Abstract Interpretation:
Principles and Applications

Patrick Cousot

cims.nyu.edu/~pcousot

di.ens.fr/~cousot

SCS Distinguished Lecture Series
Gates & Hillman Centers, Rashid Auditorium 4401
CMU, Pittsburgh — April 12,2012

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th ,2012. |



Abstract Interpretation:
Principles and Applications

Patrick Cousot
joint work Radhia Cousot

cims.nyu.edu/~pcousot

di.ens.fr/~cousot

SCS Distinguished Lecture Series
Gates & Hillman Centers, Rashid Auditorium 4401
CMU, Pittsburgh — April 12,2012

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th ,2012. 2



Abstract

Abstract interpretation is a theory of abstraction and constructive
approximation of the mathematical structures used in the formal
description of complex or infinite systems and the inference or
verification of their combinatorial or undecidable properties. Developed
in the late seventies with Radhia Cousot, it has been since then applied to
many aspects of computer science (such as static analysis and verification,
contract inference, type inference, termination inference, model-checking,
abstraction refinement, program transformation (including
watermarking), combination of decision procedures, security, malware
detection, database queries, etc.) and more recently, to system biology.

The talk will consist in an introduction to the basic notions of abstract
interpretation and the induced methodology for the systematic
development of sound abstract interpretation-based tools. Examples of
abstractions will be provided, from semantics to typing, grammars to
safety, reachability to potential/definite termination, numerical to protein-
protein abstractions, as well as applications (including in industrial use) to
software, hardware and system biology.

3



Examples of abstraction

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 4 © P Cousot



Pixelation of a photo by Jay Maisel

/www.petapixel.com/201 1/06/23/how-much-pixelation-is-needed-before-a-photo-becomes-transformed/

Image credit: Photograph by Jay Maisel
SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 5 © P Cousot



An old idea...

20 000 years old picture in a spanish cave:

The concrete is not always well-known!



Abstractions of a man / crowd

L

Height

Individual heights

Fingerprint I 'A[ I T -

E)'e CO|OI’ min, maxXx

[

DNA



Content

® Motivation

® A touch of theory of abstract interpretation, with
many examples of abstractions

® A short overview of a few applications and on-
going work on software verification

For a rather complete basic introduction to abstract interpretation and applications to cyber-physical
systems, see:

Julien Bertrane, Patrick Cousot, Radhia Cousot, Jér6me Feret, Laurent Mauborgne, Antoine Miné, & Xavier
Rival. Static Analysis and Verification of Aerospace Software by Abstract Interpretation. In ATIAA

Infotech@ @Aerospace 2010, Atlanta, Georgia. American Institute of Aeronautics and Astronautics, 20—22
April 2010. © ATAA.




Fundamental motivations

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 9 © P Cousot



Scientific research
® in Mathematics/Physics:

works towards unification and synthesis

it is science of structure and change aiming at
universal principles

® in Computer science
works towards dispersion and parcelization

it is a collection of local techniques for
computational structures aiming at specific
applications

An exponential process, will stop!

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. | O

OOOOO



Example: reasoning on computational structures

ET . i
W Security protocole gyctems biolo Operational
Axiomatic verification Y OIOgY semantics
: analysis Abstracti
semantics straction
Confidentiality Dataflow Model  Database "\ ofinement
analysis ~analysis checking  query Type
Program evI;?l:;!cEilclan Obfuscation Dependence inference
synthesis Effect Denotational analysis Separation
Grammar systems semantics CEGAR logic
analysis T Theories Program Termination
Statistical rac€  combination transformation Proof

- semantics
model-checking Code Interpolants Abstract Shape

Invariance  Symbolic ontracts Integrity — model analysis

proof  execution analysis ~ checking  Malware
Probabilistic ~ Quantum entanglement  Bisimulation  detection
verification detection
SMT solvers _ =°ode

Parsing Type theory  Steganography refactoring



Example: reasoning on computational structures

Abstract interpretation

& Securn
ET : i
VAAS Security protocole gyctems biolo Operational
Axiomatic . Y OIOgY semantics
: analysis Abstracti
semantics straction
Confidentiality Dataflow Model  Database "\ ofinement
analysis ~analysis checking  query Type
Program evz?ggL?Ln Obfuscation Dependence inference
synthesis Effect Denotational analysis Separation
Grammar systems semantics CEGAR logic
analysis T Theories Program Termination
Statistical racé  combination transformation Proof

: semantics
model-checking Code Interpolants Abstract Shape

Invariance  Symbolic contracts Integrity ~ model analysis
proof execution analysis  checking  Malware

Probabilistic  Quantum entanglement Bisimulation detection

verification detection SMT solvers Code
Parsing Type theory  Steganography refacw

12




Applied motivations

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. | 3 © P Cousot



All computer scientists have experienced bugs

Ariane 5.01 failure Patriot failure Mars orbiter loss
(overflow) (float rounding)  (unit error)

® Checking the presence of bugs is great

® Proving their absence is even better!



A Touch of Abstract
Interpretation [ heory

Patrick Cousot & Radhia Cousot. Vérification statique de la cohérence dynamique des programmes. In Rapport du contrat IRIA SESORI No 75-035, Laboratoire IMAG, University of Grenoble,
France. 125 pages. 23 September 1975.

Patrick Cousot & Radhia Cousot. Static Determination of Dynamic Properties of Programs. In B. Robinet, editor, Proceedings of the second international symposium on Programming, Paris,
France, pages 106— 130, April 13-15 1976, Dunod, Paris.

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. Thése Es Sciences
Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 10, pages 303 —342, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1981.

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. | 5 © P Cousot



Semantics

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. | 6 © P Cousot



Semantics

Formal system: syntax to describe computations
(e.g. programming language = set of programs):

Pel

Semantics: formal model of computations (e.g. set of
execution traces)

Semantic domain (set of semantics):

D

Formal system semantics (maps syntactic system
descriptions to their semantics)

Sel - D



Example: partial trace semantics

® ProgramP+—— 7¥%[P] € p(Z**)

finite traces . |® o —>eo—>e

N + . | —>0—>0—>0—>0—>0

in 2
| o—>o—>o—>o—>0—>o—>e—>o
=P =P =P =P O——P O—P =P O—PO—PO = = =O—PC

I I ,"5.»»»»»»4»»»-_

infinite traces- |...0

in ZOO «—re ” > o—> 00— 00— 0 —>p0—>p0—>p 0 ---0—>p0 ----

‘states “transitions
in 2 in T

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. | 8 © P Cousot



Example: partial trace semantics

® Partial trace semantics 77°°[P] generated by the
small-step operational semantics (X, 7) of a
program P :

Tﬁ[[P]] A {0‘62" !ViE[O,n—l):(O'i, 0'i+1>€7'[[P]]}’

] 2 | )+l =0

n>0

TOO[[P]] 2 {O-EZOOIViEI]\I:<O'i, 0'i+1>€T[[P]]}

tv°[P] £ [P UrT[P]




Concrete properties

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 20 © P Cousot



Concrete properties

® Program concrete property: set of possible
semantics of the program

® Concrete property domain:
P2 (PC0,D, U N
more generally (P < 0, 1, v, AY or (P, <, 0, V)

® Collecting semantics: (maps programs to their
strongest property)

clp] = {S[p]}

(it implies “C’ all other properties)

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

21



Example: concrete properties of trace semantics

® A trace in X is a finite or infinite sequence of
states in X

® A trace semantics in p(X**) is a set of traces

® A trace semantics property in p(p(X7%)) is a set of
trace semantics

® The collecting semantics of a program P with trace
semantics O [P] € p(X**) is the strongest trace
semantics property

@™ [P} € p(p(E™))

22



Abstract properties

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 23 © P Cousot



Abstract properties

® Abstract property: encodes a concrete property (e.g.
a logical formula, a geometric object, etc)

® Abstract property domain:
® a set of abstract properties

® encodes selected concrete properties of interest

<ﬂ9 ;9 J" T? I—|9 |—|>

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

24



Example of abstract properties: reachability

® A reachability property in () is a set of states
in X that can be reached during execution from
given initial states

Example of abstract properties: intervals

[£,h] : interval of values between £ and h
(including - and +)

1 :  empty set (false)

AZ2{l,h]|€eZU{—0)AheZU{+oo} A< h)
U{L}

Patrick Cousot & Radhia Cousot. Vérification statique de la cohérence dynamique des programmes. In Rapport du contrat IRIA SESORI No 75-035, Laboratoire IMAG, University of Grenoble,
France. 125 pages. 23 September 1975.

Patrick Cousot & Radhia Cousot. Static Determination of Dynamic Properties of Programs. In B. Robinet, editor, Proceedings of the second international symposium on Programming, Paris, France,
pages 106—130, April 13-15 1976, Dunod, Paris.

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th , 2012. 25



Abstraction

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 26 © P Cousot



Abstraction

® Abstraction: maps concrete to abstract properties

dxeEP > A

« is assumed to be increasing (so L is the abstrac-
tion of C).

® Abstract semantics: abstraction of the collecting
semantics

S € LA
]]é

S[p a(C[P)) = a(S[P]})

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design ngmA alysis Frameworks. POPL 1979: 269-282

27



Concretization

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 28 © P Cousot



Concretization

® Concretization: maps abstract properties to
concrete properties

vyeA->P

Y is assumed to be increasing (so C is the
concretization of L )

® Abstract properties either describe exactly the
concrete properties in Y(A) ,or

® Abstract properties must approximate the concrete
properties in £\ Y(A)

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

29



Soundness

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 30 © P Cousot



Soundness

® Definition: An abstract property O € A over-
approximates a concrete property P € # if and

only if
P cy(Q)

® Definition: an abstraction is sound if and only if
VYVPe®P : P C y(a(P))

® Under-approximation is dual®

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

(*) Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes.
These Es Sciences Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978.

31



Best abstraction

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 32 © P Cousot



Best abstraction

® Concrete properties: (P, <)
® Abstract properties: (A, C)

® |f any concrete property P € P has a best abstrac-
tion a(P) € A, then the correspondence is given by
a Galois connection ™

(P, <) == (A, T)
le.
VPeP YO EA a(P)E Q & P < y(0)

Sound abstraction =
Best abstraction <«

[1] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
[2] Equivalently upper closures, principal ideals, complete join congruences, Moore families, etc, see [3]
[3] Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

33



Examples of abstraction/
concretization

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th , 2012. 34



Example | of abstraction: maximal trace semantics

® ProgramP > T IIP]] € 50(2%?)

. blocking states

S
A
! : In
o .
.
. :
. :
. ;
.
, ;
.
.
.
i
;
:
;

R

. O—PO—PO—PO
finite traces >0 >0— >0 >0
° + .
in X ;
C—">CO—"pC—"PDCOC—"OCO—"PpCO—PpC—>0O
; @ >0 >0 >0 >0 >0 >0 >0 >0 >@® - -
f\ C—>>CO—"> C—P>C—>C—C »,» > o—P® - -
infinite traces
in X7 . | e—>e—pe—>o—>e—>0—>o>o—>o—>o--

‘states “transitions
in 2 in T

Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)
SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 35 © P Cousot



Example | of abstraction: maximal trace semantics

® Blocking states of a transition system (&, 7):

B:[P] = {s € Z[P] | Vs’ € Z[P] : (s, sy ¢ T[[P]}

® Maximal trace abstraction (eliminates all traces that
are not terminated):

ay(T) 2 U{aeTmz" iO'n_le,BT[[P]]}UTOO

neN
YM

(PE), ©) s (P(E*™), ©)

Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 36 © P Cousot



Example Il of abstraction: trace property

® Trace property abstraction:

ao(P) 2 U P

(PPE"), ©) == (™), C)

® Trace property abstraction of the collecting
semantics:

({77 [P]}) = 77°[P] € p(Z**)

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th , 2012. 37



Loss of information in the trace property abstraction

® “Always terminate with the same value, either 0 or |”

—
P = [’.:"(’Hﬂ[::iﬂq Pep(p(Z™)

— o
® Trace property abstraction:
-
@o(P) = | T o e | @e(P)E (EF)
— T results can

be different

“Always terminate, either with 0 or |”

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 38 © P Cousot



Example lll of abstraction: relational abstraction
® Relational abstraction:

(T) = {00, On1) | €T NI
U{{op, L)|oeT N2}

(PE), ©) = (P(EX ) UE X (L]), )
® [ntuition: v

A

*—>o—>o0—>o (@, ®)
*—>0—>0—>0—>0—>0 (@, ®)
o—>—p 00— 0—>0—>0—>0—> 0 0 > (@, ®)
O =P =P =P O O——Pp O—P O—P O—P O - (@, ®)
e—>o—>o—>e—>o—>o—o—o—o—o--- | | (o, 1)]|
O P O——P O—P O—PO—PO——PO——PO—PO (@, 1)

‘

Patrick Cousot, Radhia Cousot: Invited Talk: Higher Order Abstract Interpretation (and Application to Comportment Analysis Generalizing Strictness, Termination,
Projection, and PER Analysis. ICCL 1994: 95-112
Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)
SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 39 © P Cousot



Example IV of abstraction: safety trace property

® Prefix abstraction (program executions can be
observed only for a finite time):

pf(oc) = {o" € X7 ‘ do”" e o =0'0"}
pf(T) = | J{pf(o) | o eT}.

® [imit abstraction (non-termination cannot be
observed):
Im(T) & TUloeX®|VneN:o[0,n]eT)

® Safety abstraction (finite observations of executions):
A

st = Imopf = pfelmopf
1
(PET®), ©) — (PET), ©)

Patrick Cousot, Radhia Cousot: An abstract interpretation framework for termination. POPL 2012: 245-258

40




Example V of abstraction: reachability

I

o—>o—>o—>o

Initial states|. |[(*)re—re—re—re—re
i etre—pe—pe—>e—ro—reo—re
o—|>o—>o—>o—po—>ro—>o—>o
o >o—>o0—>o0—>o—>o—>o—>o
>0—>0—>0—>0—>0—>0—>O

a o a\(l) X

R

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282
SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 4 | © P Cousot




Example V of abstraction: reachability

® |nitialization abstraction:

d(NT & {oceT|opell
@' € P(X) = (P(Z*™) — p(Z*))
® Reachability abstraction:

' (T)E|s|JoeX,o €eX* 1050’ €T}

(P(E™), ) = (p(Z), <)

a

Patrick Cousot, Radhia Cousot: Abstr I terpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

Patrick Cousot, Radhia Cou Sy ematic Design fP ogram Ana ly F ameworks. POPL 1979: 269-282
SCS Distinguished Lecture Series, CMU ttttttttttttttttttttttttt



Example VI of abstraction: potential termination

® Potential termination:

may
terminate -

~§
~
.§
~

® Potential termination abstraction:

ad™T) & TNnX?

Patrick Cousot, Radhia Cousot: An abstract interpretation framework for termination. POPL 2012: 245-258

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 43 © P Cousot



Example VII of abstraction: definite termination

® Definite termination:

must
terminate ..

~§
~
~§
~

® Definite termination abstraction:

() = (o eT"|pf(o)NpfT™) = 0}

Patrick Cousot, Radhia Cousot: An abstract interpretation framework for termination. POPL 2012: 245-258

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 44 ©PC

OOOOO



Example VllI: elementwise abstraction

Morphism (-1,0,1)

he P A ~
Abstraction t-1,0} } (0, 1)

a(X) = {h(x) | x € X} SHEN (1)

Galois connection

(9(P), ©) = (p(A), )

Example: rule of signs

h.:7Z—{-1,0,1}

Cousot, Radhia Cousot: Systematic Design of Program Analysis Fra

meworks. POPL 1979: 269-282

45



Example |X: typing
® Fager lambda calculus:
x,f,...€ X : program variables

e c £ : program expressions
e m= x| Ax-e|ei(e2) | uf-Ax-e |

1]er —ex](e1?e2:e3)

® Semantic domains:
VAN

W = {w} wrong

z €/ integers
u,f,epeU =2W, &Z, &|[U—~ U], values
RER =2 XU environments

b EDS ZSR—U semantic domain

Patrick Cousot: Types as Abstract Interpretations. POPL 1997: 316-331 * [+ i continuous, L-strict, {2-strict functions from values I to values ILi.
SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 46 © P Cousot



Example IX: typing

® Denotational semantics: S| e] € E— S

S[x] = AR:R(x)
S[Ax-e] = AR-T(Au-(u:J_\/u:Q?u|
S[e]R[xe—u)) ) : U 1),
S[ei(e2)] = AR-(S[e1]R = LV S[ea]R = L 7 L |
S[e R = f=: [U—T], ? i(f) (S[[eg]]R) |
2)
S[ut-Ax-e] 2 AR lprE(A o oy, Ao ST R ]
S[1] £ AR-1(1) = Z,
Sfer —e2] = AR+(S[e1]R = LV S[ex]R = L 7 L |

S[[el]]R —=z1 41 N S[[eg]]R —zo il 7
T1((z1) — Wz2)) = Z1 | Q)

AR-(S[[el]]R = | ? 1 | S[[el]]R =
g) Z, 7 (1(z) =07 S[e2]R | S[es]R) |

Patrick Cousot: Types as Abstract Interpretations. POPL 1997: 316-331
SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 47 © P Cousot

|| >

S[[(el ? € 63)]]




Example IX: typing

® Church/Curry monotypes:

m c MC, m ::= 1int | mi ->mo monotype
He H° £ X — MC type environment
9 € I° = HC x MC typing

T € T° £ o(I°) program type

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th , 2012. 48



Example IX: typing
® Properties: P = o(S)
® Monotype concretization:
7w € M p(U)
7 (me) = {1(2) = Z1 | z€ Z}U {1}

{1(#) = [U—T], | ¥ € [U—TA

Yu € 77 (m) - (u) € y1 (ma)} U {L}
vs € HY — p(R)

= {ReR|VxeX:R(x) eqf(H®))}
v3 € I°—P

= {p€S|VREAS(H) : $(R) € 7{(m)}
’yc c TC — P

|| >

v (m1 ->msy)



Example IX: typing

® (Galois connection:

YU T) = NA (T
N YAN €A

implies

C

<]P>7 g> < : ? <ch 2>

C

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th , 2012. 50



Example X: Protein—Protein interaction abstraction

® | et Species be the set of all chemical species (C, ¢y, ci,...,ck, ¢, ... € Species).

e Let Local view be the set of all local views

o Let x € p(Species) — p(Local view) be the function that maps any set of
complexes into the set of their local views.

o 1 o({R(Y1~u,l11), E(r!1)})
(R = {R(Y1~u,lIr.E); E(r!l.R)}

R
()
Ay
O o=k
E
Y

e The function « defines a Galois connexion: ©(Species) ——= p(Local view)

X

e (The function v maps a set of local views into the set of complexes that can
be built with these local views).

Jérdme Feret. Reachability Analysis of Biological Signalling Pathways by Abstract Interpretation. In Proceedings of the International Conference of Computational Methods in Sciences and Engineering
(ICCMSE2007), Corfu, Greece, 25--30 september, T.E. Simos(Ed.), 2007, American Institute of Physics conference proceedings 963.(2), pp 619--622.

Vincent Danos, Jérdme Feret, Walter Fontana, Jean Krivine: Abstract Interpretation of Cellular Signalling Networks. VMCAI 2008: 83-97

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 5 | © P Cousot



Example XI: numerical abstractions

Collecting semantics: Intervals:

partial traces x € |a,b]

Y Y

Octagons: Ellipses:
+x+ty<a x? 4 by? —axy < d

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 52

Simple congruences:

x = a[b]

Exponentials:
_abt < Y(t) < abt

© P Cousot



In absence of best
abstraction

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th ,2012. 53



In absence of best abstraction

® Best abstraction of a disk by a rectangular
parallelogram

® No best abstraction of a disk by a polyhedron
(Euclid)

use only concretization or abstraction or widening
(introduced in the following) ®

(I) Patrick Cousot, Radhia Cousot: Abstract Interpretation Frameworks. J. Log. Comput. 2(4): 511-547 (1992)

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 54

© P Cousot



Example Xll of abstraction: polyhedra

® Abstract polyhedral properties:

AZ2{A, B,n)|AcR*"XR"ABeR"An > 0)

® Concretization:

vp((A, B, n)) = {X € R" | AX < B}

Transformers and widenings have no more precise
solution and make arbitrary choices (e.g. governed
efficiency considerations)

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes.
These Es Sciences Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978.

Patrick Cousot, Nicolas Halbwachs: Automatic Discovery of Linear Restraints Among Variables of a Program. POPL 1978: 84-96

55



Transformer abstraction

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th ,2012. 56



Transformers

® Concrete transformer:

FeP—->P

increasing (or continuous)

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 57 © P Cousot



Transformer abstraction
® An abstract transformer F € A > A is

® Sound iff

VPeP:aoF(P)C F o a(P)
® Sound and complete iff

VPeP:ao F(P)=F o aP)

® Example (rule of sign)
® Addition: sound, incomplete
® Multiplication: sound, complete

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

58



Example abstract transformer: rule of signs

a

{1,-2,-7} * {0,-2,-5} {0,2,4, 14,5, 10, 35}

0% 0% 04

(}F e 2 {10)
Negative Negative Positive
or zero or zero

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th , 2012. 59



Example abstract transformer: rule of signs

{-3,-4,-7} + {l,2,3}

a

(o

Negative

04

U}

Positive

1>

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012.

{-2,-3,-6,-1,-2,-5,0,-1,-4}

a

\ 4

t-1,0}
C

{1,0,1}

Unkown



Fixpoints

Patrick Cousot & Radhia Cousot. Constructive versions of Tarski's fixed point theorems. In Pacific Journal of Mathematics, Vol. 82, No. 1, 1979, pp. 43—57.

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 6 | © P Cousot



Fixpoint
Set P
Transformer F € P — P
Fixpoint

x € P 1s a fixpoint of F
— F(x)=x

Poset (P, <)

Least fixpoint

x € P is the least fixpoint of F (written x = IfpSF)
S Fx)=xAYVYyeP . (Fy)=y) = (x<Yy)

62



Fixpoints of increasing functions (Tarski)

A

f(x)

> + 00

Another fixpoint at +00 1

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th ,2012. 63



Program properties as fixpoints

® Program semantics and program properties can be
formalized as least/greatest fixpoints of increasing
transformers on complete lattices ®

® Complete lattice / cpo of properties
<7)9 <9 O’ 19 V’ /\>
® Properties of program P

S [P] = lfpSF[P]

® Transformer of program P

F|[P]| € # — P, increasing (or continuous)

( | ) Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

64



Fixpoints: inversion, converse and duality

(:U:—}‘}“!/) (ns+r+)

/ (n, >, 1)

(U,+,¥) (N, )

(IJ5+3+)/ (ﬁ,f-’-T'-)

® Forward (—) or backward (<) transformers

(U,+,4)

® Join (U) or meet (1) merge duality

® |east ({) or greatest (1) fixpoint duality

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th , 2012. 65



Example [: partial finite trace semantics
® <80(2+)9 g’ ®9 2+9 U? m)

® Forward transformer: E):“ [PIT £ X' UT s7[P]
® Backward transformer: ?fPT 23 urp]sT

® Fixpoint finite partial traces:

tH[P] = IfpS ‘¢ F[P] = Iips & [P]

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

66



Example ll: infinite traces
* (p(X7), S, 0, 2%, U, N)
® Backward transformer: ¢ °[P]T £ 7[P]sT

® Fixpoint infinite traces:

[P] = gfpSe 6 [P]

Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)

67



Example lll: partial finite and infinite traces (a)
o (P(X™™), C, 0, X7, U, N)

® Fixpoint partial finite and infinite traces semantics:

e*[P] = iy [P] Ul 7P

Patrick Cousot: Con struc e des g of a hie hy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)

SCS Distinguished Lecture Series , CMU, ttttttttttttttttttt , 2012. 68



SCS Distinguished Lecture Serles, CMU, Pittsburgh, Apnl 12th, 2012

Example lll: partial finite and infinite traces (b)

® Computational order:
TH=TNX
T =T NI
(T'ET)) =T CTHANT? 2T)
<80(Z+OO)9 ;9 2009 2+9 U? |_I>

® Transformer:

¢ T[PIT £ 5" utlP) s

® Fixpoint partial finite and infinite traces semantics:

T*OO[[P]] = Ifp§ ¢ [Pl Ugfps. ¢ T[P] = IfpS. ¢ [P

Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)

69




Example: reachable states

® Transition system (set of states X, initial states / C X,
transition relation 7 )

2, I, 7)

® Right-image of a set of states by transitions

post[7]X = {5’ | As € X : 7(s, 5')}

® Reachable states from initial states

post[t*]7 = Ifp=AX « 7 U post[r]X

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. Thése Es Sciences
Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 10, pages 303—342, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1981.

70



Proof methods

Patrick Cousot & Radhia Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. POPL 1977, 238 —252,.

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes.
These Es Sciences Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978.

Patrick Cousot and Radhia Cousot. Reasoning about program invariance proof methods. Research Report CRIN-80-P050, Institut National Polytechnique de Lorraine, Nancy, France, July 1980, 22p.

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 10, pages 303 —342, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, U.S.A., 1981.

Patrick Cousot & Radhia Cousot. Induction principles for proving invariance properties of programs. In D. Néel, editor, Tools & Notions for Program Construction: an Advanced Course, pages 75—
119. Cambridge University Press, Cambridge, UK, August 1982.

Patrick Cousot. A Hoare-style axiomatization of Burstall's intermittent assertion method for non-deterministic programs Research report LRIM-83-04, University of Metz, September 1983.
Patrick Cousot and Radhia Cousot. “A la Burstall” induction principles for proving inevitability properties of programs. Research Report LRIM-83-08, University of Metz, November 1983.

Patrick Cousot & Radhia Cousot. Principe des Méthodes de Preuve de Propri€tés d'Invariance et de Fatalit€ des Programmes Paralleles. (Principle of invariance and inevitability proof methods of
concurrent programs.) In « Parallélisme, communication et synchronisation », J .-P. Verjus et G. Roucairol (Eds.), Editions du CNRS, Paris, pp. 129—149, 1985.

Patrick Cousot & Radhia Cousot. “A la Floyd” induction principles for proving inevitability properties of programs. In «Algebraic methods in semantics», M. Nivat & J. Reynolds (Eds.), Cambridge
University Press, Cambridge, UK, pp. 277—312, December 1985.

Patrick Cousot & Radhia Cousot. Sometime = Always + Recursion = Always, On the Equivalence of the Intermittent and Invariant Assertions Methods for Proving Inevitability Properties of
Programs. Acta Informatica 24, 1—31 (1987).

Patrick Cousot & Radhia Cousot. A language independent proof of the soundness and completeness of generalized Hoare logic. Information and computation 80(2):165—191 (1989).

Patrick Cousot. Methods and Logics for Proving Programs. In J. van Leeuwen, editor, Formal Models and Semantics, volume B of Handbook of Theoretical Computer Science, chapter 15, pages 843
—993. Elsevier Science Publishers B.V. , 1990.

Radhia Cousot. Fondements des méthodes de preuve d'invariance et de fatalité de programmes paralleles. These es Sciences Mathématiques, Institut national polytechnique de
Lorraine, Nancy, France, 15 November 1985.

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 7 | © P Cousot



Proof methods

Proof methods directly follow from the fixpoint
definition

S[P] < P
o lfpSF[P] < P
oAl FP|(H) KIANILP

(proof by Tarski’s fixpoint theorem for increasing
transformers on complete lattice or Pataria for

Pe) pr<F _ Afx| F(xo) <

atrick Cousot, Radhia Cousot: Abst I terpre n: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
atrick Cousot, Radhia Cou Sy ematic Des g fP ogram Ana ly F ameworks. POPL 1979: 269-282

72



Example: Turing/Floyd Invariance Proof

® Bad states:

HC

® Prove that no bad state is reachable:

post[t*]71 C =B

IS

® Turing/Floyd proof method:
AlepX): L CIApoStft]ICIANIC =B

ousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

73



Fixpoint abstraction

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 74 © P Cousot



Fixpoint abstraction

® For an increasing and sound abstract transformer, we
have a fixpoint approximation

a(IfpSF) C Ifp=F

® For an increasing, sound, and complete abstract
transformer, we have an exact fixpoint abstraction

a(IfpSF) = Ifp~F

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

75



Example XIll: trace to reachability abstraction

® Transition system: (Z[P], 7[P])
e Fixpoint concrete partial trace semantics:
T IPD = 105 6 "[P] with ¢ F[PIT £ 2! UT 57[P|

® Reachability abstraction from initial states I:

Y (1)ey'
(X)), ©) —= (p(2), ©)

aoa'(l)
® Sound and complete abstract transformer

@ oal(l)ed F[P] = AX «1U post[r[P]] & = &
® Fixpoint reachability:

@ o ' (N(r*[P])

o' o a'(1) (Ifpg ¢ [P])
Ifpy AX1U post[TﬂP]]]X

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th , 2012. 7%  ©PCousot



Fixpoint iteration” and
convergence acceleration”

(1 In absence of direct solution (e.g. by elimination)
™) In absence of finite convergence (e.g. ascending chain condition)

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 77 © P Cousot



Iterative fixpoint computation

® Fixpoint of increasing transformers on cpos can be
computed iteratively as limits of (transfinite) iterates

A=

FP' 2 F(FP), B+ 1 successor ordinal
F'2 | |5, FP,  Alimit ordinal
Ultimately stationary at rank €

Converges to F€ = Ifp=F
® ¢ = w when F is continuous

® Finite iterates when F' operates on a cpo satisfying
the ascending chain condition

Patrick Cousot & Radhia Cousot. Constructive versions of Tarski's fixed point theorems. In Pacific Journal of Mathematics, Vol. 82, No. 1, 1979, pp. 43—57.

78



(*)

Expressiveness of finite abstractions is weak

® Finite state abstraction is impossible for termination
and unsound for non-termination of unbounded
brograms

® Unbounded executions:

i

$99
$9s

>0®
>®

>o0—>0

:000
A B B

»>—> 00— 00— 0—>0—>0—>0—>0 - - -0—>0
® Finite homomorphic abstraction:

onnm

® Termination: impossible (lasso)

® Non-termination (lasso): unsound

(*) Excluding trivial solutions, see: Patrick Cousot: Partial Completeness of Abstract Fixpoint Checking. SARA 2000: 1-25

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 79 © P Cousot



Widening
® Definition (widening V € AX A — A)

o (A, L) poset

® Over-approximation

Vx,ye A: xC xVyAyL xVy

® Termination
Given any sequence (x", n € N), the widened sequence (y", n € N)
YW= A0y 29Xt

converges to a limit y* (such that Vm > £ : y" = y")

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 80 © P Cousot



Example: (simple) widening for polyhedra

® |terates

A A

® Widening

A

>

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes.
These Es Sciences Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978.

Patrick Cousot, Nicolas Halbwachs: Automatic Discovery of Linear Restraints Among Variables of a Program. POPL 1978: 84-96

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 8 | © P Cousot



Iteration with widening

® |terates with widening for transformer F € A — A

—0

>

F 1
7Foa 7 when FF)CF
—n+1 N

fnvf(fn) otherwise
® The widening speeds up convergence (at the cost of
imprecision)

Theorem (Limit of iterates with widening) The iterates of F with
—t
widening V from L on a poset (A, &, L) converge to a limit F
— 7 — —  — — ,
such that F(F ) C F (and so lfp=F C F when F' is increasing).

® Can be improved by a narrowing.

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 82 © P Cousot



Convergence acceleration with widening

A
T )
Ifp F ifp F
o > r——>
Infinite iteration Accelerated iteration with widening

(e.g. with a widening based on the
derivative as in Newton-Raphson method)

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th , 2012. 83



Reduced product

® The reduced product combines abstractions by
performing their conjunction in the abstract

Y
(P, <) == (A, &)

Y
(P, <) == (Fb, T)

A Ay Sl
Kai1(y1(P1) Aya(P2)), asx(y1(P1) Aya(P2))) | Pr € Ay APy € Ayl

1XY2

{E, <) & - 5 (AL @Ay, B X )

a1 Xam

® Example: (positive or zero) ® odd = <positive,odd>

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282
Patrick Cousot, Radhia Cousot, Laurent Mauborgne: The Reduced Product of Abstract Domains and the Combination of Decision Procedures. FOSSACS 2011: 456-472

84



Undecidability and
complexity

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th ,2012. 85



Fighting undecidability and complexity
in automatic program verification

® Any automatic semantic program verification method
will definitely fail on infinitely many programs (Godel)

® Solutions:

® Ask for human help (theorem-prover/proof
assistant based deductive methods) — high labor
cost

e Consider finite/decidable systems (model-checking)
—> combinatorial explosion

® Do sound approximations or complete abstractions
(abstract mterpretatlon) —> false alarms

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012 86



What to do about false
alarms/?
abstraction refinement

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th ,2012. 87



What to do about false alarms!?
(1) Automatic refinement

® |nefficient and may not terminate (Godel)

® Refinement needs intelligence

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th , 2012. 88



Set of functions

) K
Tyt

N/

</
>
Q>

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012.



Set of functions abstraction

f(t)

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th , 2012. 90



Concrete questions on the f;

f(t)

>

M di,te[lLh] :fi(t) > M?

> t
di,te[l,h]:fi(t) <m?

Mln/max questlons on the f;

SCS Distinguished Lecture Series , CMU, Pittsburgh, April 12th ,2012. 9]



Concrete questions on the fi answered in the abstract

>

f(t)

M

a S I
Ji,te[Lh] :fi(t) <m? No

Min/max questions on the fi

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 92 © P Cousot



A more precise/refined abstraction

f(t)

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th , 2012. 93



An even more precise/refined abstraction

f(t)

:)t

Note: this is already much more elaborate than CEGAR that goes

counter—example by counter-example!
eeeeeeeeeeeeeeeeeeeeeeeeeeeee , CMU, Pittsburgh, April 12th, 2012. 94



Intelligent passing to the limit

f(t)

>

Sound and complete abstraction for min/max questions on
the f;

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th ,2012. 95



A non-comparable abstraction

f(t)

t

Sound and incomplete abstraction for min/max questions on
the f;

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th ,2012. 96 |1



The hierarchy of abstractions

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 97 © P Cousot



(1) Automatic refinement: Astree example

® Filter invariant abstraction:

2nd order filter: Execution trace:
O u

0O D_":Djj
£

Unstable polyhedral Stable ellipsoidal
abstraction: abstraction:

Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérdme Feret, Laurent Mauborgne, Antoine Miné, & Xavier Rival. Static Analysis and Verification of Aerospace Software by Abstract Interpretation. In
AIAA Infotech@ @ Aerospace 2010, Atlanta, Georgia. American Institute of Aeronautics and Astronautics, 20—22 April 2010. © AIAA.
SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 98 © P Cousot




What to do about false alarms!?
(1) Domain specific refinement

® Adapt the abstraction to the programming
pbaradigms typically used in given domain-specific
applications

® e.g. Astree for synchronous control/lcommand
brograms: no recursion, no dynamic memory
allocation, maximum execution time, filters,
Integrators, quaternions, etc.

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th , 2012. 99



So, what is Abstract
Interpretation

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th , 2012. 100



Define t
Define t

Define t
interest)

Preferab
form

A narrow view ...

ne syntax of the system descriptions
e semantics of the system descriptions

ne collecting semantics (strongest property of

ly express the collecting semantics in fixpoint

Define abstractions of properties

Infer abstractions of transformers

Infer abstractions of fixpoints to get abstract semantics

Iterate to compute fixpoints with convergence
acceleration (widening/narrowing)

Combine abstractions (e.g. reduced product) to refine

101



Example XIV: grammar abstraction

® Meta-syntax of grammars

® Semantics of grammars (by induction on the meta-syntax):
the language generated by the grammar

® Fixpoint semantics: Chomsky-Schutzenberger th.
S[X ::=Xa | b]=Ifp=AX+X-{a} U {b}
® Example of abstraction: FIRST

Urnsr(X) = {a | o : a0 € X)

® Fixpoint abstraction: FIRST classical algorithm (expressed as
a fixpoint)

FIX ::=Xa | b] & @uma(S[X ::= Xa | b])
= Ifp=AX.XU{a|ee€X}U/{b}

Patrick Cousot, Radhia Cousot: Grammar semantics, analysis and parsing by abstract interpretation. Theor. Comput. Sci. 412(44): 6135-6192 (2011)
Patrick Cousot, Radhia Cousot: Grammar Analysis and Parsing by Abstract Interpretation. Program Analysis and Compilation, LNCS 4444, 2006: 175-200
Patrick Cousot, Radhia Cousot: Parsing as abstract interpretation of grammar semantics. Theor. Comput. Sci. 290(1): 531-544 (2003)

102




Abstraction in a more general setting...

Reasoning on complex [computer] system behaviors is
too complex (for humans)

Analyzing/verifying [computer] system behaviors is
undecidable or subject to combinatorial explosion (for
machines)

Abstraction is necessary to apprehend complexity

is a formal framework for
reasoning/computing on formal models of [computer ]
objects, systems and computations and their relations

Applications include the systematic construction of
methods and effective algorithms to solve/approximate
undecidable or very complex problems in various areas of

computer science (and more recently system biology)
103



Recent advances

® The same principles apply to termination verification

Patrick Cousot, Radhia Cousot: An abstract interpretation
framework for termination. POPL 2012: 245-2358

® and to probabilistic verification

Patrick Cousot and Michaél Monerau. Probabilistic Abstract Interpretation. In H.
Seidel (Ed), 22nd European Symposium on Programming (ESOP 2012), Tallinn,
Estonia, 24 March—1 April 2012. Lecture Notes in Computer Science, vol.
7211, pp. 166—190, © Springer, 2012.

|04



Applications of abstract
Interpretation

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th ,2012. 105



Static analysis
and verification

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th ,2012. 106



Software

Ait: static analysis of the worst-case execution time of control/command
software (www.absint.com/ait/)

Astree: proof of absence of runtime errors in embedded synchronous
real time control/command software (www.absint.com/astree/),
AstreeA for asynchronous programs (www.astreea.ens.fr/)

C Global Surveyor, NASA, static analyzer for flight software of NASA
missions (www.cmu.edu/silicon-valley/faculty-staff/venet-arnaud.html)

IKOS (Inference Kernel for Open Static Analyzers), (www.cmu.edu/
silicon-valley/software-systems-management/software-verification.html)

Checkmate: static analyzer of multi-threaded Java programs
(www.pietro.ferrara.name/checkmate/)

CodeContracts Static Checker, Microsoft (msdn.microsoft.com/en-us/
devlabs/dd491992.aspx)

Fluctuat: static analysis of the precision of humerical computations (www-
list.cea.fr/labos/gb/LSL/fluctuat/index.html)

107



Software

Infer: Static analyzer for C/C** (monoidics.com/)

Julia: static analyzer for Java and Android programs
(www.juliasoft.com/juliasoft-android-java-verification.aspx?

Id=201177234649)

Predator: static analyzer of C dynamic data structures using separation
logic (www.fit.vutbr.cz/research/groups/verifit/tools/predator/)

Terminator: termination proof (www.cs.ucl.ac.uk/staff/p.ohearn/
Invader/Invader/Invader Home.html)

etc.

Apron numerical domains library (apron.cri.ensmp.fr/library/)

Parma Polyhedral Library (bugseng.com/products/ppl/)

etc.

108



Hardware

® (Generalized) symbolic trajectory evaluation (Intel)

_ Example of ternary simulation
Intel’s Successes with Formal Methods If some inputs are undefined, the output often is too, but not
always:
John Harrison X
X
Intel Corporation 1 Z.in
put
{7 AND gate — X
15 March 2012 Y
X 0 - (o)
1 = {1}
X X = {0,1}
X
§7 7-input
0 AND gate — 0
X
5@ ORI A MO OIS Ee IR A SO o2 Cii @ X

Jin Yang and Carl-Johan H. Seger, Generalized Symbolic Trajectory Evaluation — Abstraction in Action, Formal Methods in Computer-Aided Design, Lecture Notes in Computer Science, 2002, Volume
2517/2002, 70-87.
Jin Yang; Seger, C.-J.H.; Introduction to generalized symbolic trajectory evaluation, IEEE Transactions onVery Large Scale Integration (VLSI) Systems 11(3), June 2003, 345-353.

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 109 © P Cousot



Biology

e [Kappa —A language for modeling protein interaction networks by a set
of rules and analyse that set directly deploying techniques from

abstract interpretation (www kappalanguage.org/ and

fontana.med.harvard.edu/www/Documents/Lab/ research.signaling.htm)

110



ASTREE

68

Bruno BLANCHET Patrick CousoT Radhia CousoT J r me FERET

70 . . .
Laurent MAUBORGNE Antoine MIN David Monniaux 89 Xavier RIivaL

68 Nov.2001  Nov. 2003.
69 Nov.2001  Aug. 2007.
70 Nov. 2001 — Aug. 2010.

Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival: Why does Astrée scale up? Formal Methods in System Design 35(3): 229-264 (2009)
Patrick Cousot, Radhia Cousot, Jérdme Feret, Antoine Miné, Laurent Mauborgne, David Monniaux, Xavier Rival: Varieties of Static Analyzers: A Comparison with ASTREE. TASE 2007: 3-20

Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: Combination of Abstractions in the ASTREE Static Analyzer. ASIAN 2006:
272-300

Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: The ASTREE Analyzer. ESOP 2005: 21-30

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérdme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: A static analyzer for large safety-critical software. PLDI
2003: 196-207

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérdme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: Design and Implementation of a Special-Purpose Static
Program Analyzer for Safety-Critical Real-Time Embedded Software. The Essence of Computation 2002: 85-108

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 111 © P Cousot



Target language and applications
® C programming language

® Without recursion, longjump, dynamic
memory allocation, conflicting side effects,
backward jumps, system calls (stubs)

® With all its horrors (union, pointer
arithmetics, etc)

® Reasonably extending the standard (e.g. size &
endianess of integers, |EEE 754-1985 floats, etc)

® Originally for synchronous control/command

® c.g. generated from Scade

112



The semantics of C implementations
is very hard to define

What is the effect of out-of-bounds array indexing?

/» cat unpredictable.c

#include <stdio.h>

int main () { int n, TI[1];
n = 2147483647 ;

printf("n = %i, T[n] = %i\n", n, T[nl);

¥

Yields different results on different machines:

n = 2147483647, T[n]
n = 2147483647, T[n]
n = 2147483647, T[n]

Bus error

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012.

113

2147483647
-1208492044
-1352949883

Macintosh PPC
Macintosh Intel
PC Intel 32 bits
PC Intel 64 bits

© P Cousot



Implicit specification

® Absence of runtime errors: overflows, division by
zero, buffer overflow, null & dangling pointers,
alighment errors, ...

® Semantics of runtime errors:

® Terminating execution: stop (e.g. floating-point
exceptions when traps are activated)

® Predictable outcome: go on with worst case
(e.g. signed integer overflows result in some
integer, some options: e.g. modulo arithmetics)

® Unpredictable outcome: stop (e.g. memory
corruption)

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 114

© P Cousot



Example of domain-specific abstraction: ellipses

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X,

void filter () {

static float E[2], S[2];

if (INIT) { S[0] = X; P = X; E[0] = X; %}

else { P = ((((€(0.5 x X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] = 0.7)); }

E[1] = E[0]; E[O] = X; S[1] = S[0]; S[0] = P;

/* S[0], S[1] in [-1327.02698354, 1327.02698354] */
}
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {

X =0.9 %« X + 35;

filter (); INIT = FALSE; } P
} T

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th , 2012. |15




An erroneous common belief on static analyzers

“The properties that can be proved by static analyzers are often
simple” [2]
Like 1in mathematics:

— May be simple to state (no overflow)

— But harder to discover (s [0], S[1] in [-1327.02698354, 1327.02698354])

— And difficult to prove (since it requires finding a non trivial
non-linear invariant for second order filters with complex
roots [Fer04], which can hardly be found by exhaustive enu-
meration)

_ Reference

[2] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A Survey of Automated Techniques for Formal Software Verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 27, No. 7, July 2008.

[FerO4]  Jérome Feret: Static Analysis of Digital Filters. ESOP 2004: 33-48

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 116 © P Cousot



Industrial applications

Daniel Késtner, Christian Ferdinand, Stephan Wilhelm, Stefana Nevona, Olha Honcharova, Patrick Cousot, Radhia Cousot, Jérdme Feret, Laurent Mauborgne, Antoine Miné, Xavier Rival, and
Elodie-Jane Sims. Astrée: Nachweis der Abwesenheit von Laufzeitfehlern. In Workshop *Entwicklung zuverldssiger Software-Systeme'', Regensburg, Germany, June 18+, 2009.

Olivier Bouissou, Eric Conquet, Patrick Cousot, Radhia Cousot, Jérome Feret, Khalil Ghorbal, Eric Goubault, David Lesens, Laurent Mauborgne, Antoine Miné, Sylvie Putot, Xavier Rival, &
Michel Turin. Space Software Validation using Abstract Interpretation. In Proc. of the Int. Space System Engineering Conf., Data Systems in Aerospace (DASIA 2009). Istambul, Turkey, May 2009, 7
pages. ESA.

Jean Souyris, David Delmas: Experimental Assessment of Astrée on Safety-Critical Avionics Software. SAFECOMP 2007: 479-490

David Delmas, Jean Souyris: Astrée: From Research to Industry. SAS 2007: 437-451

Jean Souyris: Industrial experience of abstract interpretation-based static analyzers. IFIP Congress Topical Sessions 2004: 393-400

Stephan Thesing, Jean Souyris, Reinhold Heckmann, Famantanantsoa Randimbivololona, Marc Langenbach, Reinhard Wilhelm, Christian Ferdinand: An Abstract Interpretation-Based Timing
Validation of Hard Real-Time Avionics Software. DSN 2003: 625-632

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 117 © P Cousot



Examples of applications
® Verification of the absence of runtime-errors in

® Fly-by-wire flight control systems"

® ATV docking system"”

® Flight warning system
(on-going work)

(*) No false alarm at all!

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. 118 © P Cousot



Industrialization
® 8 years of research/development (CNRS/ENS/INRIA):

www.astree.ens.fr

® |ndustrialization by AbsInt (since Jan. 2010):

www.absint.com/astree/

® (Can be used for formal software certification in
avionics (DO-178C & DO-333)

119



Conclusion

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. | 20 © P Cousot



On research

If you reason/compute on computer/biological/...
systems behaviors, you probably do abstract
Interpretation

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. | 2 | © P Cousot



On applications

If the simulation/analysis/checking of your
computer/biological/... systems model does not
scale up, consider using (sound (and complete))
abstract interpretations

SCS Distinguished Lecture Series, CMU, Pittsburgh , April 12th , 2012. 122



The End, Thank You

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. | 23 © P Cousot





