Fourth Advanced Seminar on Foundations of
Declarative Programming

Rule-Based Specifications AND THEIR Abstract Interpretation

Patrick COUSOT
DMI - École Normale Supérieure 45 rue d'Ulm, 75230 Paris cedex 05, France cousot@dmi.ens.fr, http://www.dmi.ens.fr/~cousot

Content

- Classical rule-based and fixpoint formal specifications methods;
- Generalization from set based to order-theoretic formal specification methods;
- Preservation of these various specification styles by abstract interpretation;
- Examples of formal/abstract semantic specifications.

Classical Set-based Inductive Formal Specification Methods [1]

- Reference

[1] P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook of Mathematical Logic, volume 90 of Studies in Logic and the Foundations of Mathematics, pages 739-782. Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 1977.

Formal Specification

- Objective: specify a subset S of a set U, called the universe (example: a programming language is a subset of the finite character strings);
- Methods:
- Fixpoint specifications,
- Inductive specifications by rule-based formal systems.
- The two methods (and many others) are equivalent.

Fixpoint Specification

The set S is specified as the smallest solution of an equation:

$$
X=F(X)
$$

where:

$$
F \in \wp(U) \longmapsto \wp(U)
$$

is upper-continuous on the complete lattice ($\wp(U), \subseteq, \emptyset, U, \cup, \cap)$, hence:

$$
S=\operatorname{lfp} F
$$

such that $S=F(S)$ and if $X=F(X)$ then $S \subseteq X$.

Example: Fixpoint Specification of the Even Natural Numbers

$$
\begin{array}{ll}
\mathbb{N} \stackrel{\text { def }}{=}\{0,1,2,3,4,5, \ldots\} & \text { Universe (natural numbers) } \\
\mathbb{E} \stackrel{\text { def }}{=}\{0,2,4,6, \ldots\} & \text { Even natural numbers } \\
\quad=\operatorname{lfp} \lambda X \cdot\{0\} \cup\{n+2 \mid n \in X\} . &
\end{array}
$$

so that:

$$
\begin{aligned}
X^{0} & =\emptyset \\
X^{1} & =\{0\} \\
X^{2} & =\{0,2\} \\
\ldots & =\ldots \\
X^{n} & =\{0,2,4, \ldots, 2 n-2\} \\
X^{n+1} & =\{0\} \cup\{k+2 \mid k \in\{0,2,4, \ldots, 2 n\}\} \\
& =\{0,2,4, \ldots, 2 n-2\}
\end{aligned}
$$

$$
\ldots=\ldots
$$

$$
\operatorname{lfp} \lambda X \cdot\{0\} \cup\{n+2 \mid n \in X\}=\bigcup_{n \in \mathbb{N}} X^{n}=\{0,2,4, \ldots, 2 n, \ldots\}
$$

Rule-based Specification

S is the smallest subset of the universe U defined by:

- axioms ${ }^{1}$:

$$
a, \quad a \in U
$$

the element of U defined by the axioms belong to S;

- inference rules:

$$
\frac{P}{c}, \quad P \subseteq U \& c \in U
$$

if all elements of the premiss P belong to S then the conclusion c belongs to E;

[^0]
Formal Proof

- S is the set of elements of U which are provable by a formal proof;
- A formal proof of $e \in U$ is a finite sequence:

$$
e_{1}, \ldots, e_{i}, \ldots, e_{n}
$$

such that ${ }^{2,3}$:

$$
\begin{aligned}
& \forall i \in[1, n], \exists \frac{P}{c}: P \subseteq\left\{e_{1}, \ldots, e_{i-1}\right\} \wedge e_{i}=c \\
& e_{n}=e
\end{aligned}
$$

${ }^{3}$ For $i=1,\left\{e_{1}, \ldots, e_{i-1}\right\}=\emptyset$ hence e_{1} must be an axiom.

Example: Rule-based Specification of the Even Natural Numbers

$$
0 \in \mathbb{E}, \quad \frac{n \in \mathbb{E}}{n+2 \in \mathbb{E}}
$$

with is an abridged notation for the formal system:

$$
\frac{\emptyset}{0}(a) \frac{\{0\}}{2}(b) \quad \frac{\{1\}}{3}(c) \quad \frac{\{2\}}{4}(d) \quad \frac{\{3\}}{5}(e) \quad \frac{\{4\}}{6}(f) \quad \ldots
$$

The proof that 6 is an even natural number is

(1)	0	by (a)
(2)	2	by (1) and (b)
(3)	4	by (2) and (d)
(4)	6	by (3) and (f)

GEnERALIZATION FROM SET-THEORETIC TO ORDER-THEORETIC FORMAL INDUCTIVE SPECIFICATION METHODS [2], [3]

References

[2] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpretation. In Conf. Rec. 19th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 83-94, Albuquerque, New Mexico, 1992. ACM Press.
[3] P. Cousot and R. Cousot. Compositional and inductive semantic definitions in fixpoint, equational, constraint, closure-condition, rule-based and game-theoretic form, invited paper. In P. Wolper, editor, Proc. 'Yth Int. Conf. on Computer Aided Verification, CAV'95, Liège, Belgium, LNCS 939, pages 293-308. Springer-Verlag, 3-5 July 1995.

Formal Specification

- We consider equivalent formal specifications of $S \in \mathcal{D}$ where $\langle\mathcal{D}, \sqsubseteq$, $\perp, \top, \sqcup, \Pi\rangle$ is a complete lattice;
- This is a generalization of the set-based formal specicifications where $\langle\mathcal{D}, \sqsubseteq\rangle=\langle\wp(U), \subseteq\rangle$ and U is the universe.

Fixpoint Specification

Given the monotonic operator:

$$
F \in \mathcal{D} \stackrel{\mathrm{~m}}{\longmapsto} \mathcal{D}
$$

S is defined as the least fixpoint ${ }^{4}$:

$$
S \stackrel{\text { def }}{=} \mathrm{lfp}^{\sqsubseteq} F
$$

[^1]
Equational Specification

Given the monotonic operator：

$$
F \in \mathcal{D} \stackrel{\mathrm{~m}}{\longmapsto} \mathcal{D}
$$

S is defined as the \sqsubseteq－least element of \mathcal{D} which is a solution to the equation ${ }^{5}$ ：

$$
X=F(X)
$$

[^2]
Constraint-Based Specification

Given the monotonic operator:

$$
F \in \mathcal{D} \stackrel{\mathrm{~m}}{\longmapsto} \mathcal{D}
$$

S is defined as the \sqsubseteq-least element of \mathcal{D} satisfying the constraint ${ }^{6}$:

$$
F(X) \sqsubseteq X
$$

[^3]
CLOSURE-CONDITION SpECIFICATION

- Given a complete lattice $(\mathcal{D}, \sqsubseteq)$, a closure-condition is:

$$
C \in \wp(\mathcal{D} \times \mathcal{D})
$$

which is monotonic in its second component, that is, $\forall x, X, Y \in L$:

$$
C(x, X) \wedge X \sqsubseteq Y \Rightarrow C(x, Y)
$$

where $C(x, X)$ is true if and only if $\langle x, X\rangle \in C$;

- A closure-specification has the form: S is the \sqsubseteq-least element X of \mathcal{D} satisfying:

$$
\forall x \in L: C(x, X) \Longrightarrow x \sqsubseteq X
$$

Example: Informal Closure-Condition Specification of the Syntax of Regular Expressions

1. ϵ is a regular expression;
2. If $a \in A$ then a is a regular expression;
3. If ρ_{1} and ρ_{2} are regular expressions then:
$3.1 \rho_{1} \mid \rho_{2}$
$3.2 \rho_{1} \rho_{2}$
are regular expressions;
4. If ρ is a regular expression then:
$4.1 \rho^{\star}$
$4.2(\rho)$
repetition, 0 or more times parenthesized expression
are regular expressions.

Corresponding Formal Definition

The closure-condition is $C \in \wp\left(A^{\vec{*}}\right) \times \wp\left(A^{\vec{*}}\right) \longmapsto\{\mathrm{t}, \mathrm{ff}\}$

$$
\begin{aligned}
C(x, X)= & (x=\{\epsilon\}) \vee \\
& (x=\{a\} \wedge a \in A) \vee \\
& \left(x=\left\{\rho_{1} \mid \rho_{2}\right\} \wedge \rho_{1} \in X \wedge \rho_{2} \in X\right) \vee \\
& \left(x=\left\{\rho_{1} \rho_{2}\right\} \wedge \rho_{1} \in X \wedge \rho_{2} \in X\right) \vee \\
& \left(x=\left\{\rho^{\star}\right\} \wedge \rho \in X\right) \vee \\
& (x=\{(\rho)\} \wedge \rho \in X)
\end{aligned}
$$

Presentation of a Closure-condition in Fixpoint Form

The \sqsubseteq-least element X of \mathcal{D} satisfying:

$$
\forall x \in \mathcal{D}: C(x, X) \Rightarrow x \sqsubseteq X
$$

is:

$$
\operatorname{lfp}^{\sqsubseteq} F
$$

where:

$$
F \stackrel{\text { def }}{=} \lambda X \cdot \bigsqcup\{x \in \mathcal{D} \mid C(x, X)\}
$$

Presentation of a Fixpoint Specification as a Closure-Specification

If

- $\langle\mathcal{D}, \sqsubseteq, \perp, \bigsqcup\rangle$ is a complete lattice, and
- $F \in \mathcal{D} \stackrel{\mathrm{~m}}{\longmapsto} \mathcal{D}$
then the closure-specification with condition

$$
C(x, X)=x \sqsubseteq F(X)
$$

defines

$$
\operatorname{lfp}^{\sqsubseteq} F .
$$

Principle of the Generalization of Rule-Based Specifications

Inference rules:

$$
\frac{P}{c}, \quad P \subseteq U \& c \in U
$$

can also be written:

$$
\frac{P}{\{c\}}, \quad P \subseteq U \&\{c\} \subseteq U
$$

Rule-Based Specification

- An element S of the complete lattice $\langle\mathcal{D}, \sqsubseteq\rangle$ can be defined by the rule instances:

$$
R=\left\{\left.\frac{P_{i}}{C_{i}} \right\rvert\, i \in \Delta\right\}
$$

such that for all $i \in \Delta: P_{i} \in \mathcal{D}$ and $C_{i} \in \mathcal{D}$;

- By definition, this denotes:

$$
\operatorname{lfp}^{\sqsubseteq} \Phi_{R}
$$

where the R-operator Φ_{R} is ${ }^{7}$:

$$
\Phi_{R} \stackrel{\text { def }}{=} \lambda X \cdot \bigsqcup\left\{C_{i} \mid \exists i \in \Delta: P_{i} \sqsubseteq X\right\}
$$

$7 \Phi_{R}$ is monotonic hence the rule-based specification is well-defined.
P. Cousot

$$
-21 / 77-\not \leftrightarrow \triangleright \perp
$$

Rule-Based Presentation of a Fixpoint Specification

- Let $F \in L \stackrel{\mathrm{~m}}{\longmapsto} L$ be a monotonic map on the complete lattice $\langle L, \sqsubseteq, \perp, \sqcup\rangle$;
- $\mathrm{lfp} \sqsubseteq$ is defined by the rule instances:

$$
\begin{equation*}
R=\left\{\left.\frac{P}{C} \right\rvert\, C, P \in L \wedge C \sqsubseteq F(P)\right\} \tag{1}
\end{equation*}
$$

DERIVATION 8

- Let $R=\left\{\left.\frac{P_{i}}{C_{i}} \right\rvert\, i \in \Delta\right\}$
and $\Phi_{R} \stackrel{\text { def }}{=} \lambda X \cdot \bigsqcup\left\{C_{i} \mid \exists i \in \Delta: P_{i} \sqsubseteq X\right\} ;$
- A derivation of an element x of the complete lattice $\langle\mathcal{D}$, $\sqsubseteq\rangle$ is a transfinite sequence $x_{\kappa}, \kappa \leq \lambda, \lambda \in \mathbb{O}$ such that:
- $x_{0}=\perp$,
- $x_{\kappa} \sqsubseteq \Phi_{R}\left(\bigsqcup_{\beta<\kappa} x_{\beta}\right)$

$$
\text { for all } 0<\kappa \leq \lambda \text {, }
$$

$-x_{\lambda}=x$;

8 This generalizes the notion of proof in formal systems.
P. Cousot

$$
-23 / 77-\not \leftrightarrow \triangleright \perp
$$

Derivable Elements

- An element x of the complete lattice $\langle\mathcal{D}, \sqsubseteq\rangle$ is said to be derivable whenever it has a derivation;
- An element $x \in \mathcal{D}$ is derivable if and only if $x \sqsubseteq \operatorname{lfp}^{\sqsubseteq} \Phi_{R}$;
- It follows that:

$$
\operatorname{lfp}^{\sqsubseteq} \Phi_{R}=\bigsqcup\{x \in \mathcal{D} \mid x \text { is derivable }\}
$$

Game-Theoretic Specification

- Given a complete lattice $\langle L, \sqsubseteq\rangle$, a game is defined by rules $R \subseteq$ $L \times L$. The corresponding R-operator Φ is:

$$
\Phi \stackrel{\text { def }}{=} \lambda X \cdot \bigsqcup\{C \mid \exists\langle C, P\rangle \in R: P \sqsubseteq X\}
$$

- The game $\mathcal{G}(R, a)$ with rules R starting from initial position $a \in L$ is played by two players I and II.
- Player I must start by choosing $x_{0}=a$.
- If player I chooses x_{n} in the n-th move, then player II must respond by $X_{n} \in \wp(L)$ such that $x_{n} \sqsubseteq \Phi\left(\bigsqcup X_{n}\right)$.
- For the next move, player I must choose some $x_{n+1} \in X_{n}$.
- A player who is blocked has lost.
- If the game goes on forever then player II has lost.

Initial Winning Positions

- We define $\mathcal{W}(R)$ as the set of initial winning positions for player II:

$$
\begin{aligned}
\mathcal{W}(R) \stackrel{\text { def }}{=}\{a \in L \mid & \text { player II has a winning strategy } \\
& \text { in game } \mathcal{G}(R, a)\}
\end{aligned}
$$

- $\operatorname{lfp} \Phi=\bigsqcup \mathcal{W}(R)$.

Fixpoint Specification in Equivalent Game-Theoretic Form

- Let $\langle L, \sqsubseteq\rangle$ be a cpo and $F \in L \stackrel{\mathrm{~m}}{\longmapsto} L$ be monotonic; - $\quad \operatorname{lfp} F=\bigsqcup \mathcal{W}(R)$
for the game with rules:

$$
R=\{\langle C, P\rangle \mid P \in L \wedge C \sqsubseteq F(P)\} .
$$

Example: TRACE SEMANTIC SPECIFICATION

Maximal execution trace semantics

- $\langle\Sigma, \tau\rangle$
- $\tau^{\dot{\vec{n}}}$
- $\tau^{\check{n}}$
- $\tau^{\check{+}}=\bigcup_{n>0} \tau^{\check{n}}$
- $\tau^{\vec{\omega}}$
- $\tau^{\vec{\infty}}=\tau^{\check{+}} \cup \tau^{\vec{\omega}}$ transition system
partial traces of length $n>0$
maximal traces of length $n>0$ maximal non-empty finitary trace semantics infinitary trace semantics maximal bifinitary trace semantics

Example (Prolog): Σ : set of subgoals with substitutions, τ : replacement of a subgoal in the set by a resolvent for a clause selected in the program.

Junction of State Sequences

- Joinable nonempty finite state sequences:

$$
\alpha_{0} \ldots \alpha_{\ell-1} ? \beta_{0} \ldots \beta_{m-1} \text { iff } \alpha_{\ell-1}=\beta_{0}
$$

- Their join is:

$$
\begin{gathered}
\begin{array}{c}
\alpha_{0} \ldots \alpha_{\ell-1} \\
\\
\frac{\beta_{0}}{=} \\
\alpha_{0} \ldots \beta_{1-1} \frown \beta_{0} \ldots \beta_{m-1} \ldots \beta_{m-1} \\
\stackrel{\text { def }}{=} \alpha_{0} \ldots \alpha_{\ell-1}
\end{array} \beta_{1} \ldots \beta_{m-1}
\end{gathered}
$$

- Joinable infinite state sequences:

$$
\begin{aligned}
& \alpha_{0} \ldots \alpha_{\ell} \ldots ? \beta_{0} \ldots \beta_{m-1} \text { is true } \\
& \alpha_{0} \ldots \alpha_{\ell} \ldots ? \beta_{0} \ldots \beta_{m} \ldots \text { is true } \\
& \alpha_{0} \ldots \alpha_{\ell-1} ? \beta_{0} \ldots \beta_{m} \ldots \text { iff } \alpha_{\ell-1}=\beta_{0}
\end{aligned}
$$

- Their join is:

$$
\begin{aligned}
& \alpha_{0} \ldots \alpha_{\ell} \ldots \curvearrowright \beta_{0} \ldots \beta_{m-1} \stackrel{\text { def }}{=} \alpha_{0} \ldots \alpha_{\ell} \\
& \alpha_{0} \ldots \alpha_{\ell} \ldots \curvearrowright \beta_{0} \ldots \beta_{m} \ldots \stackrel{\text { def }}{=} \alpha_{0} \ldots \alpha_{\ell} \\
& \alpha_{0} \ldots \alpha_{\ell-1} \\
& = \\
& \frac{\beta_{0} \beta_{1} \ldots \beta_{m} \ldots}{\alpha_{0} \ldots \alpha_{\ell-1} \frown \beta_{0} \ldots \beta_{m} \ldots \stackrel{\text { def }}{=} \alpha_{0} \ldots \alpha_{\ell-1} \beta_{1} \ldots \beta_{m} \ldots}
\end{aligned}
$$

Junction of Sets of Bifinitary State Sequences

- For sets A and $B \in \wp\left(\mathcal{A}^{\vec{\propto}}\right)$ of sequences, we have:

$$
A \frown B \stackrel{\text { def }}{=}\{\alpha \frown \beta \mid \alpha \in A \wedge \beta \in B \wedge \alpha ? \beta\}
$$

Fixpoint Specification of the Maximal Finitary Trace Semantics of Transition Systems

$$
\begin{equation*}
\tau^{\ddot{+}}=\operatorname{lfp}_{\emptyset}^{\subseteq} F^{\check{+}}=\operatorname{gfp}_{\Sigma^{\check{f}}}^{\subseteq} F^{\ddot{+}} \tag{2}
\end{equation*}
$$

where the set of finite traces transformer $F^{\stackrel{y}{4}}$ is:

$$
F^{\check{+}}(X) \stackrel{\text { def }}{=} \tau^{\check{1}} \cup \tau^{\dot{\overrightarrow{2}}} \frown X
$$

Sketch of Proof

$$
\begin{aligned}
& \tau^{\check{+}}=\bigcup_{i \in \mathbb{N}} \tau^{\check{\vec{i}}}=\operatorname{lfp}_{\emptyset}^{\subseteq} F^{\check{+}} \\
& F^{\stackrel{\rightharpoonup}{f}}(X) \stackrel{\text { def }}{=} \tau^{\stackrel{\rightharpoonup}{1}} \cup \tau^{\dot{\overrightarrow{2}}} \frown X \\
& \begin{array}{l}
X^{0}=\varnothing \\
X^{1}=\{\oplus\} \\
X^{2}=\{\oplus, \xrightarrow{\bullet} \oplus\} \\
X^{3}=\{\oplus, \xrightarrow{t} 0, \xrightarrow{t} \bullet \bullet \bullet\}
\end{array} \\
& X^{n}=\{0, \stackrel{t}{\longrightarrow} 0, \ldots \ldots, \underset{0}{t} \rightarrow \cdots \stackrel{t}{\longrightarrow} \overbrace{n-1}^{t}\} \\
& X^{\omega}=\{\underset{0}{t} \xrightarrow[1]{t} \rightarrow \cdots \xrightarrow[n-1]{t} \underset{n}{t} \mid n \geqslant 0\}
\end{aligned}
$$

$$
\begin{aligned}
& \tau^{\check{+}}=\bigcup_{i>0} \tau^{\check{\vec{i}}}=\bigcap_{n \in \mathbb{N}}\left(\bigcup_{i=1}^{n} \tau^{\check{\vec{i}}} \cup \tau^{n \dot{\overrightarrow{+}} 1} \frown \Sigma^{\overrightarrow{+}}\right)=\operatorname{gfp}_{\Sigma^{+}} \subseteq F^{\check{+}} \\
& F^{\check{\overrightarrow{+}}}(X) \stackrel{\text { def }}{=} \tau^{\check{\overrightarrow{1}}} \cup \tau^{\dot{\overrightarrow{2}}} \frown X
\end{aligned}
$$

$$
\begin{aligned}
& X^{1}=\left\{0, \stackrel{t}{\longrightarrow}, \ldots \ldots \cdot{ }^{t} \bullet \bullet \bullet \ldots \bullet ?, \ldots \ldots \cdot\right\} \\
& X^{2}=\{0, \stackrel{t}{\longrightarrow} 0, \ldots . ., \stackrel{t}{\longrightarrow} \stackrel{t}{\longrightarrow} ? \ldots \bullet ?, \ldots . . \cdot\}
\end{aligned}
$$

$$
\begin{aligned}
& X^{n}=\{0, \quad \stackrel{t}{\longrightarrow} 0, \ldots \ldots, \underset{0}{t}, \ldots \bullet \xrightarrow{t} \stackrel{t}{t} 0, \\
& X^{\omega}=\{\underset{0}{\stackrel{\omega}{\longrightarrow}} \stackrel{t}{t} \xrightarrow[1]{t} \underset{n-1}{t} \rightarrow 0 \mid n \geqslant 0\}
\end{aligned}
$$

Fixpoint Specification of Maximal Infinitary Trace Semantics of Transition Systems

$$
\begin{equation*}
\tau^{\vec{\omega}}=\operatorname{gfp}_{\Sigma_{\vec{\omega}}}^{\subseteq} F^{\vec{\omega}} \tag{3}
\end{equation*}
$$

where the set of infinite traces transformer $F^{\vec{\omega}}$ is:

$$
F^{\vec{\omega}}(X) \stackrel{\text { def }}{=} \tau^{\dot{2}} \frown X
$$

Sketch of Proof

$$
\begin{aligned}
& \tau^{\vec{\omega}}=\bigcap_{n \in \mathbb{N}} \tau^{\dot{\vec{n}}} \frown \Sigma^{\vec{\omega}}=\operatorname{gfp}_{\Sigma^{\vec{\omega}}}^{\subseteq} F^{\vec{\omega}} \quad F^{\vec{\omega}}(X) \stackrel{\text { def }}{=} \tau^{\dot{\overrightarrow{2}}} \frown X
\end{aligned}
$$

CoAlesced Powerproduct

- If
- $\left\{L^{+}, L^{-}\right\}$is a partition of L (i.e. $L=L^{+} \cup L^{-}$and $L^{+} \cap L^{-}=\emptyset$);
$-\left\langle\wp\left(L^{+}\right), \sqsubseteq^{+}, \perp^{+}, \top^{+}, \sqcup^{+}, \square^{+}\right\rangle$and $\left\langle\wp\left(L^{-}\right), \sqsubseteq^{-}, \perp^{-}, \top^{-}, \sqcup^{-}\right.$, $\left.\Pi^{-}\right\rangle$are posets (respectively cpos, complete lattices);
then the coalesced powerproduct $\langle\wp(L), \sqsubseteq, \perp, \top, \sqcup, \sqcap\rangle$
is a poset (respectively a cpo, a complete lattice), where:
- $X^{+} \stackrel{\text { def }}{=} X \cap L^{+}$and $X^{-} \stackrel{\text { def }}{=} X \cap L^{-}$
- $X \sqsubseteq Y$ iff $X^{+} \sqsubseteq^{+} Y^{+} \wedge X^{-} \sqsubseteq^{-} Y^{-}$
$-\perp \stackrel{\text { def }}{=} \perp^{+} \cup \perp^{-}$
- $\top \stackrel{\text { def }}{=} \top^{+} \cup \top^{-}$
- $\sqcup_{i} X_{i} \stackrel{\text { def }}{=} \sqcup_{i}^{+}\left(X_{i}\right)^{+} \cup \sqcup_{i}^{-}\left(X_{i}\right)^{-}$
- $\Pi_{i} X_{i} \stackrel{\text { def }}{=} \Gamma_{i}^{+}\left(X_{i}\right)^{+} \cup \Gamma_{i}^{-}\left(X_{i}\right)^{-}$
projections
ordering
infimum
supremum
join
meet

Coalesced Fixpoints Theorem

- If
- $\langle\wp(L), \sqsubseteq, \perp, \top, \sqcup, \sqcap\rangle$ is the coalesced powerproduct of $\left\langle\wp\left(L^{+}\right), \sqsubseteq^{+}, \perp^{+}, \top^{+}, \sqcup^{+}, \sqcap^{+}\right\rangle$and $\left\langle\wp\left(L^{-}\right), \sqsubseteq^{-}, \perp^{-}, \top^{-}\right.$, $\left.\sqcup^{-}, \square^{-}\right\rangle$
- $F^{+} \in L^{+} \longmapsto L^{+}$and $F^{-} \in L^{-} \longmapsto L^{-}$are monotonic (resp. upper-continuous, a complete join morphism)
then the coalesced fixpoint is defined by:
- $F \in L \longmapsto L$ where

$$
F(X) \stackrel{\text { def }}{=} F^{+}\left(X^{+}\right) \cup F^{-}\left(X^{-}\right)
$$

is monotonic (resp. upper-continuous, a complete join morphism);

- $\operatorname{lfp}{ }^{\sqsubseteq} F=\operatorname{lfp}^{\sqsubseteq^{+}} F^{+} \cup \operatorname{lfp}^{\sqsubseteq^{-}} F^{-}$.

Fixpoint Specification of the Maximal Bifinitary Trace Semantics of Transition Systems

- The fixpoint characterization of the bifinitary maximal trace semantics of a transition system $\langle\Sigma, \tau\rangle$ is:

$$
\begin{align*}
& \tau^{\dot{\infty}}=\operatorname{lfp}{ }^{\sqsubseteq} F^{\check{\infty}}=\operatorname{gfp}_{\Sigma^{\dot{\alpha}}}^{\subseteq} F^{\check{\infty}} \tag{5}\\
& F^{\ddot{\infty}}=\lambda X \cdot \tau^{\stackrel{1}{\tilde{1}}} \cup \tau^{\dot{\overrightarrow{2}}} \supseteq X \\
& X \sqsubseteq Y \stackrel{\text { def }}{=}\left(X \cap \Sigma^{*} \subseteq Y \cap \Sigma^{*}\right) \wedge\left(X \cap \Sigma^{\vec{\omega}} \supseteq Y \cap \Sigma^{\vec{\omega}}\right)
\end{align*}
$$

Proof

 by (2), (3), (4) and:

$$
\begin{aligned}
F^{\ddot{+}}(X) & =F^{\ddot{+}}\left(X \cap \Sigma^{\vec{*}}\right) \cup F^{\vec{\omega}}\left(X \cap \Sigma^{\vec{\omega}}\right) \\
& =\left(\tau^{\overrightarrow{1}} \cup \tau^{\overrightarrow{2}} \frown\left(X \cap \Sigma^{\vec{*}}\right)\right) \cup\left(\tau^{\overrightarrow{2}} \frown\left(X \cap \Sigma^{\vec{\omega}}\right)\right) \\
& =\tau_{\stackrel{\rightharpoonup}{1}}^{\overrightarrow{\ddot{2}}} \cup\left(\left(X \cap \Sigma^{\vec{*}}\right) \cup\left(X \cap \Sigma^{\vec{\omega}}\right)\right) \\
& =\tau^{\stackrel{\rightharpoonup}{1}} \cup \tau^{\overrightarrow{2}} \frown X
\end{aligned}
$$

 the dual of (4).

Rule-Based Specification of the Maximal Bifinitary Trace Semantics of Transition Systems

- By the equivalence (1) of fixpoint and rule-based definitions, we can define an element S of:

$$
\left\langle\wp\left(\Sigma^{\infty}\right), \sqsubseteq, \Sigma^{\vec{\omega}}, \Sigma^{\overrightarrow{+}}, \sqcup, \sqcap\right\rangle
$$

where $X \sqsubseteq Y \xlongequal{\text { def }}\left(X \cap \Sigma^{\overrightarrow{+}} \subseteq Y \cap \Sigma^{\overrightarrow{+}}\right) \wedge\left(X \cap \Sigma^{\vec{\omega}} \supseteq Y \cap \Sigma^{\vec{\omega}}\right)$ by rule-instances:

$$
\left\{\left.\frac{P_{i}}{C_{i}} \sqsubseteq \right\rvert\, i \in \Delta\right\}
$$

where $P_{i}, C_{i} \subseteq \Sigma^{\vec{\infty}}$, such that:

$$
S \stackrel{\text { def }}{=} \operatorname{lfp}^{\sqsubseteq} F \quad \text { with } \quad F \stackrel{\text { def }}{=} \lambda X \cdot \bigsqcup\left\{C_{i} \mid i \in \Delta \wedge P_{i} \sqsubseteq X\right\}
$$

Set of Traces Rule-based Specification of the Maximal Bifinitary Trace Semantics of Transition Systems

$$
\begin{array}{ll}
\frac{\perp}{\perp \cup \check{\tau}} \sqsubseteq & \text { where } \perp \stackrel{\text { def }}{=} \Sigma^{\vec{\omega}} \\
\frac{T}{\tau^{\dot{2}} \frown T} \sqsubseteq & \text { where } T \subseteq \Sigma^{\vec{\infty}} \tag{7}
\end{array}
$$

Proof

$$
\begin{aligned}
\Phi & =\lambda X \cdot \bigsqcup\left\{C \left\lvert\, \exists \frac{P}{C}\right.: P \sqsubseteq X\right\} \\
& =\lambda X \cdot \bigsqcup\{\perp \cup \check{\tau} \mid \perp \sqsubseteq X\} \sqcup \bigsqcup\left\{\tau^{\dot{\overrightarrow{2}}} \sim T \mid T \sqsubseteq X\right\} \\
& =\lambda X \cdot(\perp \cup \check{\tau}) \sqcup \tau^{\dot{2}}-X \\
& =\lambda X \cdot\left((\perp \cup \check{\tau}) \cap \Sigma^{\vec{f}}\right) \cup\left(\tau^{\dot{2}} \frown X \cap \Sigma^{\vec{f}}\right) \cup \\
& \left((\perp \cup \check{\tau}) \cap \Sigma^{\vec{\omega}}\right) \cap\left(\tau^{\overrightarrow{2}} \frown X \cap \Sigma^{\vec{\omega}}\right) \\
& =\lambda X \cdot \check{\tau} \cup\left(\tau^{\overrightarrow{2}} \frown X \cap \Sigma^{\vec{f}}\right) \cup\left(\tau^{\dot{2}} \frown X \cap \Sigma^{\vec{\omega}}\right) \\
& =\lambda X \cdot \check{\tau} \cup \tau^{\overrightarrow{2}} \frown X
\end{aligned}
$$

Trace Rule-based Specification

- It is more intuitive to reason on a single trace;
- We can define an element S of:

$$
\left\langle\wp\left(\Sigma^{\vec{\infty}}\right), \sqsubseteq, \Sigma^{\vec{\omega}}, \Sigma^{\vec{f}}, \sqcup, \sqcap\right\rangle
$$

where: $\quad X \sqsubseteq Y \stackrel{\text { def }}{=}\left(X \cap \Sigma^{\overrightarrow{+}} \subseteq Y \cap \Sigma^{\vec{f}}\right) \wedge\left(X \cap \Sigma^{\vec{\omega}} \supseteq Y \cap \Sigma^{\vec{\omega}}\right)$
by rule-schemata:

$$
\left\{\left.\frac{P_{i}}{c_{i}} \right\rvert\, i \in \Delta\right\}
$$

where $P_{i} \subseteq \Sigma^{\vec{\infty}}, c_{i} \in \Sigma^{\vec{\infty}}$, with rule-instances:

$$
\left\{\left.\frac{P}{\left\{c_{i} \mid i \in \Delta \wedge P_{i} \subseteq P\right\}} \sqsubseteq \right\rvert\, P \subseteq \Sigma^{\vec{\infty}}\right\}
$$

Traces Rule-based Specification of the Maximal Bifinitary Trace Semantics of Transition Systems

- The rule schemata:

$$
\frac{\emptyset}{\sigma^{1}}, \quad \sigma^{1} \in \check{\tau} \quad \frac{\{\sigma\}}{\sigma^{2} \frown \sigma}, \quad \sigma^{2} \in \tau^{\dot{2}}, \sigma \in \Sigma^{\vec{\infty}}
$$

stand for the rule-instances:

$$
\begin{aligned}
& \left\{\left.\frac{P}{\left\{\sigma^{1} \mid \sigma^{1} \in \check{\tau}\right\} \cup\left\{\sigma^{2} \frown \sigma \mid \sigma^{2} \in \tau^{\dot{2}} \wedge\{\sigma\} \subseteq P\right\}} \right\rvert\, \begin{array}{l}
\sigma^{2} \in \tau^{\dot{\overrightarrow{2}}} \wedge \\
P \subseteq \Sigma^{\vec{\infty}}
\end{array}\right\} \\
= & \left\{\left.\frac{P}{\check{\tau} \cup \sigma^{2 \frown} P} \right\rvert\, \sigma^{2} \in \tau^{\dot{2}} \wedge P \subseteq \Sigma^{\vec{\infty}}\right\}
\end{aligned}
$$

- The rule schemata specify:

$$
\operatorname{lfp}^{\sqsubseteq} \Psi=\tau^{\ddot{\infty}}
$$

since:

$$
\begin{aligned}
\Psi & =\lambda X \cdot \bigsqcup\left\{\check{\tau} \cup \sigma^{2} \frown P \mid \sigma^{2} \in \tau^{\dot{2}} \wedge P \sqsubseteq X\right\} \\
& =\lambda X \cdot \check{\tau} \cup \tau^{\dot{2}} \frown X \quad \text { by } \sqsubseteq \text {-monotonicity }
\end{aligned}
$$

ABSTRACT INTERPRETATION OF ORDER-THEORETIC FORMAL INDUCTIVE SPECIFICATIONS

Principle of Abstract Interpretation

- Establish a correspondance $\langle\alpha, \gamma\rangle$ between a concrete/exact/refined semantics and an abstract/approximate semantics:
- Abstract semantics $=\alpha$ (concrete semantics) or
- Concrete semantics $=\gamma$ (abstract semantics)
- Derive a specification of the abstract semantics from the given specification of the concrete semantics (or inversely).

Kleenian Fixpoint Abstraction

If $\left\langle\mathcal{D}^{\natural}, \sqsubseteq^{\natural}, \perp^{\natural}, \sqcup^{\natural}\right\rangle$ is a cpo, $\left\langle\mathcal{D}^{\sharp}, \sqsubseteq^{\sharp}\right\rangle$ is a poset, $F^{\natural} \in \mathcal{D}^{\natural} \stackrel{m}{\longmapsto} \mathcal{D}^{\natural}$, $F^{\sharp} \in \mathcal{D}^{\sharp} \stackrel{\mathrm{m}}{\longrightarrow} \mathcal{D}^{\sharp}$, and

$$
\begin{gathered}
F^{\sharp} \circ \alpha=\alpha \circ F^{\natural} \\
\left\langle\mathcal{D}^{\natural}, \sqsubseteq^{\natural}\right\rangle \stackrel{\gamma}{\leftrightarrows}\left\langle\mathcal{D}^{\sharp}, \sqsubseteq^{\sharp}\right\rangle
\end{gathered}
$$

then

$$
\begin{equation*}
\alpha\left(\mathrm{lfp}^{\sqsubseteq^{\natural}} F^{\natural}\right)=\mathrm{lfp}^{\complement^{\sharp}} F^{\sharp} \tag{8}
\end{equation*}
$$

Tarskian Fixpoint Abstraction

If $\left\langle\mathcal{D}^{\natural}, \sqsubseteq^{\natural}, \perp^{\natural}, \sqcup^{\natural}\right\rangle$ and $\left\langle\mathcal{D}^{\sharp}, \sqsubseteq^{\sharp}, \perp^{\#}, \sqcup^{\sharp}\right\rangle$ are complete lattices, $F^{\natural} \in$ $\mathcal{D}^{\sharp} \stackrel{\mathrm{m}}{\longrightarrow} \mathcal{D}^{\sharp}, F^{\sharp} \in \mathcal{D}^{\sharp} \stackrel{\mathrm{m}}{\longmapsto} \mathcal{D}^{\sharp}$ are monotonic and
$-\alpha$ is a complete Π-morphism
$-F^{\sharp} \circ \alpha \sqsubseteq^{\sharp} \alpha \circ F^{\natural}$
$-\forall y \in \mathcal{D}^{\sharp}: F^{\sharp}(y) \sqsubseteq^{\sharp} y \Longrightarrow \exists x \in \mathcal{D}^{\natural}: \alpha(x)=y \wedge F^{\natural}(x) \sqsubseteq^{\natural} x$
then

$$
\begin{equation*}
\alpha\left(\mathrm{lfp}^{\sqsubseteq^{\natural}} F^{\natural}\right)=\mathrm{lfp}^{\sqsubseteq^{\sharp}} F^{\sharp} \tag{9}
\end{equation*}
$$

Example: Relational and Denotational Semantic Specifications

Finitary Relational Abstraction

Replace finite execution traces $\sigma_{0} \sigma_{1} \ldots \sigma_{n-1}$ by their initial/final states $\left\langle\sigma_{0}, \sigma_{n-1}\right\rangle$:

- $@^{+} \in \Sigma^{\overrightarrow{+}} \longmapsto(\Sigma \times \Sigma)$
$@^{+}(\sigma) \stackrel{\text { def }}{=}\left\langle\sigma_{0}, \sigma_{n-1}\right\rangle$,
$n \in \mathbb{N}_{+}, \sigma \in \Sigma^{\vec{n}}$
- $\alpha^{+}(X) \stackrel{\text { def }}{=}\left\{\mathbf{@}^{+}(\sigma) \mid \sigma \in X\right\}$
$\gamma^{+}(Y) \stackrel{\text { def }}{=}\left\{\sigma \mid @^{+}(\sigma) \in Y\right\}$
- $\left\langle\wp\left(\Sigma^{\overrightarrow{+}}\right), \subseteq\right\rangle \underset{\alpha^{+}}{\stackrel{\gamma^{+}}{\leftrightarrows}}\langle\wp(\Sigma \times \Sigma), \subseteq\rangle$

Galois connection

Maximal Finitary/Angelic Relational/Big-Step Semantics of a Transition System

- Transition system $\langle\Sigma, \tau\rangle$
- Fixpoint specification:

$$
\tau^{\check{+}} \stackrel{\text { def }}{=} \alpha^{+}\left(\tau^{\check{\varphi}}\right)=\alpha^{+}\left(\operatorname{lfp}_{\emptyset}^{\subseteq} F^{\check{于}}\right)
$$

- By the Kleenian fixpoint abstraction th. (8) ${ }^{9}$, we get the fixpoint specification:

$$
\begin{align*}
\tau^{\check{+}}= & \operatorname{lfp}_{\emptyset}^{\subseteq} F^{\check{+}} \quad F^{\check{+}}(X) \stackrel{\text { def }}{=} \check{\tau} \cup \tau \circ X \tag{10}\\
& \check{\bar{\tau}} \stackrel{\text { def }}{=}\left\{\langle s, s\rangle \in \Sigma \mid \forall s^{\prime} \in \Sigma: \neg\left(s \tau s^{\prime}\right)\right\}
\end{align*}
$$

[^4]
Infinitary Relational Abstraction

Replace infinite execution traces $\sigma_{0} \sigma_{1} \ldots \sigma_{n} \ldots$ by their initial state $\left\langle\sigma_{0}, \perp\right\rangle$, marking nontermination by Scott's \perp :

- $@^{\omega} \in \Sigma^{\vec{\omega}} \longmapsto \Sigma \times\{\perp\}^{10}$
$\perp \notin \Sigma$
non-termination notation
$@^{\omega}(\sigma) \stackrel{\text { def }}{=}\left\langle\sigma_{0}, \perp\right\rangle, \sigma \in \Sigma^{\vec{\omega}}$
- $\alpha^{\omega}(X) \stackrel{\text { def }}{=}\left\{@^{\omega}(\sigma) \mid \sigma \in X\right\}$
$\gamma^{\omega}(Y) \stackrel{\text { def }}{=}\left\{\sigma \mid @^{\omega}(\sigma) \in Y\right\}$
- $\left\langle\wp\left(\Sigma^{\vec{\omega}}\right), \subseteq\right\rangle \underset{\alpha^{\omega}}{\stackrel{\gamma^{\omega}}{\leftrightarrows}}\langle\wp(\Sigma \times\{\perp\}), \subseteq\rangle$

Galois connection

10 or isomorphically $\alpha^{\omega} \in \wp\left(\Sigma^{\omega}\right) \longmapsto \wp(\Sigma)$.

Infinitary Relational Semantics of a Transition System

- Transition system $\langle\Sigma, \tau\rangle$
- Infinitary relational semantics:

$$
\tau^{\omega} \stackrel{\text { def }}{=} \alpha^{\omega}\left(\tau^{\vec{\omega}}\right)=\alpha^{\omega}\left(\operatorname{gfp}_{\Sigma^{\vec{\omega}}}^{\subseteq} F^{\vec{\omega}}\right)=\alpha^{\omega}\left(\operatorname{lfp}_{\Sigma^{\vec{\omega}}}^{\supseteq} F^{\vec{\omega}}\right)
$$

- By the Tarskian fixpoint abstraction th. (9), we get the fixpoint specification ${ }^{11}$:

$$
\begin{align*}
\tau^{\omega} & =\operatorname{lfp}_{\sum \times\{\downarrow\}}^{\supseteq} F^{\omega}=\operatorname{gfp}_{\Sigma \times\{\downarrow\}}^{\subseteq} F^{\omega} \tag{11}\\
F^{\omega}(X) & =\tau \circ X
\end{align*}
$$

11 The Kleene fixpoint abstraction th. (8) does not apply since α^{ω} is not co-continuous.
P. Cousot

$$
-56 / 77-\leftrightarrow \triangleleft \perp \mapsto
$$

ASFDP'98, Valencia, June 15 th, 1998

Bifinitary/Natural Relational Abstraction

- $\alpha^{\infty} \in \wp\left(\Sigma^{\vec{\alpha}}\right) \longmapsto \wp\left(\Sigma \times \Sigma_{\perp}\right), \quad \Sigma_{\perp} \stackrel{\text { def }}{=} \Sigma \cup\{\perp\}$

$$
\alpha^{\infty}(X) \stackrel{\text { def }}{=} \alpha^{+}\left(X^{\vec{\gamma}}\right) \cup \alpha^{\omega}\left(X^{\vec{\omega}}\right)
$$

- $X^{+}=X \cap(\Sigma \times \Sigma)$ $X^{\omega}=X \cap(\Sigma \times\{\perp\})$
finitary projection infinitary projection

Maximal Bifinitary/Natural Relational Semantics

- τ^{∞}
$\stackrel{\text { def }}{=} \alpha^{\infty}\left(\tau^{\stackrel{\rightharpoonup}{\infty}}\right)$
$=\alpha^{+}\left(\left(\tau^{\check{\vec{\infty}}}\right)^{\overrightarrow{+}}\right) \cup \alpha^{\omega}\left(\left(\tau^{\check{\vec{\infty}}}\right)^{\vec{\omega}}\right)$
$=\alpha^{+}\left(\tau^{\stackrel{\rightharpoonup}{+}}\right) \cup \alpha^{\omega}\left(\tau^{\vec{\omega}}\right)$
$=\tau^{+} \cup \tau^{\omega}$
$=\left\{\left\langle s, s^{\prime}\right\rangle \mid s \xrightarrow{\star} s^{\prime} \wedge s^{\prime} \ngtr\right\} \cup\{\langle s, \perp\rangle \mid s \xrightarrow{\omega}\}$
where:

$$
\begin{aligned}
& s \xrightarrow{\star} s^{\prime} \stackrel{\text { def }}{=} \exists n \in \mathbb{N}_{+}: \exists \sigma \in \Sigma^{\vec{n}}: s=\sigma_{0} \wedge \forall i<n-1: \sigma_{i} \tau \sigma_{i+1} \\
& \wedge s^{\prime}=\sigma_{n-1} \\
& s \xrightarrow{\text { def }} \xlongequal{\text { de }} \forall s^{\prime} \in \Sigma: \neg\left(s \tau s^{\prime}\right) \\
& s \xrightarrow{\text { def }} \exists \sigma \in \Sigma^{\vec{\omega}}: s=\sigma_{0} \wedge \forall i \in \mathbb{N}: \sigma_{i} \tau \sigma_{i+1}
\end{aligned}
$$

Fixpoint Maximal Bifinitary/Natural Relational Semantics of a Transition System

- Transition system $\langle\Sigma, \tau\rangle$
- $\tau^{\infty} \stackrel{\text { def }}{=} \tau^{\mp} \cup \tau^{\omega}$
$=\operatorname{lfp}_{\emptyset}^{\subseteq} \lambda X \cdot \check{\bar{\tau}} \cup \tau \circ X \cup \operatorname{lfp}_{\Sigma \times\{\perp\}}^{\supseteq} \lambda X \cdot \tau \circ X$
$=\operatorname{lfp}{\underset{\perp}{ }{ }^{\complement^{\infty}}}^{\dot{\infty}} F^{\infty}$
fixpoint specification (by the coalesced fixpoints th. (4)):

$$
\begin{aligned}
F^{\check{\infty}(X)} \stackrel{\stackrel{\text { def }}{=} \lambda X \cdot \check{\tau} \cup \tau \circ X^{+} \cup \tau \circ X^{\omega}}{ } & =\lambda X \cdot \check{\tau} \cup \tau \circ\left(X^{+} \cup X^{\omega}\right) \\
& =\lambda X \cdot \check{\tau} \cup \tau \circ X
\end{aligned}
$$

We have the bifinitary relational transformer:

$$
F^{\infty} \in \wp\left(\Sigma \times \Sigma_{\perp}\right) \stackrel{\mathrm{m}}{\longmapsto} \wp\left(\Sigma \times \Sigma_{\perp}\right)
$$

where the semantic domain:

$$
\left\langle\wp\left(\Sigma \times \Sigma_{\perp}\right), \sqsubseteq^{\infty}, \perp^{\infty}, \sqcup^{\infty}\right\rangle
$$

is a complete lattice, with

- $X \sqsubseteq^{\infty} Y \xlongequal{\text { def }} X^{+} \subseteq Y^{+} \wedge X^{\omega} \supseteq Y^{\omega}$
ordering
- $\perp^{\infty}=\Sigma \times\{\perp\}$
infimum
- $\bigsqcup_{i}^{\infty} X_{i} \stackrel{\text { def }}{=} \bigcup_{i} X_{i}{ }^{+} \cup \bigcap_{i} X_{i}{ }^{\omega}$

Abstraction by Parts

- The finitary part transfers through α^{+}by the Kleenian fixpoint abstraction theorem (8) (but the Tarskian one (9) is not applicable);
- The infinitary part transfers through α^{ω} by the Tarskian fixpoint abstraction theorem (9) (but the Kleenian one (8) is not applicable);
- The whole transfers through α^{∞} by parts using the coalesced fixpoints theorem (4) (although none of the Kleenian (8) and Tarskian (9) fixpoint abstraction theorems is applicable).

Relational to Denotational Semantics Abstraction

The maximal bifinitary/natural relational to denotational semantics abstraction is the right image isomorphism:

- $\langle\wp \wp(\mathcal{D} \times \mathcal{E}), \leqslant\rangle$
- $\langle\wp(\mathcal{D} \times \mathcal{E}), \leqslant\rangle \underset{\alpha^{\bullet}}{\stackrel{\gamma}{\longmapsto}}\langle\mathcal{D} \longmapsto \wp(\mathcal{E}), \dot{\lessgtr}\rangle$
semantic domain right-image
Galois isomorphism
where:

$$
\begin{aligned}
& \alpha^{\triangleright}(R) \stackrel{\text { def }}{=} R^{\triangleright}=\lambda x \cdot\{y \mid\langle x, y\rangle \in R\} \\
& \gamma(f) \stackrel{\text { def }}{=}\{\langle x, y\rangle \mid y \in f(x)\} \\
& f \leqslant g \stackrel{\text { def }}{=} \gamma(f) \leqslant \gamma(g)
\end{aligned}
$$

Fixpoint Specification of the Natural Denotational SEMANTICS

- $\tau^{\natural} \stackrel{\text { def }}{=} \alpha^{\bullet}\left(\tau^{\infty}\right)$
right-image abstraction of the bifinitary relational semantics
where
- $\dot{\tau} \stackrel{\text { def }}{=} \lambda s \cdot\left\{s \mid \forall s^{\prime} \in \Sigma: \neg\left(s \tau s^{\prime}\right)\right\}$
- $f \stackrel{\text { def }}{=} \lambda P \cdot\{f(s) \mid s \in P\}$
- $\tau^{\bullet} \stackrel{\text { def }}{=} \lambda s \cdot\left\{s^{\prime} \mid s \tau s^{\prime}\right\}$
- $F^{\natural} \in \dot{D}^{\natural} \stackrel{\mathrm{m}}{\longmapsto} \dot{D}^{\natural}, \quad F^{\natural}(f) \stackrel{\text { def }}{=} \dot{\tau} \dot{U} \dot{U} f \triangleright \tau^{\triangleright}$
is a $\check{\sqsubseteq}^{\natural}$-monotone map on the complete lattice

$$
\left\langle\dot{D}^{\natural}, \dot{亡}^{\natural}, \dot{\perp}^{\natural}, \dot{\top}^{\natural}, \dot{ப}^{\natural}, \dot{\Pi}^{\natural}\right\rangle \quad \text { where } \quad \dot{D}^{\natural} \stackrel{\text { def }}{=} \Sigma \longmapsto \wp\left(\Sigma_{\perp}\right)
$$

Rule-based Specification of the Natural Denotational SEmantics

- The natural denotational semantics

$$
\operatorname{lfp}_{\frac{\dot{E}^{\natural}}{\natural}}^{\dot{\underline{q}}^{\natural}} F^{\natural}
$$

where

$$
F^{\natural}(f) \stackrel{\text { def }}{=} \dot{\tau} \dot{\cup} \bigcup f \triangleright \tau^{\bullet}
$$

is also defined by the following rules:

$$
\frac{s^{\prime} \in \dot{\tau}(s)}{s^{\prime} \in f(s)} \quad \frac{s \tau s^{\prime}, \quad s^{\prime \prime} \in f\left(s^{\prime}\right)}{s^{\prime \prime} \in f(s)} \quad \frac{s \tau s^{\prime}, \quad \perp \in f\left(s^{\prime}\right)}{\perp \in f(s)}
$$

Example: Rule-based Specfication of a Nondeterministic Denotational Semantics

Syntax of a Nondeterministic Imperative Expression LANGUAGE

- $p \in P$
programs

$$
\begin{aligned}
\mathrm{p} \rightarrow \mathrm{n}|\mathrm{v}| & ?\left|\mathrm{p}_{1}-\mathrm{p}_{2}\right| \mathrm{v}:=\mathrm{p} \mid \text { if } \mathrm{p}_{1} \text { then } \mathrm{p}_{2} \text { else } \mathrm{p}_{3} \mid \\
& \mathrm{p}_{1} ; \mathrm{p}_{2} \mid \text { repeat } \mathrm{p}_{1} \text { until } \mathrm{p}_{2}
\end{aligned}
$$

Semantic Domain

- $x \in \mathbb{Z}_{\Omega}$
- $\rho \in \mathcal{E} \stackrel{\text { def }}{=} \mathrm{V} \longmapsto \mathbb{Z}_{\Omega}$
- $\langle x, \rho\rangle \in \Sigma \stackrel{\text { def }}{=} \mathbb{Z}_{\Omega} \times \mathcal{E}$
- $\perp \notin \Sigma, \Sigma_{\perp} \stackrel{\text { def }}{=} \Sigma \cup\{\perp\}$

- $\left\langle\dot{D}^{\natural}, \dot{匚}^{\natural}, \dot{L}^{\natural}, \dot{\top}^{\natural}, \dot{ப}^{\natural}, \dot{\Gamma}^{\natural}\right\rangle$
- $\mathcal{S}^{\natural} \llbracket \mathrm{p} \rrbracket \in \mathcal{E} \longmapsto \wp\left(\Sigma_{\perp}\right)$

values
 environments
 states

non-termination semantic domain complete lattice bifinitary nondeterministic denotational semantics

Numbers $\quad \mathcal{S}^{\natural} \llbracket \mathrm{n} \rrbracket$

- $\mathcal{N} \llbracket 0 \rrbracket \stackrel{\text { def }}{=} 0$
- $\mathcal{N} \llbracket 9 \rrbracket \stackrel{\text { def }}{=} 9$
- $\mathcal{N} \llbracket n d \rrbracket \xlongequal{\text { def }}(10 \times \mathcal{N} \llbracket n \rrbracket)+\mathcal{N} \llbracket \mathrm{d} \rrbracket$ - $\frac{\mathrm{t}}{\langle\mathcal{N} \llbracket \mathrm{n} \rrbracket, \rho\rangle \in \mathcal{S}^{\natural} \llbracket \mathrm{n} \rrbracket \rho}$

VARIABLES $\quad \mathcal{S}^{\natural} \llbracket \mathrm{v} \rrbracket$

tt
$\overline{\langle\rho(\mathrm{v}), \rho\rangle \in \mathcal{S}^{\natural} \llbracket \mathrm{v} \rrbracket \rho}$

$$
\text { Random } \quad \mathcal{S}^{\bullet} \llbracket ? \rrbracket
$$

- $\frac{i \in \mathbb{Z}}{\left.\langle i, \rho\rangle \in \mathcal{S}^{\natural} \llbracket ?\right] \rho}$

SUBSTRACTION $\quad \mathcal{S}^{\natural} \llbracket \mathrm{e}_{1}-\mathrm{e}_{2} \rrbracket$

$\cdot \frac{\left\langle\Omega, \rho^{\prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{1} \rrbracket \rho}{\left\langle\Omega, \rho^{\prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{1}-\mathrm{p}_{2} \rrbracket \rho}$

- $\frac{\left\langle i, \rho^{\prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{1} \rrbracket \rho, \quad\left\langle\Omega, \rho^{\prime \prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{2} \rrbracket \rho, \quad i \in \mathbb{Z}}{\left\langle\Omega, \rho^{\prime \prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{1}-\mathrm{p}_{2} \rrbracket \rho}$
$\bullet \frac{\left\langle i, \rho^{\prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{1} \rrbracket \rho, \quad\left\langle j, \rho^{\prime \prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{2} \rrbracket \rho^{\prime}, \quad i, j \in \mathbb{Z}}{\left\langle i-j, \rho^{\prime \prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{1}-\mathrm{p}_{2} \rrbracket \rho}$
$\cdot \frac{\perp \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{1} \rrbracket \rho}{\perp \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{1}-\mathrm{p}_{2} \rrbracket \rho}$
$\bullet \frac{\left\langle i, \rho^{\prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{1} \rrbracket \rho, \quad \perp \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{2} \rrbracket \rho^{\prime}, \quad i \in \mathbb{Z}}{\perp \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{1}-\mathrm{p}_{2} \rrbracket \rho}$

Assignment $\quad \mathcal{S}^{\natural} \llbracket \mathrm{v}:=\mathrm{e} \rrbracket$

- $\frac{\left\langle\Omega, \rho^{\prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathrm{p} \rrbracket \rho}{\left\langle\Omega, \rho^{\prime}\right\rangle \in \mathcal{S}^{\sharp} \llbracket \mathrm{v}:=\mathrm{p} \rrbracket \rho}$
- $\frac{\left.\left\langle i, \rho^{\prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathrm{p}\right] \rho, \quad i \in \mathbb{Z}}{\left\langle i, \rho^{\prime}[\mathrm{v}:=i]\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathrm{v}:=\mathrm{p} \rrbracket \rho}$
- $\frac{\perp \in \mathcal{S}^{\natural} \llbracket \mathrm{p} \rrbracket \rho}{\perp \in \mathcal{S}^{\natural} \llbracket \mathrm{v}:=\mathrm{p} \rrbracket \rho}$

Conditional $\quad \mathcal{S}^{\natural} \llbracket$ if e_{1} then p_{2} else $\left.\mathrm{p}_{3}\right]$

- $\frac{\left\langle\Omega, \rho^{\prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{1} \rrbracket \rho}{\left\langle\Omega, \rho^{\prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \text { if } \mathrm{p}_{1} \text { then } \mathrm{p}_{2} \text { else } \mathrm{p}_{3} \rrbracket \rho}$
- $\frac{\left\langle 0, \rho^{\prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathbf{p}_{1} \rrbracket \rho, \quad \sigma_{2} \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{2} \rrbracket \rho^{\prime}}{\sigma_{2} \in \mathcal{S}^{\natural} \llbracket \text { if } \mathrm{p}_{1} \text { then } \mathrm{p}_{2} \text { else } \mathrm{p}_{3} \rrbracket \rho}$
- $\frac{\left.\left\langle i, \rho^{\prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{1} \rrbracket \rho, \quad \sigma_{3} \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{3}\right] \rho^{\prime}, \quad i \in \mathbb{Z}-\{0\}}{\sigma_{3} \in \mathcal{S}^{\natural} \llbracket \text { if } \mathrm{p}_{1} \text { then } \mathrm{p}_{2} \text { else } \mathrm{p}_{3} \rrbracket \rho}$
$\perp \in \mathcal{S}^{\natural} \llbracket \mathbf{p}_{1} \rrbracket \rho$
$\perp \in \mathcal{S}^{\natural}\left[\right.$ if p_{1} then p_{2} else $\left.\mathrm{p}_{3}\right] \rho$

Sequential Composition $\left.\quad \mathcal{S}^{\natural} \llbracket \mathrm{e}_{1} ; \mathrm{p}_{2}\right]$

- $\frac{\left\langle\Omega, \rho^{\prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket p_{1} \rrbracket \rho}{\left\langle\Omega, \rho^{\prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathbf{p}_{1} ; \mathbf{p}_{2} \rrbracket \rho}$
$\bullet \frac{\left\langle i, \rho^{\prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{1} \rrbracket \rho, \quad \sigma_{2} \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{2} \rrbracket \rho^{\prime}, \quad i \in \mathbb{Z}}{\sigma_{2} \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{1} ; \mathrm{p}_{2} \rrbracket \rho}$
- $\frac{\left.\perp \in \mathcal{S}^{\natural} \llbracket \mathbf{p}_{1}\right] \rho}{\perp \in \mathcal{S}^{\sharp} \llbracket \mathbf{p}_{1} ; \mathbf{p}_{2} \rrbracket \rho}$

Repetition $\mathcal{S}^{4} \llbracket$ repeat p_{1} until $\left.\mathrm{p}_{2}\right]$

- ${ }^{12} \frac{\perp \in \mathcal{S}^{4}\left[\mathfrak{p}_{1}\right] \rho}{\perp \in \mathcal{S}^{t}\left[\text { repeat } \mathfrak{p}_{1} \text { until } \mathfrak{p}_{2}\right] \rho}$

$$
\left\langle\Omega, \rho^{\prime}\right\rangle \in \mathcal{S}^{4}\left[\mathbb{p}_{1}\right] \rho
$$

$$
\left.\left\langle\Omega, \rho^{\prime}\right\rangle \in \mathcal{S}^{4} \llbracket \text { repeat } \mathrm{p}_{1} \text { until } \mathrm{p}_{2}\right] \rho
$$

- ${ }^{14} \frac{\left\langle i, \rho^{\prime}\right\rangle \in \mathcal{S}^{\sharp}\left[\mathfrak{p}_{1}\right] \rho, \quad \perp \in \mathcal{S}^{\sharp}\left[\mathbb{p}_{2}\right] \rho^{\prime}}{\perp \in \mathcal{S}^{\natural}\left[\text { repeat } \mathrm{p}_{1} \text { until } \mathrm{p}_{2}\right] \rho}$
- ${ }^{15} \frac{\left\langle i, \rho^{\prime}\right\rangle \in \mathcal{S}^{\natural}\left[p_{1}\right] \rho, \quad\left\langle\Omega, \rho^{\prime \prime}\right\rangle \in \mathcal{S}^{\sharp}\left[\mathbb{p}_{2}\right] \rho^{\prime}}{\left\langle\Omega, \rho^{\prime \prime}\right\rangle \in \mathcal{S}^{\natural}\left[\text { repeat } \mathrm{p}_{1} \text { until } \mathrm{p}_{2}\right] \rho}$

[^5]- ${ }^{16} \frac{\left\langle i, \rho^{\prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathfrak{p}_{1} \rrbracket \rho, \quad\left\langle 0, \rho^{\prime \prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathbf{p}_{2} \rrbracket \rho^{\prime}}{\left\langle i, \rho^{\prime \prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \text { repeat } \mathrm{p}_{1} \text { until } \mathrm{p}_{2} \rrbracket \rho}$

$$
\begin{gathered}
\left\langle i, \rho^{\prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{1} \rrbracket \rho, \\
\left\langle j, \rho^{\prime \prime}\right\rangle \in \mathcal{S}^{\natural} \llbracket \mathrm{p}_{2} \rrbracket \rho^{\prime}, \quad j \in \mathbb{Z}-\{0\}, \\
\sigma_{3} \in \mathcal{S}^{17} \llbracket \text { repeat } \mathrm{p}_{1} \text { until } \mathrm{p}_{2} \rrbracket \rho^{\prime \prime} \\
\sigma_{3} \in \mathcal{S}^{\natural} \llbracket \text { repeat } \mathrm{p}_{1} \text { until } \mathrm{p}_{2} \rrbracket \rho
\end{gathered}
$$

[^6]
Abstraction to: Natural/Big Step Structured Operational Semantics

- This abstraction, which forgets about nontermination, is:

$$
\begin{aligned}
& \alpha \in\left(\mathcal{E} \longmapsto \wp\left(\Sigma_{\perp}\right)\right) \longmapsto(\mathcal{E} \longmapsto \wp(\Sigma)) \\
& \alpha(S) \rho \stackrel{\text { def }}{=} S(\rho)-\{\perp\}
\end{aligned}
$$

- To get the rule-based specification:
- Eliminate the infinitary rules (involving \perp);
- Classical interpretation of the rules (for \subseteq).

Conclusion

- Declarative specification methods are fundamental in computer science;
- Set-theoretic rule-based specifications are commonly used (syntax, semantics, typing, program static analysis, etc.);
- Order-theoretic rule-based specifications are a useful generalization; \Rightarrow e.g. denotational semantics in rule-based style!

[^0]: 1 The axioms a are particular cases of inference rules of the form $\frac{\emptyset}{a}$ where \emptyset is the empty set.

[^1]: 4 By Tarski's fixpoint theorem lfp ${ }^{\sqsubseteq} F$ exists since $\langle\mathcal{D}, \sqsubseteq\rangle$ is a complete lattice and F is monotonic.
 P. Cousot
 $-12 / 77 — \nrightarrow \downarrow D$
 ASFDP'98, Valencia, June $15^{\text {th }}, 1998$

[^2]: ${ }^{5}$ By Tarski＇s fixpoint theorem this 巨－least solution exists and is precisely lfp ${ }^{〔} F=\Pi\{X \mid X=F(X)\}$ ．
 P．Cousot
 —13／77— $\nrightarrow \triangleleft D ゆ$
 ASFDP＇98，Valencia，June $15^{\text {th }}, 1998$

[^3]: ${ }^{6}$ By Tarski's fixpoint theorem this \sqsubseteq-least solution exists and is precisely lfp ${ }^{\sqsubseteq} F=\sqcap\{X \mid F(X) \sqsubseteq X\}$.
 P. Cousot
 $-14 / 77-\leftrightarrow \triangleleft D ゆ$
 ASFDP'98, Valencia, June $15^{\text {th }}, 1998$

[^4]: 9 the Tarskian fixpoint abstraction does not apply since α^{+}is not co-continuous

[^5]: 12 Body does not terminate.
 13 Body is erroneous, return error.
 14 Body terminates but test does not.
 15 Body terminates, test is erroneous, return error.

[^6]: 16 Body terminates, test is true, return value of the last iteration.
 17 Body terminates, test is false, repeat.

