Computational Modeling and Analysis of Complex Systems (CMACS)

"The Reduced Product of Abstract

Domains and the Combination

of Decision Procedures” (') and

"Termination: Foundations using
Abstract Interpretation”)

Patrick Cousot

pcousot@cs.nyu.edu http://cs.nyu.edu/~pcousot/

Joint ongoing work with

|. Radhia Cousot and Laurent Mauborgne
2. Radhia Cousot and Andreas Podelski

CMACS NYU meeting October 29,2010

What has been done since Pittsburgh meeting

® Work since the Pittsburgh meeting:

® Array content analysis (joint work with R. Cousot and F Logozzo)

® Segmented decision tree abstract domain (joint work with R. Cousot
and L. Mauborgne)

Precondition inference from runtime-checked assertions (joint work
with R. Cousot and F. Logozzo)

® Work in progress (today’s presentations):

® Probabilistic abstract interpretation: see talk by Michael Monerau
® | ogical abstract domains

® Termination/Guarantee semantics, proof, and static analysis

CMACS meeting, NYU, October 28-29, 2010 2 © P. Cousot

Work on Al since the
Pittsburgh meeting

Collection segmentation abstract domain

Array lower Segment bound Segment Array upper
bound bound

\Unlform abstraction with Simems/

<{0},[0,0].{i}%,[2,+00],{n}>

InitBackwards(int[] A) {
int i = A.Length;
/* 1: x/ while /* 2: %/ (0 < i) {

/* 3: */ i =1 - 1;
[A: <{0 i} [0,0] {A.Length}>] ;I ;Lf :; , A[i]l = 0;
[i: [0,0] A.Length: [2,+00]] o ef

® Included by F. Logozzo in MSR Clousot (distributed with MS
Visual Studio under Windows 7 pro)

® To appear in POPL201 |

Segmented decision tree abstract domain

Av: T Av: T Av: 0 Av: T

Decision tree

00 ~NOoO O b W+~ O

: x/
. x/

int n; /* n > 0 */
int k, Aln];

: x/ k = 0;
while /* 2: %/ (k < n) {
if (k > 0) {
* / Alk] = 0;
*/ +s;
*/ k = k+1;
x/ };
*/

Patrick Cousot, Radhia Cousot, Laurent Mauborgne: A Scalable Segmented Decision Tree
Abstract Domain. Essays in Memory of Amir Pnueli, LNCS 6200, Springer, 2010: 72-95

CMACS meeting, NYU, October 28-29, 2010 5

© P. Cousot

Precondition inference from asserts

® Derive a static precondition from programmers and
languages runtime-checked assertions in the code

bad state

® Not a wp: 7 e
./‘./v bad run .// good run
OK
bad run bad run
bad state bad state
® Symbolic under-approximation:
void AllNotNull(Ptr[] A) { equal to/different
/* 1: %/ int i = 0; _ Co. .
/* 2: %/ while /* 3: */ from initial value
(assert(A '= null); i < A.le) {
/* 4: %/ assert((A '= null) && (A[il"'= null)); -
/* 5: x/ A[i]l.f = new Object(J—a n) CT[ﬂOt] gquk
A while unmodified
/* 8: %/} 8: {0}0{i,A.length}? - {0}c{i,A.length}?

® TJo appear in VMCAI'20] |

CMACS meeting, NYU, October 28-29, 2010 6 © P. Cousot

Ongoing work
(1) Logical abstract domains

Combining Algebraic and Logical Abstractions (l)

® Model-checking is “logical” (temporal logic, BDDs,
SMT solvers,...)

® Abstract interpretation is "algebraic” (orders,
lattices, linear algebra, categories, reduced
product, ...)

® MC & Al can be combined within “set theory”, e.g.

e Patrick Cousot, Radhia Cousot: Temporal Abstract
Interpretation. POPL 2000, 12-25.

e Patrick Cousot, Radhia Cousot: Refining Model
Checking by Abstract Interpretation. Autom. Softw.
Eng. 6(1): 69-95 (1999).

8

Combining Algebraic and Logical Abstractions (ll)

® We propose a new MC & Al combination as “logical
(i.e. SMT solvers) + algebraic (i.e. reduced product of
abstract domains)”

Logical abstract domains: an instance

of algebraic abstract domains

® Abstract properties:a theory (set of logical
formulae)

® Order =>,join:\/, meet: /\, ...
® Concretization Y: interpretation

® Abstraction :in general does not exist (no best
abstraction e.g. in absence of infinite conjunctions)

® Transformers:

® Forward: Floyd/sp
® Backward: Hoare/wp/wlp

x=0=>Ex=0vx=1)>=>...=>\V_ x=1i= ...
(xi—l)c(xi—l/\xi—Z)c LE N XE—L &L

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

The (iterated) reduced
product in Al

Reduced product

A Cartesian product of abstract domains:

Implemented as a Cartesian product plus a reduction
P to propagate shared information from one
component to another

Sound and complete

Example of reduced product
® Cousot & Cousot, POPL 79

Iterated pairwise reduction

® p; :reduction between abstract domains Ai and A]

® i :extension to the Cartesian product
=g ’ ’
Dii(al5eesan) = (Qlseeey @'igeeey Qjyevey An)
where (3’;, 2’)) = pii(ai, 3j)
® |terated pairwise reduction
e _ . — . ., :
p = iterate the pj, i,j=1,...,n, i#]j until convergence

® Sound (but in general incomplete)

Example of pairwise iterated reduction
® Concrete domain: L = @({a,b,c})

® Abstract domains: A; = {@, {a},T}
a,b,cy A, = {0,{a, b}, T}
Az = {0,{a,c}, T}
e Reduction of (T, {a,b}, {a,c}):
® Global: {{a}, ia,b}, {a,c})

® Pairwise reductions:
P7((T, {a, b}, {a,c})) = (T.{a, b}, {a,c}) for A = {1,2,3},i,j € Aji #]

® |terated reduction:

9*(<T wa, b}, {a, C}>) = <T wa, b}, {a, c})

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

The Nelson-Oppen
combination procedure

Objective of the Nelson-Oppen procedure
® Given deductive theories 7; in F'(%;), 2; C X
with equality and decision procedures sat; for
satisfiability of quantifier free conjunctive formulze
0, € CZ),i=1,..,n,
® Decide the satisfiability of a quantifier free

conjunctive formula ¢ € C(UJ., %) in theory

T = Ui Ti such that M(T) = N5, M(TH).

[23] G. Nelson and D. Oppen. Simplification by cooperating decision
procedures. TOPLAS, 1(2):245-257, 1979.

17

The Nelson-Oppen combination procedure

|. Purification: project the quantifier-free conjunctive
formula ¢ as an equi-satisfiable conjonction of
component formula in each theory by introducing
fresh variables for alien terms

o = 3AdAx,...,)?n:/\goi where ¢, = ¢ A /\xi:txl.,
i=1 Xi€X;

2. Repeat the equality reduction: propagate [dis]
equalities deduced from each component formula ¢:
to the other components formulz) until no new [dis]
equality can be added

3. Test satisfiability of component formula, unsatifiable
iff one is unsatisfiable else unknown (originally,
satisfiable if all component formula are satisfiable)

CMACS meeting, NYU, October 28 29, 2010 18

The Nelson-Oppen procedure is an

iteratively reduced observation product

o T
o
o

ne purification is a projection of the formula to an
vservation product (with auxiliary variables

bserving alien subterms)

® The reduction is iterative but only for [dis]equalities

® The unsatisfiability check is a reduction to (false)

Soundness of the procedure ?

® The unsatisfiability is sound

® More conditions for satisfiability soundness to

ensure that all theories have isomorphic models such
as

® stably-infinity, politeness, etc ... so as to ensure that
the models of the theories /; have the same
cardinalities

® shared symbols (e.g. equality) have isomorphic
interpretations in all theories sharing them or
theories are disjoint which avoids the problem

20

Completeness of the procedure ?

® The procedure is incomplete

so there exists formula satisfiable in two theories
but not in their combination (e.g. integer arithmetics
and bit vectors)

® Additional restrictions are necessary to ensure
completeness

® convexity (to avoid to have to reduce by
disjunctions of [dis]equalities)

® disjointness of the theories (but constants, to
avoid to have to reduce on other properties
than [dis] equality such as <)

21

Who cares about completeness in static analysis?

® We care about soundness but not on completeness
(since we always get a sound overapproximation)

® Abandoning completeness, we can

® combine theories sharing symbols other than =
(as signs and parity)

® perform reduction (even for non-convex
theories) that are simply not optimal

22

Combining logical and algebraic abstractions

We use an iteratively reduced observation product
with:

® |ogical components in logical abstract domains
sharing symbols and handled by SMT solvers

® algebraic components in algebraic abstract
domains

® the reduction propagates

® [dis]equalities of logical components to all other
components

® pairwise algebraic reductions (equalities and
others) to all other components

23

CMACS meeting, NYU, October 28-29, 2010

Perspectives

® A new perspective to combine

® SMT solvers based model-checking understood as
logical abstract domains (with logical widenings)

® abstract interpretation-based static analysis using
classical abstract domains (with algebraic
widenings)

® This might avoid costly iterative refinement methods
thanks to the expressivity of first-order logic

24

Ongoing work
(2) Termination

25

Apply the abstract interpretation framework to

termination

CMACS meeting, NYU, October 28-29, 2010

Basic idea:

26

OOOOO

Abstract Interpretation framework

® Define the standard semantics: <Z, 7'>

® Define the collecting semantics (most general
property of interest): C € o(C)

® Express the collecting semantics in fixpoint form:
C =Ifp= F € p(O)
® Finite (MC) : compute C iteratively;

® Infinite (Al) : define an abstraction:

(p(C), C) == (A, C)

(87

CMACS meeting, NYU, October 28 —29, 2010 27

Abstract Interpretation framework (cont’d)

® Define an abstract transformer:

aqoF oy F

® The fixpoint abstract semantics is sound:

olfp= F) C Ifp= F

® Compute the abstract iterates iteratively:
F-&1, ..., F " &2FF",...

® Accelerating the convergence by widening V and
narrowing /\ (when necessary)

CMACS meeting, NYU, October 28 —29, 2010 28

Applying the abstract interpretation framework to a

Termination analysis:

termination collecting semantics

CMACS meeting, NYU, October 28-29, 2010

29

OOOOO

Standard semantics

® Traces on the set of states). :

® Traces of length n: s = §’0 51 .. §n_1 c "
. . = A
e Finite traces: S+ 2 Un _—p)
® Infinite traces: § = 5051 ...58i41... € X¥

—

® Trace semantics: S; = (%, init, final,)

® finite runs:

—

Vn>1:Vs5¢€ Tﬂi":E’O cinit AVi e [0,n— 1(: 5; & final A §,,_1 € final

® [nfinite runs:

VEeTNSY: 5, €init AVi=0: 35, ¢ final

CMACS meeting, NYU, October 28-29, 2010 30 © P. Couso

Example: traces generated by a transition system
® Transition system: (3, 7)
® Trace semantics: S, [r] = (&, init, final, T)
® Generated by the transition system:

V5ss's €T : 7(s,)

CMACS meeting, NYU, October 28-29, 2010 3 I © P. Cousot

A la Floyd/Turing invariant/ranking function abstraction

*—>0—0—>0—>0—>0—0

*—0—>0—>0—>0—0

v

*—>0—>0—0—0—>0—>0—>0—0
A

>@—>0@

!>.>.>.>.T

™ —

Invariant x ranking function abstraction

CMACS meeting, NYU, October 28-29, 2010 32 © P. Cousot

® Past:

® [Future:

CMACS meeting, NYU, October 28-29, 2010

Past/future abstraction

a_(T)
S

~

a.(T)
S

L (eSSt | eS> 55 e T}
2 (3, init, final, o (T))

L2 (g e¥™|Tses* 55 e T}
2 (3, init, final, a_(T))

33

Past fixpoint semantics

® Past fixpoint semantics:
B [r] € pE%) — p(E7)
B_[r](X) & init'UXo7
S_[r] = (%, init, final, IfpS B_[7])

® Further abstractions yield invariants (in fixpoint
form):

—

o, (T)
S,

(o1 |n>=1A5eTNE"}
(2, init, final, a; o a. (T))

A
A

® and automatic static analysis (iterative fixpoint
computation with convergence acceleration by
widening/narrowing)

34

Future fixpoint semantics

® Computational ordering
XCY 2 (XnEH ¥ NnEHA(XNEY) D (Y NEY)

<KJ(§OO), i, i”, i+, 1, ﬁ} 1s a complete lattice

® Future fixpoint (termination collecting) semantics:

—

BL[r] € o) — p(X)
B_[r](X) £ final'U (7 o X)
S [r] 2 (%, init, final, Ifp= B_[7])

Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract
interpretation.Theor. Comput. Sci. 277(1-2): 47-103 (2002)

CMACS meeting, NYU, October 28-29, 2010 35 ©P.C

OOOOO

Future of finite versus infinite systems

® Finite systems:
o>

TR SR,

® |nfinite systems:

*—>0—>0

*—>0—>0—>0—>0—>0—>0—>0—>0—>0—>0

TR SR,

CMACS meeting, NYU, October 28 —29, 2010 36

Future approximation strategies
® Under-approximation of the termination domain:
dmn[=(T N %¢)]
dmn[T]| 2 {s €S |35:s5e T}

® Dual abstract interpretation (over-approximation of the
complement)
® Extremely difficult

® Few known solutions (testing, bounded model-checking,
symbolic execution, etc.), mostly ineffective

® Over-approximation of the termination argument:

® Follow Lyapunov (stability), Turing, Floyd (ranking
functions), Burstall, Ramsey, ...

CMACS meeting, NYU, October 28 —29, 2010 37

The ranking abstraction

® Ordinals:
0£0,1={0},2={0,1},...,n+12{0,....n},...,w = Us_, dw+1,...

® Ranking abstraction:

o, (T) £ {(5,0)]|5eTn%}
U {{(s, U §+1) 35 e £ : 53" €T}
ss'se€ T A (s, 6) € an(T)
S, £ (%, init, final, a, o a(T))

CMACS meeting, NYU, October 28 —29, 2010 38

Ancestors abstraction

® Abstract a partial function by its domain of
definition:

a,(f) = dmnlf]
S, = (X, init, final, a, o o, © aﬁ(f)>

e Wegetpre[t*] (final) (I

(I) P. Cousot, Thesis, Grenoble, March 1978

CMACS meeting, NYU , October 28-29 , 2010 39

Fixpoint ranking semantics

B.[r] ¢ X—+—0)— (X—+0)
B.[r](X) & {(s, 0)]s € final}
U {(s, g 5+ 1) | s € pre[r](dmn[X])}
T(s,s") N (s’,0) € X
S.[r] = (%, init, final, IfpS B,[7])

PROOF

a.(B-[7](X))

B, [7](a.(X)) (def. B.[7]}

40

Example

Consider the following program on N.

while (i <> 1) {
if even(i) { i = i div 2}

}

understood as defining the transition relation on N

7(i,7) = i# 1A (odd(i) =i’ =1i) A (even(i) = i’ =1i/2)

® | et us prove by fixpoint computation that
the ranking semantics is:

® Termination domain: dom[f] = {2" |n € N}

® Ranking function: f(n) =logy n

41

|terates

we calculate the iterates of

B.IrI(f) £ {(s,0)]sefinal}U{(s, f(r(s)) +1) | 7(s) € dmn[f]}
— (1,00 UG, f(@)+1)|i£ 1A (odd(i) = i' =i) A (even(i) = i’ = i/2) A

i' € dmn[f]}
e
foE B = {1, 0) (since dmn[f°)] = 0}
f2 = Br[[T]](fl) — {<27 1>7<17 O>}
(since dmn[f°] = {1}, and pre[7r](dmn[fY]) = {2} and 7(2,1)§
o= {249]0<i<n} (induction hypothesis of the recurrence§

2 B = (L0 U{ T i+ 1) |0 <i <n}
= {2,) |0<i<n+1}

(since dmn[f"] = {2' | 0 < i < n}, and pre[r](dmn[f"]) = {21 | 0 < i < n} and
(2,20

o= U= Ui <n} = {(2,4)]0<i}
n>0 n>0
ot = B¢ = ¢ = |fp®B[[7']] =)\nEQN-loan O

CMACS meeting, NYU, October 28 —29, 2010 42

Computable abstractions

® Approximation:

\

‘ >

® Abstraction by a reduced product of standard
abstractions e.g.:

® Linear equalities " (with negative slopes and minimum or
positive slopes and maximum)

® Powers ()
°

(I) Michael Karr:Affine Relationships Among Variables of a Program.Acta Inf. 6: 33-151 (1976)
(I) Isabella Mastroeni: Algebraic Power Analysis by Abstract Interpretation. Higher-Order and
Symbolic Computation |17(4): 297-345 (2004)

CMACS meeting, NYU, October 28-29, 2010 43 © P. Couso

On going work ...

® Currently working on the formalization in Al terms

® and on abstractions for further methods:

Burstall ()
Ramsey ()

Checking temporal specifications of infinite
systems (e.g. temporal logics)

() Rod M. Burstall: Program Proving as Hand Simulation with a Little Induction. |IFIP Congress 1974:
308-312

(Il) Patrick Cousot, Radhia Cousot: Sometime = Always + Recursion = Always on the Equivalence of
the Intermittent and Invariant Assertions Methods for Proving Inevitability Properties of
Programs.Acta Inf. 24(1): I-31 (1987)

(I11) Andreas Podelski,Andrey Rybalchenko: Transition Invariants. LICS 2004: 32-4 |

44

CMACS meeting, NYU, October 28-29, 2010

Conclusion

45

© P. Cousot

® This foundational preliminary work is the first step
towards methods and inference algorithms for
proving liveness by over-approximation

CMACS meeting, NYU, October 28-29, 2010

Conclusion

46

OOOOO

