
pcousot@cs.nyu.edu http://cs.nyu.edu/~pcousot

November 3, 2011

Patrick Cousot

CMACS 2nd year site visit review, Pittsburgh, November 3, 2011                                                                                                                                                                                                                                                © P. Cousot

CMACS 2nd Year Site Visit Review

CMU, Pittsburgh

Basic advances in 
CMACS technology:

Abstract Interpretation

1

http://cs.nyu.edu/~pcousot
http://cs.nyu.edu/~pcousot
mailto:pcousot@cs.nyu.edu
mailto:pcousot@cs.nyu.edu


CMACS 2nd year site visit review, Pittsburgh, November 3, 2011                                                                                                                                                                                                                                                © P. Cousot

Advances in abstract interpretation

• Under-approximation

• Abstraction of unbounded array content

• Combination of algebraic and logical abstractions

• Probabilistic abstraction

• Termination/eventuality

2

Significant advances on

have been done for infinite state systems.



CMACS 2nd year site visit review, Pittsburgh, November 3, 2011                                                                                                                                                                                                                                                © P. Cousot

• Abstraction to finite / bounded executions is 
impossible (unsound, ineffective, ...)

Example: [non]-termination of unbounded programs

• Abstraction must be infinite, which is extremely 
difficult

Difficulty of the problems

3

...
......

...
...

...

α



CMACS 2nd year site visit review, Pittsburgh, November 3, 2011                                                                                                                                                                                                                                                © P. Cousot

Under-approximation & arrays
• Previously: explore finite parts of a finite subset of executions

• New: algebraic approach to handle infinitely many infinite 
executions

• Example: pre-conditions ensuring the presence of errors

4



CMACS 2nd year site visit review, Pittsburgh, November 3, 2011                                                                                                                                                                                                                                                © P. Cousot

Combining algebraic & logical abstractions
• A new understanding of the Nelson-Oppen procedure to 

combine logical theories in SMT solvers/provers as an 
algebraic reduced product

•

5

Logical theories Algebraic domains
A1 A2 Am

... ...
T1 T2 Tn

P1 P2 Pmφ1 φ2 φn

ρaρl ρ  al ρ  la

• When checking satisfiability of φ1 ∧  φ2 ∧ ... ∧  φn, the Nelson-Oppen procedure 
generates (dis)-equalities that can be propagated by ρ la to reduce the Pi, i=1,...,m

• αi(φ1 ∧  φ2 ∧ ... ∧  φn) can be propagated by ρ la to reduce the Pi, i=1,...,m

• The purification to theory Ti   of 𝛾i(Pi) can be propagated to φi by ρ al in order to 
reduce it to φi ∧ 𝛾i(Pi) (in Ti   )



CMACS 2nd year site visit review, Pittsburgh, November 3, 2011                                                                                                                                                                                                                                                © P. Cousot

Termination
• Previously: recent progress on automatic proof of termination 

for small, simple and pure programs (no abstraction needed)

• Challenge: scale automatic program termination methods to 
large, complex, and realistic programs by integrating abstraction

• New advances:

• Trace segments as a new basis for inductively formulating 
program properties

• Fixpoint definition of a collecting semantics for termination/
eventuality

• Systematic ways for constructing termination proofs, by 
construction of abstract fixpoints (e.g. variant functions)

6



CMACS 2nd year site visit review, Pittsburgh, November 3, 2011                                                                                                                                                                                                                                                © P. Cousot

Probabilistic abstraction
• Fixpoint concrete collecting semantics parameterized by 

probabilistic scenarios:

•                  probabilistic space (scenarios, observable 
events, probability measure)

•                  conventional semantic domain

•                                        probabilistic semantics

•                       concrete domain of probabilistic properties

• Several possible abstractions:

• in the semantic domain

• non-deterministic abstraction of the scenario domain

• probabilistic abstraction in the scenario domain
for conditionals and loops

• Recover classical probabilistic calculi and analyzes by abstraction
7

3.7 Distributions

As we already mentioned, for all f : (⌦,E, µ) ⇢ (F,F ), the
distribution of f is f (µ) : F ⇢ [0, 1] (written Pr f for brievety)
such that the probability of actions � 2 F is the probability of the
“parent” scenarios. We have

Pr f (�) = Pr( f 2 �) , µ( f �1(�)) =
Z

⌦

�
f�1(�)

dµ =
Z

⌦

�
�
( f (!))dµ(!) .

3.8 Conditional probability

It is sometimes the case that it is known that a specific event has
already occured, and you want to know what is the probability of
another event to occur. As we will see, it is typically the case when
we want to estimate the probability of a program property when
inside a conditional construct: if the control flow went through the
“if” branch, then you know that the guard condition is true.

Let A, B 2 E be two observable events in a probability space
h⌦, E, µi, with Pr(B) , 0. Then the probability of A knowing B is
defined as

Pr(A | B) , Pr(A \ B)
Pr(B)

.

4. Probabilistic concrete semantics

We now introduce how we describe the semantics of probabilistic
programs (or systems). It is a very general way of associating a se-
mantics with any probabilistic system. That is, it is not tied to a par-
ticular description of probabilities nor to a specific programming
language but rather allows for a precise construction of semantics
for any probabilistic situation.

4.1 Definition

We look at probabilistic systems as a superposition of (non)-
deterministic systems. That is, when a probabilistic program is run
we consider that it can be any element of a specific set of (non)-
deterministic programs chosen by a random experience. It is as if
all the random choices that will be made in the subsequent execu-
tion are decided by an oracle at startup (although a program knows
only during the course of its execution about which random choices
have been made up to the current execution point and ignores the
later ones).

Definition 1 (Probabilistic semantics). A probabilistic semantics
SpJPK 2 Dp , ⌦ ⇢ D of a program P is a measurable
function of a probability space h⌦, E, µi into a semantics domainD
(considered as a measurable space hD,Oiwith observable semantic
properties in O ✓ } (D)).

By observable, we mean that semantic properties in O will be
the ones we eventually have probabilistic information upon.

The meaning of the probabilistic semantics SpJPK is that when
a scenario ! 2 ⌦ is picked (randomly according to µ), then the
execution of the program P yields the (non)-deterministic seman-
tics SpJPK(!) 2 D. That is, ! embodies all the possible random
choices that the program will have to make during its execution.D
can be any non-probabilistic semantics domain (e.g. the powerset
of maximal execution traces as in Ex. 6 below or any of its abstrac-
tions [4] such as the prefix trace semantics in Ex. 4). This definition
covers most probabilistic models of computation found in the liter-
ature such as program semantics [17], Markov decision processes
[2, 3, 10, 11, 21, 28], etc. It is similar to what can be seen in the
study of the complexity of random algorithms [22].

Example 4. Suppose the program P starts by tossing a coin x
= random(1,2), and then executes other statements. The prefix
trace semantics of P would be described by ⌦ = {!1,!2} and
SpJPK 2 Dp = ⌦ ⇢ D, where D = } (S+) is the set of finite
sequences of states and the observable properties are simply } (D),
defined as

SpJPK(!1) =
�

prefix traces of P starting with x = 1
 

,

SpJPK(!2) =
�

prefix traces of P starting with x = 2
 

.

Then the definition of µ would tell what is the probability of
scenarios !1 and !2. For a non-biased coin, µ would be defined
by µ({!1}) = 1/2, µ({!2}) = 1/2, µ(?) = 0, µ(⌦) = 1.

Definition 2 (Probability of a program property). The probability
that a program P has property � 2 O is Pr(SpJPK 2 �) =
SpJPK(µ)(�).

Example 5. The semantics SpJPK 2 Dp = ⌦P ⇢ D
P

of P below

P ! SpJPK(!) µ({!})

x = 1

1

2
� x = 2;

y = 0

x

3
� y = 1;

if (y = 0) then

z = 2

1

4
� z = 4

else

z = 1

1

5
� z = 3

 �x  �y  �z h1, 0, 2i 1
2 · 1

3 · 1
4 =

1
24 �x  �y �!z h1, 0, 4i 1

2 · 1
3 · 3

4 =
1
8

 �x �!y  �z h1, 1, 1i 1
2 · 1

3 · 1
5 =

1
30

 �x �!y �!z h1, 1, 3i 1
2 · 1

3 · 4
5 =

2
15�!x  �y  �z h2, 0, 2i 1

2 · 2
3 · 1

4 =
1
12�!x  �y �!z h2, 0, 4i 1

2 · 2
3 · 3

4 =
1
4

�!x �!y  �z h2, 1, 1i 1
2 · 2

3 · 1
5 =

1
15

�!x �!y �!z h2, 1, 3i 1
2 · 2

3 · 4
5 =

4
15

can be defined with D
P

, Z3 denoting the final value of the
variables x, y and z and ⌦

P

,
n

! 2 { �x ,�!x } · { �y ,�!y } · { �z ,�!z , ✏} ·
{ �z ,�!z , ✏} �

�

� |!| = 3
o

where �x (resp. �!x ) denotes the left (resp. right)
branch of the first probabilistic choice on x,  �y (resp. �!y ) denotes
the left (resp. right) branch of the second probabilistic choice on y,
and �z and �!z (resp.

 �
z and

�!
z ) denotes the left or right branch of the

third (resp. fourth) probabilistic choice on z. Note that the second
probabilistic choice depends on the value of x.

The observable properties are simply } (⌦
P

) because any sce-
nario can be observed. and

X

!2⌦
P

µ({!}) = 1. The probabilty that

z = 3 is 2
5 since � = {hx, y, zi 2 Z3 | z = 3} and Pr(SpJPK 2 �) =

2
15 +

4
15 =

2
5 .

4.2 Fixpoint semantics

This formalization allows for an easy definition of probabilistic
semantics as fixpoints. Indeed, let F! : D �! D denote the
fixpoint semantic transformer for the (non)-deterministic program
P(!) such that SpJPK(!) = lfp� F!. Now define the lifted operator
Fp : (⌦! D) �! (⌦! D) as Fp(�! . X!) , �! . F!(X!).
It easily follows from the definition that SpJPK = lfp�̇ Fp. Thus, we
can use the usual abstract interpretation framework since semantics
are still fixpoints.

Definition 3 (Probabilistic fixpoint semantics). Let hD, �i be
a cpo, h⌦, E, µi where E ✓ } (D) is a probabilistic space,
FJPK : ⌦ �! D �! D be a pointwise continuous trans-
former for program P. The probabilistic fixpoint semantics of P is
SpJPK , lfp�̇ FpJPK where �̇ is the pointwise extension of � and the
probabilistic transformer is FpJPK , � sP . �! . FJPK(!)(sP(!))
such that FpJPK : Dp �! Dp.

Lemma 1. Under the conditions of Def. 1 and 3, SpJPK ,
lfp�̇ FpJPK = �! . lfp� FJPK(!) is a probabilistic semantics.

Example 6 (Probabilistic maximal trace semantics). Let h⌦, E, µi
be a probability space, ⌃ be a set of states, ⌃+ be the non-empty
finite sequences of states, ⌃⇤ , ⌃+ [ {✏}, ⌃1 be infinite sequences
of states, ⌃+1 , ⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1. The probabilistic

3 2011/9/16

3.7 Distributions

As we already mentioned, for all f : (⌦,E, µ) ⇢ (F,F ), the
distribution of f is f (µ) : F ⇢ [0, 1] (written Pr f for brievety)
such that the probability of actions � 2 F is the probability of the
“parent” scenarios. We have

Pr f (�) = Pr( f 2 �) , µ( f �1(�)) =
Z

⌦

�
f�1(�)

dµ =
Z

⌦

�
�
( f (!))dµ(!) .

3.8 Conditional probability

It is sometimes the case that it is known that a specific event has
already occured, and you want to know what is the probability of
another event to occur. As we will see, it is typically the case when
we want to estimate the probability of a program property when
inside a conditional construct: if the control flow went through the
“if” branch, then you know that the guard condition is true.

Let A, B 2 E be two observable events in a probability space
h⌦, E, µi, with Pr(B) , 0. Then the probability of A knowing B is
defined as

Pr(A | B) , Pr(A \ B)
Pr(B)

.

4. Probabilistic concrete semantics

We now introduce how we describe the semantics of probabilistic
programs (or systems). It is a very general way of associating a se-
mantics with any probabilistic system. That is, it is not tied to a par-
ticular description of probabilities nor to a specific programming
language but rather allows for a precise construction of semantics
for any probabilistic situation.

4.1 Definition

We look at probabilistic systems as a superposition of (non)-
deterministic systems. That is, when a probabilistic program is run
we consider that it can be any element of a specific set of (non)-
deterministic programs chosen by a random experience. It is as if
all the random choices that will be made in the subsequent execu-
tion are decided by an oracle at startup (although a program knows
only during the course of its execution about which random choices
have been made up to the current execution point and ignores the
later ones).

Definition 1 (Probabilistic semantics). A probabilistic semantics
SpJPK 2 Dp , ⌦ ⇢ D of a program P is a measurable
function of a probability space h⌦, E, µi into a semantics domainD
(considered as a measurable space hD,Oiwith observable semantic
properties in O ✓ } (D)).

By observable, we mean that semantic properties in O will be
the ones we eventually have probabilistic information upon.

The meaning of the probabilistic semantics SpJPK is that when
a scenario ! 2 ⌦ is picked (randomly according to µ), then the
execution of the program P yields the (non)-deterministic seman-
tics SpJPK(!) 2 D. That is, ! embodies all the possible random
choices that the program will have to make during its execution.D
can be any non-probabilistic semantics domain (e.g. the powerset
of maximal execution traces as in Ex. 6 below or any of its abstrac-
tions [4] such as the prefix trace semantics in Ex. 4). This definition
covers most probabilistic models of computation found in the liter-
ature such as program semantics [17], Markov decision processes
[2, 3, 10, 11, 21, 28], etc. It is similar to what can be seen in the
study of the complexity of random algorithms [22].

Example 4. Suppose the program P starts by tossing a coin x
= random(1,2), and then executes other statements. The prefix
trace semantics of P would be described by ⌦ = {!1,!2} and
SpJPK 2 Dp = ⌦ ⇢ D, where D = } (S+) is the set of finite
sequences of states and the observable properties are simply } (D),
defined as

SpJPK(!1) =
�

prefix traces of P starting with x = 1
 

,

SpJPK(!2) =
�

prefix traces of P starting with x = 2
 

.

Then the definition of µ would tell what is the probability of
scenarios !1 and !2. For a non-biased coin, µ would be defined
by µ({!1}) = 1/2, µ({!2}) = 1/2, µ(?) = 0, µ(⌦) = 1.

Definition 2 (Probability of a program property). The probability
that a program P has property � 2 O is Pr(SpJPK 2 �) =
SpJPK(µ)(�).

Example 5. The semantics SpJPK 2 Dp = ⌦P ⇢ D
P

of P below

P ! SpJPK(!) µ({!})

x = 1

1

2
� x = 2;

y = 0

x

3
� y = 1;

if (y = 0) then

z = 2

1

4
� z = 4

else

z = 1

1

5
� z = 3

 �x  �y  �z h1, 0, 2i 1
2 · 1

3 · 1
4 =

1
24 �x  �y �!z h1, 0, 4i 1

2 · 1
3 · 3

4 =
1
8

 �x �!y  �z h1, 1, 1i 1
2 · 1

3 · 1
5 =

1
30

 �x �!y �!z h1, 1, 3i 1
2 · 1

3 · 4
5 =

2
15�!x  �y  �z h2, 0, 2i 1

2 · 2
3 · 1

4 =
1
12�!x  �y �!z h2, 0, 4i 1

2 · 2
3 · 3

4 =
1
4

�!x �!y  �z h2, 1, 1i 1
2 · 2

3 · 1
5 =

1
15

�!x �!y �!z h2, 1, 3i 1
2 · 2

3 · 4
5 =

4
15

can be defined with D
P

, Z3 denoting the final value of the
variables x, y and z and ⌦

P

,
n

! 2 { �x ,�!x } · { �y ,�!y } · { �z ,�!z , ✏} ·
{ �z ,�!z , ✏} �

�

� |!| = 3
o

where �x (resp. �!x ) denotes the left (resp. right)
branch of the first probabilistic choice on x,  �y (resp. �!y ) denotes
the left (resp. right) branch of the second probabilistic choice on y,
and �z and �!z (resp.

 �
z and

�!
z ) denotes the left or right branch of the

third (resp. fourth) probabilistic choice on z. Note that the second
probabilistic choice depends on the value of x.

The observable properties are simply } (⌦
P

) because any sce-
nario can be observed. and

X

!2⌦
P

µ({!}) = 1. The probabilty that

z = 3 is 2
5 since � = {hx, y, zi 2 Z3 | z = 3} and Pr(SpJPK 2 �) =

2
15 +

4
15 =

2
5 .

4.2 Fixpoint semantics

This formalization allows for an easy definition of probabilistic
semantics as fixpoints. Indeed, let F! : D �! D denote the
fixpoint semantic transformer for the (non)-deterministic program
P(!) such that SpJPK(!) = lfp� F!. Now define the lifted operator
Fp : (⌦! D) �! (⌦! D) as Fp(�! . X!) , �! . F!(X!).
It easily follows from the definition that SpJPK = lfp�̇ Fp. Thus, we
can use the usual abstract interpretation framework since semantics
are still fixpoints.

Definition 3 (Probabilistic fixpoint semantics). Let hD, �i be
a cpo, h⌦, E, µi where E ✓ } (D) is a probabilistic space,
FJPK : ⌦ �! D �! D be a pointwise continuous trans-
former for program P. The probabilistic fixpoint semantics of P is
SpJPK , lfp�̇ FpJPK where �̇ is the pointwise extension of � and the
probabilistic transformer is FpJPK , � sP . �! . FJPK(!)(sP(!))
such that FpJPK : Dp �! Dp.

Lemma 1. Under the conditions of Def. 1 and 3, SpJPK ,
lfp�̇ FpJPK = �! . lfp� FJPK(!) is a probabilistic semantics.

Example 6 (Probabilistic maximal trace semantics). Let h⌦, E, µi
be a probability space, ⌃ be a set of states, ⌃+ be the non-empty
finite sequences of states, ⌃⇤ , ⌃+ [ {✏}, ⌃1 be infinite sequences
of states, ⌃+1 , ⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1. The probabilistic

3 2011/9/16

3.7 Distributions

As we already mentioned, for all f : (⌦,E, µ) ⇢ (F,F ), the
distribution of f is f (µ) : F ⇢ [0, 1] (written Pr f for brievety)
such that the probability of actions � 2 F is the probability of the
“parent” scenarios. We have

Pr f (�) = Pr( f 2 �) , µ( f �1(�)) =
Z

⌦

�
f�1(�)

dµ =
Z

⌦

�
�
( f (!))dµ(!) .

3.8 Conditional probability

It is sometimes the case that it is known that a specific event has
already occured, and you want to know what is the probability of
another event to occur. As we will see, it is typically the case when
we want to estimate the probability of a program property when
inside a conditional construct: if the control flow went through the
“if” branch, then you know that the guard condition is true.

Let A, B 2 E be two observable events in a probability space
h⌦, E, µi, with Pr(B) , 0. Then the probability of A knowing B is
defined as

Pr(A | B) , Pr(A \ B)
Pr(B)

.

4. Probabilistic concrete semantics

We now introduce how we describe the semantics of probabilistic
programs (or systems). It is a very general way of associating a se-
mantics with any probabilistic system. That is, it is not tied to a par-
ticular description of probabilities nor to a specific programming
language but rather allows for a precise construction of semantics
for any probabilistic situation.

4.1 Definition

We look at probabilistic systems as a superposition of (non)-
deterministic systems. That is, when a probabilistic program is run
we consider that it can be any element of a specific set of (non)-
deterministic programs chosen by a random experience. It is as if
all the random choices that will be made in the subsequent execu-
tion are decided by an oracle at startup (although a program knows
only during the course of its execution about which random choices
have been made up to the current execution point and ignores the
later ones).

Definition 1 (Probabilistic semantics). A probabilistic semantics
SpJPK 2 Dp , ⌦ ⇢ D of a program P is a measurable
function of a probability space h⌦, E, µi into a semantics domainD
(considered as a measurable space hD,Oiwith observable semantic
properties in O ✓ } (D)).

By observable, we mean that semantic properties in O will be
the ones we eventually have probabilistic information upon.

The meaning of the probabilistic semantics SpJPK is that when
a scenario ! 2 ⌦ is picked (randomly according to µ), then the
execution of the program P yields the (non)-deterministic seman-
tics SpJPK(!) 2 D. That is, ! embodies all the possible random
choices that the program will have to make during its execution.D
can be any non-probabilistic semantics domain (e.g. the powerset
of maximal execution traces as in Ex. 6 below or any of its abstrac-
tions [4] such as the prefix trace semantics in Ex. 4). This definition
covers most probabilistic models of computation found in the liter-
ature such as program semantics [17], Markov decision processes
[2, 3, 10, 11, 21, 28], etc. It is similar to what can be seen in the
study of the complexity of random algorithms [22].

Example 4. Suppose the program P starts by tossing a coin x
= random(1,2), and then executes other statements. The prefix
trace semantics of P would be described by ⌦ = {!1,!2} and
SpJPK 2 Dp = ⌦ ⇢ D, where D = } (S+) is the set of finite
sequences of states and the observable properties are simply } (D),
defined as

SpJPK(!1) =
�

prefix traces of P starting with x = 1
 

,

SpJPK(!2) =
�

prefix traces of P starting with x = 2
 

.

Then the definition of µ would tell what is the probability of
scenarios !1 and !2. For a non-biased coin, µ would be defined
by µ({!1}) = 1/2, µ({!2}) = 1/2, µ(?) = 0, µ(⌦) = 1.

Definition 2 (Probability of a program property). The probability
that a program P has property � 2 O is Pr(SpJPK 2 �) =
SpJPK(µ)(�).

Example 5. The semantics SpJPK 2 Dp = ⌦P ⇢ D
P

of P below

P ! SpJPK(!) µ({!})

x = 1

1

2
� x = 2;

y = 0

x

3
� y = 1;

if (y = 0) then

z = 2

1

4
� z = 4

else

z = 1

1

5
� z = 3

 �x  �y  �z h1, 0, 2i 1
2 · 1

3 · 1
4 =

1
24 �x  �y �!z h1, 0, 4i 1

2 · 1
3 · 3

4 =
1
8

 �x �!y  �z h1, 1, 1i 1
2 · 1

3 · 1
5 =

1
30

 �x �!y �!z h1, 1, 3i 1
2 · 1

3 · 4
5 =

2
15�!x  �y  �z h2, 0, 2i 1

2 · 2
3 · 1

4 =
1
12�!x  �y �!z h2, 0, 4i 1

2 · 2
3 · 3

4 =
1
4

�!x �!y  �z h2, 1, 1i 1
2 · 2

3 · 1
5 =

1
15

�!x �!y �!z h2, 1, 3i 1
2 · 2

3 · 4
5 =

4
15

can be defined with D
P

, Z3 denoting the final value of the
variables x, y and z and ⌦

P

,
n

! 2 { �x ,�!x } · { �y ,�!y } · { �z ,�!z , ✏} ·
{ �z ,�!z , ✏} �

�

� |!| = 3
o

where �x (resp. �!x ) denotes the left (resp. right)
branch of the first probabilistic choice on x,  �y (resp. �!y ) denotes
the left (resp. right) branch of the second probabilistic choice on y,
and �z and �!z (resp.

 �
z and

�!
z ) denotes the left or right branch of the

third (resp. fourth) probabilistic choice on z. Note that the second
probabilistic choice depends on the value of x.

The observable properties are simply } (⌦
P

) because any sce-
nario can be observed. and

X

!2⌦
P

µ({!}) = 1. The probabilty that

z = 3 is 2
5 since � = {hx, y, zi 2 Z3 | z = 3} and Pr(SpJPK 2 �) =

2
15 +

4
15 =

2
5 .

4.2 Fixpoint semantics

This formalization allows for an easy definition of probabilistic
semantics as fixpoints. Indeed, let F! : D �! D denote the
fixpoint semantic transformer for the (non)-deterministic program
P(!) such that SpJPK(!) = lfp� F!. Now define the lifted operator
Fp : (⌦! D) �! (⌦! D) as Fp(�! . X!) , �! . F!(X!).
It easily follows from the definition that SpJPK = lfp�̇ Fp. Thus, we
can use the usual abstract interpretation framework since semantics
are still fixpoints.

Definition 3 (Probabilistic fixpoint semantics). Let hD, �i be
a cpo, h⌦, E, µi where E ✓ } (D) is a probabilistic space,
FJPK : ⌦ �! D �! D be a pointwise continuous trans-
former for program P. The probabilistic fixpoint semantics of P is
SpJPK , lfp�̇ FpJPK where �̇ is the pointwise extension of � and the
probabilistic transformer is FpJPK , � sP . �! . FJPK(!)(sP(!))
such that FpJPK : Dp �! Dp.

Lemma 1. Under the conditions of Def. 1 and 3, SpJPK ,
lfp�̇ FpJPK = �! . lfp� FJPK(!) is a probabilistic semantics.

Example 6 (Probabilistic maximal trace semantics). Let h⌦, E, µi
be a probability space, ⌃ be a set of states, ⌃+ be the non-empty
finite sequences of states, ⌃⇤ , ⌃+ [ {✏}, ⌃1 be infinite sequences
of states, ⌃+1 , ⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1. The probabilistic

3 2011/9/16

3.7 Distributions

As we already mentioned, for all f : (⌦,E, µ) ⇢ (F,F ), the
distribution of f is f (µ) : F ⇢ [0, 1] (written Pr f for brievety)
such that the probability of actions � 2 F is the probability of the
“parent” scenarios. We have

Pr f (�) = Pr( f 2 �) , µ( f �1(�)) =
Z

⌦

�
f�1(�)

dµ =
Z

⌦

�
�
( f (!))dµ(!) .

3.8 Conditional probability

It is sometimes the case that it is known that a specific event has
already occured, and you want to know what is the probability of
another event to occur. As we will see, it is typically the case when
we want to estimate the probability of a program property when
inside a conditional construct: if the control flow went through the
“if” branch, then you know that the guard condition is true.

Let A, B 2 E be two observable events in a probability space
h⌦, E, µi, with Pr(B) , 0. Then the probability of A knowing B is
defined as

Pr(A | B) , Pr(A \ B)
Pr(B)

.

4. Probabilistic concrete semantics

We now introduce how we describe the semantics of probabilistic
programs (or systems). It is a very general way of associating a se-
mantics with any probabilistic system. That is, it is not tied to a par-
ticular description of probabilities nor to a specific programming
language but rather allows for a precise construction of semantics
for any probabilistic situation.

4.1 Definition

We look at probabilistic systems as a superposition of (non)-
deterministic systems. That is, when a probabilistic program is run
we consider that it can be any element of a specific set of (non)-
deterministic programs chosen by a random experience. It is as if
all the random choices that will be made in the subsequent execu-
tion are decided by an oracle at startup (although a program knows
only during the course of its execution about which random choices
have been made up to the current execution point and ignores the
later ones).

Definition 1 (Probabilistic semantics). A probabilistic semantics
SpJPK 2 Dp , ⌦ ⇢ D of a program P is a measurable
function of a probability space h⌦, E, µi into a semantics domainD
(considered as a measurable space hD,Oiwith observable semantic
properties in O ✓ } (D)).

By observable, we mean that semantic properties in O will be
the ones we eventually have probabilistic information upon.

The meaning of the probabilistic semantics SpJPK is that when
a scenario ! 2 ⌦ is picked (randomly according to µ), then the
execution of the program P yields the (non)-deterministic seman-
tics SpJPK(!) 2 D. That is, ! embodies all the possible random
choices that the program will have to make during its execution.D
can be any non-probabilistic semantics domain (e.g. the powerset
of maximal execution traces as in Ex. 6 below or any of its abstrac-
tions [4] such as the prefix trace semantics in Ex. 4). This definition
covers most probabilistic models of computation found in the liter-
ature such as program semantics [17], Markov decision processes
[2, 3, 10, 11, 21, 28], etc. It is similar to what can be seen in the
study of the complexity of random algorithms [22].

Example 4. Suppose the program P starts by tossing a coin x
= random(1,2), and then executes other statements. The prefix
trace semantics of P would be described by ⌦ = {!1,!2} and
SpJPK 2 Dp = ⌦ ⇢ D, where D = } (S+) is the set of finite
sequences of states and the observable properties are simply } (D),
defined as

SpJPK(!1) =
�

prefix traces of P starting with x = 1
 

,

SpJPK(!2) =
�

prefix traces of P starting with x = 2
 

.

Then the definition of µ would tell what is the probability of
scenarios !1 and !2. For a non-biased coin, µ would be defined
by µ({!1}) = 1/2, µ({!2}) = 1/2, µ(?) = 0, µ(⌦) = 1.

Definition 2 (Probability of a program property). The probability
that a program P has property � 2 O is Pr(SpJPK 2 �) =
SpJPK(µ)(�).

Example 5. The semantics SpJPK 2 Dp = ⌦P ⇢ D
P

of P below

P ! SpJPK(!) µ({!})

x = 1

1

2
� x = 2;

y = 0

x

3
� y = 1;

if (y = 0) then

z = 2

1

4
� z = 4

else

z = 1

1

5
� z = 3

 �x  �y  �z h1, 0, 2i 1
2 · 1

3 · 1
4 =

1
24 �x  �y �!z h1, 0, 4i 1

2 · 1
3 · 3

4 =
1
8

 �x �!y  �z h1, 1, 1i 1
2 · 1

3 · 1
5 =

1
30

 �x �!y �!z h1, 1, 3i 1
2 · 1

3 · 4
5 =

2
15�!x  �y  �z h2, 0, 2i 1

2 · 2
3 · 1

4 =
1
12�!x  �y �!z h2, 0, 4i 1

2 · 2
3 · 3

4 =
1
4

�!x �!y  �z h2, 1, 1i 1
2 · 2

3 · 1
5 =

1
15

�!x �!y �!z h2, 1, 3i 1
2 · 2

3 · 4
5 =

4
15

can be defined with D
P

, Z3 denoting the final value of the
variables x, y and z and ⌦

P

,
n

! 2 { �x ,�!x } · { �y ,�!y } · { �z ,�!z , ✏} ·
{ �z ,�!z , ✏} �

�

� |!| = 3
o

where �x (resp. �!x ) denotes the left (resp. right)
branch of the first probabilistic choice on x,  �y (resp. �!y ) denotes
the left (resp. right) branch of the second probabilistic choice on y,
and �z and �!z (resp.

 �
z and

�!
z ) denotes the left or right branch of the

third (resp. fourth) probabilistic choice on z. Note that the second
probabilistic choice depends on the value of x.

The observable properties are simply } (⌦
P

) because any sce-
nario can be observed. and

X

!2⌦
P

µ({!}) = 1. The probabilty that

z = 3 is 2
5 since � = {hx, y, zi 2 Z3 | z = 3} and Pr(SpJPK 2 �) =

2
15 +

4
15 =

2
5 .

4.2 Fixpoint semantics

This formalization allows for an easy definition of probabilistic
semantics as fixpoints. Indeed, let F! : D �! D denote the
fixpoint semantic transformer for the (non)-deterministic program
P(!) such that SpJPK(!) = lfp� F!. Now define the lifted operator
Fp : (⌦! D) �! (⌦! D) as Fp(�! . X!) , �! . F!(X!).
It easily follows from the definition that SpJPK = lfp�̇ Fp. Thus, we
can use the usual abstract interpretation framework since semantics
are still fixpoints.

Definition 3 (Probabilistic fixpoint semantics). Let hD, �i be
a cpo, h⌦, E, µi where E ✓ } (D) is a probabilistic space,
FJPK : ⌦ �! D �! D be a pointwise continuous trans-
former for program P. The probabilistic fixpoint semantics of P is
SpJPK , lfp�̇ FpJPK where �̇ is the pointwise extension of � and the
probabilistic transformer is FpJPK , � sP . �! . FJPK(!)(sP(!))
such that FpJPK : Dp �! Dp.

Lemma 1. Under the conditions of Def. 1 and 3, SpJPK ,
lfp�̇ FpJPK = �! . lfp� FJPK(!) is a probabilistic semantics.

Example 6 (Probabilistic maximal trace semantics). Let h⌦, E, µi
be a probability space, ⌃ be a set of states, ⌃+ be the non-empty
finite sequences of states, ⌃⇤ , ⌃+ [ {✏}, ⌃1 be infinite sequences
of states, ⌃+1 , ⌃+ [ ⌃1, and ⌃⇤1 , ⌃⇤ [ ⌃1. The probabilistic

3 2011/9/16

maximal trace semantics is S +1p JPK 2 ⌦ ⇢ } (⌃+1). For each sce-
nario !, S +1p JPK! describes a finite maximal or infinite execution
of program P and, following [4], can be defined in fixpoint form.

Define sequencing as X # Y , X1 [ {�s�0 | �s 2 X+ ^ s�0 2 Y}
where X1 , X \ ⌃1 and X+ , X \ ⌃+ and the restriction
Y⇠X , {s�0 2 Y | 9� : �s 2 X+} so that X # Y = X # (Y⇠X).
This is extended pointwise to (X # Y)! , X(!) # Y(!). For a while
language, we would have (B , {tt, ff}, ff) tt)
S +1p JskipK! , {ss | s 2 ⌃}
S +1p Jx := eK! ,

n

ss[x :=EJeK(!)s]
�

�

� s 2 ⌃
o

2,

EJeK : ⌦ ⇢ (⌃ �! ⌃)
S +1p JC1;C2K , S +1p JC1K # S +1p JC2K
S +1p JbK! ,

n

s
�

�

� EJbK(!)s
o

3, EJbK : ⌦ ⇢ (⌃ �! B)

S +1p Jif b then C1 else C2K ,
S +1p JbK # S +1p JC1K [̇ S +1p J¬bK # S +1p JC2K

S +1p Jwhile b do CK , lfpv̇ �X . S +1p JbK [̇ S +1p J¬bK # S +1p JCK # X

where v is the computational ordering on infinite traces of [4] (such
that (X v Y) , (X+ ✓ Y+ ^ X1 ◆ Y1) and v̇ is the pointwise
extension of v . We do not specify the dependence on ! which
would also be possible as e.g. in the Semantics 2 of [17].

4.3 Probabilistic concrete transformers

Observe that in Def. 3, probabilistic transformers are defined point-
wise. A transformer F : Dp �! Dp is the lifting of the
non-deterministic transformer for each scenario: for all sP 2 Dp,
F(sP)(!) = F!(sP(!)).

It follows that the di↵erent probabilistic transformers F! need
not share any common properties. But if they do (e.g. they describe
two slightly di↵erent paths in the control flow graph of the proba-
bilistic program), it can be exploited by the analysis.

In particular, this framework implies a very important fact:
transformers that do not correspond to probabilistic statements
have a particular form: all the F! are the same. Indeed, this can
be understood by the fact that the evolution of the program after
a particular non-probabilistic statement does not depend on what
scenario has been chosen at the beginning of the execution.

Example 7. If the statement after x = random(1,2) is x = x+1
and has G as its transformer, then for any !i, G!i has just the e↵ect
of incrementing the value of x by one, regardless of the fact that x
took the value 1 or 2.

However, the F! are distinct in full generality (it is the case for the
statement x = random(1,2) for example).
4.4 Uncoupling of probabilities and semantics

Since each possible (non)-deterministic semantics of the proba-
bilistic program is an outcome of a scenario, the framework totally
separates the probabilistic behavior (on the ⌦ and µ side) from the
(non)-deterministic semantic one (located in the D part). As we
will see later, it allows for independant and fruitful abstractions.
In particular, the framework can be abstracted to recover classical
probabilistic models of programs.

Example 8 (Trace to transition system abstraction and profiling).
For all s, s0 2 ⌃, consider the abstractions h⌦ ⇢ } (⌃+1),

2 The valuation EJeKs of a pure expression e in state s does not depend on !
when the expression e is not random (ie. does not use any random variable
and/or statement).
3 The valuation EJbKs of a pure condition b in state s does not depend on !
when the condition b is not random.

✓̇i ����! ����↵s

�s hB, (i where
����!
reach(s) , {�s�0 | � 2 ⌃⇤ ^ �0 2 ⌃⇤1,

and ↵s(sP) , (sP 2 ����!reach(s)) and h⌦ ⇢ } (⌃+1), ✓̇i �������! �������
↵hs, s0i

�hs, s0i hB,
(i where ���!succ(s, s0) , {�ss0�0 | � 2 ⌃⇤ ^ �0 2 ⌃⇤1, and
↵hs, s0i(sP) , (sP 2 ���!succ(s, s0)). The property that a state s 2 ⌃ is
definitely reached is reach(s) , ↵s(S +1p JPK) which has probabil-
ity Prs , Pr(reach(s)). The property that a transition hs, s0i 2 ⌃2

is definitely chosen is succ(s, s0) , ↵hs, s0i(S +1p JPK) has probabil-
ity Prhs, s0i , Pr(succ(s, s0)). We have Prs =

P

s02⌃ Prhs, s0i. The
probability attached to a transition hs, s0i 2 ⌃2 is the probability of
choosing this transition knowing that execution has reached state
s which is the conditional probability Prhs, s0i|s , Pr(succ(s, s0) |
reach(s)) = Prhs, s0i

Prs
when state s is reachable. In practice, this con-

ditional probability can often be estimated by statistical profiling.
This probabilistic transition system is the abstract probabilistic se-
mantics of probabilistic programs that exhibit discrete probabilistic
choices considered in many papers such as [11, 13, 15].

Example 9 (Trace to control flow graph abstraction). Continuing
Ex. 6 and 8, consider the case of states which are pairs hc, mi of
a control state c 2 � and a memory state m 2 M where � is finite.
Consider the abstraction h} (⌃ ⇥ ⌃) , ✓i ����! ����↵G

�G h} (� ⇥ �) , ✓i of
states hc,mi by their control state c, ↵G(S ) , {hc, c0i | 9m,m0 2 M :
hhc, mi, hc0, m0ii 2 S }. The control flow graph (CFG) abstraction
↵G � ↵⌧ collects control transitions along traces of T . Similar to Ex.
8, the probability attached to an arc hc, c0i 2 �2 is the probability
of choosing this arc knowing that control has reached c which is
the conditional probability Prhc, c0i|c , Pr(succ(c, c0) | reach(c))
when c is reachable. Compilers construct over-approximations of
this CFG syntactically (not taking e.g. conditionals hence code
unreachability into account) and often unsoundly (e.g. considering
equiprobability of branches or using profiling).

Ex. 10 below shows that instead of the trace semantics of Ex.
6 we could have considered as well any denotational, predicate
transformer, or axiomatic semantics in the abstract interpretation
hierarchy of semantics [4].

Example 10 (Probabilistic abstract semantics). Let h⌦, E, µi be a
probability space and lfp�̇ FpJPK where Fp : Cp �! Cp be the
probabilistic concrete fixpoint semantics based on the classical con-
crete semantics lfp� F! where hC, �i is a cpo and F! : C �! C
for all! 2 ⌦. Consider the classical abstraction hC,�i ���! ���↵

� hA,vi.
Let lfpv̇ F]p where F]p : Ap �! Ap be the probabilistic abstract
fixpoint semantics based on the classical sound abstract semantics
lfp� F! � �(lfpv F]!) where hA, vi is a cpo and F]! : A �! A.
Then lfp�̇ Fp �̇ �P(lfpv̇ F]p) so that the probabilistic lifting of a
sound classical abstraction is sound in the sense that in scenario !,
the abstract semantics is (lfpv̇ F]p)(!) = lfpv F]!.

In practice, the simple abstractions considered in Ex. 10 are not
powerful enough, in particular because ⌦ is in general infinite and
needs further abstractions and we want to consider more general
probabilistic properties as defined in next Sect. 5.

5. Probabilistic concrete collecting semantics

We introduce in the following sections various concrete and ab-
stract semantics domains summarized in Fig. 1.
5.1 Definition

Concrete properties of programs are elements of the usual concrete
domain: the powerset of the program semantics domain, denoted
by }

⇣

Dp

⌘

= } (⌦ ⇢ D). The logical implication order is ✓.

4 2011/9/16



CMACS 2nd year site visit review, Pittsburgh, November 3, 2011                                                                                                                                                                                                                                                © P. Cousot

Advances in aerospace applications
• The paper

received the AIAA intelligent systems best paper award 2010 

• All control/command software of a European aircraft 
manufacturer now mandatorily verified by abstract-
interpretation based static analysis (in conformance with 
DO-178-C )

• Progress on the static verification of parallel processes

8

Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, 
& Xavier Rival.
Static Analysis and Verification of Aerospace Software by Abstract Interpretation. In AIAA 
Infotech@Aerospace 2010, Atlanta, Georgia. American Institute of Aeronautics and Astronautics, 
20—22 April 2010. © AIAA.

http://www.di.ens.fr/%7Ecousot/COUSOTpapers/AIAA-10.shtml
http://www.di.ens.fr/%7Ecousot/COUSOTpapers/AIAA-10.shtml


CMACS 2nd year site visit review, Pittsburgh, November 3, 2011                                                                                                                                                                                                                                                © P. Cousot

The End

9


