"The Reduced Product of Abstract

 Domains and the Combination of Decision Procedures" (1.) and "Termination: Foundations using Abstract Interpretation" (2.) Patrick Cousotpcousot@cs.nyu.edu http://cs.nyu.edu/~pcousot/ Joint ongoing work with
I. Radhia Cousot and Laurent Mauborgne
2. Radhia Cousot and Andreas Podelski

What has been done since Pittsburgh meeting

- Work since the Pittsburgh meeting:
- Array content analysis (joint work with R. Cousot and F. Logozzo)
- Segmented decision tree abstract domain (joint work with R. Cousot and L. Mauborgne)
- Precondition inference from runtime-checked assertions (joint work with R. Cousot and F. Logozzo)
- Work in progress (today's presentations):
- Probabilistic abstract interpretation: see talk by Michael Monerau
- Logical abstract domains
- Termination/Guarantee semantics, proof, and static analysis

Work on Al since the Pittsburgh meeting

Collection segmentation abstract domain

Array lower Segment bound

```
                                    InitBackwards(int[] A) {
    int i = A.Length;
/* 1: */ while /* 2: */ (0< i) {
/* 3: */ i = i - 1;
/* 4: */
    A[i] = 0;
[ A: <{0 i} [0,0] {A.Length}> ]
/* 5: */ }
/* 6: */ }
```

- Included by F. Logozzo in MSR Clousot (distributed with MS Visual Studio under Windows 7 pro)
- To appear in POPL'201I

Segmented decision tree abstract domain

Decision tree

- Patrick Cousot, Radhia Cousot, Laurent Mauborgne:A Scalable Segmented Decision Tree Abstract Domain. Essays in Memory of Amir Pnueli, LNCS 6200, Springer, 2010: 72-95

Precondition inference from asserts

- Derive a static precondition from programmers and languages runtime-checked assertions in the code
- Not a wp:

- Symbolic under-approximation:
void AllNotNull (Ptr [] A) \{ equal toldifferent
int $i=0 ;$ from initial value

/* 7: */ \}
$/ * 8: * /\} 8:\{0\} \mathfrak{d}\{i, A . \operatorname{length}\} ?-\{0\} c\{i, A . l e n g t h\} ?$
- To appear in VMCAl'20II

Ongoing work

(I) Logical abstract domains

Combining Algebraic and Logical Abstractions (I)

- Model-checking is "logical" (temporal logic, BDDs, SMT solvers,...)
- Abstract interpretation is "algebraic" (orders, lattices, linear algebra, categories, reduced product, ...)
- MC \& AI can be combined within "set theory", e.g.
- Patrick Cousot, Radhia Cousot: Temporal Abstract Interpretation. POPL 2000, 12-25.
- Patrick Cousot, Radhia Cousot: Refining Model Checking by Abstract Interpretation. Autom. Softw. Eng. 6(1): 69-95 (1999).

Combining Algebraic and Logical Abstractions (II)

- We propose a new MC \& AI combination as "logical (i.e. SMT solvers) + algebraic (i.e. reduced product of abstract domains)"

Logical abstract domains: an instance of algebraic abstract domains

- Abstract properties: a theory (set of logical formulae)
- Order =>, join: V/, meet: /, ...
- Concretization γ : interpretation
- Abstraction α : in general does not exist (no best abstraction e.g. in absence of infinite conjunctions)
- Transformers:
- Forward: Floyd/sp
- Backward: Hoare/wp/wlp

$$
\left.\begin{array}{l}
(\mathrm{x}=0) \Rightarrow(\mathrm{x}=0 \vee \mathrm{x}=1) \Rightarrow \ldots \Rightarrow \bigvee_{i=1}^{n} \mathrm{x}=i \Rightarrow \ldots \\
(\mathrm{x} \neq-1) \Leftarrow(\mathrm{x} \neq-1 \wedge \mathrm{x} \neq-2) \Leftarrow \\
10
\end{array}\right) \Leftarrow \bigwedge_{i=1}^{n} \mathrm{x} \neq-i \Leftarrow \ldots .
$$

The (iterated) reduced product in Al

Reduced product

- A Cartesian product of abstract domains:

$$
\Pi_{\mathrm{i}=1, \ldots, \mathrm{n}} \mathrm{~A}_{\mathrm{i}}
$$

- Understood as a conjunction:

$$
\gamma\left(a_{1}, \ldots, a_{n}\right)=\Lambda_{i=1, \ldots, n} \gamma\left(a_{i}\right)
$$

- Implemented as a Cartesian product plus a reduction ρ to propagate shared information from one component to another
- Sound and complete

Example of reduced product

- Cousot \& Cousot, POPL 79

reduced product:

Iterated pairwise reduction

- $\rho_{i j}$: reduction between abstract domains $A i$ and $A j$
- $\vec{\rho}_{\mathrm{ij}}$: extension to the Cartesian product

$$
\begin{aligned}
& \vec{\rho}_{i j}\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}, \ldots, a_{i}^{\prime}, \ldots, a_{j}^{\prime}, \ldots, a_{n}\right) \\
& \text { where }\left(a_{i}^{\prime}, a_{i j}^{\prime}\right)=\rho_{i j}\left(a_{i}, a_{i j}\right)
\end{aligned}
$$

- Iterated pairwise reduction
$\overrightarrow{\rho^{*}}=$ iterate the $\vec{\rho}_{\mathrm{i}, \mathrm{i}}, \mathrm{i}=\mathrm{I}, \ldots, \mathrm{n}, \mathrm{i} \neq \mathrm{j}$ until convergence
- Sound (but in general incomplete)

Example of pairwise iterated reduction

- Concrete domain: $L=\wp(\{a, b, c\})$
- Abstract domains: $A_{1}=\{\emptyset,\{a\}, \mathrm{T}\}$

$$
\begin{array}{ll}
\mathrm{T}=\{a, b, c\} & A_{2}=\{\emptyset,\{a, b\}, \mathrm{T}\} \\
& A_{3}=\{\emptyset,\{a, c\}, \top\}
\end{array}
$$

- Reduction of $\langle\mathrm{T},\{a, b\},\{a, c\}\rangle$:
- Global: $\langle\{a\},\{a, b\},\{a, c\}\rangle$
- Pairwise reductions:

$$
\vec{\rho}_{\overrightarrow{i j}}(\langle\top,\{a, b\},\{a, c\}\rangle)=\langle\top,\{a, b\},\{a, c\}\rangle \text { for } \Delta=\{1,2,3\}, i, j \in \Delta, i \neq j
$$

- Iterated reduction:

$$
\vec{\rho}^{*}(\langle\top,\{a, b\},\{a, c\}\rangle)=\langle\top,\{a, b\},\{a, c\}\rangle
$$

The Nelson-Oppen combination procedure

Objective of the Nelson-Oppen procedure

- Given deductive theories \mathcal{T}_{i} in $\mathbb{F}\left(\Sigma_{i}\right), \Sigma_{i} \subseteq \Sigma$
with equality and decision procedures sat ${ }_{i}$ for satisfiability of quantifier free conjunctive formulæ $\varphi_{i} \in \mathbb{C}\left(\Sigma_{i}\right), i=1, \ldots, n$,
- Decide the satisfiability of a quantifier free conjunctive formula $\varphi \in \mathbb{C}\left(\bigcup_{i=1}^{n} \Sigma_{i}\right)$ in theory $\mathcal{T}=\bigcup_{i=1}^{n} \mathcal{T}_{i}$ such that $\mathfrak{M}(\mathcal{T})=\bigcap_{i=1}^{n} \mathfrak{M}\left(\mathcal{T}_{i}\right)$.
[23] G. Nelson and D. Oppen. Simplification by cooperating decision procedures. TOPLAS, 1(2):245-257, 1979.

The Nelson-Oppen combination procedure

I. Purification: project the quantifier-free conjunctive formula φ as an equi-satisfiable conjonction of component formulæ in each theory by introducing fresh variables for alien terms

$$
\varphi^{\prime}=\exists \vec{x}_{1}, \ldots, \overrightarrow{\vec{r}}_{n}: \bigwedge_{i=1}^{n} \varphi_{i} \text { where } \varphi_{i}=\varphi_{i}^{\prime} \wedge \bigwedge_{x_{i} \in \in_{i}} x_{i}=t_{x_{i}},
$$

2. Repeat the equality reduction: propagate [dis] equalities deduced from each component formula φ_{i} to the other components formulæ) until no new [dis] equality can be added
3. Test satisfiability of component formulæ, unsatifiable iff one is unsatisfiable else unknown (originally, satisfiable if all component formula are satisfiable)

The Nelson-Oppen procedure is an iteratively reduced observation product

- The purification is a projection of the formula to an observation product (with auxiliary variables observing alien subterms)
- The reduction is iterative but only for [dis]equalities
- The unsatisfiability check is a reduction to

Soundness of the procedure?

- The unsatisfiability is sound
- More conditions for satisfiability soundness to ensure that all theories have isomorphic models such as
- stably-infinity, politeness, etc ... so as to ensure that the models of the theories \mathcal{T}_{i} have the same cardinalities
- shared symbols (e.g. equality) have isomorphic interpretations in all theories sharing them or theories are disjoint which avoids the problem

Completeness of the procedure ?

- The procedure is incomplete
so there exists formulæ satisfiable in two theories but not in their combination (e.g. integer arithmetics and bit vectors)
- Additional restrictions are necessary to ensure completeness
- convexity (to avoid to have to reduce by disjunctions of [dis]equalities)
- disjointness of the theories (but constants, to avoid to have to reduce on other properties than [dis] equality such as <)

Who cares about completeness in static analysis?

- We care about soundness but not on completeness (since we always get a sound overapproximation)
- Abandoning completeness, we can
- combine theories sharing symbols other than $=$ (as signs and parity)
- perform reduction (even for non-convex theories) that are simply not optimal

Combining logical and algebraic abstractions

We use an iteratively reduced observation product with:

- logical components in logical abstract domains sharing symbols and handled by SMT solvers
- algebraic components in algebraic abstract domains
- the reduction propagates
- [dis]equalities of logical components to all other components
- pairwise algebraic reductions (equalities and others) to all other components

Perspectives

- A new perspective to combine
- SMT solvers based model-checking understood as logical abstract domains (with logical widenings)
- abstract interpretation-based static analysis using classical abstract domains (with algebraic widenings)
- This might avoid costly iterative refinement methods thanks to the expressivity of first-order logic

Ongoing work (2) Termination

Basic idea:

Apply the abstract interpretation framework to termination

Abstract Interpretation framework

- Define the standard semantics: $\langle\Sigma, \tau\rangle$
- Define the collecting semantics (most general property of interest): $\mathcal{C} \in \wp(C)$
- Express the collecting semantics in fixpoint form:

$$
\mathcal{C}=\mid \mathrm{If} \subseteq F \in \wp(C)
$$

- Finite (MC) : compute \mathcal{C} iteratively;
- Infinite (AI) : define an abstraction:

$$
\langle\wp(C), \subseteq\rangle \underset{\alpha}{\leftrightarrows}\langle A, \sqsubseteq\rangle
$$

Abstract Interpretation framework (cont'd)

- Define an abstract transformer:

$$
\alpha \circ F \circ \gamma \sqsubseteq \bar{F}
$$

- The fixpoint abstract semantics is sound:

$$
\alpha(\mathrm{Ifp} \subseteq F) \sqsubseteq \operatorname{lfp} \sqsubseteq \bar{F}
$$

- Compute the abstract iterates iteratively:

$$
\bar{F}^{0} \triangleq \perp, \ldots, \bar{F}^{n+1} \triangleq \bar{F}\left(\bar{F}^{n}\right), \ldots
$$

- Accelerating the convergence by widening ∇ and narrowing Δ (when necessary)

Termination analysis:

Applying the abstract interpretation framework to a termination collecting semantics

Standard semantics

- Traces on the set of states Σ :
- Traces of length $\mathrm{n}: \vec{s}=\vec{s}_{0} \vec{s}_{1} \ldots \vec{s}_{n-1} \in \vec{\Sigma}^{n}$
- Finite traces:

$$
\vec{\Sigma}^{+} \triangleq \bigcup_{n \geqslant 1} \vec{\Sigma}^{n}
$$

- Infinite traces:

$$
\vec{s}=\vec{s}_{0} \vec{s}_{1} \ldots \vec{s}_{i} \vec{s}_{i+1} \ldots \in \vec{\Sigma}^{\omega}
$$

- Trace semantics: $\mathcal{S}_{\mathcal{T}}=\langle\Sigma$, init, final, $\vec{T}\rangle$
- finite runs:
$\forall n \geqslant 1: \forall \vec{s} \in \vec{T} \cap \vec{\Sigma}^{n}: \vec{s}_{0} \in$ init $\wedge \forall i \in\left[0, n-1\left(: \vec{s}_{i} \notin\right.\right.$ final $\wedge \vec{s}_{n-1} \in$ final
- Infinite runs:
$\forall \vec{s} \in \vec{T} \cap \vec{\Sigma}^{\omega}: \vec{s}_{0} \in$ init $\wedge \forall i \geqslant 0: \vec{s}_{i} \notin$ final

Example: traces generated by a transition system

- Transition system: $\langle\Sigma, \tau\rangle$
- Trace semantics: $\quad \mathcal{S}_{T} \llbracket \tau \rrbracket=\langle\Sigma$, init, final, $\vec{T}\rangle$
- Generated by the transition system:

$$
\forall \vec{s} s s^{\prime} \vec{s}^{\prime} \in \vec{T}: \tau\left(s, s^{\prime}\right)
$$

À la Floyd/Turing invariant/ranking function abstraction

Invariant \mathbf{x} ranking function abstraction

Past/future abstraction

- Past:

$$
\begin{aligned}
\alpha_{\leftarrow}(\vec{T}) & \triangleq\left\{\vec{s} \in \vec{\Sigma}^{+} \mid \exists \vec{s}^{\prime} \in \vec{\Sigma}^{\propto}: \vec{s} \vec{s}^{\prime} \in \vec{T}\right\} \\
\mathcal{S}_{\leftarrow} & \triangleq\left\langle\Sigma, \text { init, final, } \alpha_{\leftarrow}(\vec{T})\right\rangle
\end{aligned}
$$

- Future: $\quad \alpha_{\rightarrow}(\vec{T}) \triangleq \quad\left\{\vec{s}^{\prime} \in \vec{\Sigma}^{\infty} \mid \exists \vec{s} \in \vec{\Sigma}^{*}: \vec{s} \vec{s}^{\prime} \in \vec{T}\right\}$

$$
\mathcal{S}_{\rightarrow} \triangleq\left\langle\Sigma, \text { init, final, } \alpha_{\rightarrow}(\vec{T})\right\rangle
$$

Past fixpoint semantics

- Past fixpoint semantics:

$$
\begin{aligned}
\mathcal{B}_{\leftarrow} \llbracket \tau \rrbracket & \in \wp\left(\overrightarrow{ }^{+}\right) \longrightarrow \wp\left(\vec{\Sigma}^{+}\right) \\
\mathcal{B}_{\llcorner\llbracket \tau \rrbracket(\vec{X})} & \triangleq \text { init }^{1} \cup \vec{X} \circ \vec{\tau} \\
\mathcal{S}_{\square} \llbracket \tau \rrbracket & =\left\langle\Sigma, \text { init, final, |fp} \subseteq \mathcal{B}_{\llcorner }-\llbracket \tau \rrbracket\right\rangle
\end{aligned}
$$

- Further abstractions yield invariants (in fixpoint form):

$$
\begin{aligned}
\alpha_{i}(\vec{T}) & \triangleq\left\{\vec{s}_{n-1} \mid n \geqslant 1 \wedge \vec{s} \in \vec{T} \cap \vec{\Sigma}^{n}\right\} \\
\mathcal{S}_{i} & \triangleq\left\langle\Sigma, \text { init, final, } \alpha_{i} \circ \alpha_{\leftarrow}(\vec{T})\right\rangle
\end{aligned}
$$

- and automatic static analysis (iterative fixpoint computation with convergence acceleration by widening/narrowing)

Future fixpoint semantics

- Computational ordering

$$
\begin{aligned}
& \vec{X} \triangleq \vec{Y} \triangleq\left(\vec{X} \cap \vec{\Sigma}^{+}\right) \subseteq\left(\vec{Y} \cap \vec{\Sigma}^{+}\right) \wedge\left(\vec{X} \cap \vec{\Sigma}^{\omega}\right) \supseteq\left(\vec{Y} \cap \vec{\Sigma}^{\omega}\right) \\
& \left\langle\wp\left(\vec{\Sigma}^{\infty}\right), \vec{\Xi}, \vec{\Sigma}^{\omega}, \vec{\Sigma}^{+}, \stackrel{\rightharpoonup}{\mathrm{L}}, \vec{\Pi}\right\rangle \text { is a complete lattice }
\end{aligned}
$$

- Future fixpoint (termination collecting) semantics:

$$
\begin{aligned}
\mathcal{B}_{\rightarrow} \llbracket \tau \rrbracket & \in \wp\left(\vec{\Sigma}^{\infty}\right) \longrightarrow \wp\left(\vec{\Sigma}^{\infty}\right) \\
\mathcal{B}_{\rightarrow} \llbracket \tau \rrbracket(\vec{X}) & \triangleq \text { final }{ }^{1} \cup(\vec{\tau} \circ \vec{X}) \\
\mathcal{S}_{\rightarrow} \llbracket \tau \rrbracket & \triangleq\left\langle\Sigma, \text { init, final, |fp} \stackrel{\rightharpoonup}{\leftrightarrows} \mathcal{B}_{\rightarrow} \llbracket \tau \rrbracket\right\rangle
\end{aligned}
$$

Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)

Future of finite versus infinite systems

- Finite systems:

- Infinite systems:

$\rightarrow \mathrm{O} \rightarrow \mathrm{O} \cdot \cdot \mathrm{C} \rightarrow \mathrm{C} \rightarrow \mathrm{C} \rightarrow \mathrm{C} \rightarrow \mathrm{C} \cdot \cdot$

Future approximation strategies

- Under-approximation of the termination domain:

$$
\begin{aligned}
& \operatorname{dmn}\left[\neg\left(\vec{T} \cap \vec{\Sigma}^{\omega}\right)\right] \\
& \operatorname{dmn}[\vec{T}] \triangleq\{s \in S \mid \exists \vec{s}: s \vec{s} \in \vec{T}\}
\end{aligned}
$$

- Dual abstract interpretation (over-approximation of the complement)
- Extremely difficult
- Few known solutions (testing, bounded model-checking, symbolic execution, etc.), mostly ineffective
- Over-approximation of the termination argument:
- Follow Lyapunov (stability), Turing, Floyd (ranking functions), Burstall, Ramsey, ...

The ranking abstraction

- Ordinals:

$$
0 \triangleq \emptyset, 1 \triangleq\{0\}, 2 \triangleq\{0,1\}, \ldots, n+1 \triangleq\{0, \ldots, n\}, \ldots, \omega \triangleq \bigcup_{\delta<\omega} \delta, \omega+1, \ldots
$$

- Ranking abstraction:

$$
\begin{aligned}
\alpha_{r}(\vec{T}) \triangleq & \left\{\left\langle\vec{s}_{0}, 0\right\rangle \mid \vec{s} \in \vec{T} \cap \vec{\Sigma}^{1}\right\} \\
& \cup\left\{\left\langle s, \bigcup_{s s^{\prime} \in \vec{T} \wedge\left\langle s^{\prime}, \delta\right\rangle \in \alpha_{r}(\vec{T})} \delta+1\right\rangle \mid \exists \vec{s}^{\prime} \in \vec{\Sigma}^{\alpha}: s \vec{s}^{\prime} \in \vec{T}\right\} \\
\mathcal{S}_{r} \triangleq & \left\langle\Sigma, \text { init, final, } \alpha_{r} \circ \alpha_{\rightarrow}(\vec{T})\right\rangle
\end{aligned}
$$

Ancestors abstraction

- Abstract a partial function by its domain of definition:
$\alpha_{a}(f) \triangleq \mathrm{dmn}[f]$
$\mathcal{S}_{a} \triangleq\left\langle\Sigma\right.$, init, final, $\left.\alpha_{a} \circ \alpha_{r} \circ \alpha_{\rightarrow}(\vec{T})\right\rangle$
- We get pre[t*] (final)
(I) P. Cousot, Thesis, Grenoble, March 1978

Fixpoint ranking semantics

$$
\begin{aligned}
\mathcal{B}_{r} \llbracket \tau \rrbracket \in & (\Sigma \hookrightarrow \mathbb{O}) \longrightarrow(\Sigma \hookrightarrow \mathbb{O}) \\
\mathcal{B}_{r} \llbracket \tau \rrbracket(X) \triangleq & \{\langle s, 0\rangle \mid s \in \text { final }\} \\
& \cup\left\{\left\langle s, \bigcup_{\tau\left(s, s^{\prime}\right) \wedge\left\langle s^{\prime}, \delta\right\rangle \in X} \delta+1\right\rangle \mid s \in \operatorname{pre} \llbracket \tau \rrbracket(\operatorname{dmn}[X])\right\} \\
\mathcal{S}_{r} \llbracket \tau \rrbracket= & \left\langle\Sigma, \text { init, final, } \mid \mathrm{Ifp} \subseteq \mathcal{B}_{r} \llbracket \tau \rrbracket\right\rangle
\end{aligned}
$$

Proof

$$
\alpha_{r}\left(\mathcal{B}_{\rightarrow} \llbracket \tau \rrbracket(X)\right)
$$

$$
=\ldots
$$

$$
=\mathcal{B}_{r} \llbracket \tau \rrbracket\left(\alpha_{r}(X)\right)
$$

Example

Consider the following program on \mathbb{N}.

```
while (i <> 1) {
    if even(i) { i = i div 2}
}
```

understood as defining the transition relation on \mathbb{N}

$$
\tau\left(i, i^{\prime}\right) \triangleq i \neq 1 \wedge\left(\operatorname{odd}(i) \Rightarrow i^{\prime}=i\right) \wedge\left(\operatorname{even}(i) \Rightarrow i^{\prime}=i / 2\right)
$$

- Let us prove by fixpoint computation that the ranking semantics is:
- Termination domain: $\operatorname{dom}[f]=\left\{2^{n} \mid n \in \mathbb{N}\right\}$
- Ranking function: $f(n)=\log _{2} n$.

Iterates

we calculate the iterates of

$$
\begin{aligned}
\mathcal{B}_{r} \llbracket \tau \rrbracket(f) & \triangleq \\
= & \{\langle s, 0\rangle \mid s \in \text { final }\} \cup\{\langle s, f(\tau(s))+1\rangle \mid \tau(s) \in \operatorname{dmn}[f]\} \\
& \{\langle 1,0\rangle\} \cup\left\{\left\langle i, f\left(i^{\prime}\right)+1\right\rangle \mid i \neq 1 \wedge\left(\text { odd }(i) \Rightarrow i^{\prime}=i\right) \wedge\left(\text { even }(i) \Rightarrow i^{\prime}=i / 2\right) \wedge\right. \\
& \left.i^{\prime} \in \operatorname{dmn}[f]\right\}
\end{aligned}
$$

$$
f^{0} \triangleq \emptyset
$$

$$
f^{1} \triangleq \mathcal{B}_{r} \llbracket \tau \rrbracket\left(f^{0}\right)=\{\langle 1,0\rangle\} \quad \quad 2 \text { since } \operatorname{dmn}\left[f^{0}\right]=\emptyset \zeta
$$

$$
f^{2} \triangleq \mathcal{B}_{r} \llbracket \tau \rrbracket\left(f^{1}\right)=\{\langle 2,1\rangle,\langle 1,0\rangle\}
$$

$$
\left\{\operatorname{since} \operatorname{dmn}\left[f^{0}\right]=\{1\} \text {, and } \operatorname{pre} \llbracket \tau \rrbracket\left(\operatorname{dmn}\left[f^{0}\right]\right)=\{2\} \text { and } \tau(2,1) S\right.
$$

$$
f^{n}=\left\{\left\langle 2^{i}, i\right\rangle \mid 0 \leqslant i<n\right\} \quad \text { 2induction hypothesis of the recurrence } \oint
$$

$$
f^{n+1} \triangleq \mathcal{B}_{r} \llbracket \tau \rrbracket\left(f^{n}\right)=\{\langle 1,0\rangle\} \cup\left\{\left\langle 2^{i+1}, i+1\right\rangle \mid 0 \leqslant i<n\right\}
$$

$$
=\left\{\left\langle 2^{i}, i\right\rangle \mid 0 \leqslant i<n+1\right\}
$$

2since $\operatorname{dmn}\left[f^{n}\right]=\left\{2^{i} \mid 0 \leqslant i<n\right\}$, and $\operatorname{pre} \llbracket \tau \rrbracket\left(\operatorname{dmn}\left[f^{n}\right]\right)=\left\{2^{i+1} \mid 0 \leqslant i<n\right\}$ and $\tau\left(2^{i+1}, 2^{i}\right) \varsigma$
$f^{\omega}=\bigcup_{n \geqslant 0} f^{n}=\bigcup_{n \geqslant 0}\left\{\left\langle 2^{i}, i\right\rangle \mid 0 \leqslant i \leqslant n\right\}=\left\{\left\langle 2^{i}, i\right\rangle \mid 0 \leqslant i\right\}$
$f^{\omega+1}=\mathcal{B}_{r} \llbracket \tau \rrbracket\left(f^{\omega}\right)=f^{\omega}=\left\lvert\, \mathrm{ff} \frac{\subseteq}{\emptyset} \mathcal{B}_{r} \llbracket \tau \rrbracket=\lambda n \in 2^{\mathbb{N}} \cdot \log _{2} n\right.$

Computable abstractions

- Approximation:

- Abstraction by a reduced product of standard abstractions e.g.:
- Linear equalities ${ }^{(1)}$ (with negative slopes and minimum or positive slopes and maximum)
- Powers ${ }^{\text {(II) }}$
(I) Michael Karr:Affine Relationships Among Variables of a Program. Acta Inf. 6: I33-I5I (I976)
(II) Isabella Mastroeni:Algebraic Power Analysis by Abstract Interpretation. Higher-Order and Symbolic Computation I7(4): 297-345 (2004)

On going work

- Currently working on the formalization in AI terms
- and on abstractions for further methods:
- Burstall (I), (II)
- Ramsey
(III)
- Checking temporal specifications of infinite systems (e.g. temporal logics)
(I) Rod M. Burstall: Program Proving as Hand Simulation with a Little Induction. IFIP Congress 1974: 308-3I2
(II) Patrick Cousot, Radhia Cousot: Sometime = Always + Recursion = Always on the Equivalence of the Intermittent and Invariant Assertions Methods for Proving Inevitability Properties of Programs.Acta Inf. 24(I): I-3I (1987)
(III) Andreas Podelski,Andrey Rybalchenko:Transition Invariants. LICS 2004: 32-4I

Conclusion

Conclusion

- This foundational preliminary work is the first step towards methods and inference algorithms for proving liveness by over-approximation

