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What has been done since Pittsburgh meeting

® Work since the Pittsburgh meeting:

® Array content analysis (joint work with R. Cousot and F Logozzo)

® Segmented decision tree abstract domain (joint work with R. Cousot
and L. Mauborgne)

Precondition inference from runtime-checked assertions (joint work
with R. Cousot and F. Logozzo)

® Work in progress (today’s presentations):

® Probabilistic abstract interpretation: see talk by Michael Monerau
® | ogical abstract domains

® Termination/Guarantee semantics, proof, and static analysis
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Work on Al since the
Pittsburgh meeting




Collection segmentation abstract domain

Array lower Segment bound Segment Array upper
bound bound

\Unlform abstraction with Simems/

<{0},[0,0].{i}%,[2,+00],{n}>

InitBackwards(int[] A) {
int i = A.Length;
/* 1: x/ while /* 2: %/ (0 < i) {

/* 3: */ i =1 - 1;
[ A: <{0 i} [0,0] {A.Length}> ] ;I ;Lf :; , A[i]l = 0;
[ i: [0,0] A.Length: [2,+00] ] o ef

® Included by F. Logozzo in MSR Clousot (distributed with MS
Visual Studio under Windows 7 pro)

® To appear in POPL201 |




Segmented decision tree abstract domain

Av: T Av: T Av: 0 Av: T

Decision tree

00 ~NOoO O b W+~ O

: x/
. x/

int n; /* n > 0 */
int k, Aln];

: x/ k = 0;
while /* 2: %/ (k < n) {
if (k > 0) {
* / Alk] = 0;
*/ +s;
*/ k = k+1;
x/ };
*/

Patrick Cousot, Radhia Cousot, Laurent Mauborgne: A Scalable Segmented Decision Tree
Abstract Domain. Essays in Memory of Amir Pnueli, LNCS 6200, Springer, 2010: 72-95
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Precondition inference from asserts

® Derive a static precondition from programmers and
languages runtime-checked assertions in the code

bad state

® Not a wp: 7 e
./‘./v bad run .// good run
OK
bad run bad run
bad state bad state
® Symbolic under-approximation:
void AllNotNull(Ptr[] A) { equal to/different
/* 1: %/ int i = 0; _ Co. .
/* 2: %/ while /* 3: */ from initial value
(assert(A '= null); i < A.le ) {
/* 4: %/ assert((A '= null) && (A[il"'= null)); -
/* 5: x/  A[i]l.f = new Object( J—a n) CT[ﬂOt] gquk
A while unmodified
/* 8: %/} 8: {0}0{i,A.length}? - {0}c{i,A.length}?

® TJo appear in VMCAI'20] |
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Ongoing work
(1) Logical abstract domains




Combining Algebraic and Logical Abstractions (l)

® Model-checking is “logical” (temporal logic, BDDs,
SMT solvers,...)

® Abstract interpretation is "algebraic” (orders,
lattices, linear algebra, categories, reduced
product, ...)

® MC & Al can be combined within “set theory”, e.g.

e Patrick Cousot, Radhia Cousot: Temporal Abstract
Interpretation. POPL 2000, 12-25.

e Patrick Cousot, Radhia Cousot: Refining Model
Checking by Abstract Interpretation. Autom. Softw.
Eng. 6(1): 69-95 (1999).
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Combining Algebraic and Logical Abstractions (ll)

® We propose a new MC & Al combination as “logical
(i.e. SMT solvers) + algebraic (i.e. reduced product of
abstract domains)”




Logical abstract domains: an instance

of algebraic abstract domains

® Abstract properties:a theory (set of logical
formulae)

® Order =>,join:\/, meet: /\, ...
® Concretization Y: interpretation

® Abstraction :in general does not exist (no best
abstraction e.g. in absence of infinite conjunctions)

® Transformers:

® Forward: Floyd/sp
® Backward: Hoare/wp/wlp

x=0=>Ex=0vx=1)>=>...=>\V_ x=1i= ...
(xi—l)c(xi—l/\xi—Z)c LE N XE—L &L

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee




The (iterated) reduced
product in Al




Reduced product

A Cartesian product of abstract domains:

-----

Implemented as a Cartesian product plus a reduction
P to propagate shared information from one
component to another

Sound and complete




Example of reduced product
® Cousot & Cousot, POPL 79




Iterated pairwise reduction

® p; :reduction between abstract domains Ai and A]

® i :extension to the Cartesian product
=g ’ ’
Dii(al5eesan) = (Qlseeey @'igeeey Qjyevey An)
where (3’;, 2’)) = pii(ai, 3j)
® |terated pairwise reduction
e _ . — . ., :
p = iterate the pj, i,j=1,...,n, i#]j until convergence

® Sound (but in general incomplete)




Example of pairwise iterated reduction
® Concrete domain: L = @({a,b,c})

® Abstract domains: A; = {@, {a},T}
a,b,cy A, = {0,{a, b}, T}
Az = {0,{a,c}, T}
e Reduction of (T, {a,b}, {a,c}):
® Global: {{a}, ia,b}, {a,c})

® Pairwise reductions:
P7((T, {a, b}, {a,c})) = (T.{a, b}, {a,c}) for A = {1,2,3},i,j € Aji # ]

® |terated reduction:

9*(<T wa, b}, {a, C}>) = <T wa, b}, {a, c})

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee




The Nelson-Oppen
combination procedure




Objective of the Nelson-Oppen procedure
® Given deductive theories 7; in F'(%;), 2; C X
with equality and decision procedures sat; for
satisfiability of quantifier free conjunctive formulze
0, € CZ),i=1,..,n,
® Decide the satisfiability of a quantifier free

conjunctive formula ¢ € C(UJ., %) in theory

T = Ui Ti such that M(T) = N5, M(TH).

[23] G. Nelson and D. Oppen. Simplification by cooperating decision
procedures. TOPLAS, 1(2):245-257, 1979.
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The Nelson-Oppen combination procedure

|. Purification: project the quantifier-free conjunctive
formula ¢ as an equi-satisfiable conjonction of
component formula in each theory by introducing
fresh variables for alien terms

o = 3AdAx,..., )?n:/\goi where ¢, = ¢ A /\xi:txl.,
i=1 Xi€X;

2. Repeat the equality reduction: propagate [dis]
equalities deduced from each component formula ¢:
to the other components formulz) until no new [dis]
equality can be added

3. Test satisfiability of component formula, unsatifiable
iff one is unsatisfiable else unknown (originally,
satisfiable if all component formula are satisfiable)
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The Nelson-Oppen procedure is an

iteratively reduced observation product

o T
o
o

ne purification is a projection of the formula to an
vservation product (with auxiliary variables

bserving alien subterms)

® The reduction is iterative but only for [dis]equalities

® The unsatisfiability check is a reduction to  (false)




Soundness of the procedure ?

® The unsatisfiability is sound

® More conditions for satisfiability soundness to

ensure that all theories have isomorphic models such
as

® stably-infinity, politeness, etc ... so as to ensure that
the models of the theories /; have the same
cardinalities

® shared symbols (e.g. equality) have isomorphic
interpretations in all theories sharing them or
theories are disjoint which avoids the problem
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Completeness of the procedure ?

® The procedure is incomplete

so there exists formula satisfiable in two theories
but not in their combination (e.g. integer arithmetics
and bit vectors)

® Additional restrictions are necessary to ensure
completeness

® convexity (to avoid to have to reduce by
disjunctions of [dis]equalities)

® disjointness of the theories (but constants, to
avoid to have to reduce on other properties
than [dis] equality such as <)
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Who cares about completeness in static analysis?

® We care about soundness but not on completeness
(since we always get a sound overapproximation)

® Abandoning completeness, we can

® combine theories sharing symbols other than =
(as signs and parity)

® perform reduction (even for non-convex
theories) that are simply not optimal

22




Combining logical and algebraic abstractions

We use an iteratively reduced observation product
with:

® |ogical components in logical abstract domains
sharing symbols and handled by SMT solvers

® algebraic components in algebraic abstract
domains

® the reduction propagates

® [dis]equalities of logical components to all other
components

® pairwise algebraic reductions (equalities and
others) to all other components

23
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Perspectives

® A new perspective to combine

® SMT solvers based model-checking understood as
logical abstract domains (with logical widenings)

® abstract interpretation-based static analysis using
classical abstract domains (with algebraic
widenings)

® This might avoid costly iterative refinement methods
thanks to the expressivity of first-order logic

24




Ongoing work
(2) Termination
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Apply the abstract interpretation framework to

termination

CMACS meeting, NYU, October 28-29, 2010

Basic idea:
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Abstract Interpretation framework

® Define the standard semantics: <Z, 7'>

® Define the collecting semantics (most general
property of interest): C € o(C)

® Express the collecting semantics in fixpoint form:
C =Ifp= F € p(O)
® Finite (MC) : compute C iteratively;

® Infinite (Al) : define an abstraction:

(p(C), C) == (A, C)

(87
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Abstract Interpretation framework (cont’d)

® Define an abstract transformer:

aqoF oy F

® The fixpoint abstract semantics is sound:

olfp= F) C Ifp= F

® Compute the abstract iterates iteratively:
F-&1, ..., F " &2FF",...

® Accelerating the convergence by widening V and
narrowing /\ (when necessary)
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Applying the abstract interpretation framework to a

Termination analysis:

termination collecting semantics

CMACS meeting, NYU, October 28-29, 2010
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Standard semantics

® Traces on the set of states ). :

® Traces of length n: s = §’0 51 .. §n_1 c "
. . = A
e Finite traces: S+ 2 Un _—p)
® Infinite traces: § = 5051 ...58i41... € X¥

—

® Trace semantics: S; = (%, init, final, )

® finite runs:

—

Vn>1:Vs5¢€ Tﬂi":E’O cinit AVi e [0,n— 1(: 5; & final A §,,_1 € final

® [nfinite runs:

VEeTNSY: 5, €init AVi=0: 35, ¢ final
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Example: traces generated by a transition system
® Transition system: (3, 7)
® Trace semantics: S, [r] = (&, init, final, T)
® Generated by the transition system:

V5ss's €T : 7(s, )
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A la Floyd/Turing invariant/ranking function abstraction

*—>0—0—>0—>0—>0—0

*—0—>0—>0—>0—0

v

*—>0—>0—0—0—>0—>0—>0—0
A

>@—>0@

!>.>.>.>.T

™ —

Invariant x ranking function abstraction
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® Past:

® [Future:

CMACS meeting, NYU, October 28-29, 2010

Past/future abstraction

a_(T)
S

~

a.(T)
S

L (eSSt | eS> 55 e T}
2 (3, init, final, o (T))

L2 (g e¥™|Tses* 55 e T}
2 (3, init, final, a_(T))
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Past fixpoint semantics

® Past fixpoint semantics:
B [r] € pE%) — p(E7)
B_[r](X) & init'UXo7
S_[r] = (%, init, final, IfpS B_[7])

® Further abstractions yield invariants (in fixpoint
form):

—

o, (T)
S,

(o1 |n>=1A5eTNE"}
(2, init, final, a; o a. (T))

A
A

® and automatic static analysis (iterative fixpoint
computation with convergence acceleration by
widening/narrowing)

34




Future fixpoint semantics

® Computational ordering
XCY 2 (XnEH ¥ NnEHA(XNEY) D (Y NEY)

<KJ(§OO), i, i”, i+, 1, ﬁ} 1s a complete lattice

® Future fixpoint (termination collecting) semantics:

—

BL[r] € o) — p(X)
B_[r](X) £ final'U (7 o X)
S [r] 2 (%, init, final, Ifp= B_[7])

Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract
interpretation.Theor. Comput. Sci. 277(1-2): 47-103 (2002)
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Future of finite versus infinite systems

® Finite systems:
o>

TR SR,

® |nfinite systems:

*—>0—>0

*—>0—>0—>0—>0—>0—>0—>0—>0—>0—>0

TR SR,
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Future approximation strategies
® Under-approximation of the termination domain:
dmn[=(T N %¢)]
dmn[T]| 2 {s €S |35:s5e T}

® Dual abstract interpretation (over-approximation of the
complement)
® Extremely difficult

® Few known solutions (testing, bounded model-checking,
symbolic execution, etc.), mostly ineffective

® Over-approximation of the termination argument:

® Follow Lyapunov (stability), Turing, Floyd (ranking
functions), Burstall, Ramsey, ...

CMACS meeting, NYU, October 28 —29, 2010 37




The ranking abstraction

® Ordinals:
0£0,1={0},2={0,1},...,n+12{0,....n},...,w = Us_, dw+1,...

® Ranking abstraction:

o, (T) £ {(5,0)]|5eTn%}
U {{(s, U §+1) 35 e £ : 53" €T}
ss'se€ T A (s, 6) € an(T)
S, £ (%, init, final, a, o a(T))
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Ancestors abstraction

® Abstract a partial function by its domain of
definition:

a,(f) = dmnlf]
S, = (X, init, final, a, o o, © aﬁ(f)>

e Wegetpre[t*] (final) (I

(I) P. Cousot, Thesis, Grenoble, March 1978
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Fixpoint ranking semantics

B.[r] ¢ X—+—0)— (X—+0)
B.[r](X) & {(s, 0)]s € final}
U {(s, g 5+ 1) | s € pre[r](dmn[X])}
T(s,s") N (s’,0) € X
S.[r] = (%, init, final, IfpS B,[7])

PROOF

a.(B-[7](X))

B, [7](a.(X)) (def. B.[7]}

40




Example

Consider the following program on N.

while (i <> 1) {
if even(i) { i = i div 2}

}

understood as defining the transition relation on N

7(i,7) = i# 1A (odd(i) =i’ =1i) A (even(i) = i’ =1i/2)

® | et us prove by fixpoint computation that
the ranking semantics is:

® Termination domain: dom[f] = {2" |n € N}

® Ranking function: f(n) =logy n

41




|terates

we calculate the iterates of

B.IrI(f) £ {(s,0)]sefinal}U{(s, f(r(s)) +1) | 7(s) € dmn[f]}
— (1,00 UG, f(@)+1)|i£ 1A (odd(i) = i' =i) A (even(i) = i’ = i/2) A

i' € dmn[f]}
e
foE B = {1, 0) (since dmn[f°)] = 0}
f2 = Br[[T]](fl) — {<27 1>7<17 O>}
(since dmn[f°] = {1}, and pre[7r](dmn[fY]) = {2} and 7(2,1)§
o= {249 ]0<i<n} (induction hypothesis of the recurrence§

2 B = (L0 U{ T i+ 1) |0 <i <n}
= {2, ) |0<i<n+1}

(since dmn[f"] = {2' | 0 < i < n}, and pre[r](dmn[f"]) = {21 | 0 < i < n} and
(2,20

o= U= Ui <n} = {(2,4)]0<i}
n>0 n>0
ot = B¢ = ¢ = |fp®B[[7']] = )\nEQN-loan O

CMACS meeting, NYU, October 28 —29, 2010 42




Computable abstractions

® Approximation:

\

‘ >

® Abstraction by a reduced product of standard
abstractions e.g.:

® Linear equalities " (with negative slopes and minimum or
positive slopes and maximum)

® Powers ()
°

(I) Michael Karr:Affine Relationships Among Variables of a Program.Acta Inf. 6: 33-151 (1976)
(I) Isabella Mastroeni: Algebraic Power Analysis by Abstract Interpretation. Higher-Order and
Symbolic Computation |17(4): 297-345 (2004)
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On going work ...

® Currently working on the formalization in Al terms

® and on abstractions for further methods:

Burstall ()
Ramsey ()

Checking temporal specifications of infinite
systems (e.g. temporal logics)

() Rod M. Burstall: Program Proving as Hand Simulation with a Little Induction. |IFIP Congress 1974:
308-312

(Il) Patrick Cousot, Radhia Cousot: Sometime = Always + Recursion = Always on the Equivalence of
the Intermittent and Invariant Assertions Methods for Proving Inevitability Properties of
Programs.Acta Inf. 24(1): I-31 (1987)

(I11) Andreas Podelski,Andrey Rybalchenko: Transition Invariants. LICS 2004: 32-4 |
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Conclusion
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® This foundational preliminary work is the first step
towards methods and inference algorithms for
proving liveness by over-approximation
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Conclusion
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