (with respect to a concrete semantics)
– conclusive (with respect to a specification)
– non-intrusive (with respect to a system development
practice)

– realistic (applicable in an weird industrial environment)
– scalable (to actual industrial code)

3 As opposed to bug-finding static/dynamic analysis

Verification group, CS, NYU, 04/30/2008 — 12 — ľ P. Cousot

Making Static Analysis Easy (and Ultimately Useless)

Drop any of the requirements
– usefulness
– soundness
– conclusiveness
– non-intrusiveness
– realism
– scalability

Verification group, CS, NYU, 04/30/2008 — 13 — ľ P. Cousot

Abstract Static Analysis

– Sound unprecise abstraction is mandatory to scale up,
but

– Sound precise abstraction is mandatory to be conclu-
sive.

Counter-example: brute force methods (like software
model checking) simply fail.

Verification group, CS, NYU, 04/30/2008 — 14 — ľ P. Cousot

Difficulties of Static Analysis

– Floyd/Naur proof method 8P 2 L, 8S 2 SJP K, let
DJP K « SJP K, and F JP K 2 DJP K 7! DJP K:

lfp
„
F JP K „ S , 9I 2 DJP K : F JP K(I) „ I ^ I „ S

– Abstraction hDJP K; „i `̀`!̀! ̀`̀`
¸

‚
h¸(DJP K); vi:

(9—I 2 ¸(DJP K) : lfp
v
¸ ‹ F JP K ‹ ‚ v —I ^ ‚(—I) „ S

– Main difficulty: in general, there is no inductive invari-
ant —I in the abstract:

8—I 2 ¸(DJP K) : ¸ ‹ F JP K ‹ ‚(—I) 6v —I

Verification group, CS, NYU, 04/30/2008 — 15 — ľ P. Cousot

5. Astrée Fundamental Choices

Verification group, CS, NYU, 04/30/2008 — 16 — ľ P. Cousot

Language

Verification group, CS, NYU, 04/30/2008 — 17 — ľ P. Cousot

Choice of the Language 8P 2 L
Typical choices:
– Deductive methods and model checking: L = fPg, for
one (model of a) program

– Data flow analysis: L = C, C++, . . . , one program-
ming language

– Astrée: the family of control/command C codes auto-
matically generated from a synchronous specification
(SAO/SCADE) 4

4 Outside this scope, Astrée is likely not be useful, conclusive, non-intrusive, realistic, and/or scalable!

Verification group, CS, NYU, 04/30/2008 — 18 — ľ P. Cousot

Programs analysed by Astrée

– Application Domain: large safety critical embedded
real-time synchronous software for non-linear control
of very complex control/command systems.

– C programs:
- with
´ basic numeric datatypes, structures and arrays
´ pointers (including on functions),
´ floating point computations
´ tests, loops and function calls
´ limited branching (forward goto, break, continue)

Verification group, CS, NYU, 04/30/2008 — 19 — ľ P. Cousot

– with (cont’d)
- union [Min06a]
- pointer arithmetics & casts [Min06a]

– without
- dynamic memory allocation
- recursive function calls
- unstructured/backward branching
- conflicting side effects
- C libraries, system calls (parallelism)

Such limitations are quite common for embedded safety-critical software.

Verification group, CS, NYU, 04/30/2008 — 20 — ľ P. Cousot

The Class of Considered Periodic Synchronous Programs

declare volatile input, state and output variables;
initialize state and output variables;
loop forever

- read volatile input variables,
- compute output and state variables,
- write to output variables;
__ASTREE_wait_for_clock ();

end loop

Task scheduling is static:
– Requirements: the only interrupts are clock ticks;
– Execution time of loop body less than a clock tick,
as verified by the aiT WCET Analyzers [FHL+01].
Verification group, CS, NYU, 04/30/2008 — 21 — ľ P. Cousot

Concrete Semantics

Verification group, CS, NYU, 04/30/2008 — 22 — ľ P. Cousot

Choice of the Concrete Semantics DJP K; F JP K; P 2 L

Set of prefix-closed traces for a transition relation defined
by
– the international norm of C (ISO/IEC 9899:1999)
– restricted by implementation-specific behaviors depending upon
the machine and compiler (e.g. representation and size of in-
tegers, IEEE 754-1985 norm for floats and doubles)

– restricted by user-defined programming guidelines (such as no
modular arithmetic for signed integers, even though this might
be the hardware choice)

– restricted by program specific user requirements (e.g. assert,
execution stops on first runtime error 5)

5 semantics of C unclear after an error, equivalent if no alarm

Verification group, CS, NYU, 04/30/2008 — 23 — ľ P. Cousot

The Semantics of C is Hard (Ex. 1: Floats)

“Put x in [m; M] modulo (M` m)”:

x’ = x - (int) ((x-m)/(M-m))*(M-m);

– The programmer thinks x’ 2 [m; M]

– But with M = 4095, m = `M, IEEE double precision,
and x is the greatest float strictly less than M, then
x’ = m` › (› very small).

Floats are not real.
Astrée has an abstraction to handle this modulo prob-
lem (J. Feret, unpublished)

Verification group, CS, NYU, 04/30/2008 — 24 — ľ P. Cousot

The Semantics of C is Hard (Ex. 2: Runtime Errors)
What is the effect of out-of-bounds array indexing?
% cat unpredictable.c
#include <stdio.h>
int main () { int n, T[1];
n = 2147483647;
printf("n = %i, T[n] = %i\n", n, T[n]);

}

Yields different results on different machines:
n = 2147483647, T[n] = 2147483647 Macintosh PPC
n = 2147483647, T[n] = -1208492044 Macintosh Intel
n = 2147483647, T[n] = -135294988 PC Intel 32 bits
Bus error PC Intel 64 bits

Execution stops after a runtime error with unpredictable results 6.

6 Equivalent semantics if no alarm.

Verification group, CS, NYU, 04/30/2008 — 25 — ľ P. Cousot

Different Classes of Run-time Errors

1. Errors terminating the execution 7. Astrée warns and
continues by taking into account only the executions that
did not trigger the error.

2. Errors not terminating the execution with predictable outcome 8.
Astrée warns and continues with worst-case assumptions.

3. Errors not terminating the execution with unpredictable
outcome 9. Astrée warns and continues by taking into ac-
count only the executions that did not trigger the error.

) Astrée is sound with respect to C standard, unsound with
respect to C implementation, unless no false alarm.

7 floating-point exceptions e.g. (invalid operations, overflows, NaN, etc.) when traps are activated
8 e.g. overflows over signed integers resulting in some signed integer.
9 e.g. memory corruptions.

Verification group, CS, NYU, 04/30/2008 — 26 — ľ P. Cousot

Why prefix-closed traces?

– Burstall’s proof method (using traces) is equivalent to
Floyd method (with set of states i.e. invariant) but
much easier

while (x > 1) {
if (odd(x)) { x = x + 1; }
else { x = x / 2; }

}

– You can always later abstract sets of (prefix-closed)
traces into sets of states

Verification group, CS, NYU, 04/30/2008 — 27 — ľ P. Cousot

Realistic Semantics: Modulo Arithmetics
In C:
% cat -n modulo-c.c

1 #include <stdio.h>
2 int main () {
3 int x,y;
4 x = -2147483647 / -1;
5 y = ((-x) -1) / -1;
6 printf("x = %i, y = %i\n",x,y);
7 }
8

% gcc modulo-c.c
% ./a.out
x = 2147483647, y = -2147483648

Verification group, CS, NYU, 04/30/2008 — 28 — ľ P. Cousot

Static Analysis with Astrée
% cat -n modulo.c

1 int main () {
2 int x,y;
3 x = -2147483647 / -1;
4 y = ((-x) -1) / -1;
5 __ASTREE_log_vars((x,y));
6 }
7

% astree –exec-fn main –unroll 0 modulo.c\
|& egrep -A 1 "(<integers)|(WARN)"
modulo.c:4.4-18::[call#main@1:]: WARN: signed int arithmetic range

{2147483648} not included in [-2147483648, 2147483647]
<integers (intv+cong+bitfield+set): y in [-2147483648, 2147483647] /\ Top,
x in {2147483647} /\ {2147483647} >

Astrée signals the overflow and goes on with an unkown value.

Verification group, CS, NYU, 04/30/2008 — 29 — ľ P. Cousot

Realistic Semantics: Floats

% cat -n scale.c
1 int main () {
2 float x; x = 0.70000001;
3 while (1) {
4 x = x / 3.0;
5 x = x * 3.0;
6 __ASTREE_log_vars((x));
7 __ASTREE_wait_for_clock(());
8 }
9 }

% gcc scale.c
% ./a.out
x = 0.699999988079071

% cat scale.config
__ASTREE_max_clock((1000000000));

% astree –exec-fn main –config-sem scale.config –unroll 0 scale.c\
|& grep "x in" | tail -1
direct = <float-interval: x in [0.69999986887, 0.700000047684] >
%

Verification group, CS, NYU, 04/30/2008 — 30 — ľ P. Cousot

Example of accumulation of small rounding errors

% cat -n rounding-c.c
1 #include <stdio.h>
2 int main () {
3 int i; double x; x = 0.0;
4 for (i=1; i<=1000000000; i++) {
5 x = x + 1.0/10.0;
6 }
7 printf("x = %f\n", x);
8 }

% gcc rounding-c.c
% ./a.out
x = 99999998.745418
%

since (0:1)10 = (0:0001100110011001100 : : :)2

Verification group, CS, NYU, 04/30/2008 — 31 — ľ P. Cousot

Static analysis with Astrée
% cat -n rounding.c

1 int main () {
2 double x; x = 0.0;
3 while (1) {
4 x = x + 1.0/10.0;
5 __ASTREE_log_vars((x));
6 __ASTREE_wait_for_clock(());
7 }
8 }

% cat rounding.config
__ASTREE_max_clock((1000000000));

% astree –exec-fn main –config-sem rounding.config –unroll 0 rounding.c\
|& egrep "(x in)|(\|x\|)|(WARN)" | tail -2
direct = <float-interval: x in [0.1, 200000040.938] >

|x| <= 1.*((0. + 0.1/(1.-1))*(1.)^clock - 0.1/(1.-1)) + 0.1
<= 200000040.938

Verification group, CS, NYU, 04/30/2008 — 32 — ľ P. Cousot

The Patriot missile failure

– “On February 25th, 1991, a Patriot
missile . . . failed to track and inter-
cept an incoming Scud (˜).”

– The software failure was due to accu-
mulated rounding error (y)

(˜) This Scud subsequently hit an Army barracks, killing 28 Americans.
(y)– “Time is kept continuously by the system’s internal clock in

tenths of seconds”

– “The system had been in operation for over 100 consecutive
hours”

– “Because the system had been on so long, the resulting inac-
curacy in the time calculation caused the range gate to shift
so much that the system could not track the incoming Scud”

Verification group, CS, NYU, 04/30/2008 — 33 — ľ P. Cousot

Specification

Verification group, CS, NYU, 04/30/2008 — 34 — ľ P. Cousot

Choice of the Specification Language SJP K „ DJP K

– By the choice of DJP K, SJP K can be anything specify-
ing prefix-closed sets of traces (automata, garmmars,
synchronous languages, temporal logic, etc.)

– but
- Intrusive (who will write the formal specification?)
- Costly (e.g. to check ‚(—I) „ S)

– In Astrée, implicit specification (absence of runtime
error) automatically computed from the program text

Verification group, CS, NYU, 04/30/2008 — 35 — ľ P. Cousot

Implicit Specification: Absence of Runtime Errors

– No violation of the norm of C (e.g. array index out of
bounds, division by zero)

– No implementation-specific undefined behaviors (e.g.
maximum short integer is 32767, NaN)

– No violation of the programming guidelines (e.g. static
variables cannot be assumed to be initialized to 0)

– No violation of the programmer assertions (must all
be statically verified).

Verification group, CS, NYU, 04/30/2008 — 36 — ľ P. Cousot

Example: Dichotomy Search II

% cat dichotomy.c
int main () {

int R[100], X; short lwb, upb, m;
lwb = 0; upb = 99;
while (lwb <= upb) {

m = upb + lwb;
m = m » 1;
if (X == R[m]) { upb = m; lwb = m+1; }
else if (X < R[m]) { upb = m - 1; }
else { lwb = m + 1; }

}
__ASTREE_log_vars((m));

}
% astree –exec-fn main dichotomy.c |& egrep "(WARN)|(m in)"
direct = <integers (intv+cong+bitfield+set): m in [0, 99] /\ Top >
%

Verification group, CS, NYU, 04/30/2008 — 37 — ľ P. Cousot

Example: Dichotomy Search II

% diff dichotomy.c dichotomy-bug.c
2,3c2,3
< int R[100], X; short lwb, upb, m;
< lwb = 0; upb = 99;
–-
> int R[30000], X; short lwb, upb, m;
> lwb = 0; upb = 29999;
%
% astree –exec-fn main dichotomy-bug.c |& egrep "WARN" | head -n2
dichotomy-bug.c:5.6-19::[call#main@1:loop@4=2:]: WARN: implicit signed int->signed
short conversion range [14998, 44999] not included in [-32768, 32767]
dichotomy-bug.c:7.15-19::[call#main@1:loop@4=2:]: WARN: invalid dereference:
dereferencing 4 byte(s) at offset(s) [0;4294967295] may overflow the variable R of
byte-size 120000 or mis-aligned pointer (1Z+0) may not a multiple of 4
%

Astrée finds bugs in programs based on algorithms which have been formally proved correct.

Verification group, CS, NYU, 04/30/2008 — 38 — ľ P. Cousot

Iterator

Verification group, CS, NYU, 04/30/2008 — 39 — ľ P. Cousot

Choice of the Abstract Iterator lfp
v
¸ ‹ F JP K ‹ ‚

– Control graph (would loose useful information), or
– Astrée:
- isomorphic projection of the set of prefix-closed traces
to contexts = call stack + program point

- by structural induction on the abstract syntax tree
´ initialize (empty traces at program entry point)
´ given a prefix-closed set of traces up to the prececes-
sor contexts, extend each trace by one computation
step/transition to the next contexts
´ repeat with widening/narrowing until stabilization

Verification group, CS, NYU, 04/30/2008 — 40 — ľ P. Cousot

Abstract Iterator lfp
v
¸ ‹ F JP K ‹ ‚

Verification group, CS, NYU, 04/30/2008 — 41 — ľ P. Cousot

Abstraction

Verification group, CS, NYU, 04/30/2008 — 42 — ľ P. Cousot

Bad ideas on Abstraction

– Abstract exclusively to finite domains (provably worse
than infinite domain plus widening [CC92a])

– Uniform abstractions (same abstraction everywhere,
everytime, like in dataflow analysis)

– Keep as much disjunctions as possible (e.g. predicate
abstraction, abstraction is all about “how to get rid of
disjunctions”!)

– Cascaded abstractions, one after the other (provably
worse than reduced product)

– . . .
Verification group, CS, NYU, 04/30/2008 — 43 — ľ P. Cousot

Choice of the Abstraction h¸; ‚i

– Extremely complex ! divide and conquer using a re-
duced product [CC79]

– ¸ = 1;:::;n(¸i; ¸p; ¸m; ¸1; : : : ; ¸i(¸j) : : : ; ¸n), where
- 1;:::;n is the reduction,
- ¸i is the trace projection (to each context = call
stack + program point),

- ¸p is the trace abstraction (trace partitionning [MR05]),
- ¸m is the state abstraction (memory model [Min06a]),
- ¸1; : : : ; ¸n are the basic abstractions or abstraction
functors on abstract variables X (mutable, remanent)

Verification group, CS, NYU, 04/30/2008 — 44 — ľ P. Cousot

Astrée’s Architecture

C-preprocessor
l

C99 parser
l

Link editor
l

Intermediate code generation and typing
l

Constant propagation and simplification
l

Local and global dependence analysis
l

Abstract Interpreter

Verification group, CS, NYU, 04/30/2008 — 45 — ľ P. Cousot

The Abstract Interpreter

Iterator ¸i
l

Trace partitionning ¸p
l

Memory model and aliases ¸m
l

Reduced product of numerical abstract domains 1;:::;n

l l l l
Intervals ¸1 Octagons ¸2 Decision trees ¸3(¸1) . . .

l
intervals ¸1

Verification group, CS, NYU, 04/30/2008 — 46 — ľ P. Cousot

Trace Partitionning Abstraction ¸p [MR05]
State-based partitionning at control points:

Trace-based partitionning at control points:

Delaying abstract unions in tests and loops is more precise for non-distributive

abstract domains (and much less expensive than disjunctive completion).

Verification group, CS, NYU, 04/30/2008 — 47 — ľ P. Cousot

Trace Partitioning
Principle:

– Semantic equivalence:
if (B) { C1 } else { C2 }; C3

+
if (B) { C1; C3 } else { C2; C3 };

– More precise in the abstract: concrete execution
paths are merged later.

Application: if (B)
{ X=0; Y=1; }

else
{ X=1; Y=0; }

R = 1 / (X-Y);

cannot result in a
division by zero

Verification group, CS, NYU, 04/30/2008 — 48 — ľ P. Cousot

Case analysis with loop unrolling
– Code Sample:
/* trace_partitionning.c */
void main() {

float t[5] = {-10.0, -10.0, 0.0, 10.0, 10.0};
float c[4] = {0.0, 2.0, 2.0, 0.0};
float d[4] = {-20.0, -20.0, 0.0, 20.0};
float x, r;
int i = 0;
__ASTREE_known_fact(((-30.0 <= x) && (x <= 30.0)));
while ((i < 3) && (x >= t[i+1])) {

i = i + 1;
}
r = (x - t[i]) * c[i] + d[i];
__ASTREE_log_vars((r));

}

% astree –exec-fn main –no-trace –no-relational trace-partitioning.c |& egrep "(WARN)|(r in)"
direct = <float-interval: r in [-20, 20] >
%
% astree –exec-fn main –no-partition –no-trace –no-relational trace-partitioning.c \

|& egrep "(WARN)|(r in)"
direct = <float-interval: r in [-100, 100] >
%

Verification group, CS, NYU, 04/30/2008 — 49 — ľ P. Cousot

State Abstraction (Memory Model) ¸m [Min06a]
The union type, pointer arithmetics and pointer transtyping is
handled by allowing aliasing at the byte level [1]:

union {
struct { uint8 al,ah,bl,bh; } b;
struct { uint16 ax,bx; } w;

} r;
r.w.ax = 0; r.b.ah = 2;

– A box (auxiliary variable) in X for each offset and each scalar
type

– intersection semantics for overlapping boxes
Reference

[1] A. Miné. Field-Sensitive Value Analysis of Embedded C Programs with Union Types and Pointer Arithmetics. In LCTES ’2006,
pp. 54–63, June 2006, ACM Press.

Verification group, CS, NYU, 04/30/2008 — 50 — ľ P. Cousot

Maximal Abstraction ¸1

– The verification condition (ultimate phase of Astrée)
includes the test

9—I 2 ¸(DJP K) : ::: ^ ‚(—I) „ S

(in the abstract) and so the abstract domain ¸(DJP K)
should contain all possible S 2 SJP K

– In Astrée SJP K is the abstract domain of intervals
[CC76] (plus 6= 0)

Verification group, CS, NYU, 04/30/2008 — 51 — ľ P. Cousot

Choice of abstractions ¸2; :::; ¸n in Astrée
The other abstract domains ¸2; :::; ¸n can be chosen thanks
to parameters when launching Astrée, for example:
/* Launching the forward abstract interpreter */
/* Domains: Guard domain, and Boolean packs (based on Absolute
value equality relations, and Symbolic constant propagation
(max_depth=20), and Linearization, and Integer intervals, and
congruences, and bitfields, and finite integer sets, and Float
intervals), and Octagons, and High_passband_domain(10), and
Second_order_filter_domain (with real roots)(10), and
Second_order_filter_domain (with complex roots)(10), and
Arithmetico-geometric series, and new clock, and Dependencies
(static), and Equality relations, and Modulo relations, and
Symbolic constant propagation (max_depth=20), and Linearization,
and Integer intervals, and congruences, and bitfields, and
finite integer sets, and Float intervals. */

Verification group, CS, NYU, 04/30/2008 — 52 — ľ P. Cousot

Reduction [CC79, CCF+08]
Example: reduction of intervals [CC76] by simple congruences
[Gra89]

% cat -n congruence.c
1 /* congruence.c */
2 int main()
3 { int X;
4 X = 0;
5 while (X <= 128)
6 { X = X + 4; };
7 __ASTREE_log_vars((X));
8 }

% astree congruence.c –no-relational –exec-fn main |& egrep "(launched)|(WARN)|(X in)"
direct = <integers (intv+cong+bitfield+set): X in {132} >

Intervals : X 2 [129; 132] + congruences : X = 0 mod 4 =)
X 2 f132g.

Verification group, CS, NYU, 04/30/2008 — 53 — ľ P. Cousot

Refinement Strategies

Verification group, CS, NYU, 04/30/2008 — 54 — ľ P. Cousot

Cost/Precision Ratio Adjustment

– We prefer coarse abstractions (for scalability, this ex-
cludes e.g. polyedra)

– We anticipate the need for necessary refinements (for
precision)

Verification group, CS, NYU, 04/30/2008 — 55 — ľ P. Cousot

Abstraction/Refinement

– Parameterized refinement: choose abstractions which
precision can be refined/coarsened thanks to

- manual parametrization
- manual directives
- automated directives

– Unexpected refinement: add a new abstract domain
(and reduction)

Verification group, CS, NYU, 04/30/2008 — 56 — ľ P. Cousot

Parameterized Refinement

Verification group, CS, NYU, 04/30/2008 — 57 — ľ P. Cousot

Termination
SLAM uses CEGAR and does not terminate 10 on

% cat slam.c
int main() { int x, y;

x = 0; y = 0;
while (x < 2147483647)

{ x = x + 1; y = y + 1; }
__ASTREE_assert((x == y));

}

whereas Astrée uses widening/narrowing-based extrap-
olation techniques to prove the assertion

% astree –exec-fn main slam.c |& egrep "WARN"
%

10 CEGAR cannot generate the invariant y = x - 1 so produces all counter examples x = i + 1 ^ y = i,
i = 0; 1; 2; 3; : : :

Verification group, CS, NYU, 04/30/2008 — 58 — ľ P. Cousot

Parameterized Abstraction e.g. Array Smashing

--smash-threshold n (400 by default)

smash elements of arrays of size > n, otherwise individu-
alize array elements (each handled as a simple variable).

Verification group, CS, NYU, 04/30/2008 — 59 — ľ P. Cousot

Parameterized Abstract Domains: Intervals and Octagons

X

Y

0

Intervals [CC76]:
1 » x » 9
1 » y » 20

Octagons [Min01]:8>><>>:
1 » x » 9
x+ y » 77
1 » y » 20
x` y » 07

Difficulties: many global variables, arrays (smashed or not), IEEE
754 floating-point arithmetic (in program and analyzer) [CC77,
Min01, Min04a]

Verification group, CS, NYU, 04/30/2008 — 60 — ľ P. Cousot

Parameterized Widening e.g. Intervals
Thresholds for integer widening:

let widening_sequence =
[of_int 0; of_int 1; of_int 2; of_int 3; of_int 4; of_int 5;

of_int 32767; of_int 32768; of_int 65535; of_int 65536;
of_string "2147483647"; of_string "2147483648"; of_string "4294967295"]

Thresholds for float widening:
let widening_sequence =

[neg 1.;neg 0.15;neg 0.1;neg 0.01;neg 0.001;neg 0.000001;0.;0.000001;0.001;0.01;1.;
1e1;1e2;1e3;1e4; 70000.25;1e5;1e6;1.5e6;2e6;2.5e6;3e6;3.5e6;4e6;4.5e6;5e6;5.5e6;
6e6;6.5e6;7e6;7.5e6;8e6;8.5e6;9e6;9.5e6;1e7; 10000020.; 1.5e7;2e7;2.5e7;3e7;3.5e7;
4e7;4.5e7;5e7;5.5e7;6e7;6.5e7;7e7;7.5e7;8e7;8.5e7;9e7;9.5e7;1e8;1e9;1e10;1e11;1e12;
1e15;1e18;1e20;1e22;1e25;1e28;1e30;1e32]

Delayed widenings: --forced-union-iterations-at-beginning
n (2 by default)
Enforced widenings: --forced-widening-iterations-after n (250
by default), ...), etc.

Verification group, CS, NYU, 04/30/2008 — 61 — ľ P. Cousot

Parameterized Octagons

– Using octagons on all numerical variables would not scale up
– The analysis is parameterized by “packs of variables” stating
which independent subsets of the variables should be related
(everywhere, at which program points, in which context, ...)

– Automatic packing by another analysis (e.g. pre-analysis, on
the fly, etc). In Astrée pre-analysis at the block level.

– Parameters can modify the choice of packs globally (e.g. --fewer-oct:
no packs at the function level, --max-array-size-in-octagons
n: unsmashed array elements of size > n don’t go to octagons
packs)

– Directives can modify the choice of packs locally:
(__ASTREE_octagon_pack((V1,...,Vn));)

Verification group, CS, NYU, 04/30/2008 — 62 — ľ P. Cousot

Decision Trees for Boolean Control
– Code Sample:

/* boolean.c */
typedef enum {F=0,T=1} BOOL;
BOOL B;
void main () {

unsigned int X, Y;
while (1) {

...
B = (X == 0);
...
if (!B) {

Y = 1 / X;
}
...

}
}

The boolean relation abstract do-
main is parameterized by the height
of the decision tree (an analyzer
option) and the abstract domain at
the leafs

Verification group, CS, NYU, 04/30/2008 — 63 — ľ P. Cousot

Parameterized Decision Trees
– Using decision trees on all variables would not scale up
– The analysis is parameterized by “packs of variables” stating
which booleans go in nodes and numerical variables in leaves

– Automatic packing by a simple dependence analysis: Candi-
dates for packing in a decision tree are the boolean variables
to which a boolean expression is assigned or which are involved
in a test as well as the non-volatile and non-constant variables
which depend directly or indirectly on such a boolean

– Parameters can modify the choice of packs globally (e.g.
--max-bool-var n, n = 3 by default)

– Directives can modify the choice of packs locally to state which
boolean variables to put in internals nodes and numerical vari-
ables to put in abstract domains at the leaves __ASTREE_boolean_pack((V1,...,Vn));

– TODO: partition on small values (other than booleans)
Verification group, CS, NYU, 04/30/2008 — 64 — ľ P. Cousot

Example of directive (Cont’d)

% cat repeat1.c
typedef enum {FALSE=0,TRUE=1} BOOL;
int main () {

int x = 100; BOOL b = TRUE;

while (b) {
x = x - 1;
b = (x > 0);

}
}

% astree –exec-fn main repeat1.c |& egrep "WARN"
repeat1.c:5.8-13::[call#main@2:loop@4>=4:]: WARN: signed int arithmetic
range [-2147483649, 2147483646] not included in [-2147483648, 2147483647]
%

Verification group, CS, NYU, 04/30/2008 — 65 — ľ P. Cousot

Example of directive (Cont’d)

% cat repeat2.c
typedef enum {FALSE=0,TRUE=1} BOOL;
int main () {

int x = 100; BOOL b = TRUE;
__ASTREE_boolean_pack((b,x));
while (b) {

x = x - 1;
b = (x > 0);

}
}
% astree –exec-fn main repeat2.c |& egrep "WARN"
%

The insertion of this directive could be automated inAstrée (if the considered

family of programs has “repeat” loops).

Verification group, CS, NYU, 04/30/2008 — 66 — ľ P. Cousot

Parameterized Loop Partitionning
– No loop unrolling a priori
– Unrolling is controlled by parameters --unroll u and directives
__ASTREE_partition_control((p)) while (B) {C}; C’; __ASTREE_partition_merge(());

so that the analysis is semantically equivalent to:
p[
i=0

“
(B; C)i;:B; C0

”
partitionning of the
first p iterations

[

0@ p[
i=0

(B; C)i

1A ;

0@ u[
i=p+1

“
(B; C)i;:B

”1A ; C0 semantic unrolling of
the next u ` p itera-
tions

[

0@ u[
i=0

(B; C)i

1A ;

„
+1
´

i=u+1
(B; C)i

«
;:B; C0 next iterations with

widening
Verification group, CS, NYU, 04/30/2008 — 67 — ľ P. Cousot

Unexpected Refinement

Verification group, CS, NYU, 04/30/2008 — 68 — ľ P. Cousot

Ellipsoid Abstract Domain for
Filters

2d Order Digital Filter:

– Computes Xn =

¸Xn`1 + ˛Xn`2 + Yn
In

– The concrete computation is bounded, which
must be proved in the abstract.

– There is no stable interval or octagon.
– The simplest stable surface is an ellipsoid.

execution trace unstable interval stable ellipsoid

Verification group, CS, NYU, 04/30/2008 — 69 — ľ P. Cousot

Filter Example [Fer04]
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;
void filter () {

static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] = X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {
X = 0.9 * X + 35; /* simulated filter input */
filter (); INIT = FALSE; }

}

Verification group, CS, NYU, 04/30/2008 — 70 — ľ P. Cousot

Arithmetic-Geometric Progressions [Fer05] Example 1
% cat retro.c
typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST;
volatile BOOL SWITCH;
volatile float E;
float P, X, A, B;

void dev()
{ X=E;

if (FIRST) { P = X; }
else

{ P = (P - ((((2.0 * P) - A) - B)
* 4.491048e-03)); };

B = A;
if (SWITCH) {A = P;}
else {A = X;}

}

void main()
{ FIRST = TRUE;

while (TRUE) {
dev();
FIRST = FALSE;
__ASTREE_wait_for_clock(());

}}
% cat retro.config
__ASTREE_volatile_input((E [-15.0, 15.0]));
__ASTREE_volatile_input((SWITCH [0,1]));
__ASTREE_max_clock((3600000));

|P| <= (15. + 5.87747175411e-39
/ 1.19209290217e-07) * (1
+ 1.19209290217e-07)ˆclock
- 5.87747175411e-39 /
1.19209290217e-07 <= 23.0393526881

Verification group, CS, NYU, 04/30/2008 — 71 — ľ P. Cousot

Arithmetic-Geometric Progressions [Fer05] (Example 2)
% cat count.c
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
volatile BOOLEAN I; int R; BOOLEAN T;
void main() {

R = 0;
while (TRUE) {

__ASTREE_log_vars((R));
if (I) { R = R + 1; }
else { R = 0; }
T = (R >= 100);
__ASTREE_wait_for_clock(());

}}

% cat count.config
__ASTREE_volatile_input((I [0,1]));
__ASTREE_max_clock((3600000));
% astree –exec-fn main –config-sem count.config count.c|grep ’|R|’

|R| <= 0. + clock *1. <= 3600001.

 potential overflow!

Verification group, CS, NYU, 04/30/2008 — 72 — ľ P. Cousot

Overapproximation with an Arithmetic-Geometric Progression
f(k)

k
max k

max | f(k) |
max k

Verification group, CS, NYU, 04/30/2008 — 73 — ľ P. Cousot

Arithmetic-geometric progressions 11 [Fer05]

– Abstract domain: (R+)5

– Concretization:
‚ 2 (R+)5 7 !̀ }(N 7! R)

‚(M;a; b; a0; b0) =

ff j 8k 2 N : jf(k)j »
“
λx . ax+ b ‹ (λx . a0x+ b0)k

”
(M)g

i.e. any function bounded by the arithmetic-geometric
progression.

References

[2] J. Feret. The arithmetic-geometric progression abstract domain. In VMCAI’05, Paris, LNCS 3385, pp. 42–58, Springer, 2005.11 here in R

Verification group, CS, NYU, 04/30/2008 — 74 — ľ P. Cousot

Obsolete Abstraction

Verification group, CS, NYU, 04/30/2008 — 75 — ľ P. Cousot

Incompleteness
Astrée does not know that

8x; y 2 Z : 7y2 ` 1 6= x2

so on the following program

void main() { int x, y;
if ((-4681 < y) && (y < 4681) && (x < 32767) && (-32767 < x) && ((7*y*y - 1) == x*x))

{ y = 1 / x; };
}

it produces a false alarm (surely forever in this irrealistic
program!)

% astree –exec-fn main false-alarm.c |& egrep "WARN"
false-alarm.c:5.9-14::[call#main@1:]: WARN: integer division by zero ([-32766, 32766]
and {1} / Z)
%

Verification group, CS, NYU, 04/30/2008 — 76 — ľ P. Cousot

THE END, THANK YOU

Verification group, CS, NYU, 04/30/2008 — 77 — ľ P. Cousot

6. Bibliography

Verification group, CS, NYU, 04/30/2008 — 78 — ľ P. Cousot

[AGM93] G. Amato, F. Giannotti, and G. Mainetto. Data sharing analysis for a database
programming language via abstract interpretation. In R. Agrawal, S. Baker, and
D.A.Bell, editors, Proc. 19th Int. Conf. on Very Large Data Bases, pages 405–
415, Dublin, IE, 24–27 Aug. 1993. MORGANKAUFMANN.

[BCC+02] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monni-
aux, and X. Rival. Design and implementation of a special-purpose static program
analyzer for safety-critical real-time embedded software, invited chapter. In T.
Mogensen, D.A. Schmidt, and I.H. Sudborough, editors, The Essence of Compu-
tation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D.
Jones, LNCS 2566, pages 85–108. Springer, 2002.

[BCC+03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In Proc. ACM
SIGPLAN ’2003 Conf. PLDI, pages 196–207, San Diego, CA, US, 7–14 June
2003. ACM Press.

[BPC01] J. Bailey, A. Poulovassilis, and C. Courtenage. Optimising active database rules
by partial evaluation and abstract interpretation. In Proc. 8th Int. Work. on
Database Programming Languages, LNCS 2397, pages 300–317, Frascati, IT,
8–10 Sep. 2001. Springer.

Verification group, CS, NYU, 04/30/2008 — 79 — ľ P. Cousot

[BS97] V. Benzaken and X. Schaefer. Static integrity constraint management in object-
oriented database programming languages via predicate transformers. In M. Aksit
and S. Matsuoka, editors, Proc. 11th European Conf. on Object-Oriented Pro-
gramming, ECOOP ’97, LNCS 1241. Springer, Jyväskylä, FI, 9–13 June 1997.

[CC76] P. Cousot and R. Cousot. Static determination of dynamic properties of pro-
grams. In Proc. 2nd Int. Symp. on Programming, pages 106–130, Paris, FR,
1976. Dunod.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In 4th

POPL, pages 238–252, Los Angeles, CA, 1977. ACM Press.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
6th POPL, pages 269–282, San Antonio, TX, 1979. ACM Press.

[CC92a] P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation, invited paper. In M.
Bruynooghe and M. Wirsing, editors, Proc. 4th Int. Symp. on PLILP ’92, Leu-
ven, BE, 26–28 Aug. 1992, LNCS 631, pages 269–295. Springer, 1992.

[CC92b] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. In 19th POPL, pages 83–94, Albuquerque, NM, US, 1992. ACM Press.

Verification group, CS, NYU, 04/30/2008 — 80 — ľ P. Cousot

[CC95] P. Cousot and R. Cousot. Formal language, grammar and set-constraint-based
program analysis by abstract interpretation. In Proc. 7th FPCA, pages 170–181,
La Jolla, CA, US, 25–28 June 1995. ACM Press.

[CC00] P. Cousot and R. Cousot. Temporal abstract interpretation. In 27th POPL, pages
12–25, Boston, MA, US, Jan. 2000. ACM Press.

[CC02] P. Cousot and R. Cousot. Systematic design of program transformation frame-
works by abstract interpretation. In 29th POPL, pages 178–190, Portland, OR,
US, Jan. 2002. ACM Press.

[CC03] P. Cousot and R. Cousot. Parsing as abstract interpretation of grammar semantics.
Theoret. Comput. Sci., 290(1):531–544, Jan. 2003.

[CC04] P. Cousot and R. Cousot. An abstract interpretation-based framework for software
watermarking. In 31st POPL, pages 173–185, Venice, IT, 14–16 Jan. 2004. ACM
Press.

[CCF+05] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
The Astrée analyser. In M. Sagiv, editor, Proc. 14th ESOP ’2005, Edinburg,
UK, volume 3444 of LNCS, pages 21–30. Springer, 2–10 Apr. 2005.

Verification group, CS, NYU, 04/30/2008 — 81 — ľ P. Cousot

[CCF+07] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X.
Rival. Varieties of static analyzers: A comparison with Astrée, invited paper. In
M. Hinchey, He Jifeng, and J. Sanders, editors, Proc. 1st TASE ’07, pages 3–17,
Shanghai, CN, 6–8 June 2007. IEEE Comp. Soc. Press.

[CCF+08] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X.
Rival. Combination of abstractions in the Astrée static analyzer. In M. Okada
and I. Satoh, editors, 11th ASIAN06, pages 272–300, Tokyo, JP, 6–8 Dec. 2006,
2008. LNCS 4435, Springer.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In 5th POPL, pages 84–97, Tucson, AZ, 1978. ACM Press.

[Cou97] P. Cousot. Types as abstract interpretations, invited paper. In 24th POPL, pages
316–331, Paris, FR, Jan. 1997. ACM Press.

[Cou02] P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theoret. Comput. Sci., 277(1—2):47–103, 2002.

[Cou03] P. Cousot. Verification by abstract interpretation, invited chapter. In N. Der-
showitz, editor, Proc. Int. Symp. on Verification – Theory & Practice – Hon-
oring Zohar Manna’s 64th Birthday, pages 243–268. LNCS 2772, Springer,
Taormina, IT, 29 June – 4 Jul. 2003.

Verification group, CS, NYU, 04/30/2008 — 82 — ľ P. Cousot

[Cou07] P. Cousot. Proving the absence of run-time errors in safety-critical avionics code,
invited tutorial. In Proc. 7th ACM & IEEE Int. Conf. EMSOFT ’2007, pages
7–9. ACM Press, 2007.

[Dan07] V. Danos. Abstract views on biological signaling. In Mathematical Foundations
of Programming Semantics, 23rd Annual Conf. (MFPS XXIII), 2007.

[DS07] D. Delmas and J. Souyris. Astrée: from research to industry. In G. Filé and
H. Riis-Nielson, editors, Proc. 14th Int. Symp. SAS ’07, Kongens Lyngby, DK,
LNCS 4634, pages 437–451. Springer, 22–24 Aug. 2007.

[Fer04] J. Feret. Static analysis of digital filters. In D. Schmidt, editor, Proc. 30th

ESOP ’2004, Barcelona, ES, volume 2986 of LNCS, pages 33–48. Springer, Mar.
27 – Apr. 4, 2004.

[Fer05] J. Feret. The arithmetic-geometric progression abstract domain. In R. Cousot,
editor, Proc. 6th Int. Conf. VMCAI 2005, pages 42–58, Paris, FR, 17–19 Jan.
2005. LNCS 3385, Springer.

[FHL+01] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling,
S. Thesing, and R. Wilhelm. Reliable and precise WCET determination for a real-
life processor. In T.A. Henzinger and C.M. Kirsch, editors, Proc. 1st Int. Work.
EMSOFT ’2001, volume 2211 of LNCS, pages 469–485. Springer, 2001.

Verification group, CS, NYU, 04/30/2008 — 83 — ľ P. Cousot

[GM04] R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-
interference by abstract interpretation. In 31st POPL, pages 186–197, Venice, IT,
2004. ACM Press.

[Gra89] P. Granger. Static analysis of arithmetical congruences. Int. J. Comput. Math.,
30:165–190, 1989.

[JP06] Ph. Jorrand and S. Perdrix. Towards a quantum calculus. In Proc. 4th Int. Work.
on Quantum Programming Languages, ENTCS, 2006.

[Mau04] L. Mauborgne. Astrée: Verification of absence of run-time error. In P. Jacquart,
editor, Building the Information Society, chapter 4, pages 385–392. Kluwer Acad.
Pub., 2004.

[Min] A. Miné. The Octagon abstract domain library.
http://www.di.ens.fr/~mine/oct/.

[Min01] A. Miné. A new numerical abstract domain based on difference-bound matrices.
In 0. Danvy and A. Filinski, editors, Proc. 2nd Symp. PADO’2001, Århus, DK,
21–23 May 2001, LNCS 2053, pages 155–172. Springer, 2001.

[Min04a] A. Miné. Relational abstract domains for the detection of floating-point run-time
errors. In D. Schmidt, editor, Proc. 30th ESOP ’2004, Barcelona, ES, volume
2986 of LNCS, pages 3–17. Springer, Mar. 27 – Apr. 4, 2004.

Verification group, CS, NYU, 04/30/2008 — 84 — ľ P. Cousot

[Min04b] A. Miné. Weakly Relational Numerical Abstract Domains. Thèse de doctorat
en informatique, École polytechnique, Palaiseau, FR, 6 Dec. 2004.

[Min05] A. Miné. Weakly relational numerical abstract domains: Theory and application,
invited paper. In 1st Int. Work. on Numerical & Symbolic Abstract Domains,
NSAD ’05, Maison Des Polytechniciens, Paris, FR, 21 Jan. 2005.

[Min06a] A. Miné. Field-sensitive value analysis of embedded C programs with union types
and pointer arithmetics. In Proc. LCTES ’2006, pages 54–63. ACM Press, June
2006.

[Min06b] A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computa-
tion, 19:31–100, 2006.

[Min06c] A. Miné. Symbolic methods to enhance the precision of numerical abstract do-
mains. In E.A. Emerson and K.S. Namjoshi, editors, Proc. 7th Int. Conf. VMCAI
2006, pages 348–363, Charleston, SC, US, 8–10, Jan. 2006. LNCS 3855, Springer.

[Mon05] D. Monniaux. The parallel implementation of the Astrée static analyzer. In
Proc. 3rd APLAS ’2005, pages 86–96, Tsukuba, JP, 3–5 Nov. 2005. LNCS 3780,
Springer.

Verification group, CS, NYU, 04/30/2008 — 85 — ľ P. Cousot

[MR05] L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation based
static analyzer. In M. Sagiv, editor, Proc. 14th ESOP ’2005, Edinburg, UK,
volume 3444 of LNCS, pages 5–20. Springer, Apr. 2

p
` 10; 2005:

[PCJD07] M. Dalla Preda, M. Christodorescu, S. Jha, and S. Debray. Semantics-based ap-
proach to malware detection. In 34th POPL, pages 238–252, Nice, France, 17–19
Jan. 2007. ACM Press.

[Per06] S. Perdrix. Modèles formels du calcul quantique : ressources, machines ab-
straites et calcul par mesure. PhD thesis, Institut National Polytechnique de
Grenoble, Laboratoire Leibniz, 2006.

[Riv05a] X. Rival. Abstract dependences for alarm diagnosis. In Proc. 3rd APLAS ’2005,
pages 347–363, Tsukuba, JP, 3–5 Nov. 2005. LNCS 3780, Springer.

[Riv05b] X. Rival. Understanding the origin of alarms in Astrée. In C. Hankin and I.
Siveroni, editors, Proc. 12th Int. Symp. SAS ’05, pages 303–319, London, UK,
LNCS 3672, 7–9 Sep. 2005.

[RT04] F. Ranzato and F. Tapparo. Strong preservation as completeness in abstract
interpretation. In D. Schmidt, editor, Proc. 30th ESOP ’04, volume 2986 of
LNCS, pages 18–32, Barcelona, ES, Mar. 29 – Apr. 2 2004. Springer.

Verification group, CS, NYU, 04/30/2008 — 86 — ľ P. Cousot

[RT06] F. Ranzato and F. Tapparo. Strong preservation of temporal fixpoint-based op-
erators by abstract interpretation. In A.E. Emerson and K.S. Namjoshi, editors,
Proc. 7th Int. Conf. VMCAI 2006, pages 332–347, Charleston, SC, US, 8–10
Jan. 2006. LNCS 3855 , Springer.

[SD07] J. Souyris and D. Delmas. Experimental assessment of Astrée on safety-critical
avionics software. In F. Saglietti and N. Oster, editors, Proc. Int. Conf. on
Computer Safety, Reliability, and Security (textscSafecomp 2007), volume
Nuremberg, DE, LNCS 4680, pages 479–490. Springer, 18–21 Sep. 2007.

[Sou04] J. Souyris. Industrial experience of abstract interpretation-based static analyzers.
In P. Jacquart, editor, Building the Information Society, chapter 4, pages 393–
400. Kluwer Acad. Pub., 2004.

Verification group, CS, NYU, 04/30/2008 — 87 — ľ P. Cousot

