CMACS — NSF meeting, Pittsburgh, 2010/3/4 — 5

Challenge Problems in
Aerospace Software
Verification

Patrick Cousot

March 4,2010

CMAGCS — NSF meeting. Pittsburah. 2010/03/4— © P. Couso!

Motivation

CMACS — NSF meeting_ Pittsburah. 2010/03/4— ©P Cousot

Computer controlled systems

Flight control
program

MCAI 2 expedition. Pittsburah. 2009/10/31—11/01 ©P. Cousot,

“The Australian Transport
Safety Bureau (ATSB) found
that the main probable cause
of this incident was a latent
software error which allowed
the ADIRU to use data from a
failed accelerometer”

http://www.atsb.gov.au/newsroom/2008/release/2008_43.aspx,
http://en.wikipedia.org/wiki/Qantas_Flight_72
ADIRU = Air Data Inertial Reference Unit (provides air speed, altitude & position)

MCAI 2 expedition. Pittsburah, 2009/10/31—11/01 P. Cousot,

* The initial effects of the fault were:

* false stall and overspeed warnings

* loss of attitude information on the Captain's primary flight
display

¢ several Electronic Centralised Aircraft Monitoring (ECAM)
system warnings

* About two minutes later, ADIRU #1, which was providing data to
the captain's primary flight display, provided very high (and false)
indications for the aircraft's angle of attack, leading to:

e the flight control computers commanding a nose-down
aircraft movement, which resulted in the aircraft pitching
down to a maximum of about 8.5 degrees,

¢ the triggering of a Flight Control Primary Computer pitch
fault.

*On |5 January 2009 the EASA issued an Emergency
Airworthiness Directive to address the above A330 and A340
Northrop-Grumman ADIRU problem of incorrectly responding
to a defective inertial reference.

* A memo leaked from Airbus on the Flight 447 (from Rio de
Janeiro, Brazil, to Paris, that crashed into the Atlantic Ocean on |
June 2009) suggests that there was no evidence that Honeywell
manufactured ADIRU malfunction was similar to the failure of the
Northrop Grumman manufactured ADIRU in Qantas flight
incidents

An Air Data Inertial Reference Unit (ADIRU) is a key component of the integrated Air Data
Inertial Reference System (ADIRS), that supplies air data (airspeed, angle of attack and altitude)
and inertial reference (position and attitude) information to the pilots' Electronic Flight
Instrument System displays as well as other systems on the aircraft such as the engines,
autopilot, flight control and landing gear systems

Examples of breakthroughs
in MC for avionics

2010, pp. 58 — 64

Example of successful application

® ADGS- 2100 Adaptive Display and Guidance System
Window Manager (!

® Five components analyzed independently, 9.8x10% to 1.5x 1037
states, boolean, enumeration type and small integer types

® 563 properties checked, 98 errors found

() S.P. Miller, M.W.Whalen, and D. Cofer, Software Model Checking Takes Off, CACM, 53(2), Feb.

8

Example of promising application

e Effector Blender (EB) logic of an Operational flight
program (OFP) for an Unmaned Aerial Vehicle (UAV) ()

® 2000 basic Simulink blocks for generating the actuator
commands for the 6 UAV control surfaces

® Specification: commands within dynamically computed
limits

® Floats = fixed-point = integers (for SMT-solver): unsound
® OFP is too large model to include aircraft model

® Even OFP alone need to be decomposed into subsystems

() S.P. Miller, M.W.Whalen, and D. Cofer, Software Model Checking Takes Off, CACM, 53(2), Feb.
2010, pp. 58 — 64
9

MC characteristics

® Works on models (e.g. translated to Lustre — from

which C programs can be generated)

® Check user-provided safety and liveness

specifications (via very expressive temporal logics)

® Universal representations of properties (set

enumeration/BDDs/predicates) and models
(transition systems)

® Fully automatic

® Counter-examples are provided for specification

violations

Limits of MC tools

® Models (e.g. reals in Scade) not programs (e.g. floats)

® Requires a specification of the model (often as
complex as the model, limited expressibility)

® Combinatorial state explosion :

® Large models have to “be broken down into ...
components analyzed individually”

® Either sound by exhaustive verification with
restriction to booleans, enumerated types, small
integers, etc

® Or, unsound bug-finding with partial exploration,

Examples of breakthroughs
in Al for aerospace

Al breakthroughs

® Beyond research, static analyzers start being
deployed in industrial production, e.g.:

e Astrée @):absence of runtime errors in
synchronous control/command programs

e AIT): worst case execution time analysis

® Clousot “: static contract checking for .NET

@ http://www.absint.de/astree/
@) http://www.absint.de/ait/
) http://research.microsoft.com/apps/pubs/defaullgaspx?id=706 14

Example of successful application ©)

® Verification of the absence of RTE in the electric
flight control C code of the A380

e = |000,000 LOCS, 48h (15h on a quadriprocessor),
no false alarm

® Example of non-linear domain-specific abstraction:
numerical filters, cumulation of rounding errors for
floats, etc

©) http://lwww.astree.ens.fr/

Example of promising application

® Analysis of a parallel program (kernel of an actual C
application on ARINC 653, leaving out SCADE and
error recovery)

® 5 concurrent communicating processes, 100,000 LOCS,
no decomposition needed, absence of RTE

® about 70 false alarms (essentially due to the total
absence of input specifications or to the imprecision of
the interference analysis)

15

Al characteristics

® Consider a semantic model of programs (in programming or
specification languages)

® Formally define the strongest properties of interest in the form of an
infinite collecting semantics (e.g. traces, reachable states)

® Systematic design of a sound (weaker) abstract semantics by
combining many abstractions of program properties in infinite
abstract spaces

® Property inference by effective approximation of the abstract
semantics (widening/narrowing)

® Use the abstract semantics to answer questions (e.g. is the specification
satisfied? or what is the interval of variation?)

® Always sound, scales up, but sometimes incomplete (false alarms)

® False alarms can be reduced or even eliminated (= proof) by
considering domain specific abstractions

16

Example of generic abstractions in Astrée

e o o o

o L] o

semantics intervals simple congruences
set of points T € [a,b] z = alb]
t
octagons ellipsoids exponentials
trty<a az® +by? + czy < d :zz(t)gabt

Example of analysis session with Astrée

8066 X
X H O 4 O g 2
Quit herels Clogs Tees Ocagons Fiers |Geom.dew _Symboics Help
Search sting: | w| MNext Prevous Fst Lt | Gomline:] ~|
Program points: Cument __ Next Pev Sep Badsmp | \Vaiables: Al Choose..
| exInple2c|
: void main() =

@®a=-10; @b = 10, @alpha = 3;
[l @whie 1 == 1)
{ ®if (B1) {@X=NUM_input; ®;
@ X = X/alpha,
@X = X*alpha;
I @_ASTREE_wait_for_clock (())®:;
1}

ycation: example2 c:14:33:[call#main@8:loop@ 10>=4]
riables: X (10)

rant

IX | <= (10. + 2.35098891184e-38/(1.00000023842-1))"(1.00000023842)"clock - 2.35098891184e-38/(1.00000023842-1)
<= 23.5916342108

I Tine T4 — column 33— L)

oy —

Random input of the Boolean Bl, the float NUM_input in [-10,10] at most 10h at 10ms clock tick. An exponential is
used to bound the accumulation of rounding errors over time.

18

CMACS — NSF meeting. Pittshurah. 2010/

Limits of Al tools

® Semantics of real-life programming languages is hard to define

® Essentially trace-based safety properties (+ termination by
reduction to safety) because of infinite systems

® Many tools are built for implicit specifications (e.g. RTE +
assert), with important exceptions (e.g. Clousot), not
mandatory (monitoring ©)

® Indecidability + Soundness = Incompleteness = False alarms

® No concrete counter-examples (only in the abstract, hard to
concretize for hour-long error scenari)

e Cost/precision efficient balancing is domain specific (no
“universal” abstraction for infinite systems)

Combining MC + Al

20

(MC U Aly*

e (MC U Al)* would juxtapose MC and Al analyzes on
common models and specifications

®eg.

® Finite abstractions of model by Al plus MC of
finite model (predicate abstraction)

® State space reduction by Al ahead of MC ®
® etc

® Great, but cumulates the limits of both MC & Al

®) Patrick Cousot, Radhia Cousot: Refining Model Checking by Abstract Interpretation. Autom. Softw.
Eng. 6(1): 69-95 (1999)
21

Combining MC + Al

e MC+AI looks like the ideal solution ®
® But

® Decidable MC + Undecidable Al = Undecidable!

i.e. we must be able to analyze infinite models without reduction to a finite model or
decidable models (which has fundamental limitations)

® The key is induction: “easy” for safety (widening/
narrowing), extremely difficult for liveness (dual
narrowing)

® Can only be a long term goal of the expedition
(3/4 years)

©) Patrick Cousot, Radhia Cousot: Temporal Abstract Interpretation. POPL 2000: 12-25
2

Challenges in MC + Al

® Liveness properties for infinite systems is the main
difficulty

® A temporal logic is both certainly complex and not
often used in its full generality and not expressive
enough

® Directions:

® Which (liveness) properties should we consider
first in combining MC + Al?

® We need examples of discrete/hybrid systems to

be verified for this class of properties

23

Examples of challenges in
aerospace

24

Challenge I: abstraction inference

® Control/command programs are generated from
mathematical models

® The controller mathematical model is “hidden” in the
control program (dt = clock tick)

® By abstracting a simplified mathematical model from
the program, we could

® Study mathematically this simplified model

® Which yields program-specific numerical
abstractions for the program analysis

® Hopefully, more precise than generic abstractions

25

A trivial example (for intuition)

x=1;
while (x<10) {
X = x+3;
}
® A loop iteration in dt (as in synchronous control)

A simple abstract interpretation yields

g:3

sod>;c(t) =3t+x0 (x0 =1 by the initial condition) i
the appropriate abstraction

A simple abstract interpretation shows x € [1,10]
Proving e.g. termination (preserved by abstraction)

26

Challenges in avionics (ll): closing the loop

® Analysis of control/command applications
(synchronous or asynchronous)

o Current state:

Input abstraction Controller —
Plant model
e |deally: C)
Controller

® Useful approximation:
i Plant abstraction
rController <—:

27

Challenge (ll): reactive properties

® Abstraction of plant models:

® To derive a sound abstraction of the plant
behavior (output/input relation from differential
equations), on one step

® To be used in the analysis of reactive properties

® We can start by thinking of plant models as
differential equations / hybrid systems

® Directions:
® We need to have plant models to abstract

® We need to know which reactive properties are
of interest?

28

Challenge (lll): imperfect synchrony Analysis of an imperfectly clocked system (!9)

® The quasi-synchronism model may be wrong so ",
. . . - Constraints Constraints| .
simulation is unsound =T
® |mperfectly synchone (hardware) systems are very RepDANE TN 42 RepDANE U 42
hard to test

® Automatic formal methods are the “only” alternative AcronTons
. Directions: Integral bounding
Specification : no alarm raised with a normal input
® Examples of imperfectly synchone systems are I I ||
extremely rare in the academic world o ‘ T aa A
. . . . input stability < A : | Between % x A | input stability > A : the analyzer
® Which are the main properties of interest? counter-example and A : 7 proves the specification
(19 Julien Bertrane: Proving the Properties of Communicating Imperfectly-Clocked Synchronous Systems. SAS 2006: 370-386
29 L 30

CMACS — NSF meeting. Pittshurah. 2010/

Challenge (1V): security analysis

® The computer network designed to give passengers
in-flight internet access, is connected to the plane's
control, navigation and communication systems, an
FAA report reveals ('),

Conclusion

® Firewalls are extremely vulnerable

® Beyond internet, sound security analysis is also a
challenge in avionics

(D http://www.wired.com/politics/security/news/2008/0 | /dreamliner_security, citing http://
cryptome.info/faa010208.htm

Ell 32

P. Couso CMACS — NSF meetina. Pittsburah, 2010/03/4—5

Conclusion

® Extending the scope of automatically verifiable
properties for large infinite systems (liveness, security,
quantitative, probabilistic, etc) is a grand challenge for
FM

® Scaling up beyond synchrony eg to
® Imperfect synchrony
® Parallel programs

is a big challenge, including in aerospace.

® Closing the discrete controller + continuous plant loop
is a big challenge in the verification of complex control/
command systems

33

