CMACS Industry Workshop on Verification of Embedded Control Systems

Program Verification by
Abstract Interpretation

Patrick Cousot

pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

CMU, Pittsburgh October 18,201 |

CMACS Industry Workshop on Verification of Embedded Control Systems, CMU, Oct. 20, 2011

Content

® A lightweight informal introduction to Abstract
Interpretation

® Application to the Verification of Embedded Control

® Commercial tools (ASTREE, CCCheck)

® Current and future research

CMACS Industry Workshop on Verification of Embedded Control Systems, CMU, Oct. 20, 2011 © P. Cousot

An informal introduction to
Abstract Interpretation

Program concrete models/semantics

® Program executions are modelled by the language
formal semantics (observed at discrete times)

s(t)

| o - = P —0— —— ——
—o— o —o—
. _o— O
Qo—
- —— —— - o N

CMACS Industry Workshop on Verification of Embedded Control Systems, CMU, Oct. 20, 2011 © P. Cousot

Verification of safety properties

® Program executions cannot reach a state in which
computations can go wrong

s(t)

Bad states

CMACS Industry Workshop on Verification of Embedded Control Systems, CMU, Oct. 20, 2011

Abstraction

® The computations are over-approximated in the
abstract (e.g. by reachable states)

s(t)

CMACS Industry Workshop on Ver

Bad states

ification of Embedded Control Systems, CMU, Oct. 20, 2011

Spurious paths

Abstraction over-approximation

® Further approximations of the reachable states may
introduce spurious states

s(t)

Spurious states

Bad states

Machine-computable abstractions

® Jo scale up, machine computable abstraction must be
very efficient and precise enough

s(t)

Bad states

Soundness

® No definite error is ever omitted (counter-examples:
Coverity, Klocwork, etc)

s(t)

Bad states

CMACS Industry Workshop on Verification of Embedded Control Systems, CMU, Oct. 20, 2011 © P. Cousot

Incompleteness: false alarms

® Spurious errors are possible (e.g. PolySpace) and may
be eliminated by refining the abstraction (e.g. Astree)

S(t
" T

Application to the
Verification of Embedded
Control Systems

Applications

Verification of absence of runtime errors (arithmetic
overflows, divisions by zero, buffer overruns, null and
dangling pointers, user assertion violations,
unreachability, ...) so specification is fully automatic

Avionics, Spatial, Automotive, Medical, Systems on
Chip (SoC), etc

Use general abstractions for programming languages
(integers, floats, arrays, structures, pointers, ...)

Use domain-specific abstractions incorporating
knowledge on control systems (filters, quaternions,
integrators, etc)

Abstractions
Y

Collecting semantics: Intervals:
partial traces x € [a, b]

Y Y

Octagons: Ellipses:
tx+ty<a x? + by? — axy < d

13

CMACS Industry Workshop on Verification of Embedded Control Systems, CMU, Oct. 20, 2011

o o Loh o o
- e e —

Simple congruences:

x = alb]

Exponentials:
_abt < Y(t) < abt

35

© P. Cousot

Example of general purpose abstraction: octagons

e Invariants of the form = x+ v < c, with O(N?) memory and O(IN?) time cost.

® [Example:
Whilf (1) 1 ® At %, the interval domain gives
i’ j 2_2’ L < max(max A, (max Z)+(max V)).
if (R>V) ® |n fact, we have L < A.
{ % L = Z+V; }
* ® To discover this, we must know at ¥ that
} R=A-Zand R > V.

e Here, R = A-Z cannot be discovered, but we get L-Z < max R which is sufficient.

e We use many octagons on small packs of variables instead of a large one using

all variables to cut costs.)

CMACS Industry Workshop on Verification of Embedded Control Systems, CMU, Oct. 20, 2011 36 © P. Cousot

Example of domain-specific abstraction: ellipses

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;

void filter () {

¥

static float E[2], S[2];

if (INIT) { S[0] = X; P = X; E[0] = X; }

else { P = ((((C0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))
+ (S[0] * 1.5)) - (S[1] * 0.7)); }

E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;

/* S[0], S[1] in [-1327.02698354, 1327.02698354] x*/

void main () { X = 0.2 x X + 5; INIT = TRUE;

while (1) {
X =0.9 x X + 35;

filter (); INIT = FALSE; } P

I5

CMACS Industry Workshop on Verification of Embedded Control Systems, CMU, Oct. 20, 2011 38 © P. Cousot

Example of domain-specific abstraction: exponentials

7, cat count.c
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;

volatile BOOLEAN I; int R; BOOLEAN T;
void main() {
R = 0;
while (TRUE) {
__ASTREE_log_vars((R));
if (I) {R=R+1; }
else { R =0; }
T = (R >= 100);
__ASTREE _wait_for_clock(());
1}

% cat count.config

__ASTREE_volatile_input((I [0,11));

__ASTREE_max_clock((3600000)) ;

/s astree -exec-fn main -config-sem count.config count.c|grep ’JRI’

IRl <= 0. + clock *1. <= 3600001. Hﬁ

&8 © P. Cousot

< potential overflow!

CMACS Industry Workshop on Verification of Embedded Control Systems, CMU, Oct. 20, 2011

Commercial Tools

CMACS Industry Workshop on Verification of Embedded Control Systems, CMU, Oct. 20, 2011

© P. Cousot

Commercialization

e Absint € (www.absint.de)
® Astree (run-time error analysis)

Project Analysis Edit Help

sEPro@Aa/LH

4 temp [11458]
4 Local settings
Mapping to original sources
/. Report
4 Analysis
4\ Results
Alarms (2/2)
Errors (0/0)
Warnings (1/1)
4 o Analysis options
General
Domains
Output
& ABI
/. Global directives
[* Analysis start (main)

=90 i I #s -

il

7/ 1::' 2

[y
O W =Jo s Wl

1 "bspl.c" 1 #define BASE 0x80000000
1 "<built-in>" 2 #define OFFSET 0x38343031
1 "<command-line>" 3 wvolatile int SwitchPosition;
1 "bspl.c" 4 int main()
S {
volatile int SwitchPosition; 6 oY
7 int MODULE_NUMBER = BASE + OFFSET;
int main() 8
{ 9 char sp = SwitchPosition;
10 }
11

d file: C:/home/k

/Ab.../Projects/Astree/Experiments/bsp1/bsplpp.c

ﬂ h

iginal source: C:/h /K

/...nt/Projects/Astree/Experiments/bsp1/bspl.c

1

11| int MODULE NUMBER = 0x80000000 + 0x38343031;
2

13 |
14

}

char sp = SwitchPosition;

15

“% Parallelism Line 11, Column 0 Line 7, Column 0
‘ 4 {5 Files i
| 4 5% bspl Welcome [Analysis start [Original sources || bspipp.c B3 | General [
’ C bsplpp.c . e e el S
/* Domains: Guard domain, and Packed (Boolean relations (based on Absolute value equality relations, and Symbolic constant propagation (max_depth=20), and Linearization, and Integer inter “
No ambiguity due to side effects in expressions
[call#main@8 at ./drive_C/home/kaestner/AbsInt/Projects/Astree/Experiments/bsp1/bsp1pp.c:8.4-8
ALARM: implicit unsigned int->signed int conversion range {3090427953} not included in [-2147483648, 2147483647] at ./drive_C/home/kaestner/AbsInt/Projects/Astree/Experiments/bsp1/bs
[call#main@8 at ./drive_C/home/kaestner/AbsInt/Projects/Astree/Experiments/bspl/bsplpp.c:8.4-8
|| ALARM: implicit signed int->unsigned char conversion range [-2147483648, 2147483647] not included in [0, 255] at ./drive_C/home/kaestner/AbsInt/Projects/Astree/Experiments/bsp1/bsp1pg
Time spent in analysis of function main: 0.234000 s(0h 0 mn 0 s)
l 0 function(s) and 0 point(s) not reached during the analysis
There were 2 alarm(s) in 2 context(s), 0 other error(s), and 1 warning(s)
/* 1 procedure(s) executed */
< {11l »
: I eummare 1 Watch |
Project Output Summary I Watch |
|
Connected to localhost:12345
— =4

® Other abstract-interpretation-based tools:WCET,
stack usage, memory safety analysis

18

CMACS Industry Workshop on Verification of Embedded Control Systems, CMU, Oct. 20, 2011 © P. Cousot

Clousot/CCcheck in Visual Studio

® Modular code contract verification (and inference)

-[¥ VMCAIPaperExample(string[] strings) -

A4 RISE.Tmp

Fnamespace RiSE

{

= public class Tmp

| {

public static void VMCAIPaperExample(string[] strings)

{

for (var i = @; i < strings.Length; i++)
{

Contract.Assert(strings[i] != null);
strings[i] = null;

}

}
}

© 0Errors | _Q 0 Warnings | (i) 3 Messages
Description File Line Column Project
(1)1 CodeContracts: Suggested requires: Contract.Requires(strings != null); Max.cs 11 12 StaticChecker
(i) 2 CodeContracts: Suggested precondition: Contract.Requires(Contract.ForAll(0, strings.Length, i => strings Max.cs 11 12 StaticChecker
[1] '= null));
Max.dll 1 1 StaticChecker

(i) 3 CodeContracts: Checked 10 assertions: 8 correct (2 masked)

_‘B J(CIaN-d B Output BB Find Results1 & Find Symbol Results Test Results B8 Test Runs

® see online, www.rise4fun.com

19

100% ~ ¢
Error List v+ 0 X

»

© P. Cousot

CMACS Industry Workshop on Verification of Embedded Control Systems, CMU, Oct. 20, 2011

Research Challenges

20

CMACS Industry Workshop on Verification of Embedded Control Systems, CMU, Oct. 20, 2011

© P. Cousot

CMACS achievements

® Static analysis of array content (POPL 201 1)

® Necessary precondition inference for code contracts
(VMCAI 2011)

® Abstract interpretation-based theory to combine

abstract interpretation, model-checking and
verifiers /SMT solvers (FOSSACS 2011)

® Termination analysis (POPL 2012)

® Probabilistic Abstract Interpretation

21

CMACS Industry Workshop on Verification of Embedded Control Systems, CMU, Oct. 20, 2011 © P. Cousot

Research challenges

® Complex data structures
® liveness, Closing the loop, ...

® Parallelism, Fairness, Scheduling, ... (AstreeA,
www.astreea.ens.fr/)

® Security (AstreeS)

CMACS Industry Workshop on Verification of Embedded Control Systems, CMU, Oct. 20, 2011 © P. Cousot

Other application domains:
Security

® |nformation flow analysis

Biology

® Cellular signaling networks

® Formal rule-based model reduction

23

MACS Industry Workshop on Verification of Embedded Control Systems, CMU, Oct. 20, 2011

Conclusion

24

CMACS Industry Workshop on Verification of Embedded Control Systems, CMU, Oct. 20, 2011

© P. Cousot

Conclusion
Does scale up (to > 10 LOCS) !

Find bugs not found by simulation, testing,
enumerative bug finding methods

Can prove the absence of well-defined categories of
bugs

Covers new requirements on formal methods (e.g.
DO 178 C)

Mandatory in all embedded control systems of an
European plane manufacturer

Unfortunately not so well-known and well-used in
the US

25

The End

26

CMACS Industry Workshop on Verification of Embedded Control Systems, CMU, Oct. 20, 2011

© P. Cousot

