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What has been done since Pittsburgh meeting

• Work since the Pittsburgh meeting:

• Array content analysis (joint work with R. Cousot and F. Logozzo)

• Segmented decision tree abstract domain (joint work with R. Cousot 
and L. Mauborgne)

• Precondition inference from runtime-checked assertions (joint work 
with R. Cousot and F. Logozzo)

• Work in progress (today’s presentations):

• Probabilistic abstract interpretation: see talk by Michael Monerau

• Logical abstract domains

• Termination/Guarantee semantics, proof, and static analysis
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Work on AI since the 
Pittsburgh meeting
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Collection segmentation abstract domain

4

• Included by F. Logozzo in MSR Clousot (distributed with MS 
Visual Studio under Windows 7 pro)

•  To appear in POPL‘2011
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6. Finally, at the end either we are left with the right limits that have

both been checked to be equal or else we have B1[?1]P1 B�
1[?

�
1]

and B2[?2] with B�
1 = B2. Because we have maintained the

invariant that B1 is always equal to B2 in the concrete (so

necessarily [?�
1] =? since then B1 = B2 = B�

1), and so we

end up with (B1 ∪B�
1 ∪B2)[?1] and (B1 ∪B�

1 ∪B2)[?2] ��
In the analysis of the example of Fig. 2, we have to unify <{0 i} T
{n}> and <{0 i-1} 0 {1 i} T {n}?> which becomes <{0}⊥
{i}?T{n}> and <{0} 0 {1 i} T {n}?> by 4.3 and we go on

with {i}? T {n}> and <{1 i} T {n}?> which, by the symmet-

ric in 3 of 2.1 becomes {i}? T {n}> and <{i} T {n}?> so we

go on with <{n}> and <{n}?> which terminates the recursion by 6,

thus returning <{0},⊥,{i}? T {n}> and <{0} 0 {i} T {n}?>.

Their array segmentation join is then <{0} 0 {i}? T {n}?>
(taking the disjunction � of potential emptiness).

The algorithm never adds any new expression to the segment

bounds nor increments the total number of segment bounds in splits

and so does terminate.

Partial order/join/meet/widening/narrowing For an array seg-

mentation join S.�, a (⊥,⊥)-segmentation unification is per-

formed and then the array element abstract domain join A.� is

applied segmentwise. For the meet S.�, a (�,�)-segmentation

unification is performed and then a segmentwise meet A.�. For

the widening S.
�

, a (⊥,⊥)-segmentation unification is performed

and then a segmentwise widening A.
�

. Moreover, the widening

merges consecutive segments with same abstract value. Widen-

ings could also be used to limit the size of segment bound sets

and/or the number of segments given as parameters of the analy-

sis. For the narrowing S.
�

, a (�,�)-segmentation unification is

performed and then a segmentwise narrowing A.
�

. For the par-

tial order S. �, a (⊥,�)-segmentation unification is performed

before returning the conjunction of the segmentwise comparisons

A. �. The potential emptiness indications must also be taken into

account, that is = ≺ ? = ?.

Array segmentation reduction A program analysis is the prod-

uct of a segmentation analysis for arrays and the analysis of scalar

variables. The two analyses can be completely independent which

is an important feature for the array segmentation analysis to be

easily inserted in any analyzer without having to make any hypoth-

InitBackwards(int[] A) {
int i = A.Length;

/* 1: */ while /* 2: */ (0 < i) {
/* 3: */ i = i - 1;
/* 4: */ A[i] = 0;
/* 5: */ }
/* 6: */ }

Figure 4. Example of a backwards initialization. Array segmen-

tation reduction is needed to prove the postcondition ∀j ∈
[0, A.Length). A[j] = 0.

esis on the static analyzer. The consequence is that the result may

not be as precise as possible. Let us illustrate this phenomenon on

the following program.

Using the independent product of interval abstractions for array

elements and scalar variables, the post condition derived by the

static analyzer with Sect. 7.4 at program point 6 is

[ A: <{0} [-oo,+oo] {i}? [0,0] {A.Length}?> ]
[ i: [0,0] A.Length: [2,+oo] ]

It states that it is possible that i = 0 but the array segmenta-

tion analysis cannot prove that this is indeed always the case. It

is in general always more precise to consider the reduced prod-

uct of the array and variable analyses [7]. This consists in iter-

ating reduction operators that propagate information for one ab-

stract domain to the other. For example it may be useful to prop-

agate the relational information of array segmentation (equality of

expressions in a segment bounds and segment bounds in increas-

ing order (strictly increasing in absence of ?)), unless a more pre-

cise relational domain is already used for scalar variables. In the

other direction, the information provided by the scalar variable

analysis can be propagated to segmentations. A possibly empty

segment . . . B[?] P B�? . . . can be reduced to a non-empty one

. . . B[?] P B� . . . if the scalar variables environment ρ implies

∃e ∈ B : ∃e� ∈ B� : �e�ρ < �e��ρ is always true in the ab-

stract (the abstract test returning either ⊥, true, false, or unknown).

Similarly, a possibly empty segment . . . B[?]P B�? . . . may be def-

initely empty and reduced to the bound . . . (B ∪ B�)[?] . . . when

∃e ∈ B : ∃e� ∈ B� : �e�ρ = �e��ρ = true .

In the reduction example of Fig. 4, the fact that i ∈ [0, 0]
implies that the segment {0} [-oo,+oo] {i} is empty, in which

case the reduction automatically yields

[ A: <{0 i} [0,0] {A.Length}> ]
[ i: [0,0] A.Length: [2,+oo] ]

which is exactly the expected result at program point 6.

12. Experience
12.1 CodeContracts and Clousot

CodeContracts allow the language-agnostic specification of con-

tracts (preconditions, postconditions and object-invariants [3, 26]).

The CodeContracts API is included in .NET starting from v4.0.

Clousot is an abstract interpretation-based static analyzer devel-

oped at MSR Redmond used to statically check: (i) contracts; and

(ii) the absence of common runtime errors such as non-null deref-

erences or buffer overruns [11]. Clousot is used both inside and

outside Microsoft on large production projects, and counts more

than 20000 external downloads at the moment of writing. When

a method is analyzed, its preconditions is turned into an assump-

tion and its postcondition into an assertion. For each method call

appearing in the method body, its precondition is turned into an as-

sertion and the postcondition into an assumption. Object-invariants

are assumed at the entry of public methods and asserted at the exit

point (a detailed description of the object-invariants treatment is

out-of-the scope of this paper). Further assertions are generated
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not be as precise as possible. Let us illustrate this phenomenon on
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tion analysis cannot prove that this is indeed always the case. It

is in general always more precise to consider the reduced prod-

uct of the array and variable analyses [7]. This consists in iter-

ating reduction operators that propagate information for one ab-

stract domain to the other. For example it may be useful to prop-

agate the relational information of array segmentation (equality of

expressions in a segment bounds and segment bounds in increas-

ing order (strictly increasing in absence of ?)), unless a more pre-

cise relational domain is already used for scalar variables. In the

other direction, the information provided by the scalar variable

analysis can be propagated to segmentations. A possibly empty

segment . . . B[?] P B�? . . . can be reduced to a non-empty one

. . . B[?] P B� . . . if the scalar variables environment ρ implies

∃e ∈ B : ∃e� ∈ B� : �e�ρ < �e��ρ is always true in the ab-

stract (the abstract test returning either ⊥, true, false, or unknown).

Similarly, a possibly empty segment . . . B[?]P B�? . . . may be def-

initely empty and reduced to the bound . . . (B ∪ B�)[?] . . . when

∃e ∈ B : ∃e� ∈ B� : �e�ρ = �e��ρ = true .

In the reduction example of Fig. 4, the fact that i ∈ [0, 0]
implies that the segment {0} [-oo,+oo] {i} is empty, in which

case the reduction automatically yields

[ A: <{0 i} [0,0] {A.Length}> ]
[ i: [0,0] A.Length: [2,+oo] ]

which is exactly the expected result at program point 6.

12. Experience
12.1 CodeContracts and Clousot

CodeContracts allow the language-agnostic specification of con-

tracts (preconditions, postconditions and object-invariants [3, 26]).

The CodeContracts API is included in .NET starting from v4.0.

Clousot is an abstract interpretation-based static analyzer devel-

oped at MSR Redmond used to statically check: (i) contracts; and

(ii) the absence of common runtime errors such as non-null deref-

erences or buffer overruns [11]. Clousot is used both inside and

outside Microsoft on large production projects, and counts more

than 20000 external downloads at the moment of writing. When

a method is analyzed, its preconditions is turned into an assump-

tion and its postcondition into an assertion. For each method call

appearing in the method body, its precondition is turned into an as-

sertion and the postcondition into an assumption. Object-invariants

are assumed at the entry of public methods and asserted at the exit

point (a detailed description of the object-invariants treatment is

out-of-the scope of this paper). Further assertions are generated
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<{0},[0,0],{i}?,[2,+oo],{n}>

Array lower 
bound

Array upper 
bound

Segment bound Segment

Uniform abstraction with segments
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Segmented decision tree abstract domain

• Patrick Cousot, Radhia Cousot, Laurent Mauborgne: A Scalable Segmented Decision Tree 
Abstract Domain. Essays in Memory of Amir Pnueli, LNCS 6200, Springer, 2010: 72-95

5

5: �x1 {0 < y = x1 < z < 100} : �x2 : � INIT � � �
6: �x1 {0 < y = x1 < z < 100, y < x2} : �x2 : � SPECIAL � � �
7: �x1 {0 < y = x1 < z < 100, x2 ≤ y} : �x2 : � COMP � � �
8: �x1 {0 < y = x1 < z < 100} : �x2 : � COMP � � y + 1 � SPECIAL � �
9: �x1 {0 ≤ x1 ≤ y ≤ z < 100, x1 < z, 0 < y} : �x2 : � INIT � � y �x2 : � COMP � �

y + 1 � SPECIAL � �
10: �x1 {0 ≤ x1 ≤ y < z < 101, x1 < z − 1, 0 < y} : �x2 : � INIT � �

y �x2 : � COMP � � y + 1 � SPECIAL � �
11: �x1 {0 ≤ x1 < y ≤ z < 101, x1 < z − 1, 1 < y} : �x2 : � INIT � �

y − 1 �x2 : � COMP � � y � SPECIAL � �
12: �x1 {0 ≤ x1 ≤ y ≤ z < 101, x1 < z − 1, 0 < y} : �x2 : � INIT � � y − 1

�x2 : � COMP ∪ INIT � y � COMP ∪ SPECIAL � � y

�x2 : � COMP � y � COMP ∪ SPECIAL � y + 1 � SPECIAL � � �
13: �x1 {1 < x1 < z < 101, 0 < y ≤ z} : �x2 : � INIT � � y

�x2 : � COMP ∪ INIT � y � COMP ∪ SPECIAL � � y + 1

�x2 : � COMP � y � COMP ∪ SPECIAL � y + 1 � SPECIAL � � �
14: �x1 {0 ≤ x1 < z < 101, 0 < y ≤ z} : �x2 : � INIT � � y − 1

�x2 : � COMP ∪ INIT � y � COMP ∪ SPECIAL ∪ INIT � � y

�x2 : � COMP ∪ INIT � y � COMP ∪ SPECIAL � � y + 1

�x2 : � COMP � y � COMP ∪ SPECIAL � y + 1 � SPECIAL � � �
2: = 14: without z < 101

�as the union of 14: and 2: is 14: here and this is the abstract loop invariant�
15: = 2:

16: �x1 {0 < y < x1 < z, y < x2, 99 < z} : �x2 : � SPECIAL � � �
�The assertion in 16: is proved correct.�

9.2 Partial Array Initialization

The program below partially initializes an array A.

int n; /* n > 0 */

int k, A[n];

/* 0: */ k = 0;

/* 1: */ while /* 2: */ (k < n) {

/* 3: */ if (k > 0) {

/* 4: */ A[k] = 0;

/* 5: */ };

/* 6: */ k = k+1;

/* 7: */ };

/* 8: */

The ordering abstract domain Dc is assumed to be the octagon abstract domain [20]).
Following Sect. 8, an array A is abstracted by two fresh variables A1 ∈ D to segment

indices A1 of array A, A1 ∈ [A.low, A.high] and a variable Av ∈ D standing for any value
of the array in a given segment such that Av <D A1 and Av is a leave. For leaves we use
constant propagation [15]. The loop invariant found at point 3 is

Av: 0Av: !

k: ! 2 !

A1: ! 1 ! k !A1: !

0 ! k < n

Av: !Av: !

The fixpoint iteration with widening is the following:

0: � k {0 < n, 0 � A1 < n} : � A1 : � Av : � � � � �k and A uninitialized�
�: ⊥ �� = 1, . . . , 8, infimum�
1:,2:,3:,6: � k {k = 0 < n} : � A1 : � Av : � � � � �0: where k = 0, k < n, k � 0�
7: � k {k = 1 � n} : � A1 : � Av : � � � � �6: where k = k + 1�
2:,3: � k {0 � k � 1, k < n} : � A1 : � Av : � � � � �joining 1: and 7:, test k < n�
4: � k {1 = k < n} : � A1 : � Av : � � � � �3: with k > 0�
5: � k {1 = k < n} : � A1 : � Av : � � 1 � Av : 0 � 2 � Av : � � � �

�4: with A[k] = 0 where k = 1�
6: � k {0 � k � 1, k < n} : � A1 {k = 0} : � Av : � � � 1

� A1 {k = 1} : � Av : � � 1 � Av : 0 � 2 � Av : � � � �
�joining 3: and k � 0 so k = 0 together with 5: where k = 1�

7: � k {1 � k � 2, k � n} : � A1 {k = 1} : � Av : � � � 2

� A1 {k = 2} : � Av : � � 1 � Av : 0 � 2 � Av : � � � � �6: where k = k + 1�
1: �t 7: � k {0 � k � 2, k � n} : � A1 {0 � k � 1} : � Av : � � � 2

� A1 {k = 2} : � Av : � � 1 � Av : 0 � 2 � Av : � � � � � �join of 1: and 7:�
2:,3: � k {0 � k < n} : � A1 {0 � k � 1} : � Av : � � � 2

� A1 : � Av : � � 1 � Av : 0 � k � Av : � � � � � �2: �
(1: �t 7)

7, test k < n�
4: � k {0 < k < n} : � A1 {k = 1} : � Av : � � � 2

� A1 : � Av : � � 1 � Av : 0 � k � Av : � � � � � �3: with k > 0�
5: � k {0 < k < n} : � A1 {k = 1} : � Av : � � 1 � Av : 0 � 2 � Av : � � � 2

� A1 : � Av : � � 1 � Av : 0 � k + 1 � Av : � � � � � �4: with A[k] = 0�
6: � k {0 � k < n} : � A1 {k = 0} : � Av : � � � 1

� A1 {k = 1} : � Av : � � 1 � Av : 0 � 2 � Av : � � � 2

� A1 : � Av : � � 1 � Av : 0 � k + 1 � Av : � � � � �
�joining 3: and k � 0 with 5:�

7: � k {0 < k � n} : � A1 {k = 1} : � Av : � � � 2

Decision tree
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Precondition inference from asserts
• Derive a static precondition from programmers and 

languages runtime-checked assertions in the code

• Not a wp:

• Symbolic under-approximation:

• To appear in VMCAI’2011
6

null∧∀i ∈ [0, A.length) : A[i] �= null is checked by the implicit language assertions
while iterating over the array.

void AllNotNull(Ptr[] A) {

/* 1: */ int i = 0;

/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {

/* 4: */ assert((A != null) && (A[i] != null));

/* 5: */ A[i].f = new Object();

/* 6: */ i++;

/* 7: */ }

/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modified
at program point 5:.

��
On one hand, a solution to the contract inference problem could be to infer the pre-
condition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposed e.g.,
in [10, Sect. 10-4.6]) or [9, Sect. 3.4.5]). But this does not guarantee the precondi-
tion to be easily understandable and that efficient code can be generated to check
it. Moreover this is stronger than strictly required (e.g., the code x = random();

assert(x ==0) is not guaranteed to terminate properly, but has at least one execu-
tion without failure, so should not be rejected). On the other hand, the precondition
checking code could be a copy of the method body where all code with random or
visible side effect (including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get the straw man

bool CheckAllNotNull(Ptr[] A) {

int i = 0;

while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))

{ return false };

i++ }

return true }

Modifications of i have no visible side effects while those of elements of A do have,
so the assignment A[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. ��

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and efficiently checkable at runtime, if necessary.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) using ForAll quantifiers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. ��

The semantics of code is formalized in Sect. 2 and that of specifications by runtime
assertions in Sect. 3. The contract precondition inference problem is defined in Sect. 4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect. 5 and used in Sect. 6 to provide a fixpoint solution to
the contract precondition inference problem. Several effective contract precondition
inference are then proposed, by data flow analysis in Sect. 7, for scalar variables both
by forward symbolic analysis in Sect. 8 and by backward symbolic analysis in Sect. 9,
for collections by forward analysis in Sect. 10. Sect. 11 has a comparison with related
work, suggestions for future work, and conclusions.
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(i) 4: {0}d{i}?e{A.length} - {0}c{i}?n{A.length} last segment not empty

(j) 5: {0}d{i}?e{A.length} - {0}c{i}?c{i+1}n{A.length}?
A[i] checked while unmodified

(k) 6: {0}d{i}?d{i+1}e{A.length}? - {0}c{i}?c{i+1}n{A.length}?
A[i] potentially modified

(l) 7: {0}d{i-1}?d{i}e{A.length}? - {0}c{i-1}?c{i}n{A.length}?
invertible assignment iold = inew − 1

(m) 3: {0}d{i}?e{A.length}? � {0}d{i-1}d{i}e{A.length}? - join

{0}c{i}?n{A.length}? � {0}c{i-1}c{i}n{A.length}?
= {0}d{i}?e{A.length}? � {0}d{i}?e{A.length}? - segment unification

{0}c{i}?n{A.length}? � {0}c{i}?n{A.length}?
= {0}d{i}?e{A.length}? - {0}c{i}?n{A.length}?

segmentwise join, convergence

(n) 8: {0}d{i,A.length}? - {0}c{i,A.length}?
i � A.length in segmentation and � in test negation so i = A.length.

To generate code for the precondition, the information {0}c{i,A.length}? in (n) is

valid at program 8: dominating the end of the program, so assert(A[i] != null)
has been checked on all the elements of the array before they where changed in the

program. Hence the generated precondition is Forall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic

bounds in a collection can change from one program point to another. So these

expressions in the final segmentation must be expressed in terms of values on entry,

a problem solved in Sect. 8. ��

Abstract domain for collections. The abstract properties are

ξ ∈ Γ → X ∈ X �→ S(M)×A(X) → S(C)

At program point c ∈ Γ , the collection X ∈ X has the collection segmentation ab-

stract property ξ(c)(X) which is a pair �ξ(c)(X)M, ξ(c)(X)C�. The abstract relational

invariance property ξ(c)(X)M specifies which elements of the collection are for sure

equal to their initial values. For each assertion in �c, b(X,i)� ∈ A(X) (where c is

a program point designating an assert(b) and b(X,i) is a side effect free Boolean

expression checking a property of element X[i] of collection X (11)
), the abstract

trace-based property ξ(c)(X)C�c, b(X,i)� specifies which elements of the collection

have been checked for sure by b at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization γX
S of a seg-

mentation B1A1B2[?
2
]A2 . . . An−1Bn[?

n
] ∈ S(A) for a collection X is the set of

prefixes �s = �s0 . . .�s� of the program run describing how the elements A[k], k ∈
[0, A.count) of the collection X have been organized into consecutive, non-overlapping

segments, covering the whole collection.

(b) All the elements of the collection in each segment BkAkBk+1[?
k
] have the

property described by Ak. The values of expressions in segment bounds B1, . . . , Bn

should be understood as evaluated in this last state �s� while the properties Ak may

refer to some or all of the states �s0, . . . ,�s�.

(11) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]),
the modification analysis must check that the array A has not been modified for all these indexes.
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equal to/different 
from initial value

– the segment bounds {ei
1 ... ei

mi} ∈ B, i ∈ [1, n], n > 1, are finite non-empty sets of
symbolic expressions in normal form ei

j ∈ E ;
– the abstract predicates Ai ∈ A denote properties that are valid for all the elements

in the collection between the bounds; and
– the optional question mark [?i] follows the upper bound of a segment. Its presence

? means that the segment might be empty. Its absence means that the segment
cannot be empty. Because this information is attached to the segment upper bound
(which is also the lower bound of the next segment), the lower bound {e1

1 . . . e1
m1}

of the first segment never has a question mark. �{ , ?}, �, �, �� is a complete
lattice with ≺ ?.

Segmentation modification and checking analyses. We consider a segmen-
tation modification analysis with abstract domain S(M) where M � {e, d} with
e � e ❁ d � d. The abstract property e states that all the elements in the segment
must be equal to their initial value (so γM(e) � {�v, v� | v ∈ V}) and the abstract
property d means that some element in the segment might have been modified hence
might be different from its initial value (in which case we define γM(d) � V × V).

For each assert in the program, we also use a segmentation checking analysis
with abstract domain C � {⊥, n, c.�} where ⊥ ❁ n ❁ � and ⊥ ❁ c ❁ � to collect the
set of elements of a collection that have been checked by this assert. The abstract
property ⊥ is unreachability, c states that all the elements in the segment have
definitely been checked by the relevant assert, n when none of the elements in the
segment have been checked, and � is unknown.

Example 22 The analysis of Ex. 1 proceeds as follows (the first segmentation in
S(M) collects element modifications for A while the second in segmentation S(C)
collects the set of elements A[i] of A checked by the assertion at program point 4:
while equal to its initial value. The classical analyses for A (not null whenever used)
and i are not shown.).

(a) 1: {0}e{A.length}? - {0}n{A.length}?
no element yet modified (e) and none checked (n), array may be empty

(b) 2: {0,i}e{A.length}? - {0,i}n{A.length}? i = 0
(c) 3: ⊥ � ({0,i}e{A.length}? - {0,i}n{A.length}?) join

= {0,i}e{A.length}? - {0,i}n{A.length}?
(d) 4: {0,i}e{A.length} - {0,i}n{A.length}

last and only segment hence array not empty (since A.length > i = 0)
(e) 5: {0,i}e{A.length} - {0,i}c{1,i+1}n{A.length}?

A[i] checked while unmodified
(f) 6: {0,i}d{1,i+1}e{A.length}? - {0,i}c{1,i+1}n{A.length}?
A[i] appears on the left handside of an assignment, hence is potentially modified

(g) 7: {0,i-1}d{1,i}e{A.length}? - {0,i-1}c{1,i}n{A.length}?
invertible assignment iold = inew − 1

(h) 3: {0,i}e{A.length}? � {0,i-1}d{1,i}e{A.length}? - join
{0,i}n{A.length}? � {0,i-1}c{1,i}n{A.length}?

= {0}e{i}?e{A.length}? � {0}d{i}e{A.length}? - segment unification
{0}⊥{i}?n{A.length}? � {0}c{i}n{A.length}?

= {0}d{i}?e{A.length}? - {0}c{i}?n{A.length}?
segmentwise join e � d = d, e � e = e, ⊥ � c = c, n � n = n

12

[not]-check 
while unmodified

Second alternative: eliminating definite errors
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Ongoing work
(1) Logical abstract domains
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Combining Algebraic and Logical Abstractions (I)

• Model-checking is ‟logical” (temporal logic, BDDs, 
SMT solvers,...)

• Abstract interpretation is ‟algebraic” (orders, 
lattices, linear algebra, categories, reduced 
product, ...)

• MC & AI can be combined within ‟set theory”, e.g.

• Patrick Cousot, Radhia Cousot: Temporal Abstract 
Interpretation. POPL 2000, 12-25.

• Patrick Cousot, Radhia Cousot: Refining Model 
Checking by Abstract Interpretation. Autom. Softw. 
Eng. 6(1): 69-95 (1999).
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Combining Algebraic and Logical Abstractions (II)

• We propose a new MC & AI combination as ‟logical 
(i.e. SMT solvers) + algebraic (i.e. reduced product of 
abstract domains)”
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Logical abstract domains: an instance 
of algebraic abstract domains

• Abstract properties: a theory (set of logical 
formulae)

• Order =>, join: \/, meet: /\, ...

• Concretization γ: interpretation

• Abstraction α: in general does not exist (no best 
abstraction e.g. in absence of infinite conjunctions)

• Transformers:

• Forward: Floyd/sp
• Backward: Hoare/wp/wlp
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2.10 Uniform abstraction of interpretations

We may want to describe the properties of the program without
distinguishing the interpretations in the context of the program.
This is the case, for example, when expressing properties that
should hold for all possible interpretations of the program. That
abstraction simply forgets the interpretations and just keeps the
union of all possible behaviors. The abstraction is described by the

Galois connection �PΣI , ⊆� −−−−→←−−−−
αΣI

γΣI �
�

I∈I
R
Σ
I , ⊆� where

αΣI (P) �
�
η
��� ∃ I : �I, η� ∈ P

�
and γΣI (E) �

�
�I, η�

��� I ∈ I ∧ η ∈ E
�
.

Example 2. That is what the Astrée analyzer [1, 10] does when
taking into account all possible rounding error modes for floating
points computations. ��

2.11 Theories

The set �xΨ of free variables of a formula Ψ ∈ F(Σ) is defined
inductively as the set of variables in the formula which are not
in the scope of an existential quantifier. A sentence of F(Σ) is
a formula with no free variable, S(Σ) �

�
Ψ ∈ F(Σ)

��� �xΨ = ∅
�
. A

theory T ∈ ℘(S(Σ)) is a set of sentences [4] (called the theorems of
the theory). The set of predicate and function symbols that appear
in at least one sentence of a theory T should be contained in the
signature S(T ) ⊆̇ Σ of theory T . The language F(T ) of a theory T
is the set of quantified first-order formulæ that contain no predicate
or function symbol outside of the signature of the theory.

The idea of theories is to restrict the possible meanings of
functions and predicates in order to reason under these hypotheses.
The meanings which are allowed are the meanings which make the
sentences of the theory true.

2.12 Models

An interpretation I ∈ I(Σ) is said to be a model of Ψ ∈ F(Σ) when
∃ η : I |=η Ψ (i.e. I makes Ψ true). An interpretation is a model of
a theory T if and only if it is a model of all the theorems of the
theory (i.e. makes true all theorems of the theory). The class of all
models of a theory T is

M(T ) � {I ∈ I(S(T )) | ∀Ψ ∈ T : ∃ η : I |=η Ψ}
= {I ∈ I(S(T )) | ∀Ψ ∈ T : ∀ η : I |=η Ψ}

since ifΨ is a sentence and if there is an I and an η such that I |=η Ψ,
then for all η�, I |=η� Ψ.

Quite often, the set of sentences of a theory is not defined ex-
tensively, but using a (generally finite or enumerable) set of axioms
which generate the set of theorems of the theory by implication. A
theory is said to be deductive if and only if it is closed by deduction,
that is all the theorems that are true on all models of the theory are
in the theory.

2.13 Abstraction by a theory

Another possibility for abstraction is to keep the context of interpre-
tations and forget about the properties on variables. This is simply
a projection on the first component of the pairs interpretation, envi-
ronment. In some cases it can be difficult to represent exactly an in-
finite set of interpretations, and we can use theories (preferably de-
ductive theories with a recursively enumerable number of axioms)
to represent the set of interpretations which are models of that the-
ories. The relationship between theories and multi-interpreted se-
mantics is expressed by the concretization function

γM(T ) �
�
�I, η�

���� I ∈ M(T ) ∧ η ∈ RΣI
�
.

Notice, though, that because the lattice of sentences of a theory is
not complete, there is no best abstraction in general.

Example 3. If � interprets programs over the natural numbers,
then by Gödel first incompleteness theorem there is no enumerable
first-order theory characterizing this interpretation, so the poset has
no best abstraction of {�}. ��
Once an (arbitrary) theory T has been chosen to abstract a set I of
interpretations there is a best abstraction αS(T )

I→γM(T )(P) of interpreted
properties in P ∈ PS(T )

I by abstract properties in PS(T )
γM(T ).

2.14 Logical abstract domains

A logical abstract domain is an abstract domain �AΣ
T
, �, �, �,

. . . , f, p, . . .� such that T ∈ ℘(S(Σ)) and AΣI ⊆ F(T ) with � �
⇒, � � tt, � � ∨, etc, and the concretization is γΣ

T
(Ψ) ��

�I, η� ∈ γM(T )
��� I |=η Ψ

�
.

Remark that there might be no finite formula in the language
F(T ) of the theory T to encode a best abstraction. In absence
of a best abstraction there is no Galois connection, in which case
soundness can always be formalized by a concretization function
only as in Sect. 2.6. Moreover, in presence of infinite ascending
chains of finite first-order formulæ (e.g. (x = 0) ⇒ (x = 0 ∨ x =
1) ⇒ . . . ⇒ �n

i=1 x = i ⇒ . . .) and descending chains of finite
formulæ (e.g. (x � −1) ⇐ (x � −1 ∧ x � −2) ⇐ . . . ⇐ �n

i=1 x �
−i ⇐ . . .) with no finite first-order formula to express their limits,
the fixpoint may not exist. Hence the fixpoint semantics in the style
of Sect. 2.5 is not well-defined in the abstract. However, following
Sect. 2.6, we can define the abstract semantics as the set of abstract
inductive invariants

C
S(T )
T

�P� ∈ ℘(F(T )) abstract semantics

F
S(T )
T

�P� ∈ F(T ) �→F(T ) abstract transformer

C
S(T )
T

�P� �
�

P
����� F

S(T )
T

�P�(P) ⊆ P
�

postfixpoint semantics.

3. Observational semantics

Besides values of program variables, it may be interesting to allow
the concrete semantics to observe values of auxiliary variables (e.g.
as in Owicki and Gries proof method for parallel processes [24]
which does not use the program counters and so requires using
auxiliary variables) or values of functions over program variables
(such as wait conditions in monitors [20]). Whereas such cases
can be described in the general setting above (e.g. by inclusion of
the auxiliary variables as program variables in Owicki and Gries
proof method or by reevaluating wait conditions if a signal on the
sensitivity lists changes), it is more convenient to explicitly define
the observables of the program semantics.

3.1 Observable properties of multi-interpreted

programs

We name observables by identifiers (which, in particular, can be
variable identifiers). Observables are functions from values of pro-
gram variables to values.
Σ = �s, x, f , p, #� signature
x ∈ xP program variables (xP ⊆ x)
ΣP = �s, xP, f , p, #� ⊆̇ Σ program signature

x ∈ xO observable identifiers (xO ⊆ x)
ΣO = �s, xO, f , p, #� ⊆̇ Σ observable signature

v ∈ IV values (for interpretation I ∈ I(Σ))
η ∈ RΣPI � xP→ IV program variable environments
I ∈ ℘(I(Σ)) multiple interpretations

RΣPI �
�
�I, η�

���� I ∈ I ∧ η ∈ RΣPI

�
multi-interpreted progr. envir.

PΣPI � ℘(RΣPI ) multi-interpreted program properties

ζ ∈ RΣOI � xO→ IV program observable environments
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2.10 Uniform abstraction of interpretations

We may want to describe the properties of the program without
distinguishing the interpretations in the context of the program.
This is the case, for example, when expressing properties that
should hold for all possible interpretations of the program. That
abstraction simply forgets the interpretations and just keeps the
union of all possible behaviors. The abstraction is described by the

Galois connection �PΣI , ⊆� −−−−→←−−−−
αΣI

γΣI �
�

I∈I
R
Σ
I , ⊆� where

αΣI (P) �
�
η
��� ∃ I : �I, η� ∈ P

�
and γΣI (E) �

�
�I, η�

��� I ∈ I ∧ η ∈ E
�
.

Example 2. That is what the Astrée analyzer [1, 10] does when
taking into account all possible rounding error modes for floating
points computations. ��

2.11 Theories

The set �xΨ of free variables of a formula Ψ ∈ F(Σ) is defined
inductively as the set of variables in the formula which are not
in the scope of an existential quantifier. A sentence of F(Σ) is
a formula with no free variable, S(Σ) �

�
Ψ ∈ F(Σ)

��� �xΨ = ∅
�
. A

theory T ∈ ℘(S(Σ)) is a set of sentences [4] (called the theorems of
the theory). The set of predicate and function symbols that appear
in at least one sentence of a theory T should be contained in the
signature S(T ) ⊆̇ Σ of theory T . The language F(T ) of a theory T
is the set of quantified first-order formulæ that contain no predicate
or function symbol outside of the signature of the theory.

The idea of theories is to restrict the possible meanings of
functions and predicates in order to reason under these hypotheses.
The meanings which are allowed are the meanings which make the
sentences of the theory true.

2.12 Models

An interpretation I ∈ I(Σ) is said to be a model of Ψ ∈ F(Σ) when
∃ η : I |=η Ψ (i.e. I makes Ψ true). An interpretation is a model of
a theory T if and only if it is a model of all the theorems of the
theory (i.e. makes true all theorems of the theory). The class of all
models of a theory T is

M(T ) � {I ∈ I(S(T )) | ∀Ψ ∈ T : ∃ η : I |=η Ψ}
= {I ∈ I(S(T )) | ∀Ψ ∈ T : ∀ η : I |=η Ψ}

since ifΨ is a sentence and if there is an I and an η such that I |=η Ψ,
then for all η�, I |=η� Ψ.

Quite often, the set of sentences of a theory is not defined ex-
tensively, but using a (generally finite or enumerable) set of axioms
which generate the set of theorems of the theory by implication. A
theory is said to be deductive if and only if it is closed by deduction,
that is all the theorems that are true on all models of the theory are
in the theory.

2.13 Abstraction by a theory

Another possibility for abstraction is to keep the context of interpre-
tations and forget about the properties on variables. This is simply
a projection on the first component of the pairs interpretation, envi-
ronment. In some cases it can be difficult to represent exactly an in-
finite set of interpretations, and we can use theories (preferably de-
ductive theories with a recursively enumerable number of axioms)
to represent the set of interpretations which are models of that the-
ories. The relationship between theories and multi-interpreted se-
mantics is expressed by the concretization function

γM(T ) �
�
�I, η�

���� I ∈ M(T ) ∧ η ∈ RΣI
�
.

Notice, though, that because the lattice of sentences of a theory is
not complete, there is no best abstraction in general.

Example 3. If � interprets programs over the natural numbers,
then by Gödel first incompleteness theorem there is no enumerable
first-order theory characterizing this interpretation, so the poset has
no best abstraction of {�}. ��
Once an (arbitrary) theory T has been chosen to abstract a set I of
interpretations there is a best abstraction αS(T )

I→γM(T )(P) of interpreted
properties in P ∈ PS(T )

I by abstract properties in PS(T )
γM(T ).

2.14 Logical abstract domains

A logical abstract domain is an abstract domain �AΣ
T
, �, �, �,

. . . , f, p, . . .� such that T ∈ ℘(S(Σ)) and AΣI ⊆ F(T ) with � �
⇒, � � tt, � � ∨, etc, and the concretization is γΣ

T
(Ψ) ��

�I, η� ∈ γM(T )
��� I |=η Ψ

�
.

Remark that there might be no finite formula in the language
F(T ) of the theory T to encode a best abstraction. In absence
of a best abstraction there is no Galois connection, in which case
soundness can always be formalized by a concretization function
only as in Sect. 2.6. Moreover, in presence of infinite ascending
chains of finite first-order formulæ (e.g. (x = 0) ⇒ (x = 0 ∨ x =
1) ⇒ . . . ⇒ �n

i=1 x = i ⇒ . . .) and descending chains of finite
formulæ (e.g. (x � −1) ⇐ (x � −1 ∧ x � −2) ⇐ . . . ⇐ �n

i=1 x �
−i ⇐ . . .) with no finite first-order formula to express their limits,
the fixpoint may not exist. Hence the fixpoint semantics in the style
of Sect. 2.5 is not well-defined in the abstract. However, following
Sect. 2.6, we can define the abstract semantics as the set of abstract
inductive invariants

C
S(T )
T

�P� ∈ ℘(F(T )) abstract semantics

F
S(T )
T

�P� ∈ F(T ) �→F(T ) abstract transformer

C
S(T )
T

�P� �
�

P
����� F

S(T )
T

�P�(P) ⊆ P
�

postfixpoint semantics.

3. Observational semantics

Besides values of program variables, it may be interesting to allow
the concrete semantics to observe values of auxiliary variables (e.g.
as in Owicki and Gries proof method for parallel processes [24]
which does not use the program counters and so requires using
auxiliary variables) or values of functions over program variables
(such as wait conditions in monitors [20]). Whereas such cases
can be described in the general setting above (e.g. by inclusion of
the auxiliary variables as program variables in Owicki and Gries
proof method or by reevaluating wait conditions if a signal on the
sensitivity lists changes), it is more convenient to explicitly define
the observables of the program semantics.

3.1 Observable properties of multi-interpreted

programs

We name observables by identifiers (which, in particular, can be
variable identifiers). Observables are functions from values of pro-
gram variables to values.
Σ = �s, x, f , p, #� signature
x ∈ xP program variables (xP ⊆ x)
ΣP = �s, xP, f , p, #� ⊆̇ Σ program signature

x ∈ xO observable identifiers (xO ⊆ x)
ΣO = �s, xO, f , p, #� ⊆̇ Σ observable signature

v ∈ IV values (for interpretation I ∈ I(Σ))
η ∈ RΣPI � xP→ IV program variable environments
I ∈ ℘(I(Σ)) multiple interpretations

RΣPI �
�
�I, η�

���� I ∈ I ∧ η ∈ RΣPI

�
multi-interpreted progr. envir.

PΣPI � ℘(RΣPI ) multi-interpreted program properties

ζ ∈ RΣOI � xO→ IV program observable environments
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The (iterated) reduced 
product in AI

11
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Reduced product
• A Cartesian product of abstract domains:

       Πi=1,...,n Ai

• Understood as a conjunction:

      γ(a1,...,an) = /\ i=1,...,n γ(ai)

• Implemented as a Cartesian product plus a reduction   
ρ to propagate shared information from one 
component to another

• Sound and complete

12



CMACS meeting, NYU, October 28–29, 2010                                                                                                                                                                                                                                                                                 © P. Cousot

Example of reduced product

13

• Cousot & Cousot, POPL 79

reduced product:
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Iterated pairwise reduction
• ρij : reduction between abstract domains Ai and Aj

• ρij : extension to the Cartesian product

      ρij(a1,...,an) = (a1,..., a’i,..., a’j,..., an)

     where (a’i, a’j) = ρij(ai, aj)

• Iterated pairwise reduction

ρ* = iterate the ρij, i,j=1,...,n, i≠j until convergence

• Sound (but in general incomplete)

14
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Example of pairwise iterated reduction
• Concrete domain:

• Abstract domains:

• Reduction of                                  :

• Global: 

• Pairwise reductions:  

• Iterated reduction:      

15
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The Nelson-Oppen 
combination procedure

16
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Objective of the Nelson-Oppen procedure

17

• Given deductive theories

with equality and decision procedures        for

satisfiability of quantifier free conjunctive formulæ

• Decide the satisfiability of a quantifier free 

conjunctive formula                         in theory

                  such that

it must be proved that the reduction does not break down the ter-

mination of the product widening, in which case reduction must be

weakened or the widening strengthened.

Example 20. The closure operation in the octagon abstract domain

can be considered as a reduction between separate domains, each

considering only a pair of variables: if one applies the classical

widening operation on octagons followed by closure (reduction),

then termination is no longer ensured (e.g. see [21, Fig. 25–26]).

��

5.5 Observational reduced product

The observational reduced product of abstract domains �Ai, �i�, i ∈
∆ consists in introducing observables to increase the precision of

the Cartesian product. We will write
Ω
�

i∈∆ Ai for the observational
Cartesian product with observables named by Ω. It can be seen as

the application of the extension operator of Sect. 3 followed by a

Cartesian product
�

i∈∆ Ai. This operation is not very fruitful, as

the shared observables will not bring much information. But used

in conjunction with an iterated reduction, it can give very precise

results since information about the observables can bring additional

reductions.

Definition 21 (Observational reduced product). For all i ∈ ∆,
let �iAΣOI , i��, �iAΣO�I , i��� be abstract domains, Ω� be the new
observables, and iextendΩ� ∈ iAΣOI → iAΣO�I be the sound extensions
satisfying the conditions of definition 12.

The observational cartesian product is
Ω�
�

i∈∆

iAΣOI �
�

i∈∆

iextendΩ�
�

iAΣOI
�

and the observational reduced product is �
�
Ω
�

i∈∆ Ai

�
/�≡, ���.

6. The Nelson-Oppen combination procedure

6.1 Formula purification

6.1.1 Formula purification in the Nelson-Oppen theory

combination procedure

Given disjoint deductive theories Ti in F(Σi), Σi ⊆̇ Σ with equality

and decision procedures sati for satisfiability of quantifier-free con-

junctive formulæ ϕi ∈ C(Σi), i = 1, ..., n, the Nelson-Oppen combi-

nation procedure [23] decides the satisfiability of a quantifier-free

conjunctive formula ϕ ∈ C(
�n

i=1
Σi) in theory T =

�n
i=1
Ti such

thatM(T ) =
�n

i=1
M(Ti).

The first “purification” phase [29, Sect. 2] of Nelson-Oppen

combination procedure consists in repeating the replacement of (all

occurrences of) an alien subterm t ∈ T(Σi) \ x of a subformula

ψ[t] � C(Σi) (including equality or inequality predicates ψ[t] =
(t = t�) or (t� = t)) of ϕ by a fresh variable x ∈ x such that

#(x) = #(t) and introducing the equation x = t (i.e. ϕ[ψ[t]] is

replaced by ϕ[ψ[x]] ∧ x = t and the replacement is recursively

applied to ϕ[ψ[x]] and x = t).

Example 22 (Formula purification). Assume f ∈ f1 and g ∈ f2.

ϕ = (g(x) = f (g(g(x)))) → (∃ y : y = f (g(y)) ∧ y = g(x)) →
(∃ y : ∃ z : y = f (z) ∧ y = g(x) ∧ z = g(y))→ (∃ y : ∃ z : ϕ1 ∧ ϕ2) =
ϕ� where ϕ1 = (y = f (z)) and ϕ2 = (y = g(x) ∧ z = g(y)). ��
Upon termination, the quantifier-free conjunctive formula ϕ is

transformed into a formula ϕ� of the form

ϕ� = ∃ �x1, . . . , �xn :

n�

i=1

ϕi where ϕi = ϕ�i ∧
�

xi∈�xi

xi = txi ,

�x �
�n

i=1
�xi is the set of auxiliary variables introduced by the

purification , each txi ∈ T(Σi) is an alien subterm of ϕ renamed

as xi ∈ x such that #(xi) = #(txi ), and each ϕ�i (hence each

ϕi) is a quantifier-free conjunctive formula in C(Σi
O

). We have

ϕ⇔ �n
i=1
ϕ�i [xi ← txi ]xi∈�xi

so ϕ and ϕ� are equisatisfiable.

In case of non-disjoint theories Ti, i = 1, ..., n, purification is

still possible, by considering the worst case (so as to purify any

subterm of theories Ti or T j occurring in a term of theories Ti or

T j). The reason the Nelson-Oppen purification requires disjoint-

ness of theory signatures is that otherwise they can share more than

equalities and cardinality, a sufficient reason for the procedure to be

incomplete. Nevertheless, the purification procedure remains sound

for non-disjoint theories, which can be exploited for static analysis,

as shown below.

6.1.2 The Nelson-Oppen purification as an observational

cartesian product

Let the observable identifiers be the free variables of ϕ ∈ C(Σ),

xP = �xϕ plus the fresh auxiliary variables �x introduced by the

purification xO = xP ∪ �x. Let ΣP and ΣO be the corresponding

signatures of Σ. Given an interpretation I ∈ I , with values IV, the

observable naming Ω
ϕ
I is

Ω
ϕ
I ∈ xO→RΣPI → IV

Ω
ϕ
I (x)η � η(x) when x ∈ xP,

� �tx�η when x ∈ �x .

From a model-theoretic point of view, the purification of ϕ ∈ A
into �ϕ1, . . . , ϕn� can be considered as an abstraction of the pro-

gram properties in P
ΣO
I abstracted by ϕ to observable properties

in R
ΣO
I themselves abstracted to the observational cartesian prod-

uct
Ωϕ
�

i∈∆
iAΣOI where the component abstract domains are �iAΣOI ,

�i� � �C(Σi
O

), ⇒� with concretizations
iγ
ΣO
I ∈ C(Σi

O
)→ iP

ΣO
I such

that
iγ
ΣO
I ∈ C(Σi

O
) → iP

ΣO
I and

iγ
ΣO
I (ϕ) �

�
�I, η� ∈ RΣOI

����� I ∈

M(Ti) ∧ I |=η ϕ
�
, i = 1, . . . , n. This follows from the fact that the

concretization is the same, as shown below.

γΩ
ϕ ,P
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ϕ�i
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ΣO
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�
�I, η�

��� I ∈ I ∧ I |=η Ψ
�
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�I, η� ∈ RΣPI
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it must be proved that the reduction does not break down the ter-

mination of the product widening, in which case reduction must be

weakened or the widening strengthened.

Example 20. The closure operation in the octagon abstract domain

can be considered as a reduction between separate domains, each

considering only a pair of variables: if one applies the classical

widening operation on octagons followed by closure (reduction),

then termination is no longer ensured (e.g. see [21, Fig. 25–26]).

��

5.5 Observational reduced product

The observational reduced product of abstract domains �Ai, �i�, i ∈
∆ consists in introducing observables to increase the precision of

the Cartesian product. We will write
Ω
�

i∈∆ Ai for the observational
Cartesian product with observables named by Ω. It can be seen as

the application of the extension operator of Sect. 3 followed by a

Cartesian product
�

i∈∆ Ai. This operation is not very fruitful, as

the shared observables will not bring much information. But used

in conjunction with an iterated reduction, it can give very precise

results since information about the observables can bring additional

reductions.

Definition 21 (Observational reduced product). For all i ∈ ∆,
let �iAΣOI , i��, �iAΣO�I , i��� be abstract domains, Ω� be the new
observables, and iextendΩ� ∈ iAΣOI → iAΣO�I be the sound extensions
satisfying the conditions of definition 12.

The observational cartesian product is
Ω�
�

i∈∆

iAΣOI �
�

i∈∆

iextendΩ�
�

iAΣOI
�

and the observational reduced product is �
�
Ω
�

i∈∆ Ai

�
/�≡, ���.

6. The Nelson-Oppen combination procedure

6.1 Formula purification

6.1.1 Formula purification in the Nelson-Oppen theory

combination procedure

Given disjoint deductive theories Ti in F(Σi), Σi ⊆̇ Σ with equality

and decision procedures sati for satisfiability of quantifier-free con-

junctive formulæ ϕi ∈ C(Σi), i = 1, ..., n, the Nelson-Oppen combi-

nation procedure [23] decides the satisfiability of a quantifier-free

conjunctive formula ϕ ∈ C(
�n

i=1
Σi) in theory T =

�n
i=1
Ti such

thatM(T ) =
�n

i=1
M(Ti).

The first “purification” phase [29, Sect. 2] of Nelson-Oppen

combination procedure consists in repeating the replacement of (all

occurrences of) an alien subterm t ∈ T(Σi) \ x of a subformula

ψ[t] � C(Σi) (including equality or inequality predicates ψ[t] =
(t = t�) or (t� = t)) of ϕ by a fresh variable x ∈ x such that

#(x) = #(t) and introducing the equation x = t (i.e. ϕ[ψ[t]] is

replaced by ϕ[ψ[x]] ∧ x = t and the replacement is recursively

applied to ϕ[ψ[x]] and x = t).

Example 22 (Formula purification). Assume f ∈ f1 and g ∈ f2.

ϕ = (g(x) = f (g(g(x)))) → (∃ y : y = f (g(y)) ∧ y = g(x)) →
(∃ y : ∃ z : y = f (z) ∧ y = g(x) ∧ z = g(y))→ (∃ y : ∃ z : ϕ1 ∧ ϕ2) =
ϕ� where ϕ1 = (y = f (z)) and ϕ2 = (y = g(x) ∧ z = g(y)). ��
Upon termination, the quantifier-free conjunctive formula ϕ is

transformed into a formula ϕ� of the form

ϕ� = ∃ �x1, . . . , �xn :

n�

i=1

ϕi where ϕi = ϕ�i ∧
�

xi∈�xi

xi = txi ,

�x �
�n

i=1
�xi is the set of auxiliary variables introduced by the

purification , each txi ∈ T(Σi) is an alien subterm of ϕ renamed

as xi ∈ x such that #(xi) = #(txi ), and each ϕ�i (hence each

ϕi) is a quantifier-free conjunctive formula in C(Σi
O

). We have

ϕ⇔ �n
i=1
ϕ�i [xi ← txi ]xi∈�xi

so ϕ and ϕ� are equisatisfiable.

In case of non-disjoint theories Ti, i = 1, ..., n, purification is

still possible, by considering the worst case (so as to purify any

subterm of theories Ti or T j occurring in a term of theories Ti or

T j). The reason the Nelson-Oppen purification requires disjoint-

ness of theory signatures is that otherwise they can share more than

equalities and cardinality, a sufficient reason for the procedure to be

incomplete. Nevertheless, the purification procedure remains sound

for non-disjoint theories, which can be exploited for static analysis,

as shown below.

6.1.2 The Nelson-Oppen purification as an observational

cartesian product

Let the observable identifiers be the free variables of ϕ ∈ C(Σ),

xP = �xϕ plus the fresh auxiliary variables �x introduced by the

purification xO = xP ∪ �x. Let ΣP and ΣO be the corresponding

signatures of Σ. Given an interpretation I ∈ I , with values IV, the

observable naming Ω
ϕ
I is

Ω
ϕ
I ∈ xO→RΣPI → IV

Ω
ϕ
I (x)η � η(x) when x ∈ xP,

� �tx�η when x ∈ �x .

From a model-theoretic point of view, the purification of ϕ ∈ A
into �ϕ1, . . . , ϕn� can be considered as an abstraction of the pro-

gram properties in P
ΣO
I abstracted by ϕ to observable properties

in R
ΣO
I themselves abstracted to the observational cartesian prod-

uct
Ωϕ
�

i∈∆
iAΣOI where the component abstract domains are �iAΣOI ,

�i� � �C(Σi
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), ⇒� with concretizations
iγ
ΣO
I ∈ C(Σi

O
)→ iP

ΣO
I such

that
iγ
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I ∈ C(Σi

O
) → iP

ΣO
I and

iγ
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I (ϕ) �

�
�I, η� ∈ RΣOI

����� I ∈

M(Ti) ∧ I |=η ϕ
�
, i = 1, . . . , n. This follows from the fact that the

concretization is the same, as shown below.
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it must be proved that the reduction does not break down the ter-

mination of the product widening, in which case reduction must be

weakened or the widening strengthened.

Example 20. The closure operation in the octagon abstract domain

can be considered as a reduction between separate domains, each

considering only a pair of variables: if one applies the classical

widening operation on octagons followed by closure (reduction),

then termination is no longer ensured (e.g. see [21, Fig. 25–26]).

��

5.5 Observational reduced product

The observational reduced product of abstract domains �Ai, �i�, i ∈
∆ consists in introducing observables to increase the precision of

the Cartesian product. We will write
Ω
�

i∈∆ Ai for the observational
Cartesian product with observables named by Ω. It can be seen as

the application of the extension operator of Sect. 3 followed by a

Cartesian product
�

i∈∆ Ai. This operation is not very fruitful, as

the shared observables will not bring much information. But used

in conjunction with an iterated reduction, it can give very precise

results since information about the observables can bring additional

reductions.

Definition 21 (Observational reduced product). For all i ∈ ∆,
let �iAΣOI , i��, �iAΣO�I , i��� be abstract domains, Ω� be the new
observables, and iextendΩ� ∈ iAΣOI → iAΣO�I be the sound extensions
satisfying the conditions of definition 12.

The observational cartesian product is
Ω�
�

i∈∆

iAΣOI �
�

i∈∆

iextendΩ�
�

iAΣOI
�

and the observational reduced product is �
�
Ω
�

i∈∆ Ai

�
/�≡, ���.

6. The Nelson-Oppen combination procedure

6.1 Formula purification

6.1.1 Formula purification in the Nelson-Oppen theory

combination procedure

Given disjoint deductive theories Ti in F(Σi), Σi ⊆̇ Σ with equality

and decision procedures sati for satisfiability of quantifier-free con-

junctive formulæ ϕi ∈ C(Σi), i = 1, ..., n, the Nelson-Oppen combi-

nation procedure [23] decides the satisfiability of a quantifier-free

conjunctive formula ϕ ∈ C(
�n

i=1
Σi) in theory T =

�n
i=1
Ti such

thatM(T ) =
�n

i=1
M(Ti).

The first “purification” phase [29, Sect. 2] of Nelson-Oppen

combination procedure consists in repeating the replacement of (all

occurrences of) an alien subterm t ∈ T(Σi) \ x of a subformula

ψ[t] � C(Σi) (including equality or inequality predicates ψ[t] =
(t = t�) or (t� = t)) of ϕ by a fresh variable x ∈ x such that

#(x) = #(t) and introducing the equation x = t (i.e. ϕ[ψ[t]] is

replaced by ϕ[ψ[x]] ∧ x = t and the replacement is recursively

applied to ϕ[ψ[x]] and x = t).

Example 22 (Formula purification). Assume f ∈ f1 and g ∈ f2.

ϕ = (g(x) = f (g(g(x)))) → (∃ y : y = f (g(y)) ∧ y = g(x)) →
(∃ y : ∃ z : y = f (z) ∧ y = g(x) ∧ z = g(y))→ (∃ y : ∃ z : ϕ1 ∧ ϕ2) =
ϕ� where ϕ1 = (y = f (z)) and ϕ2 = (y = g(x) ∧ z = g(y)). ��
Upon termination, the quantifier-free conjunctive formula ϕ is

transformed into a formula ϕ� of the form

ϕ� = ∃ �x1, . . . , �xn :

n�

i=1

ϕi where ϕi = ϕ�i ∧
�

xi∈�xi

xi = txi ,

�x �
�n

i=1
�xi is the set of auxiliary variables introduced by the

purification , each txi ∈ T(Σi) is an alien subterm of ϕ renamed

as xi ∈ x such that #(xi) = #(txi ), and each ϕ�i (hence each

ϕi) is a quantifier-free conjunctive formula in C(Σi
O

). We have

ϕ⇔ �n
i=1
ϕ�i [xi ← txi ]xi∈�xi

so ϕ and ϕ� are equisatisfiable.

In case of non-disjoint theories Ti, i = 1, ..., n, purification is

still possible, by considering the worst case (so as to purify any

subterm of theories Ti or T j occurring in a term of theories Ti or

T j). The reason the Nelson-Oppen purification requires disjoint-

ness of theory signatures is that otherwise they can share more than

equalities and cardinality, a sufficient reason for the procedure to be

incomplete. Nevertheless, the purification procedure remains sound

for non-disjoint theories, which can be exploited for static analysis,

as shown below.

6.1.2 The Nelson-Oppen purification as an observational

cartesian product

Let the observable identifiers be the free variables of ϕ ∈ C(Σ),

xP = �xϕ plus the fresh auxiliary variables �x introduced by the

purification xO = xP ∪ �x. Let ΣP and ΣO be the corresponding

signatures of Σ. Given an interpretation I ∈ I , with values IV, the

observable naming Ω
ϕ
I is

Ω
ϕ
I ∈ xO→RΣPI → IV

Ω
ϕ
I (x)η � η(x) when x ∈ xP,

� �tx�η when x ∈ �x .

From a model-theoretic point of view, the purification of ϕ ∈ A
into �ϕ1, . . . , ϕn� can be considered as an abstraction of the pro-

gram properties in P
ΣO
I abstracted by ϕ to observable properties

in R
ΣO
I themselves abstracted to the observational cartesian prod-

uct
Ωϕ
�

i∈∆
iAΣOI where the component abstract domains are �iAΣOI ,

�i� � �C(Σi
O

), ⇒� with concretizations
iγ
ΣO
I ∈ C(Σi

O
)→ iP

ΣO
I such

that
iγ
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I ∈ C(Σi

O
) → iP

ΣO
I and

iγ
ΣO
I (ϕ) �

�
�I, η� ∈ RΣOI

����� I ∈

M(Ti) ∧ I |=η ϕ
�
, i = 1, . . . , n. This follows from the fact that the

concretization is the same, as shown below.
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it must be proved that the reduction does not break down the ter-

mination of the product widening, in which case reduction must be

weakened or the widening strengthened.

Example 20. The closure operation in the octagon abstract domain

can be considered as a reduction between separate domains, each

considering only a pair of variables: if one applies the classical

widening operation on octagons followed by closure (reduction),

then termination is no longer ensured (e.g. see [21, Fig. 25–26]).

��

5.5 Observational reduced product

The observational reduced product of abstract domains �Ai, �i�, i ∈
∆ consists in introducing observables to increase the precision of

the Cartesian product. We will write
Ω
�

i∈∆ Ai for the observational
Cartesian product with observables named by Ω. It can be seen as

the application of the extension operator of Sect. 3 followed by a

Cartesian product
�

i∈∆ Ai. This operation is not very fruitful, as

the shared observables will not bring much information. But used

in conjunction with an iterated reduction, it can give very precise

results since information about the observables can bring additional

reductions.

Definition 21 (Observational reduced product). For all i ∈ ∆,
let �iAΣOI , i��, �iAΣO�I , i��� be abstract domains, Ω� be the new
observables, and iextendΩ� ∈ iAΣOI → iAΣO�I be the sound extensions
satisfying the conditions of definition 12.

The observational cartesian product is
Ω�
�

i∈∆

iAΣOI �
�

i∈∆

iextendΩ�
�

iAΣOI
�

and the observational reduced product is �
�
Ω
�

i∈∆ Ai

�
/�≡, ���.

6. The Nelson-Oppen combination procedure

6.1 Formula purification

6.1.1 Formula purification in the Nelson-Oppen theory

combination procedure

Given disjoint deductive theories Ti in F(Σi), Σi ⊆̇ Σ with equality

and decision procedures sati for satisfiability of quantifier-free con-

junctive formulæ ϕi ∈ C(Σi), i = 1, ..., n, the Nelson-Oppen combi-

nation procedure [23] decides the satisfiability of a quantifier-free

conjunctive formula ϕ ∈ C(
�n

i=1
Σi) in theory T =

�n
i=1
Ti such

thatM(T ) =
�n

i=1
M(Ti).

The first “purification” phase [29, Sect. 2] of Nelson-Oppen

combination procedure consists in repeating the replacement of (all

occurrences of) an alien subterm t ∈ T(Σi) \ x of a subformula

ψ[t] � C(Σi) (including equality or inequality predicates ψ[t] =
(t = t�) or (t� = t)) of ϕ by a fresh variable x ∈ x such that

#(x) = #(t) and introducing the equation x = t (i.e. ϕ[ψ[t]] is

replaced by ϕ[ψ[x]] ∧ x = t and the replacement is recursively

applied to ϕ[ψ[x]] and x = t).

Example 22 (Formula purification). Assume f ∈ f1 and g ∈ f2.

ϕ = (g(x) = f (g(g(x)))) → (∃ y : y = f (g(y)) ∧ y = g(x)) →
(∃ y : ∃ z : y = f (z) ∧ y = g(x) ∧ z = g(y))→ (∃ y : ∃ z : ϕ1 ∧ ϕ2) =
ϕ� where ϕ1 = (y = f (z)) and ϕ2 = (y = g(x) ∧ z = g(y)). ��
Upon termination, the quantifier-free conjunctive formula ϕ is

transformed into a formula ϕ� of the form

ϕ� = ∃ �x1, . . . , �xn :

n�

i=1

ϕi where ϕi = ϕ�i ∧
�

xi∈�xi

xi = txi ,

�x �
�n

i=1
�xi is the set of auxiliary variables introduced by the

purification , each txi ∈ T(Σi) is an alien subterm of ϕ renamed

as xi ∈ x such that #(xi) = #(txi ), and each ϕ�i (hence each

ϕi) is a quantifier-free conjunctive formula in C(Σi
O

). We have

ϕ⇔ �n
i=1
ϕ�i [xi ← txi ]xi∈�xi

so ϕ and ϕ� are equisatisfiable.

In case of non-disjoint theories Ti, i = 1, ..., n, purification is

still possible, by considering the worst case (so as to purify any

subterm of theories Ti or T j occurring in a term of theories Ti or

T j). The reason the Nelson-Oppen purification requires disjoint-

ness of theory signatures is that otherwise they can share more than

equalities and cardinality, a sufficient reason for the procedure to be

incomplete. Nevertheless, the purification procedure remains sound

for non-disjoint theories, which can be exploited for static analysis,

as shown below.

6.1.2 The Nelson-Oppen purification as an observational

cartesian product

Let the observable identifiers be the free variables of ϕ ∈ C(Σ),

xP = �xϕ plus the fresh auxiliary variables �x introduced by the

purification xO = xP ∪ �x. Let ΣP and ΣO be the corresponding

signatures of Σ. Given an interpretation I ∈ I , with values IV, the

observable naming Ω
ϕ
I is

Ω
ϕ
I ∈ xO→RΣPI → IV

Ω
ϕ
I (x)η � η(x) when x ∈ xP,

� �tx�η when x ∈ �x .

From a model-theoretic point of view, the purification of ϕ ∈ A
into �ϕ1, . . . , ϕn� can be considered as an abstraction of the pro-

gram properties in P
ΣO
I abstracted by ϕ to observable properties

in R
ΣO
I themselves abstracted to the observational cartesian prod-

uct
Ωϕ
�

i∈∆
iAΣOI where the component abstract domains are �iAΣOI ,

�i� � �C(Σi
O

), ⇒� with concretizations
iγ
ΣO
I ∈ C(Σi

O
)→ iP

ΣO
I such

that
iγ
ΣO
I ∈ C(Σi

O
) → iP

ΣO
I and

iγ
ΣO
I (ϕ) �

�
�I, η� ∈ RΣOI

����� I ∈

M(Ti) ∧ I |=η ϕ
�
, i = 1, . . . , n. This follows from the fact that the

concretization is the same, as shown below.
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�
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x∈�x x = tx has no free

auxiliary variable in ΣO \ ΣP�
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it must be proved that the reduction does not break down the ter-

mination of the product widening, in which case reduction must be

weakened or the widening strengthened.

Example 20. The closure operation in the octagon abstract domain

can be considered as a reduction between separate domains, each

considering only a pair of variables: if one applies the classical

widening operation on octagons followed by closure (reduction),

then termination is no longer ensured (e.g. see [21, Fig. 25–26]).

��

5.5 Observational reduced product

The observational reduced product of abstract domains �Ai, �i�, i ∈
∆ consists in introducing observables to increase the precision of

the Cartesian product. We will write
Ω
�

i∈∆ Ai for the observational
Cartesian product with observables named by Ω. It can be seen as

the application of the extension operator of Sect. 3 followed by a

Cartesian product
�

i∈∆ Ai. This operation is not very fruitful, as

the shared observables will not bring much information. But used

in conjunction with an iterated reduction, it can give very precise

results since information about the observables can bring additional

reductions.

Definition 21 (Observational reduced product). For all i ∈ ∆,
let �iAΣOI , i��, �iAΣO�I , i��� be abstract domains, Ω� be the new
observables, and iextendΩ� ∈ iAΣOI → iAΣO�I be the sound extensions
satisfying the conditions of definition 12.

The observational cartesian product is
Ω�
�

i∈∆

iAΣOI �
�

i∈∆

iextendΩ�
�

iAΣOI
�

and the observational reduced product is �
�
Ω
�

i∈∆ Ai

�
/�≡, ���.

6. The Nelson-Oppen combination procedure

6.1 Formula purification

6.1.1 Formula purification in the Nelson-Oppen theory

combination procedure

Given disjoint deductive theories Ti in F(Σi), Σi ⊆̇ Σ with equality

and decision procedures sati for satisfiability of quantifier-free con-

junctive formulæ ϕi ∈ C(Σi), i = 1, ..., n, the Nelson-Oppen combi-

nation procedure [23] decides the satisfiability of a quantifier-free

conjunctive formula ϕ ∈ C(
�n

i=1
Σi) in theory T =

�n
i=1
Ti such

thatM(T ) =
�n

i=1
M(Ti).

The first “purification” phase [29, Sect. 2] of Nelson-Oppen

combination procedure consists in repeating the replacement of (all

occurrences of) an alien subterm t ∈ T(Σi) \ x of a subformula

ψ[t] � C(Σi) (including equality or inequality predicates ψ[t] =
(t = t�) or (t� = t)) of ϕ by a fresh variable x ∈ x such that

#(x) = #(t) and introducing the equation x = t (i.e. ϕ[ψ[t]] is

replaced by ϕ[ψ[x]] ∧ x = t and the replacement is recursively

applied to ϕ[ψ[x]] and x = t).

Example 22 (Formula purification). Assume f ∈ f1 and g ∈ f2.

ϕ = (g(x) = f (g(g(x)))) → (∃ y : y = f (g(y)) ∧ y = g(x)) →
(∃ y : ∃ z : y = f (z) ∧ y = g(x) ∧ z = g(y))→ (∃ y : ∃ z : ϕ1 ∧ ϕ2) =
ϕ� where ϕ1 = (y = f (z)) and ϕ2 = (y = g(x) ∧ z = g(y)). ��
Upon termination, the quantifier-free conjunctive formula ϕ is

transformed into a formula ϕ� of the form

ϕ� = ∃ �x1, . . . , �xn :

n�

i=1

ϕi where ϕi = ϕ�i ∧
�

xi∈�xi

xi = txi ,

�x �
�n

i=1
�xi is the set of auxiliary variables introduced by the

purification , each txi ∈ T(Σi) is an alien subterm of ϕ renamed

as xi ∈ x such that #(xi) = #(txi ), and each ϕ�i (hence each

ϕi) is a quantifier-free conjunctive formula in C(Σi
O

). We have

ϕ⇔ �n
i=1
ϕ�i [xi ← txi ]xi∈�xi

so ϕ and ϕ� are equisatisfiable.

In case of non-disjoint theories Ti, i = 1, ..., n, purification is

still possible, by considering the worst case (so as to purify any

subterm of theories Ti or T j occurring in a term of theories Ti or

T j). The reason the Nelson-Oppen purification requires disjoint-

ness of theory signatures is that otherwise they can share more than

equalities and cardinality, a sufficient reason for the procedure to be

incomplete. Nevertheless, the purification procedure remains sound

for non-disjoint theories, which can be exploited for static analysis,

as shown below.

6.1.2 The Nelson-Oppen purification as an observational

cartesian product

Let the observable identifiers be the free variables of ϕ ∈ C(Σ),

xP = �xϕ plus the fresh auxiliary variables �x introduced by the

purification xO = xP ∪ �x. Let ΣP and ΣO be the corresponding

signatures of Σ. Given an interpretation I ∈ I , with values IV, the

observable naming Ω
ϕ
I is

Ω
ϕ
I ∈ xO→RΣPI → IV

Ω
ϕ
I (x)η � η(x) when x ∈ xP,

� �tx�η when x ∈ �x .

From a model-theoretic point of view, the purification of ϕ ∈ A
into �ϕ1, . . . , ϕn� can be considered as an abstraction of the pro-

gram properties in P
ΣO
I abstracted by ϕ to observable properties

in R
ΣO
I themselves abstracted to the observational cartesian prod-

uct
Ωϕ
�

i∈∆
iAΣOI where the component abstract domains are �iAΣOI ,

�i� � �C(Σi
O

), ⇒� with concretizations
iγ
ΣO
I ∈ C(Σi

O
)→ iP

ΣO
I such

that
iγ
ΣO
I ∈ C(Σi

O
) → iP

ΣO
I and

iγ
ΣO
I (ϕ) �

�
�I, η� ∈ RΣOI

����� I ∈

M(Ti) ∧ I |=η ϕ
�
, i = 1, . . . , n. This follows from the fact that the

concretization is the same, as shown below.
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�
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�def. Ω
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=
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�n

i=1
ϕ�i ∧
�

x∈�x x = tx has no free

auxiliary variable in ΣO \ ΣP�
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it must be proved that the reduction does not break down the ter-

mination of the product widening, in which case reduction must be

weakened or the widening strengthened.

Example 20. The closure operation in the octagon abstract domain

can be considered as a reduction between separate domains, each

considering only a pair of variables: if one applies the classical

widening operation on octagons followed by closure (reduction),

then termination is no longer ensured (e.g. see [21, Fig. 25–26]).

��

5.5 Observational reduced product

The observational reduced product of abstract domains �Ai, �i�, i ∈
∆ consists in introducing observables to increase the precision of

the Cartesian product. We will write
Ω
�

i∈∆ Ai for the observational
Cartesian product with observables named by Ω. It can be seen as

the application of the extension operator of Sect. 3 followed by a

Cartesian product
�

i∈∆ Ai. This operation is not very fruitful, as

the shared observables will not bring much information. But used

in conjunction with an iterated reduction, it can give very precise

results since information about the observables can bring additional

reductions.

Definition 21 (Observational reduced product). For all i ∈ ∆,
let �iAΣOI , i��, �iAΣO�I , i��� be abstract domains, Ω� be the new
observables, and iextendΩ� ∈ iAΣOI → iAΣO�I be the sound extensions
satisfying the conditions of definition 12.

The observational cartesian product is
Ω�
�

i∈∆

iAΣOI �
�

i∈∆

iextendΩ�
�

iAΣOI
�

and the observational reduced product is �
�
Ω
�

i∈∆ Ai

�
/�≡, ���.

6. The Nelson-Oppen combination procedure

6.1 Formula purification

6.1.1 Formula purification in the Nelson-Oppen theory

combination procedure

Given disjoint deductive theories Ti in F(Σi), Σi ⊆̇ Σ with equality

and decision procedures sati for satisfiability of quantifier-free con-

junctive formulæ ϕi ∈ C(Σi), i = 1, ..., n, the Nelson-Oppen combi-

nation procedure [23] decides the satisfiability of a quantifier-free

conjunctive formula ϕ ∈ C(
�n

i=1
Σi) in theory T =

�n
i=1
Ti such

thatM(T ) =
�n

i=1
M(Ti).

The first “purification” phase [29, Sect. 2] of Nelson-Oppen

combination procedure consists in repeating the replacement of (all

occurrences of) an alien subterm t ∈ T(Σi) \ x of a subformula

ψ[t] � C(Σi) (including equality or inequality predicates ψ[t] =
(t = t�) or (t� = t)) of ϕ by a fresh variable x ∈ x such that

#(x) = #(t) and introducing the equation x = t (i.e. ϕ[ψ[t]] is

replaced by ϕ[ψ[x]] ∧ x = t and the replacement is recursively

applied to ϕ[ψ[x]] and x = t).

Example 22 (Formula purification). Assume f ∈ f1 and g ∈ f2.

ϕ = (g(x) = f (g(g(x)))) → (∃ y : y = f (g(y)) ∧ y = g(x)) →
(∃ y : ∃ z : y = f (z) ∧ y = g(x) ∧ z = g(y))→ (∃ y : ∃ z : ϕ1 ∧ ϕ2) =
ϕ� where ϕ1 = (y = f (z)) and ϕ2 = (y = g(x) ∧ z = g(y)). ��
Upon termination, the quantifier-free conjunctive formula ϕ is

transformed into a formula ϕ� of the form

ϕ� = ∃ �x1, . . . , �xn :

n�

i=1

ϕi where ϕi = ϕ�i ∧
�

xi∈�xi

xi = txi ,

�x �
�n

i=1
�xi is the set of auxiliary variables introduced by the

purification , each txi ∈ T(Σi) is an alien subterm of ϕ renamed

as xi ∈ x such that #(xi) = #(txi ), and each ϕ�i (hence each

ϕi) is a quantifier-free conjunctive formula in C(Σi
O

). We have

ϕ⇔ �n
i=1
ϕ�i [xi ← txi ]xi∈�xi

so ϕ and ϕ� are equisatisfiable.

In case of non-disjoint theories Ti, i = 1, ..., n, purification is

still possible, by considering the worst case (so as to purify any

subterm of theories Ti or T j occurring in a term of theories Ti or

T j). The reason the Nelson-Oppen purification requires disjoint-

ness of theory signatures is that otherwise they can share more than

equalities and cardinality, a sufficient reason for the procedure to be

incomplete. Nevertheless, the purification procedure remains sound

for non-disjoint theories, which can be exploited for static analysis,

as shown below.

6.1.2 The Nelson-Oppen purification as an observational

cartesian product

Let the observable identifiers be the free variables of ϕ ∈ C(Σ),

xP = �xϕ plus the fresh auxiliary variables �x introduced by the

purification xO = xP ∪ �x. Let ΣP and ΣO be the corresponding

signatures of Σ. Given an interpretation I ∈ I , with values IV, the

observable naming Ω
ϕ
I is

Ω
ϕ
I ∈ xO→RΣPI → IV

Ω
ϕ
I (x)η � η(x) when x ∈ xP,

� �tx�η when x ∈ �x .

From a model-theoretic point of view, the purification of ϕ ∈ A
into �ϕ1, . . . , ϕn� can be considered as an abstraction of the pro-

gram properties in P
ΣO
I abstracted by ϕ to observable properties

in R
ΣO
I themselves abstracted to the observational cartesian prod-

uct
Ωϕ
�

i∈∆
iAΣOI where the component abstract domains are �iAΣOI ,

�i� � �C(Σi
O

), ⇒� with concretizations
iγ
ΣO
I ∈ C(Σi

O
)→ iP

ΣO
I such

that
iγ
ΣO
I ∈ C(Σi

O
) → iP

ΣO
I and

iγ
ΣO
I (ϕ) �

�
�I, η� ∈ RΣOI

����� I ∈

M(Ti) ∧ I |=η ϕ
�
, i = 1, . . . , n. This follows from the fact that the

concretization is the same, as shown below.
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∃ �x :

n�

i=1

ϕ�i ∧
�

x∈�x
x = tx







�def. γ
ΣO
I and |=�

=



�I, η� ∈ RΣPI

���������
�I, η� ∈ γPI


∃ �x :

n�

i=1

ϕ�i ∧
�

x∈�x
x = tx







�Since ΣP ⊆ ΣO and ∃ �x :
�n

i=1
ϕ�i ∧
�

x∈�x x = tx has no free

auxiliary variable in ΣO \ ΣP�
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Contrary to the logical abstract interpretation framework devel-
oped by [17, 18, 33] we do not assume that the behavior of the pro-
gram is described by formulæ in the same theory as the theory of
the logical abstract domain, which offers no soundness guarantee,
but instead we give the semantics of the logical abstract domains
with respect to a set of possible semantics which includes the pos-
sibility of a sound combination of a mathematical semantics and a
machine semantics, which is hard to achieve in SMT solvers with-
out breaking down their performances (e.g. by encoding modular
arithmetics in integer arithmetics or encoding floats either bitwise
or with reals and roundings). So, our approach allows the descrip-
tion of the abstraction mechanism, comparisons of logical abstract
domains, and to provide proofs of soundness on a formal basis.

Specific combinations of theories have been proposed for static
analysis such as linear arithmetic and uninterpreted functions [17],
universally quantified formulæ over theories such as linear arith-
metic and uninterpreted functions [18] or the combination of a
shape analysis with a numerical analysis [19]5. The framework that
we propose to combine algebraic and logical abstract domains can
be used to design static analyzers incrementally, with minimal ef-
forts to include new abstractions to improve precision either glob-
ally for the whole program analysis or locally, e.g. to prove loop
invariants provided by the end user.

9. Conclusion
We have proposed a new design method of static analyzers based on
the reduced product or its approximation by the iterated reduction
of the product to combine algebraic and logical abstract domains.
This is for invariance inference but is also applicable to invariant
verification. The key points were to consider an observational se-
mantics with multiple interpretations and the understanding of the
Nelson-Oppen theory combination procedure and its followers as
an iterated reduction of the product of theories so that algebraic
and logical abstract domains can be symmetrically combined in a
product either reduced or with iterated reduction. The interest of the
(reduced) product in logical abstract interpretation is that the anal-
ysis for each theory can be separated, even when they are not dis-
joint, thus allowing for an effective use of dedicated SMT solvers
for each of the components.

Logical abstract domains may not be very efficient but can be
used for rapid prototyping and then implemented in algebraic form
with efficient algorithms. Despite their high cost, logical abstract
domains can also be very expressive and could therefore be used,
at least locally, to enhance the precision of algebraic abstractions
through an evolving product with iterated reduction. Combined
with algebraic abstractions they can sometimes be made sound for
the machine semantics.

Finally, having shown the similarity and complementarity of
analysis by abstract interpretation and program proofs by theorem
provers and SMT solvers, we hope that our framework will allow
reuse and cooperations between developments in both communi-
ties.
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[21] A. Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation, 19:31–100, 2006.
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1. Purification: project the quantifier-free conjunctive 
formula       as an equi-satisfiable conjonction of 
component formulæ in each theory by introducing 
fresh variables for alien terms

2. Repeat the equality reduction: propagate [dis]
equalities deduced from each component formula    
to the other components formulæ) until no new [dis]
equality can be added

3. Test satisfiability of component formulæ, unsatifiable 
iff one is unsatisfiable else unknown (originally, 
satisfiable if all component formula are satisfiable) 

it must be proved that the reduction does not break down the ter-

mination of the product widening, in which case reduction must be

weakened or the widening strengthened.

Example 20. The closure operation in the octagon abstract domain

can be considered as a reduction between separate domains, each

considering only a pair of variables: if one applies the classical

widening operation on octagons followed by closure (reduction),

then termination is no longer ensured (e.g. see [21, Fig. 25–26]).

��

5.5 Observational reduced product

The observational reduced product of abstract domains �Ai, �i�, i ∈
∆ consists in introducing observables to increase the precision of

the Cartesian product. We will write
Ω
�

i∈∆ Ai for the observational
Cartesian product with observables named by Ω. It can be seen as

the application of the extension operator of Sect. 3 followed by a

Cartesian product
�

i∈∆ Ai. This operation is not very fruitful, as

the shared observables will not bring much information. But used

in conjunction with an iterated reduction, it can give very precise

results since information about the observables can bring additional

reductions.

Definition 21 (Observational reduced product). For all i ∈ ∆,
let �iAΣOI , i��, �iAΣO�I , i��� be abstract domains, Ω� be the new
observables, and iextendΩ� ∈ iAΣOI → iAΣO�I be the sound extensions
satisfying the conditions of definition 12.

The observational cartesian product is
Ω�
�

i∈∆

iAΣOI �
�

i∈∆

iextendΩ�
�

iAΣOI
�

and the observational reduced product is �
�
Ω
�

i∈∆ Ai

�
/�≡, ���.

6. The Nelson-Oppen combination procedure

6.1 Formula purification

6.1.1 Formula purification in the Nelson-Oppen theory

combination procedure

Given disjoint deductive theories Ti in F(Σi), Σi ⊆̇ Σ with equality

and decision procedures sati for satisfiability of quantifier-free con-

junctive formulæ ϕi ∈ C(Σi), i = 1, ..., n, the Nelson-Oppen combi-

nation procedure [23] decides the satisfiability of a quantifier-free

conjunctive formula ϕ ∈ C(
�n

i=1
Σi) in theory T =

�n
i=1
Ti such

thatM(T ) =
�n

i=1
M(Ti).

The first “purification” phase [29, Sect. 2] of Nelson-Oppen

combination procedure consists in repeating the replacement of (all

occurrences of) an alien subterm t ∈ T(Σi) \ x of a subformula

ψ[t] � C(Σi) (including equality or inequality predicates ψ[t] =
(t = t�) or (t� = t)) of ϕ by a fresh variable x ∈ x such that

#(x) = #(t) and introducing the equation x = t (i.e. ϕ[ψ[t]] is

replaced by ϕ[ψ[x]] ∧ x = t and the replacement is recursively

applied to ϕ[ψ[x]] and x = t).

Example 22 (Formula purification). Assume f ∈ f1 and g ∈ f2.

ϕ = (g(x) = f (g(g(x)))) → (∃ y : y = f (g(y)) ∧ y = g(x)) →
(∃ y : ∃ z : y = f (z) ∧ y = g(x) ∧ z = g(y))→ (∃ y : ∃ z : ϕ1 ∧ ϕ2) =
ϕ� where ϕ1 = (y = f (z)) and ϕ2 = (y = g(x) ∧ z = g(y)). ��
Upon termination, the quantifier-free conjunctive formula ϕ is

transformed into a formula ϕ� of the form

ϕ� = ∃ �x1, . . . , �xn :

n�

i=1

ϕi where ϕi = ϕ�i ∧
�

xi∈�xi

xi = txi ,

�x �
�n

i=1
�xi is the set of auxiliary variables introduced by the

purification , each txi ∈ T(Σi) is an alien subterm of ϕ renamed

as xi ∈ x such that #(xi) = #(txi ), and each ϕ�i (hence each

ϕi) is a quantifier-free conjunctive formula in C(Σi
O

). We have

ϕ⇔ �n
i=1
ϕ�i [xi ← txi ]xi∈�xi

so ϕ and ϕ� are equisatisfiable.

In case of non-disjoint theories Ti, i = 1, ..., n, purification is

still possible, by considering the worst case (so as to purify any

subterm of theories Ti or T j occurring in a term of theories Ti or

T j). The reason the Nelson-Oppen purification requires disjoint-

ness of theory signatures is that otherwise they can share more than

equalities and cardinality, a sufficient reason for the procedure to be

incomplete. Nevertheless, the purification procedure remains sound

for non-disjoint theories, which can be exploited for static analysis,

as shown below.

6.1.2 The Nelson-Oppen purification as an observational

cartesian product

Let the observable identifiers be the free variables of ϕ ∈ C(Σ),

xP = �xϕ plus the fresh auxiliary variables �x introduced by the

purification xO = xP ∪ �x. Let ΣP and ΣO be the corresponding

signatures of Σ. Given an interpretation I ∈ I , with values IV, the

observable naming Ω
ϕ
I is

Ω
ϕ
I ∈ xO→RΣPI → IV

Ω
ϕ
I (x)η � η(x) when x ∈ xP,

� �tx�η when x ∈ �x .

From a model-theoretic point of view, the purification of ϕ ∈ A
into �ϕ1, . . . , ϕn� can be considered as an abstraction of the pro-

gram properties in P
ΣO
I abstracted by ϕ to observable properties

in R
ΣO
I themselves abstracted to the observational cartesian prod-

uct
Ωϕ
�

i∈∆
iAΣOI where the component abstract domains are �iAΣOI ,

�i� � �C(Σi
O

), ⇒� with concretizations
iγ
ΣO
I ∈ C(Σi

O
)→ iP

ΣO
I such

that
iγ
ΣO
I ∈ C(Σi

O
) → iP

ΣO
I and

iγ
ΣO
I (ϕ) �

�
�I, η� ∈ RΣOI

����� I ∈

M(Ti) ∧ I |=η ϕ
�
, i = 1, . . . , n. This follows from the fact that the

concretization is the same, as shown below.

γΩ
ϕ ,P
I



Ωϕ

n
�

i=1

ϕ�i




=



�I, η� ∈ RΣPI

��������
�I, λ x .ΩI(x)η� ∈ γΣOI



Ωϕ

n
�

i=1

ϕ�i







�def. γΩ
ϕ ,P
I � γΩ

ϕ

I ◦ γ
ΣO
I �

=



�I, η� ∈ RΣPI

��������
�I, λ x .Ωϕx (η)� ∈

n�

i=1

iγ
ΣO
I (ϕ�i )




�def. γ
ΣO
I for the observational cartesian product�

=



�I, η� ∈ RΣPI

��������
�I, λ x .Ωϕx (η)� ∈ γΣOI




n�

i=1

ϕ�i







�def. γ
ΣO
I (Ψ) �

�
�I, η�

��� I ∈ I ∧ I |=η Ψ
�

and |=�

=



�I, η� ∈ RΣPI

��������
�I, λ x ∈ xP . η(x) ∪̇ λ x ∈ �x . �tx�η� ∈ γΣOI




n�

i=1

ϕ�i







�def. Ω
ϕ
x , x = xP ∪ �x, and xP ∩ �x = ∅�

=



�I, η� ∈ RΣPI

���������
�I, η� ∈ γΣOI


∃ �x :

n�

i=1

ϕ�i ∧
�

x∈�x
x = tx







�def. γ
ΣO
I and |=�

=



�I, η� ∈ RΣPI

���������
�I, η� ∈ γPI


∃ �x :

n�

i=1

ϕ�i ∧
�

x∈�x
x = tx







�Since ΣP ⊆ ΣO and ∃ �x :
�n

i=1
ϕ�i ∧
�

x∈�x x = tx has no free

auxiliary variable in ΣO \ ΣP�
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it must be proved that the reduction does not break down the ter-

mination of the product widening, in which case reduction must be

weakened or the widening strengthened.

Example 20. The closure operation in the octagon abstract domain

can be considered as a reduction between separate domains, each

considering only a pair of variables: if one applies the classical

widening operation on octagons followed by closure (reduction),

then termination is no longer ensured (e.g. see [21, Fig. 25–26]).

��

5.5 Observational reduced product

The observational reduced product of abstract domains �Ai, �i�, i ∈
∆ consists in introducing observables to increase the precision of

the Cartesian product. We will write
Ω
�

i∈∆ Ai for the observational
Cartesian product with observables named by Ω. It can be seen as

the application of the extension operator of Sect. 3 followed by a

Cartesian product
�

i∈∆ Ai. This operation is not very fruitful, as

the shared observables will not bring much information. But used

in conjunction with an iterated reduction, it can give very precise

results since information about the observables can bring additional

reductions.

Definition 21 (Observational reduced product). For all i ∈ ∆,
let �iAΣOI , i��, �iAΣO�I , i��� be abstract domains, Ω� be the new
observables, and iextendΩ� ∈ iAΣOI → iAΣO�I be the sound extensions
satisfying the conditions of definition 12.

The observational cartesian product is
Ω�
�

i∈∆

iAΣOI �
�

i∈∆

iextendΩ�
�

iAΣOI
�

and the observational reduced product is �
�
Ω
�

i∈∆ Ai

�
/�≡, ���.

6. The Nelson-Oppen combination procedure

6.1 Formula purification

6.1.1 Formula purification in the Nelson-Oppen theory

combination procedure

Given disjoint deductive theories Ti in F(Σi), Σi ⊆̇ Σ with equality

and decision procedures sati for satisfiability of quantifier-free con-

junctive formulæ ϕi ∈ C(Σi), i = 1, ..., n, the Nelson-Oppen combi-

nation procedure [23] decides the satisfiability of a quantifier-free

conjunctive formula ϕ ∈ C(
�n

i=1
Σi) in theory T =

�n
i=1
Ti such

thatM(T ) =
�n

i=1
M(Ti).

The first “purification” phase [29, Sect. 2] of Nelson-Oppen

combination procedure consists in repeating the replacement of (all

occurrences of) an alien subterm t ∈ T(Σi) \ x of a subformula

ψ[t] � C(Σi) (including equality or inequality predicates ψ[t] =
(t = t�) or (t� = t)) of ϕ by a fresh variable x ∈ x such that

#(x) = #(t) and introducing the equation x = t (i.e. ϕ[ψ[t]] is

replaced by ϕ[ψ[x]] ∧ x = t and the replacement is recursively

applied to ϕ[ψ[x]] and x = t).

Example 22 (Formula purification). Assume f ∈ f1 and g ∈ f2.

ϕ = (g(x) = f (g(g(x)))) → (∃ y : y = f (g(y)) ∧ y = g(x)) →
(∃ y : ∃ z : y = f (z) ∧ y = g(x) ∧ z = g(y))→ (∃ y : ∃ z : ϕ1 ∧ ϕ2) =
ϕ� where ϕ1 = (y = f (z)) and ϕ2 = (y = g(x) ∧ z = g(y)). ��
Upon termination, the quantifier-free conjunctive formula ϕ is

transformed into a formula ϕ� of the form

ϕ� = ∃ �x1, . . . , �xn :

n�

i=1

ϕi where ϕi = ϕ�i ∧
�

xi∈�xi

xi = txi ,

�x �
�n

i=1
�xi is the set of auxiliary variables introduced by the

purification , each txi ∈ T(Σi) is an alien subterm of ϕ renamed

as xi ∈ x such that #(xi) = #(txi ), and each ϕ�i (hence each

ϕi) is a quantifier-free conjunctive formula in C(Σi
O

). We have

ϕ⇔ �n
i=1
ϕ�i [xi ← txi ]xi∈�xi

so ϕ and ϕ� are equisatisfiable.

In case of non-disjoint theories Ti, i = 1, ..., n, purification is

still possible, by considering the worst case (so as to purify any

subterm of theories Ti or T j occurring in a term of theories Ti or

T j). The reason the Nelson-Oppen purification requires disjoint-

ness of theory signatures is that otherwise they can share more than

equalities and cardinality, a sufficient reason for the procedure to be

incomplete. Nevertheless, the purification procedure remains sound

for non-disjoint theories, which can be exploited for static analysis,

as shown below.

6.1.2 The Nelson-Oppen purification as an observational

cartesian product

Let the observable identifiers be the free variables of ϕ ∈ C(Σ),

xP = �xϕ plus the fresh auxiliary variables �x introduced by the

purification xO = xP ∪ �x. Let ΣP and ΣO be the corresponding

signatures of Σ. Given an interpretation I ∈ I , with values IV, the

observable naming Ω
ϕ
I is

Ω
ϕ
I ∈ xO→RΣPI → IV

Ω
ϕ
I (x)η � η(x) when x ∈ xP,

� �tx�η when x ∈ �x .

From a model-theoretic point of view, the purification of ϕ ∈ A
into �ϕ1, . . . , ϕn� can be considered as an abstraction of the pro-

gram properties in P
ΣO
I abstracted by ϕ to observable properties

in R
ΣO
I themselves abstracted to the observational cartesian prod-

uct
Ωϕ
�

i∈∆
iAΣOI where the component abstract domains are �iAΣOI ,

�i� � �C(Σi
O

), ⇒� with concretizations
iγ
ΣO
I ∈ C(Σi

O
)→ iP

ΣO
I such

that
iγ
ΣO
I ∈ C(Σi

O
) → iP

ΣO
I and

iγ
ΣO
I (ϕ) �

�
�I, η� ∈ RΣOI

����� I ∈

M(Ti) ∧ I |=η ϕ
�
, i = 1, . . . , n. This follows from the fact that the

concretization is the same, as shown below.

γΩ
ϕ ,P
I



Ωϕ

n
�

i=1

ϕ�i




=



�I, η� ∈ RΣPI

��������
�I, λ x .ΩI(x)η� ∈ γΣOI



Ωϕ

n
�

i=1

ϕ�i







�def. γΩ
ϕ ,P
I � γΩ

ϕ

I ◦ γ
ΣO
I �

=



�I, η� ∈ RΣPI

��������
�I, λ x .Ωϕx (η)� ∈

n�

i=1

iγ
ΣO
I (ϕ�i )




�def. γ
ΣO
I for the observational cartesian product�

=



�I, η� ∈ RΣPI

��������
�I, λ x .Ωϕx (η)� ∈ γΣOI




n�

i=1

ϕ�i







�def. γ
ΣO
I (Ψ) �

�
�I, η�

��� I ∈ I ∧ I |=η Ψ
�

and |=�

=



�I, η� ∈ RΣPI

��������
�I, λ x ∈ xP . η(x) ∪̇ λ x ∈ �x . �tx�η� ∈ γΣOI




n�

i=1

ϕ�i







�def. Ω
ϕ
x , x = xP ∪ �x, and xP ∩ �x = ∅�

=



�I, η� ∈ RΣPI

���������
�I, η� ∈ γΣOI


∃ �x :

n�

i=1

ϕ�i ∧
�

x∈�x
x = tx







�def. γ
ΣO
I and |=�

=



�I, η� ∈ RΣPI

���������
�I, η� ∈ γPI


∃ �x :

n�

i=1

ϕ�i ∧
�

x∈�x
x = tx







�Since ΣP ⊆ ΣO and ∃ �x :
�n

i=1
ϕ�i ∧
�

x∈�x x = tx has no free

auxiliary variable in ΣO \ ΣP�
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it must be proved that the reduction does not break down the ter-

mination of the product widening, in which case reduction must be

weakened or the widening strengthened.

Example 20. The closure operation in the octagon abstract domain

can be considered as a reduction between separate domains, each

considering only a pair of variables: if one applies the classical

widening operation on octagons followed by closure (reduction),

then termination is no longer ensured (e.g. see [21, Fig. 25–26]).

��

5.5 Observational reduced product

The observational reduced product of abstract domains �Ai, �i�, i ∈
∆ consists in introducing observables to increase the precision of

the Cartesian product. We will write
Ω
�

i∈∆ Ai for the observational
Cartesian product with observables named by Ω. It can be seen as

the application of the extension operator of Sect. 3 followed by a

Cartesian product
�

i∈∆ Ai. This operation is not very fruitful, as

the shared observables will not bring much information. But used

in conjunction with an iterated reduction, it can give very precise

results since information about the observables can bring additional

reductions.

Definition 21 (Observational reduced product). For all i ∈ ∆,
let �iAΣOI , i��, �iAΣO�I , i��� be abstract domains, Ω� be the new
observables, and iextendΩ� ∈ iAΣOI → iAΣO�I be the sound extensions
satisfying the conditions of definition 12.

The observational cartesian product is
Ω�
�

i∈∆

iAΣOI �
�

i∈∆

iextendΩ�
�

iAΣOI
�

and the observational reduced product is �
�
Ω
�

i∈∆ Ai

�
/�≡, ���.

6. The Nelson-Oppen combination procedure

6.1 Formula purification

6.1.1 Formula purification in the Nelson-Oppen theory

combination procedure

Given disjoint deductive theories Ti in F(Σi), Σi ⊆̇ Σ with equality

and decision procedures sati for satisfiability of quantifier-free con-

junctive formulæ ϕi ∈ C(Σi), i = 1, ..., n, the Nelson-Oppen combi-

nation procedure [23] decides the satisfiability of a quantifier-free

conjunctive formula ϕ ∈ C(
�n

i=1
Σi) in theory T =

�n
i=1
Ti such

thatM(T ) =
�n

i=1
M(Ti).

The first “purification” phase [29, Sect. 2] of Nelson-Oppen

combination procedure consists in repeating the replacement of (all

occurrences of) an alien subterm t ∈ T(Σi) \ x of a subformula

ψ[t] � C(Σi) (including equality or inequality predicates ψ[t] =
(t = t�) or (t� = t)) of ϕ by a fresh variable x ∈ x such that

#(x) = #(t) and introducing the equation x = t (i.e. ϕ[ψ[t]] is

replaced by ϕ[ψ[x]] ∧ x = t and the replacement is recursively

applied to ϕ[ψ[x]] and x = t).

Example 22 (Formula purification). Assume f ∈ f1 and g ∈ f2.

ϕ = (g(x) = f (g(g(x)))) → (∃ y : y = f (g(y)) ∧ y = g(x)) →
(∃ y : ∃ z : y = f (z) ∧ y = g(x) ∧ z = g(y))→ (∃ y : ∃ z : ϕ1 ∧ ϕ2) =
ϕ� where ϕ1 = (y = f (z)) and ϕ2 = (y = g(x) ∧ z = g(y)). ��
Upon termination, the quantifier-free conjunctive formula ϕ is

transformed into a formula ϕ� of the form

ϕ� = ∃ �x1, . . . , �xn :

n�

i=1

ϕi where ϕi = ϕ�i ∧
�

xi∈�xi

xi = txi ,

�x �
�n

i=1
�xi is the set of auxiliary variables introduced by the

purification , each txi ∈ T(Σi) is an alien subterm of ϕ renamed

as xi ∈ x such that #(xi) = #(txi ), and each ϕ�i (hence each

ϕi) is a quantifier-free conjunctive formula in C(Σi
O

). We have

ϕ⇔ �n
i=1
ϕ�i [xi ← txi ]xi∈�xi

so ϕ and ϕ� are equisatisfiable.

In case of non-disjoint theories Ti, i = 1, ..., n, purification is

still possible, by considering the worst case (so as to purify any

subterm of theories Ti or T j occurring in a term of theories Ti or

T j). The reason the Nelson-Oppen purification requires disjoint-

ness of theory signatures is that otherwise they can share more than

equalities and cardinality, a sufficient reason for the procedure to be

incomplete. Nevertheless, the purification procedure remains sound

for non-disjoint theories, which can be exploited for static analysis,

as shown below.

6.1.2 The Nelson-Oppen purification as an observational

cartesian product

Let the observable identifiers be the free variables of ϕ ∈ C(Σ),

xP = �xϕ plus the fresh auxiliary variables �x introduced by the

purification xO = xP ∪ �x. Let ΣP and ΣO be the corresponding

signatures of Σ. Given an interpretation I ∈ I , with values IV, the

observable naming Ω
ϕ
I is

Ω
ϕ
I ∈ xO→RΣPI → IV

Ω
ϕ
I (x)η � η(x) when x ∈ xP,

� �tx�η when x ∈ �x .

From a model-theoretic point of view, the purification of ϕ ∈ A
into �ϕ1, . . . , ϕn� can be considered as an abstraction of the pro-

gram properties in P
ΣO
I abstracted by ϕ to observable properties

in R
ΣO
I themselves abstracted to the observational cartesian prod-

uct
Ωϕ
�

i∈∆
iAΣOI where the component abstract domains are �iAΣOI ,

�i� � �C(Σi
O

), ⇒� with concretizations
iγ
ΣO
I ∈ C(Σi

O
)→ iP

ΣO
I such

that
iγ
ΣO
I ∈ C(Σi

O
) → iP

ΣO
I and

iγ
ΣO
I (ϕ) �

�
�I, η� ∈ RΣOI

����� I ∈

M(Ti) ∧ I |=η ϕ
�
, i = 1, . . . , n. This follows from the fact that the

concretization is the same, as shown below.

γΩ
ϕ ,P
I



Ωϕ

n
�

i=1

ϕ�i




=



�I, η� ∈ RΣPI

��������
�I, λ x .ΩI(x)η� ∈ γΣOI



Ωϕ

n
�

i=1

ϕ�i







�def. γΩ
ϕ ,P
I � γΩ

ϕ

I ◦ γ
ΣO
I �

=



�I, η� ∈ RΣPI

��������
�I, λ x .Ωϕx (η)� ∈

n�

i=1

iγ
ΣO
I (ϕ�i )




�def. γ
ΣO
I for the observational cartesian product�

=



�I, η� ∈ RΣPI

��������
�I, λ x .Ωϕx (η)� ∈ γΣOI




n�

i=1

ϕ�i







�def. γ
ΣO
I (Ψ) �

�
�I, η�

��� I ∈ I ∧ I |=η Ψ
�

and |=�

=



�I, η� ∈ RΣPI

��������
�I, λ x ∈ xP . η(x) ∪̇ λ x ∈ �x . �tx�η� ∈ γΣOI




n�

i=1

ϕ�i







�def. Ω
ϕ
x , x = xP ∪ �x, and xP ∩ �x = ∅�

=



�I, η� ∈ RΣPI

���������
�I, η� ∈ γΣOI


∃ �x :

n�

i=1

ϕ�i ∧
�

x∈�x
x = tx







�def. γ
ΣO
I and |=�

=



�I, η� ∈ RΣPI

���������
�I, η� ∈ γPI


∃ �x :

n�

i=1

ϕ�i ∧
�

x∈�x
x = tx







�Since ΣP ⊆ ΣO and ∃ �x :
�n

i=1
ϕ�i ∧
�

x∈�x x = tx has no free

auxiliary variable in ΣO \ ΣP�
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The Nelson-Oppen procedure is an 
iteratively reduced observation product

• The purification is a projection of the formula to an 
observation product (with auxiliary variables 
observing alien subterms)

• The reduction is iterative but only for [dis]equalities

• The unsatisfiability check is a reduction to     (false)

19
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Soundness of the procedure ?
• The unsatisfiability is sound

• More conditions for satisfiability soundness to 
ensure that all theories have isomorphic models such 
as 

• stably-infinity, politeness, etc ... so as to ensure that 
the models of the theories       have the same 
cardinalities

• shared symbols (e.g. equality) have isomorphic 
interpretations in all theories sharing them or 
theories are disjoint which avoids the problem

20

it must be proved that the reduction does not break down the ter-

mination of the product widening, in which case reduction must be

weakened or the widening strengthened.

Example 20. The closure operation in the octagon abstract domain

can be considered as a reduction between separate domains, each

considering only a pair of variables: if one applies the classical

widening operation on octagons followed by closure (reduction),

then termination is no longer ensured (e.g. see [21, Fig. 25–26]).

��

5.5 Observational reduced product

The observational reduced product of abstract domains �Ai, �i�, i ∈
∆ consists in introducing observables to increase the precision of

the Cartesian product. We will write
Ω
�

i∈∆ Ai for the observational
Cartesian product with observables named by Ω. It can be seen as

the application of the extension operator of Sect. 3 followed by a

Cartesian product
�

i∈∆ Ai. This operation is not very fruitful, as

the shared observables will not bring much information. But used

in conjunction with an iterated reduction, it can give very precise

results since information about the observables can bring additional

reductions.

Definition 21 (Observational reduced product). For all i ∈ ∆,
let �iAΣOI , i��, �iAΣO�I , i��� be abstract domains, Ω� be the new
observables, and iextendΩ� ∈ iAΣOI → iAΣO�I be the sound extensions
satisfying the conditions of definition 12.

The observational cartesian product is
Ω�
�

i∈∆

iAΣOI �
�

i∈∆

iextendΩ�
�

iAΣOI
�

and the observational reduced product is �
�
Ω
�

i∈∆ Ai

�
/�≡, ���.

6. The Nelson-Oppen combination procedure

6.1 Formula purification

6.1.1 Formula purification in the Nelson-Oppen theory

combination procedure

Given disjoint deductive theories Ti in F(Σi), Σi ⊆̇ Σ with equality

and decision procedures sati for satisfiability of quantifier-free con-

junctive formulæ ϕi ∈ C(Σi), i = 1, ..., n, the Nelson-Oppen combi-

nation procedure [23] decides the satisfiability of a quantifier-free

conjunctive formula ϕ ∈ C(
�n

i=1
Σi) in theory T =

�n
i=1
Ti such

thatM(T ) =
�n

i=1
M(Ti).

The first “purification” phase [29, Sect. 2] of Nelson-Oppen

combination procedure consists in repeating the replacement of (all

occurrences of) an alien subterm t ∈ T(Σi) \ x of a subformula

ψ[t] � C(Σi) (including equality or inequality predicates ψ[t] =
(t = t�) or (t� = t)) of ϕ by a fresh variable x ∈ x such that

#(x) = #(t) and introducing the equation x = t (i.e. ϕ[ψ[t]] is

replaced by ϕ[ψ[x]] ∧ x = t and the replacement is recursively

applied to ϕ[ψ[x]] and x = t).

Example 22 (Formula purification). Assume f ∈ f1 and g ∈ f2.

ϕ = (g(x) = f (g(g(x)))) → (∃ y : y = f (g(y)) ∧ y = g(x)) →
(∃ y : ∃ z : y = f (z) ∧ y = g(x) ∧ z = g(y))→ (∃ y : ∃ z : ϕ1 ∧ ϕ2) =
ϕ� where ϕ1 = (y = f (z)) and ϕ2 = (y = g(x) ∧ z = g(y)). ��
Upon termination, the quantifier-free conjunctive formula ϕ is

transformed into a formula ϕ� of the form

ϕ� = ∃ �x1, . . . , �xn :

n�

i=1

ϕi where ϕi = ϕ�i ∧
�

xi∈�xi

xi = txi ,

�x �
�n

i=1
�xi is the set of auxiliary variables introduced by the

purification , each txi ∈ T(Σi) is an alien subterm of ϕ renamed

as xi ∈ x such that #(xi) = #(txi ), and each ϕ�i (hence each

ϕi) is a quantifier-free conjunctive formula in C(Σi
O

). We have

ϕ⇔ �n
i=1
ϕ�i [xi ← txi ]xi∈�xi

so ϕ and ϕ� are equisatisfiable.

In case of non-disjoint theories Ti, i = 1, ..., n, purification is

still possible, by considering the worst case (so as to purify any

subterm of theories Ti or T j occurring in a term of theories Ti or

T j). The reason the Nelson-Oppen purification requires disjoint-

ness of theory signatures is that otherwise they can share more than

equalities and cardinality, a sufficient reason for the procedure to be

incomplete. Nevertheless, the purification procedure remains sound

for non-disjoint theories, which can be exploited for static analysis,

as shown below.

6.1.2 The Nelson-Oppen purification as an observational

cartesian product

Let the observable identifiers be the free variables of ϕ ∈ C(Σ),

xP = �xϕ plus the fresh auxiliary variables �x introduced by the

purification xO = xP ∪ �x. Let ΣP and ΣO be the corresponding

signatures of Σ. Given an interpretation I ∈ I , with values IV, the

observable naming Ω
ϕ
I is

Ω
ϕ
I ∈ xO→RΣPI → IV

Ω
ϕ
I (x)η � η(x) when x ∈ xP,

� �tx�η when x ∈ �x .

From a model-theoretic point of view, the purification of ϕ ∈ A
into �ϕ1, . . . , ϕn� can be considered as an abstraction of the pro-

gram properties in P
ΣO
I abstracted by ϕ to observable properties

in R
ΣO
I themselves abstracted to the observational cartesian prod-

uct
Ωϕ
�

i∈∆
iAΣOI where the component abstract domains are �iAΣOI ,

�i� � �C(Σi
O

), ⇒� with concretizations
iγ
ΣO
I ∈ C(Σi

O
)→ iP

ΣO
I such

that
iγ
ΣO
I ∈ C(Σi

O
) → iP

ΣO
I and

iγ
ΣO
I (ϕ) �

�
�I, η� ∈ RΣOI

����� I ∈

M(Ti) ∧ I |=η ϕ
�
, i = 1, . . . , n. This follows from the fact that the

concretization is the same, as shown below.

γΩ
ϕ ,P
I



Ωϕ

n
�

i=1

ϕ�i




=



�I, η� ∈ RΣPI

��������
�I, λ x .ΩI(x)η� ∈ γΣOI



Ωϕ

n
�

i=1

ϕ�i







�def. γΩ
ϕ ,P
I � γΩ

ϕ

I ◦ γ
ΣO
I �

=



�I, η� ∈ RΣPI

��������
�I, λ x .Ωϕx (η)� ∈

n�

i=1

iγ
ΣO
I (ϕ�i )




�def. γ
ΣO
I for the observational cartesian product�

=



�I, η� ∈ RΣPI

��������
�I, λ x .Ωϕx (η)� ∈ γΣOI




n�

i=1

ϕ�i







�def. γ
ΣO
I (Ψ) �

�
�I, η�

��� I ∈ I ∧ I |=η Ψ
�

and |=�

=



�I, η� ∈ RΣPI

��������
�I, λ x ∈ xP . η(x) ∪̇ λ x ∈ �x . �tx�η� ∈ γΣOI




n�

i=1

ϕ�i







�def. Ω
ϕ
x , x = xP ∪ �x, and xP ∩ �x = ∅�

=



�I, η� ∈ RΣPI

���������
�I, η� ∈ γΣOI


∃ �x :

n�

i=1

ϕ�i ∧
�

x∈�x
x = tx







�def. γ
ΣO
I and |=�

=



�I, η� ∈ RΣPI

���������
�I, η� ∈ γPI


∃ �x :

n�

i=1

ϕ�i ∧
�

x∈�x
x = tx







�Since ΣP ⊆ ΣO and ∃ �x :
�n

i=1
ϕ�i ∧
�

x∈�x x = tx has no free

auxiliary variable in ΣO \ ΣP�
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Completeness of the procedure ?
• The procedure is incomplete

so there exists formulæ satisfiable in two theories 
but not in their combination (e.g. integer arithmetics 
and bit vectors)

• Additional restrictions are necessary to ensure 
completeness

• convexity (to avoid to have to reduce by 
disjunctions of [dis]equalities)

• disjointness of the theories (but constants, to 
avoid to have to reduce on other properties 
than [dis] equality such as <)
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Who cares about completeness in static analysis?

• We care about soundness but not on completeness
(since we always get a sound overapproximation)

• Abandoning completeness, we can

• combine theories sharing symbols other than = 
(as signs and parity)

• perform reduction (even for non-convex 
theories) that are simply not optimal 

22
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Combining logical and algebraic abstractions
We use an iteratively reduced observation product 
with:

• logical components in logical abstract domains 
sharing symbols and handled by SMT solvers 

• algebraic components in algebraic abstract 
domains

• the reduction propagates

• [dis]equalities of logical components to all other 
components

• pairwise algebraic reductions (equalities and 
others) to all other components

23
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Perspectives

24

• A new perspective to combine

• SMT solvers based model-checking understood as 
logical abstract domains (with logical widenings)

• abstract interpretation-based static analysis using 
classical abstract domains (with algebraic 
widenings)

• This might avoid costly iterative refinement methods 
thanks to the expressivity of first-order logic



CMACS meeting, NYU, October 28–29, 2010                                                                                                                                                                                                                                                                                 © P. Cousot

Ongoing work
(2) Termination

25
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Basic idea:
Apply the abstract interpretation framework to 
termination

26
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• Define the standard semantics:

• Define the collecting semantics (most general 
property of interest):

• Express the collecting semantics in fixpoint form:

• Finite (MC) : compute     iteratively;

• Infinite (AI) : define an abstraction:  

Abstract Interpretation framework (cont’d)

27
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�Σ, τ�
C ∈ ℘(C)
C = lfp⊆ F ∈ ℘(C)
�℘(C), ⊆� −−−→←−−−

α

γ
�A, ��

α ◦ F ◦ γ � F
α(lfp⊆ F ) � lfp� F

1 Relations

• ℘(S) powerset of set S, ℘f(S) set of non-empty finite subsets of set S

• r ∈ �(S) � ℘(S × S) relations on set S,

r(x, y) � �x, y� ∈ r related by r

r ◦ r� � {�x, z� | ∃y : r(x, y) ∧ r(y, z)} composition
IS � {�x, x� | x ∈ S} identity, S

r0 � IΣ powers
r1 � r

rn+1 � r ◦ rn = rn ◦ r

r+ �
�

0<n<ω

rn transitive closure

r∗ �
�

0�n<ω

rn reflexive transitive closure
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Abstract Interpretation framework (cont’d)

• Define an abstract transformer:

• The fixpoint abstract semantics is sound:

• Compute the abstract iterates iteratively:

• Accelerating the convergence by widening        and 
narrowing        (when necessary)

28
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Termination analysis:
Applying the abstract interpretation framework to a 
termination collecting semantics

29
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Standard semantics
• Traces on the set of states     :

• Traces of length n:

• Finite traces:

• Infinite traces:

• Trace semantics:

• finite runs:

• Infinite runs:

30

lfp⊆B for which only trivial solutions are known (tests to prove that the tested programs
do terminate, k-bounded model checking to check that program executions terminate in
less that k steps, etc).

1.3 Variant function-based termination proofs

The ranking function-based approach that we follow is based on over-approximations only
and thus follows Turing-Floyd’s initial idea [5, 6] of proving total correctness by a partial
correctness proof using invariants followed by a termination proof using a ranking function.
• First, we ⊆-over-approximate the termination domain that is the set of states/invariant

I for which we have to prove termination. So init ⊆ I implies termination since we prove
termination for all states in I. Turing-Floyd’s method [5, 6] is similar, the invariant is
first proved forward and then the ranking function must decrease for all states satisfying
the invariant. If the invariant is imprecise, termination must be proved for some states
that are not reachable in any execution.

• Second, the ranking function <̇-over-approximate the best ranking function. In any state,
this best ranking function is the minimal over-approximation of the remaining execution
time (measured as the number of remaining steps to perform before reaching an exit
state in final). In case of unbounded non-determinism this function is valued in the class
O of ordinals.

By reformulating the completeness proof of Turing-Floyd’s termination proof method [4,
Th. 5.2.4˜2], we get a fixpoint definition of the best ranking function. Including the small-
est/exact termination domain, we get the standard termination semantics in Sect. 8 with
examples in Sect. 9.

Notice the trick: of course knowing the exact termination domain I = lfp⊆B only
is enough to prove termination for all states in init ∩ I but then we must do under-
approximations. We will provide fixpoint characterizations of the exact termination do-
main and the best ranking function. Then Turing-Floyd’s method [5, 6] follows by over-
approximating these best termination domain and ranking function.

The termination collecting semantics in Sect. 10 is about properties, a standard ter-
mination semantics being a first approximation. Further approximations of this standard
termination semantics are given in Sect. 12. Some approximations of termination properties
are abstraction of the termination collecting semantics but not of the standard termination
semantics as illustrated in Sect. 13.

2 Standard trace semantics of a transition system

We let �ε be the empty sequence of length |�ε | � 0, �s = �s0�s1 . . .�sn−1 ∈ �Σn be the sequences
of states in Σ of length |�s | � n � 0, �Σ+ � �

n�1
�Σn be the non-empty finite sequences

of states, �Σ∗ � �Σ0 ∪ �Σ+, �s = �s0�s1 . . .�si�si+1 . . . ∈ �Σω be the infinite sequences of states of
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2.6 Ordinals

The class of ordinals �O, �� is an abstraction of well-founded relations on sets. In Barnays-
Gödel-Von Neumann set theory1, the ordinals O are the well-ordered classes of all smaller
ordinals so that 0 � ∅, 1 � 0 + 1 = {0}, 2 � 1 + 1 = {0, 1}, 3 � 2 + 1 = {0, 1, 2},. . . ,
the first infinite ordinal is ω � {0, 1, 2, . . .}. The order ∈ on ordinals is written <. The
successor function is S(δ) � δ ∪ {δ} written δ + 1, the lub is

�
(such that

�
∅ = 0) and

the glb is
�

. Any ordinal λ is either a successor ordinal λ = S(δ) or a limit ordinal λ such
that ∀δ : λ �= S(δ) in which case λ =

�
δ∈λ δ. �O, �� is a increasing transfinite chain with

lub O ∈ O and no strictly decreasing chain so �O, �, 0, O, ∪, ∩� is a complete lattice2.

3 Trace semantics

Definition 1 (trace semantics) A trace semantics is a quadruple
ST = �Σ, init, final, �T � where Σ is a non-empty set of states, init ⊆ Σ is a non-empty set
of initial states, final ⊆ Σ is a non-empty set of final states, and �T ⊆ �init∞ is a non-empty
set of non-empty traces such that finite traces start in an initial state and terminate in a
final state, the first encountered one:

∀n � 1 : ∀�s ∈ �T ∩ �Σ n : �s0 ∈ init ∧ ∀i ∈ [0, n− 1(: �si �∈ final ∧ �sn−1 ∈ final

while infinite traces start in an initial state and never reach a final state

∀�s ∈ �T ∩ �Σ ω : �s0 ∈ init ∧ ∀i � 0 : �si �∈ final ��

Example 2 A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty
set Σ of states. It is deterministic if and only if τ is a function. A trace semantics ST τ
= �Σ, init, final, �T � such that any two consecutive states are in the relation.

∀�s ss��s � ∈ �T : τ(s, s�) ��

Definition 3 (terminating semantics) A trace semantics ST = �Σ, init, final, �T � is
terminating if and only if �T ∩ �Σ ω = ∅. The termination domain is dmn[¬(�T ∩ �Σ ω)].
A termination proof for a trace semantics ST is the proof, using the definition of ST as
hypothesis, that it is terminating for all initial states, that is init ⊆ dmn[¬(�T ∩ �Σ ω)]. ��

1
Mendelson, Elliott. An Introduction to Mathematical Logic, 4th ed., Chapman & Hall, London, 1997.

2
A complete lattice is usually a set, it must be extended to a class. However for a given transition

system, we can use a maximal ordinal to bound the class of ordinals needed in ranking functions.
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Gödel-Von Neumann set theory1, the ordinals O are the well-ordered classes of all smaller
ordinals so that 0 � ∅, 1 � 0 + 1 = {0}, 2 � 1 + 1 = {0, 1}, 3 � 2 + 1 = {0, 1, 2},. . . ,
the first infinite ordinal is ω � {0, 1, 2, . . .}. The order ∈ on ordinals is written <. The
successor function is S(δ) � δ ∪ {δ} written δ + 1, the lub is

�
(such that

�
∅ = 0) and

the glb is
�

. Any ordinal λ is either a successor ordinal λ = S(δ) or a limit ordinal λ such
that ∀δ : λ �= S(δ) in which case λ =

�
δ∈λ δ. �O, �� is a increasing transfinite chain with

lub O ∈ O and no strictly decreasing chain so �O, �, 0, O, ∪, ∩� is a complete lattice2.

3 Trace semantics

Definition 1 (trace semantics) A trace semantics is a quadruple
ST = �Σ, init, final, �T � where Σ is a non-empty set of states, init ⊆ Σ is a non-empty set
of initial states, final ⊆ Σ is a non-empty set of final states, and �T ⊆ �init∞ is a non-empty
set of non-empty traces such that finite traces start in an initial state and terminate in a
final state, the first encountered one:

∀n � 1 : ∀�s ∈ �T ∩ �Σ n : �s0 ∈ init ∧ ∀i ∈ [0, n− 1(: �si �∈ final ∧ �sn−1 ∈ final

while infinite traces start in an initial state and never reach a final state

∀�s ∈ �T ∩ �Σ ω : �s0 ∈ init ∧ ∀i � 0 : �si �∈ final ��

Example 2 A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty
set Σ of states. It is deterministic if and only if τ is a function. A trace semantics ST τ
= �Σ, init, final, �T � such that any two consecutive states are in the relation.

∀�s ss��s � ∈ �T : τ(s, s�) ��

Definition 3 (terminating semantics) A trace semantics ST = �Σ, init, final, �T � is
terminating if and only if �T ∩ �Σ ω = ∅. The termination domain is dmn[¬(�T ∩ �Σ ω)].
A termination proof for a trace semantics ST is the proof, using the definition of ST as
hypothesis, that it is terminating for all initial states, that is init ⊆ dmn[¬(�T ∩ �Σ ω)]. ��
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Example: traces generated by a transition system

• Transition system: 

• Trace semantics:

• Generated by the transition system:
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4 Termination trace collecting semantics

The termination trace collecting semantics provides the most precise information on ter-
mination about the trace semantics which is the set of terminating runs. Therefore
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À la Floyd/Turing invariant/ranking function abstraction

32

…

Invariant    x    ranking function abstraction
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Past/future abstraction

• Past:

• Future:

33

αC(�T ) � �T ∩ �Σ+

SC � �Σ, init, final, αC(�T )�

The transition semantics of a trace semantics ST = �Σ, init, final, �T � is the transition
system Sτ = �Σ, init, final, ατ(�T )� where the transition abstraction ατ is

ατ(�T ) � {�s, s�� | ∃�s,�s � ∈ �Σ∝ : �sss��s � ∈ �T}

Note that this transition abstraction is not an isomorphism (e.g., for Σ = {a, b} and
�T = {anb | n � 1}, ατ(�T ) = {�a, a�, �a, b�} which trace semantics includes aω �∈ �T ).

Lemma 4 The relation

s� � s � ∃�sss��s � ∈ SC

is well-founded.

5 Past and future abstraction

The essential idea of Turing/Floyd proof method is to abstract the past in an invariant
and the future in a ranking function.

The past trace abstraction collects all possible past computations during runs

α←(�T ) � {�s ∈ �Σ + | ∃�s � ∈ �Σ∝ : �s�s � ∈ �T}
S← � �Σ, init, final, α←(�T )�

while the future trace abstraction collects all possible futures during runs

α→(�T ) � {�s � ∈ �Σ∞ | ∃�s ∈ �Σ ∗ : �s�s � ∈ �T}
S→ � �Σ, init, final, α→(�T )�

6 Invariance abstraction

The past semantics S← is further abstracted into an invariant, which can be relational

αI(�T ) � {��s0, �sn−1� | n � 1 ∧ �s ∈ �T ∩ �Σn}
SI � �Σ, init, final, αI ◦ α← ◦ αC(�T )�

or not

αi(�T ) � {�sn−1 | n � 1 ∧ �s ∈ �T ∩ �Σn}
Si � �Σ, init, final, αi ◦ α←(�T )�
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Past fixpoint semantics
• Past fixpoint semantics:

• Further abstractions yield invariants (in fixpoint 
form):

• and automatic static analysis (iterative fixpoint 
computation with convergence acceleration by 
widening/narrowing)
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7 Ranking abstraction

The future semantics S→ is further abstracted into a ranking function, which can be rela-
tional

αR(�T ) � {��s0, �s0, 0� | �s ∈ �T ∩ �Σ1}
∪ {�s, s��,

�

ss��ss�� ∈ �T ∧ �s�, s��, δ� ∈ αR(�T )

δ + 1� | ∃�s � ∈ �Σ∝ : s�s �s�� ∈ �T}

SR � �Σ, init, final, αR ◦ α→ ◦ αC(�T )�

or not

αr(�T ) � {��s0, 0� | �s ∈ �T ∩ �Σ1}
∪ {�s,

�

ss��s ∈ �T ∧ �s�, δ� ∈ αr(�T )

δ + 1� | ∃�s � ∈ �Σ∝ : s�s � ∈ �T}

S→ � �Σ, init, final, α→ ◦ αC(�T )�

which is incomplete.

Theorem 5 αR is well-defined for a trace semantics ST = �Σ, init, final, �T � (i.e., dmn[αR(�T )]
�= ∅) if and only if ST is terminating. The termination domain of ST is dmn[αR(�T )]. ��

8 Fixpoint semantics

By expressing the past and future semantics as fixpoints, we can derive fixpoint definitions
of their abstractions, which yields proof methods and iterative static analysis algorithms.

8.1 Fixpoint past trace semantics

Theorem 6 (Fixpoint past trace semantics of a transition system [1]) Let ST τ
= �Σ, init, final, �T � be the trace semantics of a transition system �Σ, τ�. Then the past
trace semantics is the ⊆-least fixpoint of the transformer

B← τ ∈ ℘(�Σ +) −→ ℘(�Σ +)
B← τ ( �X) � �init 1 ∪ �X ◦ �τ

S← τ = �Σ, init, final, lfp⊆ B← τ � ��

8.2 Fixpoint future trace semantics

Definition 7 (computational ordering [1]) The computational ordering on ℘(�Σ∞) is

�X �� �Y � ( �X ∩ �Σ+) ⊆ (�Y ∩ �Σ+) ∧ ( �X ∩ �Σω) ⊇ (�Y ∩ �Σω) ��
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The past semantics S← is further abstracted into an invariant, which can be relational

αI(�T ) � {��s0, �sn−1� | n � 1 ∧ �s ∈ �T ∩ �Σn}
SI � �Σ, init, final, αI ◦ α←(�T )�

or not

αi(�T ) � {�sn−1 | n � 1 ∧ �s ∈ �T ∩ �Σn}
Si � �Σ, init, final, αi ◦ α←(�T )�

4
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Future fixpoint semantics
• Computational ordering

• Future fixpoint (termination collecting) semantics:
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Definition 4 (prefix free [4]) The set �T ∈ ℘(�Σ∞) of traces is prefix free if and only if

∀�s�s � ∈ �T : �s � ∈ �Σ∞ ⇒ �s �∈ �T ��

Lemma 5 (prefix free [4, Lem. 2.6.6˜1]) �T is prefix free. ��

Definition 6 (fusion closed [4]) The set �T ∈ ℘(�Σ∞) of traces is fusion closed if and
only if

∀�s 1s�s 2 ∈ �T : ∀�s 3s�s 4 ∈ �T : �s 1s�s 4 ∈ �T ��

Lemma 7 (fusion closed [4, Lem. 2.6.5˜2]) �T is fusion closed. ��

Definition 8 (limit closed) The set �T ∈ ℘(�Σ∞) of traces is limit closed if and only if

∀�s ∈ �Σω : (∀n ∈ N : ∃� � n : ∃h � n : ∃�s � ∈ �Σ∗,�s �� ∈ �Σ∞ : � < h ∧ �s ��s� . . .�sh�s
�� ∈ �T )

⇒ (�s ∈ �T ) ��

Lemma 9 (limit closed [4, Lem. 2.6.7˜1]) �T is limit closed. ��

Definition 10 (transition closed [4]) A set �T ∈ ℘(�Σ∞) of traces is said to be transition
closed if and only if there exists a transition system �Σ, τ, init, final� which standard trace
semantics �T is such that �T = �T . We let Θ(�Σ∞) � {�T ∈ ℘(�Σ∞) | �T is transition closed }.

��

Lemma 11 (transition closed [4, Th. 2.6.8˜4]) �T ∈ ℘(�Σ∞) is transition closed iff
and only if it is prefix free, suffix, fusion and limit closed. ��

3 Fixpoint standard trace semantics of a transition system

Definition 12 (computational ordering [2]) The computational ordering on ℘(�Σ∞) is

�X �� �Y � ( �X ∩ �Σ+) ⊆ (�Y ∩ �Σ+) ∧ ( �X ∩ �Σω) ⊇ (�Y ∩ �Σω) ��

Theorem 13 (complete lattice of trace semantics [2]) Equipped with this order, �℘(�Σ∞),
��, �Σω, �Σ+, ��, ��� is a complete lattice.

The standard trace semantics �T of a transition system �Σ, τ, init, final� can be defined is
fixpoint form as follows.

4

Definition 4 (prefix free [4]) The set �T ∈ ℘(�Σ∞) of traces is prefix free if and only if

∀�s�s � ∈ �T : �s � ∈ �Σ∞ ⇒ �s �∈ �T ��

Lemma 5 (prefix free [4, Lem. 2.6.6˜1]) �T is prefix free. ��

Definition 6 (fusion closed [4]) The set �T ∈ ℘(�Σ∞) of traces is fusion closed if and
only if

∀�s 1s�s 2 ∈ �T : ∀�s 3s�s 4 ∈ �T : �s 1s�s 4 ∈ �T ��

Lemma 7 (fusion closed [4, Lem. 2.6.5˜2]) �T is fusion closed. ��

Definition 8 (limit closed) The set �T ∈ ℘(�Σ∞) of traces is limit closed if and only if

∀�s ∈ �Σω : (∀n ∈ N : ∃� � n : ∃h � n : ∃�s � ∈ �Σ∗,�s �� ∈ �Σ∞ : � < h ∧ �s ��s� . . .�sh�s
�� ∈ �T )

⇒ (�s ∈ �T ) ��

Lemma 9 (limit closed [4, Lem. 2.6.7˜1]) �T is limit closed. ��

Definition 10 (transition closed [4]) A set �T ∈ ℘(�Σ∞) of traces is said to be transition
closed if and only if there exists a transition system �Σ, τ, init, final� which standard trace
semantics �T is such that �T = �T . We let Θ(�Σ∞) � {�T ∈ ℘(�Σ∞) | �T is transition closed }.

��

Lemma 11 (transition closed [4, Th. 2.6.8˜4]) �T ∈ ℘(�Σ∞) is transition closed iff
and only if it is prefix free, suffix, fusion and limit closed. ��

3 Fixpoint standard trace semantics of a transition system

Definition 12 (computational ordering [2]) The computational ordering on ℘(�Σ∞) is

�X �� �Y � ( �X ∩ �Σ+) ⊆ (�Y ∩ �Σ+) ∧ ( �X ∩ �Σω) ⊇ (�Y ∩ �Σω) ��

Theorem 13 (complete lattice of trace semantics [2]) Equipped with this order,
�℘(�Σ∞), ��, �Σω, �Σ+, ��, ��� is a complete lattice.

The standard trace semantics �T of a transition system �Σ, τ, init, final� can be defined is
fixpoint form as follows.

4

Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract 
interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)

8.1 Fixpoint past trace semantics

Theorem 7 (Fixpoint past trace semantics of a transition system [1]) Let ST τ
= �Σ, init, final, �T � be the trace semantics of a transition system �Σ, τ�. Then the past
trace semantics is the ⊆-least fixpoint of the transformer

B← τ ∈ ℘(�Σ +) −→ ℘(�Σ +)
B← τ ( �X) � �init 1 ∪ �X ◦ �τ

S← τ = �Σ, init, final, lfp⊆ B← τ � ��

8.2 Fixpoint future trace semantics

Definition 8 (computational ordering [1]) The computational ordering on ℘(�Σ∞) is

�X �� �Y � ( �X ∩ �Σ+) ⊆ (�Y ∩ �Σ+) ∧ ( �X ∩ �Σω) ⊇ (�Y ∩ �Σω) ��

Theorem 9 (complete lattice of trace semantics [1]) Equipped with this order,
�℘(�Σ∞), ��, �Σω, �Σ+, ��, ��� is a complete lattice.

Theorem 10 (Fixpoint future trace semantics of a transition system [1]) Let ST τ
= �Σ, init, final, �T � be the trace semantics of a transition system �Σ, τ�. Then its future
trace semantics is the ��-least fixpoint of the transformer

B→ τ ∈ ℘(�Σ∞) −→ ℘(�Σ∞)
B→ τ ( �X) � �final 1 ∪ (�τ ◦ �X)

S→ τ � �Σ, init, final, lfp
�� B→ τ � ��

Proof �℘(�Σ∞), ��, �Σω, �Σ+, ��, ��� is a complete lattice where X �� Y � ((X ∩ �Σ+)∪ (Y ∩
�Σ+)) ∪ ((X ∩ �Σω) ∩ (Y ∩ �Σω)). B→ τ is ��-increasing. The iterates of B→ τ are

�B 0 = �Σω def. infimum in �℘(�Σ∞), ���
�B 1 = B→ τ ( �B 0) = �final 1 τ ∪ (�τ 1 ◦ �Σω) def. B→ τ and �τ = �τ 1

�B 2 = �B( �B 1) = �final 1 ∪ (�τ ◦ ( �final 1 ∪ �τ 1 ◦ �Σω)) = �final 1 ∪ (�τ 1 ◦ �final 1) ∪ (�τ 2 ◦ �Σω)

. . .

�B n =
�n−1�

i=0

�τ i ◦ �final 1
�
∪ �τ n−1 ◦ �Σω ind. hyp. for recurrence

�B n+1 = �B( �B n) = �final 1 ∪
�
�τ ◦

��n−1�

i=0

�τ i ◦ �final 1
�
∪ �τ n−1 ◦ �Σω

��
= �final 1 ∪

�n−1�

i=0

�τ i+1 ◦

�final 1
�
∪ �τ n ◦ �Σω =

� n�

i=0

�τ i ◦ �final 1
�
∪ �τ n ◦ �Σω

6
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• Finite systems:

• Infinite systems:

…

Future of finite versus infinite systems

36

…
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Future approximation strategies
• Under-approximation of the termination domain:

• Dual abstract interpretation (over-approximation of the 
complement)

• Extremely difficult

• Few known solutions (testing, bounded model-checking, 
symbolic execution, etc.), mostly ineffective

• Over-approximation of the termination argument:

• Follow Lyapunov (stability), Turing, Floyd (ranking 
functions), Burstall, Ramsey, ...

37

2.6 Ordinals

The class of ordinals �O, �� is an abstraction of well-founded relations on sets. In Barnays-
Gödel-Von Neumann set theory1, the ordinals O are the well-ordered classes of all smaller
ordinals so that 0 � ∅, 1 � 0 + 1 = {0}, 2 � 1 + 1 = {0, 1}, 3 � 2 + 1 = {0, 1, 2},. . . ,
the first infinite ordinal is ω � {0, 1, 2, . . .}. The order ∈ on ordinals is written <. The
successor function is S(δ) � δ ∪ {δ} written δ + 1, the lub is

�
(such that

�
∅ = 0) and

the glb is
�

. Any ordinal λ is either a successor ordinal λ = S(δ) or a limit ordinal λ such
that ∀δ : λ �= S(δ) in which case λ =

�
δ∈λ δ. �O, �� is a increasing transfinite chain with

lub O ∈ O and no strictly decreasing chain so �O, �, 0, O, ∪, ∩� is a complete lattice2.

3 Trace semantics

Definition 1 (trace semantics) A trace semantics is a quadruple ST = �Σ, init, final,
�T � where Σ is a non-empty set of states, init ⊆ Σ is a non-empty set of initial states,
final ⊆ Σ is a non-empty set of final states, and �T ⊆ �init ∞ is a non-empty set of non-empty
traces such that finite traces start in an initial state and terminate in a final state, the first
encountered one:

∀n � 1 : ∀�s ∈ �T ∩ �Σ n : �s0 ∈ init ∧ ∀i ∈ [0, n− 1(: �si �∈ final ∧ �sn−1 ∈ final

while infinite traces start in an initial state and never reach a final state

∀�s ∈ �T ∩ �Σ ω : �s0 ∈ init ∧ ∀i � 0 : �si �∈ final ��

Example 2 A transition system �Σ, τ� is a transition relation τ ∈ �(Σ) on a non-empty
set Σ of states. It is deterministic if and only if τ is a function. A trace semantics

ST τ = �Σ, init, final, �T � such that any two consecutive states are in the relation.

∀�s ss��s � ∈ �T : τ(s, s�) ��

Definition 3 (terminating semantics) A trace semantics ST = �Σ, init, final, �T � is
terminating if and only if �T ∩ �Σ ω = ∅. The termination domain is dmn[¬(�T ∩ �Σ ω)].
A termination proof for a trace semantics ST is the proof, using the definition of ST as
hypothesis, that it is terminating for all initial states, that is init ⊆ dmn[¬(�T ∩ �Σ ω)]. ��

4 Termination trace collecting semantics

The termination trace collecting semantics provides the most precise information on ter-
mination about the trace semantics which is the set of terminating runs. Therefore

1
Mendelson, Elliott. An Introduction to Mathematical Logic, 4th ed., Chapman & Hall, London, 1997.

2
A complete lattice is usually a set, it must be extended to a class. However for a given transition

system, we can use a maximal ordinal to bound the class of ordinals needed in ranking functions.

3

The set of well-founded relations on a set S is Wf S . The set of all well-founded
transitive relations is Wft S � Wf S ∩ �+(S). The well-ordered relations on S are
Wo S � {r ∈ Wft S | ∀x, y : r(x, y) ∨ r(y, x)}.

2.3 Functions

We let (S × S × ...× S� �� �
n times

) �−→ S be set set of n-ary partial functions on S which is defined

as (S × S × ...× S� �� �
n times

) �−→ S � {f ∈ �n+1(S) | (�x1, . . . , xn, y� ∈ f ∧ �x1, . . . , xn, y�� ∈

f) ⇒ y = y�} and we write f(x1, . . . , xn) for the unique y such that �x1, . . . , xn, y� ∈ f .
The composition of unary function is f ◦ g(x) = F (g(x)). f ∈ S �−→ S is total when
dmn[f ] = S which is written f ∈ S −→ S.

2.4 Images

The post-image of X ⊆ S by a relation r ∈ �(S) is post r X � {s� | ∃s ∈ X : r(s, s�)}. For
X ⊆ S × S, we define post2 r X � {�s, s��� | ∃�s, s�� ∈ X : r(s�, s��)}. The dual post-image
is �post r � ¬ ◦ post r ◦ ¬. The pre-image is pre r � post r−1 and the dual pre-image
is �pre r � ¬ ◦ pre r ◦ ¬. Similarly for �post2 r , pre2 r , and �pre2 r .

2.5 Traces

We let �ε be the empty trace of length |�ε | � 0. �s = �s0�s1 . . .�sn−1 ∈ �S n is the set of traces of
n elements �s0, �s1, . . . , �sn−1 of the set S. �s ∈ �S n has length |�s | � n � 0. �S + � �

n�1
�S n

is the set of non-empty finite traces of elements of S. �S ∗ � �S 0 ∪ �S + is the set of possibly
empty finite traces of elements of S. �s = �s0�s1 . . .�si�si+1 . . . ∈ �S ω is the set of infinite traces
of elements of S. Their lengths are |�s | � ω. �S ∞ � �S + ∪ �S ω is the set of bifinite traces
(finite or infinite) of elements of S and the possibly finite bifinite traces �S ∝ � �S ∞ ∪ {�ε}
includes the empty sequence.

A set �T ∈ ℘(�S∞) of traces has a domain dmn[�T ] � {s ∈ S | ∃�s : s�s ∈ �T}, a co-domain
cdm[�T ] � {s� ∈ S | ∃�s : �ss� ∈ �T , and a field fld[�T ] � dmn[�T ] ∪ cdm[�T ].

Note that given a set S, �S 1 �
�
�s

��� |�s | = 1 ∧ �s0 ∈ S
�

is the set of singleton traces

of elements of S. Given a relation r ∈ �(S), �r � {�s ∈ �S 2 | r(�s0,�s1)} is the set of
relation traces for r. The composition of sets �T ∈ ℘(�S +) and �T � ∈ ℘(�S ∞) of traces is
�T ◦ �T � � {�ss��s �� | �ss� ∈ �T ∧ s��s �� ∈ �T �}. The left restriction of a set �T ∈ ℘(�S∞) of traces
by a set S ∈ ℘(S�) of elements is �T � S � �S 1 ◦ �T , the right restriction is �T � S � �T ◦ �S 1

and the restriction is �T ↑ S � �S 1 ◦ �T ◦ �S 1.

2
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The ranking abstraction
• Ordinals:

• Ranking abstraction:

38
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�Σ, τ�
C ∈ ℘(C)
C = lfp⊆ F ∈ ℘(C)
�℘(C), ⊆� −−−→←−−−

α

γ
�A, ��

α ◦ F ◦ γ � F
α(lfp⊆ F ) � lfp� F

F
0 � ⊥, . . . , F

n+1 � F (Fn), . . .

0 � ∅, 1 � {0}, 2 � {0, 1}, . . . , n + 1 � {0, . . . , n}, . . . ,ω � �
δ<ω δ,ω + 1, . . .

1 Relations

• ℘(S) powerset of set S, ℘f(S) set of non-empty finite subsets of set S

• r ∈ �(S) � ℘(S × S) relations on set S,

r(x, y) � �x, y� ∈ r related by r

r ◦ r� � {�x, z� | ∃y : r(x, y) ∧ r(y, z)} composition
IS � {�x, x� | x ∈ S} identity, S

r0 � IΣ powers
r1 � r

rn+1 � r ◦ rn = rn ◦ r

r+ �
�

0<n<ω

rn transitive closure

1

6 Invariance abstraction

The past semantics S← is further abstracted into an invariant, which can be relational

αI(�T ) � {��s0, �sn−1� | n � 1 ∧ �s ∈ �T ∩ �Σn}
SI � �Σ, init, final, αI ◦ α←(�T )�

or not

αi(�T ) � {�sn−1 | n � 1 ∧ �s ∈ �T ∩ �Σn}
Si � �Σ, init, final, αi ◦ α←(�T )�

7 Ranking abstraction

The future semantics S→ is further abstracted into a ranking function, which can be rela-
tional

αR(�T ) � {��s0, �s0, 0� | �s ∈ �T ∩ �Σ1}
∪ {�s, s��,

�

ss��ss�� ∈ �T ∧ �s�, s��, δ� ∈ αR(�T )

δ + 1� | ∃�s � ∈ �Σ∝ : s�s �s�� ∈ �T}

SR � �Σ, init, final, αR ◦ α→(�T )�

or not

αr(�T ) � {��s0, 0� | �s ∈ �T ∩ �Σ1}
∪ {�s,

�

ss��s ∈ �T ∧ �s�, δ� ∈ αr(�T )

δ + 1� | ∃�s � ∈ �Σ∝ : s�s � ∈ �T}

Sr � �Σ, init, final, αr ◦ α→(�T )�

which is incomplete.

Theorem 6 αR is well-defined for a trace semantics ST = �Σ, init, final, �T � (i.e., dmn[αR(�T )]
�= ∅) if and only if ST is terminating. The termination domain of ST is dmn[αR(�T )]. ��

8 Fixpoint semantics

By expressing the past and future semantics as fixpoints, we can derive fixpoint definitions
of their abstractions, which yields proof methods and iterative static analysis algorithms.

5
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Ancestors abstraction
• Abstract a partial function by its domain of 

definition:

• We get pre[t*](final) (1)

39

(1) P. Cousot, Thesis, Grenoble, March 1978

6 Invariance abstraction

The past semantics S← is further abstracted into an invariant, which can be relational

αI(
�T ) � {��s0, �sn−1� | n � 1 ∧ �s ∈ �T ∩ �Σn}
SI � �Σ, init, final, αI ◦ α←(�T )�

or not

αi(
�T ) � {�sn−1 | n � 1 ∧ �s ∈ �T ∩ �Σn}
Si � �Σ, init, final, αi ◦ α←(�T )�

7 Ranking abstraction

The future semantics S→ is further abstracted into a ranking function, which can be rela-

tional

αR(�T ) � {��s0, �s0, 0� | �s ∈ �T ∩ �Σ1}
∪ {�s, s��,

�

ss��ss�� ∈ �T ∧ �s�, s��, δ� ∈ αR(�T )

δ + 1� | ∃�s � ∈ �Σ∝
: s�s �s�� ∈ �T}

SR � �Σ, init, final, αR ◦ α→(�T )�

or not

αr(
�T ) � {��s0, 0� | �s ∈ �T ∩ �Σ1}

∪ {�s,
�

ss��s ∈ �T ∧ �s�, δ� ∈ αr(�T )

δ + 1� | ∃�s � ∈ �Σ∝
: s�s � ∈ �T}

Sr � �Σ, init, final, αr ◦ α→(�T )�

which is incomplete.

Theorem 6 αR is well-defined for a trace semantics ST = �Σ, init, final, �T � (i.e., dmn[αR(�T )]

�= ∅) if and only if ST is terminating. The termination domain of ST is dmn[αR(�T )]. ��

8 Ancestors of final states abstraction

One possible abstraction of a partial function is to record its domain of definition forgetting

the correspondence between parameters and the returned result.

αa(f) � dmn[f ]

Sa � �Σ, init, final, αa ◦ αr ◦ α→(�T )�

5
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Fixpoint ranking semantics

40

αR(B→ τ (X))

=. . .

= BR τ (αR(X)) def. BR τ ��

Theorem 13 (Fixpoint non-relational ranking semantics of a transition system)
Let Sr τ = �Σ, init, final, �T � be the trace semantics of a transition system �Σ, τ�. Then
the non-relational ranking semantics is the ⊆-least fixpoint of the transformer

Br τ ∈ (Σ �−→ O) −→ (Σ �−→ O)
Br τ (X) � {�s, 0� | s ∈ final}

∪ {�s,
�

τ(s,s�) ∧ �s�, δ� ∈ X

δ + 1� | s ∈ pre τ (dmn[X])}

Sr τ = �Σ, init, final, lfp⊆ Br τ � ��

Proof

αr(B→ τ (X))

=. . .

= Br τ (αr(X)) def. Br τ ��

Theorem 14 (Fixpoint non-relational ranking semantics of a deterministic transition system)
Let Sr τ = �Σ, init, final, �T � be the trace semantics of a deterministic transition system �Σ,
τ�. Then the non-relational ranking semantics is the ⊆-least fixpoint of the transformer

Br τ ∈ (Σ �−→ O) −→ (Σ �−→ O)
Br τ (f) � {�s, 0� | s ∈ final} ∪ {�s, f(τ(s)) + 1� | τ(s) ∈ dmn[f ]}

Sr τ = �Σ, init, final, lfp⊆ Br τ � ��

8.5 Examples of fixpoint ranking semantics

8.5.1 Example 1 (non termination)

Consider the following program on N.

while (1) {
n = n + 1

}

The standard termination semantics f has termination domain dmn[f ] = ∅ meaning guar-
anteed non-termination.

Proof Applying Th. 14, we calculate the iterates of Br τ which are f0 = ∅̇ since final =
∅and f1 = Br τ (f0) = ∅̇ since dmn[f0] = ∅. ��

8



CMACS meeting, NYU, October 28–29, 2010                                                                                                                                                                                                                                                                                 © P. Cousot

Example

41

while (n <> l) {
n = n + 1

}

9.4 Example 40 (logarithmic termination)

Consider the following program on N.

while (i <> 1) {
if even(i) { i = i div 2}

}

understood as defining the transition relation on N

τ(i, i�) � i �= 1 ∧ (odd(i) ⇒ i� = i) ∧ (even(i) ⇒ i� = i/2)

The standard termination semantics f has termination domain dom[f ] = {2n | n ∈ N} and
f(n) = log2 n.

Proof Applying Th. 35, we calculate the iterates of B.

f0 � ∅̇
f1 � B(f0) = {�1, 0�} since wp[τ ](∅) = ∅
f2 � B(f1) = {�2, 1�, �1, 0�} since wp[τ ]({1}) = {2, 1} and τ(2, 1)

. . .

fn = {�2i, i� | 0 � i < n} induction hypothesis of the recurrence
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�̇

n�0
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9.5 Example 41 (sorting)

For bubble sort

n := length(A)-1;
for (a=0; a<n; a++)

for (b=n; b>a; b--)
if (A[b-1] > A[b]) then
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• Let us prove by fixpoint computation that 
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• Termination domain:

• Ranking function:
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we calculate the iterates of

Br τ (f) � {�s, 0� | s ∈ final} ∪ {�s, f(τ(s)) + 1� | τ(s) ∈ dmn[f ]}
= {�1, 0�} ∪ {�i, f(i�) + 1� | i �= 1 ∧ (odd(i) ⇒ i� = i) ∧ (even(i) ⇒ i� = i/2) ∧

i� ∈ dmn[f ]}

f0 � ∅
f1 � Br τ (f0) = {�1, 0�} since dmn[f0] = ∅
f2 � Br τ (f1) = {�2, 1�, �1, 0�}

since dmn[f0] = {1}, and pre τ (dmn[f0]) = {2} and τ(2, 1)

. . .

fn = {�2i, i� | 0 � i < n} induction hypothesis of the recurrence

fn+1 � Br τ (fn) = {�1, 0�} ∪ {�2i+1, i + 1� | 0 � i < n}
= {�2i, i� | 0 � i < n + 1}

since dmn[fn] = {2i | 0 � i < n}, and pre τ (dmn[fn]) = {2i+1 | 0 � i < n} and
τ(2i+1, 2i)

. . .

fω =
�̇

n�0

fn =
�̇

n�0

{�2i, i� | 0 � i � n} = {�2i, i� | 0 � i}

fω+1 = Br τ (fω) = fω = lfp⊆∅ Br τ = λn ∈ 2N . log2 n ��

8.5.5 Example 5 (sorting)

For bubble sort

n := length(A)-1;
for (a=0; a<n; a++)

for (b=n; b>a; b--)
if (A[b-1] > A[b]) then

swap (A[b-1], A[b])
end

end
end

the transition system over N is

init � {�0, n� | n � 1}
τ(�a, b�, �a�, b��) � (b = a < n ∧ a� = a + 1 ∧ b� = n) iteration of outer loop

∨ (a < b � n ∧ a� = a ∧ b� = b− 1) iteration of inner loop
final � {�n− 1, n− 1� | n � 1}

12
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Computable abstractions
• Approximation:

• Abstraction by a reduced product of standard 
abstractions e.g.:

• Linear equalities (I) (with negative slopes and minimum or 
positive slopes and maximum)

• Powers (II)

• ...
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On going work ...
• Currently working on the formalization in AI terms

• and on abstractions for further methods:

• Burstall (I), (II)

• Ramsey (III)

• ...

• Checking temporal specifications of infinite 
systems (e.g. temporal logics)
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Conclusion
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Conclusion
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• This foundational preliminary work is the first step 
towards methods and inference algorithms for 
proving liveness by over-approximation


