Abstract Interpretation:
“Scene-Setting Talk”

Patrick Cousot

cims.nyu.edu/~pcousot

Dagstuhl Seminar 14352

Next Generation Static Software Analysis Tools
August 24th — August 29th 2014,

Motivation

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24—29, 2014 2 © P Cousot

Fundamental motivations

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 3 © P Cousot

Trends in formal methods research

® dispersion and parcelization through a collection of
local techniques for specific applications

® we should aim at unification and synthesis through
universal principles

® that’s the whole purpose of abstract interpretation

® abstraction is a unifier of formal methods

® with practical applications

This is what we concentrate
on in this seminar

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014

Formal methods for program verification

ET : '
W Security protocole gyctems biolo Operational
Axiomatic verification Y OlogY semantics
: analysis Abstracti
semantics straction
Confidentialit Dataflow Model = Database (efinement
analysis 4 ~analysis checking query Type
Program evI;?l:;!cEilclan Obfuscation Dependence inference
synthesis Effect Denotational analysis Separation
Grammar Systems semantics CEGAR logic
analysis T Theories Program Termination
Statistical racé combination transformation Proof

- manti
model-checking €M ues Code Interpolants Abstract Shape

Invariance Symbolic contracts Integrity ~ model analysis

proof execution analysis checking Malware
Probabilistic = Quantum entanglement Bisimulation detection
verification detection SMT solvers Code

Parsing Type theory Steganography T,,tol ogy testers refactoring

5

Formal methods for program verification

/ \

WCET : Operational
Security protocole - P :

Axiomatic veri);‘igation Systems biology semantics

analysis

semantics Abstraction
Confidentiality Dataflow Model — Database "\ ofinement
analysis ~analysis checking query Type
Program evz?:;!cailclan Obfuscation Dependence inference
synthesis Effect Denotational analysis Separation
Grammar systems semantics CEGAR logic
analysis T Theories Program Termination
Statistical racé combination transformation Proof

: semantics
model-checking Code Interpolants Abstract Shape

Invariance Symbolic contracts Integrity ~ model analysis

proof execution analysis checking Malware
Probabilistic =~ Quantum entanglement Bisimulation de&ection
ode

verification detection SMT solvers :
Parsing Type theory Steganography Tautology testers refw

6

Formal methods for program verification

NVCET

\

Abstract interpretation

: . Operational
Axiomatic SeCl:/Q:ﬁ?’ﬁE;EE(;COIG Systems bI.OIOg)’ semantics
semantics AE 7S Abstraction
Confidentiality Dataflow dr;/]e ﬁﬁi Database \.ofinement
analysis — analysis | g query Type
Program avaluation Obfuscation Dependence inference
synthesis Effect Denotational analysis Separation
Grammar systems semantics CEGAR Ioglc |
analysis Theories Program Termination
Statistical Trace .ombination transformation Proof
model-checking SEmMantics Code Interpolants Abstract Shape
Invariance Symbolic contracts Integrity ~ model analysis
proof execution analysis checking Malware
Probabilistic = Quantum entanglement Bisimulation detection
verification detection SMT solvers Code

Parsing Type theory Steganography Tautology testers refw

7

Practical motivations

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 8 © P Cousot

All computer scientists have experienced bugs

unsigned int payload = 18; /* Sequence number + random bytes */
unsigned int padding = 16; /* Use minimum padding */

/* Check if padding is too long, payload and padding
* must not excee d 2714 - 3 = 16381 bytes in total.

OPENSSL_assert (payload + padding <= 16381);

/* Create HeartBeat e, we ju a umbe
* as payload to distuingish different messages and add
* dom stuff
* - Message Type, 1 byte
* - Payload Length, 2 bytes (unsigned int)

* - Payload, the sequence number (2 bytes uint)
* - Payload, random bytes (16 bytes uint)

* dding

*/

buf =

p = bu

/% Mes:

*ptt

/* Pa

s2n(p:

/* Sex

s2n(s:

/%1

RAND

p +=

/* Ra padding */
RAND_pseudo_bytes (p, padding);

ret = dtlsl_write_bytes(s, TLS1_RT_HEARTBEAT, buf, 3 + payload + padding);

Ariane 5.01 failure Patriot failure Mars orbiter loss Heartbleed
(overflow) (float rounding) . _(unit error) (buffer overrun)

® Checking the presence of bugs by debugging is great
® Proving their absence by static analysis is even better!

® Undecidability and complexity is the challenge for
automation

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 9 © P Cousot

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 | O © P Cousot

Program verification by induction
® Program verification is by induction
® Program steps (Turing, Floyd, Naur)

® Structural (program syntactic structure, Strachey,
Hoare)

® Fixpoints (Scott)
® Data structures (Burstall)

® Segmentation hierarchies ()

(*) Cousot, P., Cousot, R.: An abstract interpretation framework for termination. In: POPL.
245-258. ACM (2012)

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 | | © P Cousot

Program verification by induction

® The only non-trivial base case is iteration/recursion
(to be handled by induction):

® concrete domain (,C,1,U) (poset)

® transformer Fe9® -2 (increasing)
® specification SeD

® proof Ifp-F C S

e Example: X states, (9(X), C, @,U) complete lattice of
properties, I': Floyd’s verification conditions, S is an

invariant, proof: reachable states satisfy the invariant S.

Abstraction

® The concrete domain & is in general not machine
representable. Abstracted into

® abstract domain (D, C, L, 1) (poset)

® concretization y €D - D (increasing)

e E.g.: Hoare logic uses (first-order predicates, —)

Homomorphic abstractions of a man / crowd

Fingerprint

Eye color

:

DNA min, max

[,1

Phone metadata

Numerical abstractions in Astree

Collecting semantics: Intervals:

partial traces x € |a,b]

Y Y

Octagons: Ellipses:
+x+ty<a x? 4 by? —axy < d

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 | 5

Simple congruences:

x = a[b]

Exponentials:
_abt < Y(t) < abt

© P Couso

Why abstraction may be approximate!

® Example

{x=yA0<x< 10}
X 1= X - Y;
{x=0A0<y< 10}

Interval abstraction:

{xe[0,I0] Ay €E[0,I10]}
X = X = V3

{xe[-10,I0] Ay €0, 10]}

(but for constants, the interval abstraction can’t
express equality)

Why abstraction may be approximate!

® Hoare logic: loop invariants may not be expressible in
the first-order logic

® Relative completeness only (under the expressiveness
hypothesis that the loop invariants are expressible in
the first-order logic)

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 | 7 © P Cousot

Abstraction (contd)

® The concrete domain 9 is in general not machine

representab

abstract domain
concretization
abstract transformer
semi-commutation
abstract specification

inductive argument

proof

soundness

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014

e. Abstracted into

(P, C, L, 1) (poset)

< (increasing)

© P Cousot

Duality

(Us_%‘s\!’) (ﬂa&s\})

/ (0,2, 1)

(U, <, %) (n,<y ¥)

(u,+,+)‘/ (n,<, 1)

e Order duality: join (U) or meet (N)

(U,>,t)

® |nversion duality: forward (—) or backward (< = (—)1)

® Fixpoint duality: least (1) or greatest (1)

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints. POPL 1977: 238-252

In general, no best abstraction

® Best abstraction of a disk by a rectangular
parallelogram

® No best abstraction of a disk by a polyhedron (Euclid)

use only concretization 0

(I) Patrick Cousot, Radhia Cousot: Abstract Interpretation Frameworks. J. Log. Comput. 2(4): 511-547 (1992)

20

Mathematicians proceed by induction

® The solution I to the constraints F(X) C X on (D, C)
is computed iteratively:

o | =D (D initial guess)

o I =F(1)

e I"=5(,ES.C,n) induction hypothesis

e I =FI")=FIT.F.S.C.n) = I .F.S.C.n+1)
induction

® by recurrence: VYnelN:[= j([F,S,C,n))

® I — hmn—>oo j(jo ﬁ § L n)

21

Static analysis

® Static analysis must do some form of abstract
induction (abstracting away the mathematical proof by
recurrence)

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 22 © P Cousot

Static analysis in Noetherian domains

® The abstract domain is Noetherian: finite (which is
equivalent to predicate abstraction®) or satisfies the
ascending/descending chain condition

® The induction is predefined in the abstract domain (as
defined by successive joins/meets which always
converge in finitely many steps)

® FEasy, inexpressive (the induction hypothesis is fully
determined by the abstraction)

(*) Cousot, P.: Verification by abstract interpretation. In: Verification: Theory and Practice.
LNCS 2772, 243—-268. Springer (2003)

23

Static analysis in infinite domains
® Some form of abstract induction is needed
® Can be join/meet but iterates do not converge

® Must accelerate the convergence of the iterates by
approximation

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 24

Convergence acceleration

-
T

lip F

@ >

Infinite iteration

Dagstuhl Seminar 14352 , Next generation Static Software Analysis Tools ,Aug. 24-29, 2014 25

Convergence acceleration

lip F

Infinite iteration

Ifp F

o r——>

Accelerated iteration with widening

() Javier Esparza, Stefan Kiefer, Michael Luttenberger: Newtonian program analysis. J. ACM 57(6): 33

(2010)

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24—29, 2014

(e.g. with a widening based on the derivative
as in Newton-Raphson method®)

Operators for abstract induction

o Convergence above the limit | Convergence below the limit
Increasing iteration Widening V Dual-narrowing /\
Decreasing iteration Narrowing /\ Dual widening V

Extrapolators (V, v) and interpolators (A, E)

® Extrapolators:

® |nterpolators:

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 27

© P Cousot

Extrapolators and interpolators

28

Abstract induction versus convergence acceleration

® Abstract induction approximate the iterates

® Convergence acceleration enforces termination

® Two separate issues ()

(*) Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes d’opé-

rateurs monotones sur un treillis, analyse semantique de programmes. These d’Etat es
sciences mathématiques, Université Joseph Fourier, Grenoble, France (21 Mar. 1978)

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 29 © P Cousot

Finite versus infinite
abstractions

30

[In]finite abstractions

e Given a program P and a program property S which
holds (i.e. Ifp F'[[P||C S) there exists a most abstract

abstraction in a finite domain </ [|P|| to prove it

® Example:
x=0; while x<1 do x++ — {1,[0,0],[O0,I],[-c0,00]}

x=0; while x<2 do x++ —> {L,[0,0],[0,I],[0,2],[-c0,c0]}

x=0; while x<n do x++ — {L,[0,0],[0,1],[0,2],[0,3], ..., [0,],[-c0,00]}

*
) Patrick Cousot: Partial Completeness of Abstract Fixpoint Checking. SARA 2000: 1-25

31

[In]finite abstractions

® No such domain exists for infinitely many programs

o |J J[P] is infinite
pel
Example: {1,[0,05,[0,11, 10,21, [0,3], ... [0, [0+ 1],[-00,00]}

o \P €L.4|P| is not computable (for

undecidable properties)

— finite abstractions will fail infinitely often while
infinite abstractions will succeed!

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 32 © P Cousot

Terminating widenings are
not monotone

33

Iteration with widening

® |terates ()_(k, k € N) of F extensive on (g,_l;) with
terminating widening V € @ X P > P :

_0 N
e X £D where D € 9@ initial approximation

—k+1 A

o XM AX VEX") keN

® The iterates are increasing (F extensive) and converge
in finitely many steps (' terminating)

34

Example of widenings

® Primitive widening [1,2]

(x V y) dans b : 6 b -—
- [if a; < a, then - else a, fi,

alors -« sinon ny fsi

m; alors += sinon m; fsi] j . - - R
fincas ; lf b2 > bl then +oo Else bl fl]

® Widening with thresholds [3]

Vxe L, L Vy(Dx=xV,(j) L =x

Uy, 2] V2(j) [z, 1]
=[if0< L <, thenQ elsif I, <1, then —b — 1 else I, fi,

ifu; < u, <0 then 0 elsif u, < u, then b else u, fi]

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la cohérence dynamique des programmes, Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.
[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

[3] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 35 © P Cousot

Example of widenings (cont’d)
® Parameterized widenings:
V©.T6).F(X", p < 8).(FX), f < 6))

® Example: bounded model-checking

An abrupt such example is n-bounded abstract model checking [3] using an itera-

— —k o — —k —e = —
tionX =X V) F(X) with parameterized widening X V()Y = (k <n?YsT)
where T is the abstract supremum: ¥X € & : P C y(T) (everything is unknown
beyond n iterations).

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 36 © P Cousot

Required properties of terminating widenings

® Widening over-approximates the iterates:
Va) VX, Yep:YCXVY.

® |[teration converges when solution found:

Vb)) VX, YeD:(YCX) = XVY=X).

® Convergence is enforced by terminating widening:

(V.c)

e
V is terminating that is for any increasing chain (X € 9,k € N) and arbitrary
Y — —k _ —k —k ——F
sequence (Y € 9P,k € N)suchthatVk € N: X C Y ,thesequence(X VY ,
e e
k € N) is ultimately stationary (ie. In € N:Vk >n: X VY = Xn).

37

Terminating [dual-]widenings are not monotone

Theorem 5 (NoEmolotonic_ity of terminating [dual] widening). Let (D, C) be a
poset and V € D X D — D be a widening satisfying (V.a),ﬂd(v.b), and (V.c). Then
V cannot be increasing in its first parameter. The dual holds for V.

Proof. By reflexivity, Y C Y so (V.b) implies_? V_? =Y. By reductio ad absurdum,
if V is increasing in its first parameter then X C Y implies X VY C YV Y =Y C

X V Y by (V.a) which implies that X V Y = Y by antisymmetry. By (V.c), Vk > n,

—nt+k —k 59—k —k — —k _—k —ko—k —k
X =X"VY =X =X .ByhypothesisX CY soX VY =Y whichimplies
—k —n

—k
Vk > n:Y = X, in contradiction with the fact that (Y , k € N) is an arbitrary
sequence of elements of &, hence in general not ultimately stationary:. O

Counter-example 5 (Top widening). The top widening X V+ Y = T is terminating and
increasing in its first parameter but does not satisfy condition (V.b) since if a solution
is found by iteration with widening, the top widening will degrade it to T. O

38

Consequences

® The transformers of structural static analyzers (which
contain widenings) are not increasing

® Example
while (TRUE) {if (x == 0) {x
Funite(D) = Ifp= A X - T U Fis(X)

Fie(X) = (0 € X 7 [1,1] s 0) LU
(dx €e X : x # 0 2 [2,2] s 0)

1} else {x = 2}}

Fuhite([0,0]) = [0,+00]

Funite(10,2]) = 0,2]

® Consequence: abstract fixpoints may not exist !

39

Solution

® The concrete (so-called collecting) semantics is for
increasing concrete transformers in posets

® The abstract transformers may not be increasing (no
fixpoints)

® Rely on abstract iterations (not abstract fixpoints)
® Rely on appoximations (not existing lubs/glbs)

® As a separate issue, enforce convergence
(approximation of infinite iterations)

40

Concrete iteration

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24—29, 2014 4 | © P Cousot

Structure of the domain of properties

® The domain of concrete properties (2, C) is assumed
to be a poset

® No need for CPOs, complete lattices, etc since we are
only interested in the chains of iterates of a concrete
transformer F € & — 9P

® Even iterates of (an abstract) F € & — & may have
no lubs/glbs

® Abstract/concrete is relative so we need to make
weak hypotheses on the concrete.

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 42 © P Cousot

Chains

Lemma 1 (Increasing sequences in posets are ultimately stationary). Any <-increas-
ing transfinite sequence (X°,8 € O) of elements of a poset (P, <) is ultimately stationary
(ie. Je € O : VS > € : X° = X€. The smallest such e is the rank of the sequence.). O

43

|terates

Definition 2 (Least/upper bounded iterates). Let F € & +— b be an transformer on
a poset (D, C) and D € . By least/upper bounded iterates of F from D we mean a
transfinite sequence (X°, § € O) of elements of D such that X° = D, X°*! £ F(X°),
and for limit ordinals 1,8 < A : X° C X* for upper bounded iterates and X* is the least

element with that property for least bounded iterates (V6 < A : X° C XA AVY : V5 < A :
X cy = X*cCv) O

44

Limits

Lemma 3 (Increasing fixpoint iterates). Let (X°, § € O) be the iterates of an trans-

former F € & — D on a poset (D, C) from D € .

(a) IfF is extensive (i.e. VX € & : X C F(X)) and the iterates are upper bounded then
they are increasing and F has a fixpoint C-greater than of equal to D.

(b) If F is increasing, D a prefix-point of F (i.e. D C F(D)), and the iterates are upper
bounded (resp. least upper bounded) then they are increasing and F has a fixpoint
C-greater than of equal to D (resp. least fixpoint Ifp_ F).

(c) In case (b) of least upper bounded iterates, VY €¢ &b : (D C YAF(Y) CY) =

(Ifp, FCY). O

45

Increasing iteration with
non-monotonic
transformer/widening

46

Increasing iteration with widening

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 47 © P Cousot

Hypotheses on widenings

Hypotheses 7 (Sound widening for concretization y).
(a) oforVedIxD—D, YP,0eD:y(P)Cy(PVO)Ay(Q)Cy@PV Q)
(a’) VP,0e 2 :PC(PVQO)AQC (PVQ)
b) eforVep(@)—»D, VYXLep(D):YPeX:yP)Cy(VX)

Dagstuhl Seminar 14352 , Next generation Static Software Analysis Tools , Aug. 24-29, 2014 48

Example of widenings (cont’d)

® Bounded widening: VP,Q:PV:QLC S
® Ex:bounded widening (in [min_int,max int]):

[a,b] V [c,d] £

[if c<a then min_int else a,if d>a then max int else b]

Dagstuhl Seminar 14352 , Next generation Static Software Analysis Tools , Aug. 24-29, 2014 49

Example of widenings (cont’d)
e Bounded widening (in [Z, h]):

. la,b] .
le,d]
. —o
<« S SEREE - ();(-):
 CERRTRETRRPRD R > (...............) O »
A : :
@ ----nnene Y @------n-one

[a,b] Viep [c,d] £ [c+a-2¢, b+d+2h]
2 2

Dagstuhl Seminar 14352 , Next generation Static Software Analysis Tools , Aug. 24-29, 2014 50

Soundness of widening iterations

Theorem 8 (Over-approximation of increasing abstract iterates by widening). Let
(X%, § € O) be the least upper bound iterates of the increasing transformer F € & > D
on a concrete poset (D, C) from D € D such that D C F(D). By Lem. 3 (b), (X°, § € 0)
is therefore increasing and ultimately stationary at X© = Ifp_ F

Let the abstract domain (9, C) be a poset, the concretization y € D — D be in-
creasing, the abstract transformer be F € D — D,V € DX D — D be a wzdenmg

satisfying Hyp. 7 (a) and V € (D) — D satisfies Hyp. 7 (b) for all X = {X S | 6 <
AANA € O isalimit ordinal} the abstmct iterates be the transfinite sequence (X € 9,

d € O) such thatX5+1 =)_(V F(X) andX 2V)_(ﬂ for limit ordinals A. Then
ﬁ<)t

(a) The concretization (y()_(5), o € O) of the abstract iterates ()_(5, o € O) is increasing
and ultimately stationary with limit y(XE).

Moreover, if D C y()_(o) and the semi-commutation condition ¥ € O : F o y()_(é) Cyo

F(X) holds, then

(b) V6 € O : X9 C y()_(5) (so, in particular X¢ C y()_(g));

() Ve 0:FXH)CX — X¢CyX).

(d) Moreover, if V satisfies Hyp. 7 (a’) then F()_(E) CX . O

Condition Th. 8.(c) provides a sufficient cqndition for stopping the abstract iteration,

Decreasing iteration with
non-monotonic
transformer/narrowing

52

Decreasing iteration with narrowing

53

Hypotheses on narrowings

Hypotheses 12 (Sound narrowing for concretization y).
eforANe D xDP > P,
(a) VP,0 € D : (y(Q) Cy(P) = (y(Q) Cy(PAQ)Cy(P)
@) VP.0eD: (@ cy®) — @c(PAQ)CP)
o for \ € 9(D) —» D,
(b) VP eD: VL e p(D): (VQeX:PCy(Q) = (PCy(AX)cy(Q) O

Dagstuhl Seminar 14352 , Next generation Static Software Analysis Tools , Aug. 24-29, 2014 54

Example of narrowing
* [2]

[a1.b1] E. faz.bz] =

[if a, = -w then a, else MIN [a1.az].

if b1='+w then I:32 else MAX (bq.b?l]

[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 55 © P Cousot

Soundness of narrowing iterations

Theorem 15 (Over-approximation of decreasing iterates with narrowing). By the
dual of Def. 2, let (X°, § € O) be the greatest lower bound iterates of the increasing
transformer F € & +— & on a concrete poset (D, C) from D € D such that F(D) C D.
By the dual of Lem. 3 (b), (X°, § € O) is therefore decreasing and ultimately stationary

at X¢ = gfp_ F

Let the abstract domain (P, C) be a poset, the concretization y € D - D be in-
creasing, the abstract transformer be F € B — D, A € D x D — D be a narrowing
satisfying Hyp. 13 (a) (or Hyp. 13 (a’)) and A\ € (D) > D satisfies Hyp. 13 (b) for
X = {)_(5 |6 <)L A A € O is a limit ordinal}, where the abstract iterates are the transﬁ

mtesequence(X € D, 5 € O) suchthatD C y(X), X5Jrl =)_(AF(X)X/1 = A X
p<A

for limit ordinals A, do satisfy the semi-commutation condition V6 € O : F o y()_(a) C
— -5

y o F(X). S
If the abstract transformer F € @ — D is reductive on the abstract iterates (X ,

de0)(ieVdeO: ?()—(5) C)_(5) then their concretization (y()_(é), o € O) is decreasing

and ultimately stationary with limit y()_(g) such that¥6 € O : gfp. F = X€ C y()_(g) C

y(X 5)- O

56

Decreasing narrowing iterations

Lemma 16. The more traditional hypothesis that (P T Q) =— (P C PAQ C Q),
VieA:(PCQ;) = (PLC AA Qj C Qi), ﬁ()_(o) C)_(0, and F is increasing imply that
je

F is reductive on the iterates. n

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 57 © P Couso

Increasing iteration with
non-monotonic
transformer/dual-widening

58

Increasing iteration with dual-narrowing

59

Hypotheses on dual-narrowing

® A narrowing:

PCQ — PCPAQLC(Q

® By order-duality, for a dual-narrowing:

PJQ = PJIPAQIOQ

< renaming

QP = QJIQAPIP
< order-duality

PCQ = PLCQAPLQ

® A dual-narrowing is a narrowing with inverted
parameters (and inversely)!

60

Example | of dual-narrowing

Example 17 Qnterval dual-narrowing). If [a,b] C [c,d] then ¢ < a < b < d so we can
define [a,b] A [c,d] £ [(c = —c0 T as|[(a+c)/2]),(d = c0 2 bs[(b+d)/2])] where

| x| is the largest integer not greater than real x and [x] is the smallest integer not less
than real x since ¢ < [(a + ¢)/2] < a < b < [(b+d)/2] < d and therefore [a,b] C ([a,

b] A [c,d]) C [c.d]. O

a,b]

[:a,b] A [c,dj

[c.d]

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 6 | © P Cousot

Example |1 of dual-narrowing

® Craig interpolation:

e first-order formulae ¢ and ¢ such that =(¢ A)

e 7 first-order formula p,
y = p,-(pAY),and Vars|p] C (Vars|p]|NVars|y]).

o Lettingy’ = -, if ¢ —> Y’ then 3 interpolant p:
p = p = Y.

® So in the poset of first-order formulze ordered by
implication =, we can define:

o Ny 2 p

62

Iteration with dual-narrowing

Theorem 23 (Over-approximation of bounded increasing iterates with dual-nar-
rowing). Let (X°, § € O) be the least upper bound iterates of the increasing transformer
F € D — D on a concrete poset (D, C) from D € D such that D C F(D). By Lem. 3 (b),
(X9, § € D) is therefore increasing and ultimately stationary at X€ = lfp. F

Let the abstract domain (&, C) be a a poset, the concretization y € D > D be in-
creasing, the bound specification S € D, the abstract transformer be F € D +— D,
AeDxD > D beadual- narrowing A satisfying the order dual of Hyp. 13 (a), and
A e 0(D) — D satisfying the order dual of Hyp. 13 (b) for X = {)_(/1 |0 < AANA €
O is a limit ordinal}, where the abstract iterates are the transfinite sequence (X ° ¢ D,
) E (D) such thatD y(X) and X' C S, Xt A ([?()_(5) CS7? F()_((S) AS s S),
X' Aﬁ<,1 x’ for limit ordmals A, whlch are assumed to satisfy the semi-commutation
condition¥d € O : F o y(X)Cyo F(X). Then
(a) The concretization (y(X 5), & € O) of the abstract iterates ()_(5, d € O) is such that

Y5 e 0: (X0 Cy(8) = (X0 Cy(X') < y©));

(b) V6 € 0:F(X)EX' = Ifp° F=X% cy(X) C y(5). 0

63

Ternary dual-narrowing

® The iteration with binary dual- narrowmg does not
exploit all available information (X):

—0+1 A

X A (FX) S 2 FX)AS S

® We can also use a ternary dual-narrowing:

—5+1 A ——F —

X2 (FXY S 2 ARCEX).S) s S

® Soundness requirement:

PC OCSimpliesO C A®,0,5CS.

Dagstuhl Seminar 14352 , Next generation Static Software Analysis Tools , Aug. 24-29, 2014 64

Example of binary/ternary dual-narrowing
® Binary dual-narrowing:

¢ ®
= lc,d] g
PR X s e, >
®------- ° - @ ¢
Aled], [£,h]) & [a-t, d+h]
2 2
® Ternary dual-narrowing
® o
. |a,b]
® —@
) CERES <3 SRRPY - C,d] <>§<->§
o b : o e >
@ -------n- ° @---------n- @
A(la,b), [c,d), [£,h) = [c+a-2C, b+d+2h]

2 2

Dagstuhl Seminar 14352 , Next generation Static Software Analysis Tools , Aug. 24-29, 2014 65

Ternary dual-narrowing versus bounded widening

® A bounded widening provides a ternary dual-
narrowing:

ﬁg Sa
V@g

?O

.0.5) =
PVzQan

sl

(

Qf >t

II_I

"U|<]

dual narrowing since if P C Q C S then by Hyp. 7 (a’),
S since the widening is bounded so that Q T A(P,Q,S) C S.

® Reciprocally, a ternary dual-narrowing provides a
bounded widening (for increasing chains only):

if Pco then PV:0 2 A®0.5 isabounded widening.

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 66 © P Cousot

Increasing/decreasing operators

. N !
® V and dual-narrowing /\ are increasing (since they operate on increasing chains (X ,

i € N))

® Jual widening V and narrowing A are decreasing (since

they operate on decreasing chains (X i, i e N))

® We consider iterations of the form
X, ., X TAX'RY, ...
where EKe{V.V.AA}
(X', i € Ny is a chain

(?l, i € N) is arbitrary.

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 68 © P Cousot

Terminating extrapolators/
interpolators

67

Termination

Definition 29 (Terminating extrapolation/ interpolation ¢ operator) An increasing (resp.

decreasing) extrapolation/interpolation operator X € {V, V A, A} such that X € D X
P — D is terminating whenever " for any increasing (resp. decreasmg) chain (X € 92)

i € N) and arbitrary sequence Y €D, ieN), the sequenceX XlJrl 2% XY,
. is ultimately stationary at some rank n € \.

Definition 30 (Terminating bounded interpolation operator). An increasing (resp. de-
creasing) interpolation operator X € {A\, A} such that X € P XD XD > D is termi-
nating whenever for any mcreasmg (resp. decreasmg) chain (Y € B, i € N) and bound

S €D, the sequenceX = ? X = XX(X Y ,S)®, ... is ultimately stationary at
some rankn € N. O

6 =i+l

sx =Y XX S for binary interpolators X € & X D — P.
69

Examples

® The widenings and narrowings given as examples are
all terminating

® Dual-narrowing:
® [a.b]Alc.d] 2 [(c=-c07az|(a+c)/2]).(d=0c0?bs[(b+d)/2])]
is not bounded terminating when ¢ = -co or d =

® The bounded dual narrowing

~

{a.b] Ale,d] = [l(a+¢)/2),[(b + d)/21] < [¢,h]

is always terminating but convergence is slow

70

Static analysis

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24—29, 2014 7 | © P Cousot

Algorithm

Algorithm 32 (Fixpoint over-approximation by successive extrapolations and in-
terpolations). Input F and D on (9, C).

(A) Using a terminating Widening V E DxD — D, compute iteratively the iterations
—0 A = —k+1 A

X =D,..., X X" V F(X) until reaching a post-fixpoint F FX')C X at
some rank n.
(B) If F(X n) # X then, using a terminating narrowing A e D x D - D, compute
— — —k _
iteratively the iterations Y 2X Y vk AF (Y) until reaching Yy =

—m
Y at some rank m.

Otherwise F(X n) =X 50 skip this step (B) with Y =X

(C) Using a terminating dual-narrowing A € D x D — D, compute iteratively the

— — —k — —
iterations Z_ 2 D,...Z A 2 F(Z)V Y" until reaching 77" = 7P at some

rank p.
Optionnally, if Z'cY”, repeat the interpolation steps (B) and (C) from x"=7Z' N
Y" (where A" is a terminating narrowing satisfying Hyp. 13 (a’)) until convergence to
Z'N'Y" =Y"7. Return Z". O

72

Soundness

Theorem 33 (Soundness and termination of Alg. 32). Let (&, C, U) be a poset, F €
D — D be increasing, D € D be such that D C F(D) and the concrete iterates X° = D,
X%+l & F(X?) for successor ordinals, and X* £ U,B<A XP for limit ordinals A, be well
defined in the poset (D, C, U) (i.e. the lubs | J do exist).

Let the abstract domain(®,C) be a poset, the concretizationy € D > D be increasing,
the abstract transformer be F € @ +— D satisfying the pointwise semi-commutation
condition F oy CyoF.

Let D € D be such that D C C y(D) and VX € »:DCXAFX)C X)) =
(D C F(X)) VedIxD > D be a terminating widening satisfying Hyp. 8 (a’), A €
D X D — D be a terminating narrowing satisfying Hyp. 14 (a) such that VX € D :
(FX)C X) = (FX A F(X)) c X A F(X)), and\ € DxD = D bea terminating
dual-narrowing satisfying the order dual of Hyp. 14 (a").

Then static analysis Alg. 32 always terminates with a sound fixpoint over-approxima-

tion Z@ such that Ifp. F C y(Zp) C y(?m) C y()_(n). We have Z' €Y T X so the
fixpoint over-approximation Z" is improved by the successive interpolations (B) and (C).

Given an abstract specification S € D, ipr C S then Ifp. F C y(S) else it is unknown
whether the specification holds. O

73

Verification, checking,
analysis

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24—29, 2014 74 © P Cousot

Static verification, analysis & checking

The static inductive proof I € % : F(I) T I AIC S can be done in various forms.

(a) In static verification by deductive verification methods, the induction hypothesis
I is provided by the end-user so that the problem is to generate and check the
verification condition F(I) T I AT C S.

(b) In static checking, the induction hypothesis I must be automatically inferred from
the transformer F and the specification S (and also checked to satisfy the verifi-
cation condition FI) T I AILC S).

(c) In static analysis, the induction hypothesis I must be automatically inferred from
the transformer F (independently of a particular specification S) and checked to
satisfy the verification F(I) C I. Then when a specification S is given, it remains

to check that I C S.

75

Checking — analysis

— Static analysis (c) is static checking (b) where the specification § = T is the always
trueie VI:IC T.

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 76 © P Cousot

Analysis = checking

— Static checking (b) is static analysis (c) in the abstract domain 9 2 {Pe®|PLCS)
The idea is therefore to assume that the specification S does hold and to calculate
by Alg. 32 a more precise inductive fixpoint over-approximation Z''in % Upon
termination it remains to check that the fixpoint over-approximation Z" is inductive
and stronger than the specification S in 9.

Theorem 35 (Static checking). Assume the hypotheses of Th. 33 and let S € D be a
(non-inductive) abstract specification (such that D C y(S) and F(S) Z S°). Let 7’7 be
the result of Alg. 32 applied to the restriction F(X) £ (F(X) T S ? F(X) s S) of F to
9 2 {PeP|PCS}andD € 5’, using the bounded widening)_(Vy 2 ([)_(VA=
S 2 X VY s S) which is the restriction of the widening V to D', and same narrowing
satisfying Hyp. 14 (a") and same dual-narrowing satisfying the dual of Hyp. 14 (a’).

If ﬁ(flp) CZ"7 then lfp. F C y(S) that is . O

77

On specifications

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24—29, 2014 78 © P Cousot

On Specifications in the small

® |n the small/tiny, specifications may be " "not far from
the inductive argument”

® Observed by

Morris Jr., J.H., Wegbreit, B.: Subgoal induction. Commun. ACM 20(4), 209—222 (1977)
Dijkstra, EW.: Heuristics for a calculational proof. Inf. Process. Lett. 53(3), 141-143 (1995)
Dijkstra, EZW.,, Scholten, C.S.: Predicate calculus and program semantics. Texts and mono-
graphs in computer science, Springer (1990)

® Exploited by

Dillig, L., Dillig, T., Li, B., McMillan, K.L.: Inductive invariant generation via abductive
inference. In: OOPSLA. 443-456. ACM (2013)

McMillan, K.L.: Applications of Craig interpolation to model checking. In: CSL. LNCS
3210, 22—23. Springer (2004)

McMillan, K.L.: Applications of Craig interpolants in model checking. In: TACAS. LNCS
3440, 1-12. Springer (2005)

79

On Specifications in the large

® No specifications or specifications are ~far from” the
inductive argument

An example in ASTREE is the problem of finding maximal 1 and minimal h bounds
such that S[@], S[1] € [l, h]isinvariant in the following filter program

typedef enum {FALSE = @, TRUE = 1} BOOLEAN; BOOLEAN INIT; float P, X;
void filter () { static float E[2], S[2];

if (INIT) {S[@] = X; P = X; E[Q] = X;}

else { P = (((((0.5*xX)-(E[0]*0.7))+(E[1]1%0.4))+(S[01*x1.5))-(S[1]1*0.7));}
EL1] = E[Q]; E[e0] = X; S[1]1 = S[e]; S[@] = P;

/* S[@], S[1] in [L, h] %/ }
void main () { X = 0.2%X+5; INIT = TRUE;

while (1) { X = 0.9%X+35; /* simulated filer input x/

filter (); INIT = FALSE; } }

80

On “Widening and
interpolation™ .

[44] McMillan, K.L.: Widening and interpolation. In: SAS. LNCS 6887, p. 1. Springer (2011),
slides sas2011.cs.technion.ac.il/slides/mcmillan.pptx
DDDDDDDDDDD inar 14352, Next generation Static Software Analysis Tools, Aug. 24—29, 2014 8|

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 82 © P Cousot

[44]° discusses widening (extrapolation) versus interpolation (narrowing/dual-nar-

rowing).

— It is argued that extrapolation uses a weak/inexpressive abstract domain with effi-
cient representations and small search space while interpolation uses a strong/ex-
pressive abstract domain with generic representations and large search space. In
fact both approaches rely on an abstract domain and this choice is independent of
the chosen iteration method. For example [24] shows that combinations of theories
in SMT solvers are reduced products of abstract domains (just lacking extrapolation
and interpolation operators). Some theories in SMT solvers rely on specific internal
representations for efficiency (like affine inequalities).

— The fact that one reason on (relational) invariants or sets of computation histories
is part of the choice of the abstract domain. For example trace-based abstraction
[17,6] and trace partitioning [47] can lift any abstraction to reason by case analysis
on computation histories.

— The transformers F (and F) can be weakest pre- or strongest post-conditions (and

their abstraction). The fact that the equivalence formalized in the concrete by the

pre[7]
Galois connection (&, C) ¢ — (D, C) is preserved in the abstract depends on
post|T

the abstract domain not on the convergence acceleration method (widening, nar-
rowing, and duals).

® See also the slides sas2011.cs.technion.ac.il/slides/mcmillan.pptx.
83

— Incompleteness comes from the choice of the abstract domain and the extrapola-
tion/interpolation operators. The abstract domain is fundamentally incomplete by
undecidability (e.g. first-order predicates are incomplete for Hoare logic [13]). Ex-
trapolation itself is not necessarily non-terminating and incomplete. A counter-
example is abstract acceleration where the abstract fixpoint can be computed ex-
actly from the first iterates [38].

— Ockham’s razor (lex parsimoniae) can be made part of the definition of the abstract
transformer and the extrapolation/interpolation operators. As pointed out in [20], it
is always possible to introduce simplification heuristics e.g. by using A X - X V F(X)

or it’s n-unrolling version A X - (. . . (X VF(X))V?2 (X)).. VF" (X)) where the local
widening V performs heuristic simplifications or to approximate the transformer
based on interpolation e.g. by using A X « F(X) AS as proposed in [43]. Notice that
the main contribution to get a simplified transformer F € & +— P is through the

careful design of the abstract domain & (and that can always be done through a
widening [18]).

84

[6] Colby, C., Lee, P.: Trace-based program analysis. In: POPL. 195-207. ACM (1996)

a = — — - —

[13] Cousot, P.: Methods and loglcs for proving programs. In: Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Sematics (B), pp. 841-994. Elsevier (North-
Holland) (1990)

[17] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: POPL.
269—282. ACM (1979)

[18] Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing ap-
proaches to abstract interpretation. In: PLILP. LNCS 631, pp. 269-295. Springer (1992)

[20] Cousot, P., Cousot, R.: Formal language, grammar and set-constraint-based program
analy31s by abstract interpretation. In: FPCA. 170-181. ACM (1995)

[24] Cousot, P., Cousot, R., Mauborgne, L.: Theories, solvers and static analysis by abstract
1nterpretat10n J. ACM 59(6), 31 (2012)

[38] Jeannet, B., Schrammel, P., Sankaranarayanan, S.: Abstract acceleration of general linear
loops. In: POPL. 529-540. ACM (2014)

42] McMillan, K.L.: Applications of Craig interpolation to model checking. In: CSL. LNCS
3210, 22—23. Springer (2004)

43] McMillan, K.L.: Applications of Craig interpolants in model checking. In: TACAS. LNCS
3440, 1-12. Springer (2005)

47] Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans. Program.
Lang. Syst. 29(5) (2007)

85

On refinement

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24—29, 2014 86 © P Cousot

Refinement: good news

® Problem: how to prove a valid abstract property

ifp F[[P]] € v(S) when F oy

e It is always possible to refine (STZ,

abstract more precise abstraction (2,
/
> (P, C)and F' oy C

ox! /! Y
(D', B < -

Ifp F'[P] £’ ooy (S)

/

C yo F but Ifp F[P]]

7S

C) into a most
C") such that
y o F" such that

(thus proving Ifp F'[|P| C y’(g) which implies Ifp F'[|P| C

¥(S))

Roberto Giacobazzi, Francesco Ranzato, Francesca Scozzari: Making abstract interpretations

complete. J. ACM 47(2): 361-416 (2000)

aa 87

Refinement: bad news

® But, refinements of an abstraction can be intrinsically
incomplete

® The only complete refinement of that abstraction for
the collecting semantics is :

® the identity (i.e. no abstraction at all)

® |n that case, the only complete refinement of the
abstraction is to the collecting semantics and any
other refinement is always imprecise

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24—29, 2014 88

Example of intrinsic approximate refinement

® Consider executions traces (i, o) with infinite past and
future:

O-2 0-1 Oo 01 O2 03 04 O
T -—0—0—0—0 0000000 " 0—0—0 000

2 -1 0 1 2 3 4 ()
hd ' +

states time origin present time
< | |

>

past | future

Patrick Cousot, Radhia Cousot: Temporal Abstract Interpretation. POPL 2000: 12-25

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 89 © P Cousot

Example of intrinsic approximate refinement

e Consider the temporal specification language ;/*
(containing LTL, CTL, CTL*, and Kozen’s p-calculus

as fragments):

p = Og S € p(S) state predicate
T t € p(SxS) transition predicate

D e1 next

01" reversal

01 V 9 disjunction

=11 negation

X X eX variable

X - 0 least fixpoint

vX- greatest fixpoint
Vo109 universal state closure

Patrick Cousot, Radhia Cousot: Temporal Abstract Interpretation. POPL 2000: 12-25

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 90 © P Cousot

Example of intrinsic approximate refinement

® Consider universal model-checking abstraction:
MCE(¢) = al([¢]) € o(Traces) — p(States)

= {s € States | V(i,o) € Tracesy;.(o; = s) =

(i,0) € [o]}
where M is defined by a transition system

(and dually the existential model-checking abstraction)

Dagstuhl Seminar 14352 , Next generation Static Software Analysis Tools ,Aug. 24-29, 2014 9 |

Example of intrinsic approximate refinement

® The abstraction from a set of traces to a trace of sets
is sound but incomplete, even for finite systems

4 ™\ N N N YN YN
...... °
...... e o °
""" — 0 — I N O OO I S A A I I
...... @ @ - []
...... ° ° °
...... 7Y @ []
- J — U —
4 N\ N N) N N
oG—o——e0— o ————eo—p_ °
N e ey
TN A AR T =< < °
ﬁh,i_._\}.‘?.m_-:;._\%.#\ _ ° ° . N . o
\ ~ ’f ..'l.'f':., ~ \.‘ H fy . —— o — . e — . — . | [eennns
K ° __......--x-jk"—k\ 7~ %3
‘—\.—‘4 *9- W e
\ ”f
...... . .
- J — U —

® Any refinement of this abstraction is incomplete (but
to the infinite past/future trace semantics itself)

(*) Patrick Cousot, Radhia Cousot: Temporal Abstract Interpretation. POPL 2000: 12-25

(**) Roberto Giacobazzi, Francesco Ranzato: Incompleteness of states w.r.t. traces in model checking.
Inf. Comput. 204(3): 376-407 (2006)

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 92 © P Cousot

Intrinsic approximate refinement

APEGQ(D) D

abstraction
poset

complete

. “ refinements of o
abstractions

AMNPEG(D)-P
poset of abstractions

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 93 © P Cousot

In general refinement does not terminate

® Example:filter invariant abstraction:

2nd order filter: Unstable polyhedral

n U abstraction:
El -0

— O D—j:-—g_jj

Counter-example
guided refinement
will indefinitely
add missing points
according to the
execution trace: .

Stable ellipsoidal
abstraction:

Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérdme Feret, Laurent Mauborgne, Antoine Miné, & Xavier Rival. Static Analysis and Verification of Aerospace Software by Abstract Interpretation. In
AIAA Infotech@ @ Aerospace 2010, Atlanta, Georgia. American Institute of Aeronautics and Astronautics, 20—22 April 2010. © AIAA.

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 94 © P Cousot

In general refinement does not terminate

® Narrowing is needed to stop infinite iterated
automatic refinements:

e.g. SLAM stops refinement after 20mn (now
abandoned by MYS)

® |ntelligence is needed for refinement:

e.g. human-driven refinement of Astree

Thomas Ball, Vladimir Levin, Sriram K. Rajamani: A decade of software model checking with
SLAM. Commun. ACM 54(7): 68-76 (2011)

Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, &
Xavier Rival. Static Analysis and Verification of Aerospace Software by Abstract Interpretation. In
AIAA Infotech@ @ Aerospace 2010, Atlanta, Georgia. American Institute of Aeronautics and
Astronautics, 20—22 April 2010. © ATAA.

95

Industrialization

Daniel Késtner, Christian Ferdinand, Stephan Wilhelm, Stefana Nevona, Olha Honcharova, Patrick Cousot, Radhia Cousot, Jérdme Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival, and
Elodie-Jane Sims. Astrée: Nachweis der Abwesenheit von Laufzeitfehlern. In Workshop **Entwicklung zuverldissiger Software-Systeme", Regensburg, Germany, June 18t, 2009.

Olivier Bouissou, Eric Conquet, Patrick Cousot, Radhia Cousot, Jérome Feret, Khalil Ghorbal, Eric Goubault, David Lesens, Laurent Mauborgne, Antoine Miné, Sylvie Putot, Xavier Rival, &
Michel Turin. Space Software Validation using Abstract Interpretation. In Proc. of the Int. Space System Engineering Conf., Data Systems in Aerospace (DASIA 2009). Istambul, Turkey, May 2009, 7
pages. ESA.

Jean Souyris, David Delmas: Experimental Assessment of Astrée on Safety-Critical Avionics Software. SAFECOMP 2007: 479-490
David Delmas, Jean Souyris: Astrée: From Research to Industry. SAS 2007: 437-451
Jean Souyris: Industrial experience of abstract interpretation-based static analyzers. IFIP Congress Topical Sessions 2004: 393-400

Stephan Thesing, Jean Souyris, Reinhold Heckmann, Famantanantsoa Randimbivololona, Marc Langenbach, Reinhard Wilhelm, Christian Ferdinand: An Abstract Interpretation-Based Timing
Validation of Hard Real-Time Avionics Software. DSN 2003: 625-632

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 96 © P Cousot

Astree

® Commercially available: www.absint.com/astree/

e Effectively used in production to qualify truly large and complex
software in transportation, communications, medicine, etc

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: A static
analyzer for large safety-critical software. PLDI 2003: 196-207

97

Example of domain-specific abstraction: ellipses

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X,

void filter () {

static float E[2], S[2];

if (INIT) { S[0] = X; P = X; E[0] = X; %}

else { P = ((((€(0.5 x X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] = 0.7)); }

E[1] = E[0]; E[O] = X; S[1] = S[0]; S[0] = P;

/* S[0], S[1] in [-1327.02698354, 1327.02698354] */
}
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {

X =0.9 %« X + 35;

filter (); INIT = FALSE; } P
} T

Dagstuhl Seminar 14352 , Next generation Static Software Analysis Tools , Aug. 24-29, 2014 98

Code Contract Static Checker (cccheck)
® Available within MS Visual Studio

Manuel Fiahndrich, Francesco Logozzo: _Static Contract Checking with Abstract Interpretation. FoVeOOS 2010: 10-30

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 99 © P Couso

Comments on screenshot (courtesy Francesco Logozzo)

® A screenshot from Clousot/cccheck on the classic binary search.
® The screenshot shows from left to right and top to bottom
|. C# code + CodeContracts with a buggy BinarySearch
2. cccheck integration in VS (right pane with all the options integrated in the VS project system)
3. cccheck messages in the VS error list
® The features of cccheck that it shows are:
|. basic abstract interpretation:
a. the loop invariant to prove the array access correct and that the arithmetic operation may
overflow is inferred fully automatically
b. different from deductive methods as e.g. ESC/Java or Boogie where the loop invariant must
be provided by the end-user
2. inference of necessary preconditions:
a. Clousot finds that array may be null (message 3)
b. Clousot suggests and propagates a necessary precondition invariant (message |)
3. array analysis (+ disjunctive reasoning):
a. to prove the postcondition should infer property of the content of the array
b. please note that the postcondition is true even if there is no precondition requiring the
array to be sorted.
4. verified code repairs:
a. from the inferred loop invariant does not follow that index computation does not
overflow
b. suggest a code fix for it (message 2)

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 | 00 © P Cousot

Software

Ait: static analysis of the worst-case execution time of control/command
software (www.absint.com/ait/)

Astree: proof of absence of runtime errors in embedded synchronous
real time control/command software (www.absint.com/astree/),
AstreeA for asynchronous programs (www.astreea.ens.fr/)

C Global Surveyor, NASA, static analyzer for flight software of NASA
missions (www.cmu.edu/silicon-valley/faculty-staff/venet-arnaud.html)

IKOS (Inference Kernel for Open Static Analyzers), (www.cmu.edu/
silicon-valley/software-systems-management/software-verification.html)

Checkmate: static analyzer of multi-threaded Java programs
(www. pietro.ferrara. name/checkmate/)

CodeContracts Static Checker, Microsoft (msdn.microsoft.com/en-us/
devlabs/dd491992.aspx)

Fluctuat: static analysis of the precision of humerical computations (www-
list.cea.fr/labos/gb/LSL/fluctuat/index.html)

101

Software

Infer: Static analyzer for C/C** (monoidics.com/)

Julia: static analyzer for Java and Android programs
(www.juliasoft.com/juliasoft-android-java-verification.aspx?

Id=201177234649)

Predator: static analyzer of C dynamic data structures using separation
logic (www.fit.vutbr.cz/research/groups/verifit/tools/predator/)

Terminator: termination proof (www.cs.ucl.ac.uk/staff/p.ohearn/
Invader/Invader/Invader Home.html)

etc.

Apron numerical domains library (apron.cri.ensmp.fr/library/)

Parma Polyhedral Library (bugseng.com/products/ppl/)

etc.

102

Hardware

® (Generalized) symbolic tra

<

jector

y evaluation (Intel)

Intel's Successes with Formal Methods

John Harrison

Intel Corporation

15 March 2012

Tsinghua software day, March 15, 2012, Tsinghua University, Beijing, China

Example of ternary simulation

If some inputs are undefined, the output often is too, but not

always:

7-input
AND gate

—

7-input
AND gate

{0}
{1}
10,1}

Jin Yang and Carl-Johan H. Seger, Generalized Symbolic Trajectory Evaluation — Abstraction in Action, Formal Methods in Computer-Aided Design, Lecture Notes in Computer Science, 2002, Volume

2517/2002, 70-87.

Jin Yang; Seger, C.-J.H.; Introduction to generalized symbolic trajectory evaluation, IEEE Transactions onVery Large Scale Integration (VLSI) Systems 11(3), June 2003, 345-353.

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014

103

© P Cousot

Biology

e [Kappa —A language for modeling protein interaction networks by a set of
rules and analyse that set directly deploying techniques from abstract

interpretation (www.kappalanquaqe.orq/ and fontana.med.harvard.edu/www/

Documents/Lab/ research.signaling.htm)

|04

References

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24—29, 2014 | 05 © P Cousot

References

® Many references to be found in

Patrick Cousot and Radhia Cousot
Abstract interpretation: Past, Present, and Future

In Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/
IEEE Symposium on Logic In Computer Science (LICS) , July 14—
18, 2014,Vienna, Austria.

106

Conclusion

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24—29, 2014 | 07 © P Cousot

Abstract interpretation

® |ntellectual tool (not to be confused with its specific
application to iterative static analysis with \/ & A\)

® No cathedral would have been built without plumb-
line and square, certainly not enough for skyscrapers:

Powerful tools are needed for progress and
applicability of formal methods

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 | 08 © P Cousot

Abstract interpretation
® Varieties of researchers in formal methods:

(i) explicitly use abstract interpretation, and are happy
to extend its scope and broaden its applicability

(ii) implicitly use abstract interpretation, and hide it

(iii) pretend to use abstract interpretation, but misuse it

(iv) don’t know that they use abstract interpretation, but
would benefit from it

® Never too late to upgrade

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24—29, 2014 109 © P Cousot

The End, Thank You

Dagstuhl Seminar 14352, Next generation Static Software Analysis Tools, Aug. 24-29, 2014 | | 0 © P Cousot

