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Logical abstract domains and

interpretations
Patrick Cousot, Radhia Cousot & Laurent Mauborgne
ENS/NYU CNRS/ENS IMDEA, Madrid

® On the design of static analysis tools for generating
invariants combining

® Algebraic abstract domains

® | ogical abstract domains (using SMT solvers)

® Wonderful 24 pages technical paper in the
proceedings

Motivation

® Local interest in Design by Contracts™ and contract
inference:

Karine Arnout and Betrand Meyer: Spotting Hidden Contracts:The .NET
example , in Computer (IEEE), vol. 36, no. | I, November 2003, pages 48-55.

e Introduces a subject for discussion:

From htt se.ethz.ch/~meyer/publications/index date.html:

“At the time, | thought that contract inference was a bad
idea: if you extract contracts from the code, you will
document what is there, including the bugs.”
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Obijective

e Infer a contract precondition from the language and
programmer assertions

e Generate code to check that precondition

Usefullness

e Anticipate errors at runtime (e.g. change to trace
execution mode before actual error does occur)

e Use contracts for separate static analysis of modules
(in Clousot)
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Example

From the language assertions

/%
/*

/*
/%
/*
/*
/*

N~

8:

~N o O

: %/
: %/

*/
*/
*/
*/
*/

void Al1lNotNull(Ptr[] A)
int i = 0;

while /* 3: */

(assert(A !'= null);

assert((A !'= null) &&
A[i].f = new Object(;
i++;

}

}

infer the precondition

A # null AVi € [0,A.length) : Afi] # null
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{

i < A.length) {
(A[i] !'= null));

Understanding the
problem
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First alternative: eliminating potential errors

e The precondition should eliminate any initial
state from which a nondeterministic execution
may lead to a bad state (violating an assertion)

o«
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bad state ® °
o o
o o o o
bad run o good run
bad run bad run
bad state bad state



Defects of potential error elimination

e A priori correctness point of view

e Makes hypotheses on the programmer’s
intentions

KO
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Advantage of eliminating only definite errors

e \We check states from which all executions can
only go wrong as specified by the asserts

bad sta.tiY ® ®
o
o o o o
o bad run o good run
OK
bad run bad run
bad state bad state
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Second alternative: eliminating definite errors

e The precondition should eliminate any initial
state from which all nondeterministic
executions must lead to a bad state (violating
an assertion)

bad state

) )
g o
o o o o
o bad run o good run
OK
bad run bad run
bad state bad state
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On non-termination

e Up to now, no human or machine could prove
(or disprove) the conjecture that the following
program always terminates

void Collatz(int n) {

requires (n >= 1);
while (n '= 1) {
if (odd (n)) {

n = 3*n+l
} else {
n=n}/2

}
}
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On non-termination (contd)

e Consider

Collatz(p);
assert(false);

e The precondition is

e assert(false) if Collatz always terminates
e assert(p >= 1) if Collatz may not terminate
® or even better

assert(NecessaryConditionForCollatzNotToTerminate(p))
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A compromise on non-termination

e We do not want to have to solve the program
termination problem

e We ignore non-terminating executions, if any

Infinite good run/".

bad state ® o
./v'/ .// bad state
././ bad run ././ bad run
bad run bad run
bad state bad state
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Problem formalization
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Program small-step operational semantics

e Transition system
/o~
L, a )

|\

Set of states Transition relation Initial states
T E p(X xX) Je p(X)

e Blocking states

B={seX|Vs:1(s,s)}
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Traces

_’
n
° 2 traces of length n

§=250...5,_1 of length |3] =n >0

+ 4 Un}l Z_jn
. I & ¥t y{e}

g

[I>

uture Of Software Engineering Symposium, ETH Zilrich, 22-23 November 2010

non-empty finite traces

finite traces

Program partial trace semantics

® Partial runs of length n > ()
R {§€ Sk |\V/’L € [O,n— 1) : T(gi,gﬂ_l)}

® Non-empty finite partial runs

- A ~»
i = UT”

=1
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Program complete/maximal trace semantics
® Complete runs of length 2. = 0

7" 2 {8e€7"|8,_1 € B}

® Non-empty finite complete runs

— A —
= UT”

n=1
~
® Non-empty finite complete runs from initial states .J

7Y 2{3eTT |5, €T}
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Fixpoint program trace semantics
7Y o= lfps AT -1 UT 572
Ty = 1Py, 9T
C — — -~ —
fpy AT +B'UF?5T
= gfpgs AT -BLU723T

,7—_*+

where

o sequential composition of traces is §5§s5

GivenGQE,weleté"é{geZ_””|§0€6},n>1

Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by
abstract interpretation. TCS 277(1—2), 47-103 (2002)

20
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Collecting asserts

All language and programmer assertions are
collected by a syntactic pre-analysis of the code

assert(b;) is attached to a control point c; € I', j € A

bj : well defined and visible side effect free

o A = {(c;, b)) |5 € A)

21
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Evaluation of expressions

e Expressions € € IE) include Boolean expressions
(over scalar variables or quantifications over
collections)

e The value of e € |E in state s € X is [e]s

e Valuesinclude
e Booleans B £ {true, false},
e Collections (arrays, sets, hash tables, etc.),
e etc

22
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uuuuu

Control

e Map m € X — [ of states of X into control points in I’
(of finite cardinality)

23
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Bad states and bad traces

e Erroneous/bad states
Ep = {s€X |3, b)eA:ms=cA-[b]s}

e Erroneous/bad traces

Ep 2 {FeXT|Fi<|3]:5 €cp)

® good run
8
.

T
€A bad runs

erroneous states Ep

24
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Formal specification of
the contract inference
problem

25
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Contract precondition inference problem

Definition 4 Given a transition system (X, 7. J) and a specification A, the contract
precondition inference problem consists in computing Pa € @(X) such that when
replacing the initial states J by Pa N7, we have

T PpN3J - T3 (no new run is introduced) (2)
7__‘;-\131»\ — 7_";. \ ’/'_";A E &a (all eliminated runs are bad runs) (3)

So no finite maximal good run is ever eliminated:
Lemma 5 (3) implies 75 N -Ep C ?}L,A ’
Choosing Pp = J so that 7\ Py = 0 hence F;\PA = () is a trivial solution

26
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The strongest solution

Theorem 6 The strongest'®) solution to the precondition inference problem in Def. J

"Pa £ {s|IsF et N-En} @ o

bad state
e o
./o/ ./,./'
o bad run o good run

OK

bad run bad run

bad staté bad staté

(5) P is said to be stronger than Q and Q weakefhthan P if and only if P C Q.
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Good and bad states
® Good states : start at least one good run

Ba = {S|E|S§’E77+H—IQSA}
e Bad states : start only bad runs

PBp = = Pa = {s|Vs§’€7"’+:s§'€éA}

Ba

.. €rroneous State

PBa

28
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A very brief recap of
abstract interpretation

29
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Galois connections

concretization \
<) = {5 =)
“a
/ AN
abstraction 2aPstract —abstract
domain implication

concrete” concrete
domain implication

<= best abstraction

VazELyEL Oz( JCy <oz < v(y)

= soundness
Duality

Example: complement isomorphism

e (L, <) is a complete Boolean lattice with unique complement —

(L, <) == (L, =) (since 2 <y & x> ).

—

e self-dual

Ell
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Trace predicate transformers

e Trace predicate transformers’
wip[T] 2 AQ+{s|Vs5eT :s5€Q}
wlp_l[é] = AP {39€Z+| (s€ P)= (s ?EQ)}

e Galois connection .
= wip 1 [Q]
(p(2T), Q) ——= (p(¥), 2)
AT *wip[T']Q

e Bad initial states (all runs from these states are bad)

Ta = whFH(@Es).
{s|Vss €7 :55€€Ep}

(*) Denoted as, but different from, and enjoying properties similar to Dijkstra’s syntactic WLP predicate transformer
32
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Fixpoint abstraction

Lemma 7 If (L, <, 1) is a complete lattice or a cpo, F € L — L is increasing, (L,
C) is a poset, « € L — L is continuous (6)*(7), F € L — L commutes (resp. semi-
commutes) with F that is « o F = F o a (resp. a« o F C F o ) then a(lfpfF) =

C = < C =
Ifp ;(L)F (resp. a(lfp | F') T lfpa(L) F).

(6) o is continuous if and only if it preserves existing lubs of increasing chains.
(") The continuity hypothesis for o can be restricted to the iterates of the least fixpoint of F'.
33
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Fixpoint abstraction (cont’d)

Lemma 7 If (L, <, L) is a complete lattice or a cpo, F € L — L is increasing, (L,
C) is a poset, « € L — L is contmuous(ﬁ)’m, F € L — L commutes (resp. semi-
commutes) with F that is o o F = F o « (resp. « o F C F o o) then a(lfpfF) =

C + < E =
pr;(l)F (resp. a(lfp T F') C lfpa(L) F).
Applying Lem. 7 to (L, <) == (L, =), we get

Corollary 8 (David Park) If F € L — L is increasing on a complete Boolean
lattice (L, <, L, ) then ~Ifp F=gfpS =0 Fo-.

(6) « is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for a can be restricted to the iterates of the least fixpoint of F.
34
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Fixpoint abstraction (cont’d)

Lemma 7 If (L, <, L) is a complete lattice or a cpo, F € L — L is increasing, (L,

C) is a poset, « € L — L is continuous ("), F € T — L commutes (resp. semi-

commutes) with F that is « o F = F o o (resp. a o F C F o ) then a(lfpfF) =
[ - < C —

Ifp (L) F (resp. a(ifp | F) C pra 1 F).

Applying Lem. 7 to (L, <) == (L, =), we get Cor. 8 and by duality Cor. 9 below.

Corollary 8 (David Park) If F € L — L is increasing on a complete Boolean
lattice (L, <, L, =) then —\prfF = gfpr_—\ oFo-.
Corollary 9 If (L, C, T) is a complete lattice or a decpo, F € L — L is increasing,

v € L — L is co-continuous®, F € L — L commutes with F that is yo F = F o v
then fy(gfp%?) = gfp f(T) F.

(6) o is continuous if and only if it preserves existing lubs of increasing chains.
) The continuity hypothesis for a can be restricted to the iterates of the least fixpoint of F.

Fours Hecn SO F U ARL OB, M dtoRreserves exdBting glbs of decreasing chains.

© P.Cousot

Fixpoint strongest contract
precondition
(collecting semantics)

36
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Fixpoint strongest contract precondition

{s|Vs': (s, s')et=5 €Q}.

37

Theorem 10 Py = gfp 5 AP+ €Ea U (=B N preft]P) and Pa = lfp; AP+ —Ea N
(B U pre[t| P) where pre[t]Q £ {s | 3s' € Q : (s, s') € t} and pre[t]Q £ —pre[t](-Q) =

m}

Fixpoint strongest contract precondition (proof)

Theorem 10 Ty = gfp 5 AP+ Ea U (=B N preft]P) and Pa = nfpj AP«-€an
(B U pre[t| P) where pre[t]Q £ {s | 3s’ € Q : (s, ') € t} and pre[t]Q £ —pre[t]( —|Q)
{sle (s, sy et=s €Q}.

Proof sketch:
o 7t = lfp; AT -BlUFT

> wip~'[@]
b <@(Z+), g> —_——— <@(2)7 2)

AT «wlp[T]Q
. WIp[‘B UT2°T](€A) = €a U (~B N pre[t](wip[T](€n)))
e Ba = wip[FT]|(€n) = wipllfo; AT+ B U725 T)(En)
— Ifp2 AP+ € U (=B N preft]P) = &Py AP+ €U (=B prelf]P)

e« Pa = P = pr®g AP +=Ep N (B Upre[t|P) (Park)
|
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Contract precondition
inference by abstract
Interpretation

39
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Model-checking (i.e. enumerate the collecting semantics)

e Computers are finite
e Compute PBa=Ifp; AP ~C€aN (B U pre[i] P) iteratively

® Might not scale up (pure conjecture, not implemented :-)
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Under-approximations

® Extremely hard not to be trivial:
® Tests

® Bounded model checking:
W(T) 2 {50 Fmingrysp | §€T)}

is unsound both for Ba and Pu

® Proposed solution: computer under-approximations
symbolically by program expression propagation

41
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(I) Forward symbolic
execution

42
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Just the idea:

e Perform a symbolic execution [19]
e Move asserts symbolically to the program entry

Example 15 For the program

/* 1: x=x0 & y=y0 */ if (x == 0 ) {

/* 2: x0=0 & x=x0 & y=yO */ X+t

/* 3: x0=0 & x=x0+1 & y=y0 */ assert (x==y);
}

the precondition at program point 1: is (! (x==0) | | (x+1==y)).

® Fixpoint approximation thanks to the formalization
of symbolic execution as an abstract interpretation
[8, Sect. 3.4.5] (a widening enforces convergence)

[8] Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes d’opé-
rateurs monotones sur un treillis, analyse sémantique de programmes (in French). Theése

) _d’Etat &s sciences mathématiques, Université scientifique et médicale de Grenoble (1978)
[19] King, J.: Symbolic execution and program testing. CACM 19(7), 385-394 (1976)
43
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(1) Backward
expression propagation
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General idea

® Try to move the condition code in assertions at the
beginning of the program/method/...

e This is possible under the sufficient conditions:

1. the value of the visible side effect free Boolean expression on scalar or collec-
tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in an assert
on all paths that can be taken from the program entry.

45
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Dataflow analysis

° P(c,b) holds at program point ¢ when Boolean expression
b will definitely be checked in an assert(b) on all paths from ¢ without being

changed up to this check.

= tlrue

d
WSS -
o

o

46
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Dataflow analysis (cont’d)

. P = gfp~ B[] Be(I'x Ay — B)— (I'x Ay — B)
{P(c, b) = B[r](P)(c,b)

cel, beA, Ay 2 {b|3c:(c, b) € A}

o B[7](P)(c,b)
Br](P)(c,b)
Br](P)(c,b)

true  when (c, b) € A (assert(b) at c)
false when IseB:ms=cA(c, b)¢A (exit at c)
/\ unchanged[7](c, ¢, b) A P(c,b) (otherwise)

c’esuccf[T](c)

e the set succ[7](c) of successors of the program point ¢ € I satisfies
succ[t](c) D { el'|3s,s :wms=cAT(s,8)ANmws' =}

. unchanged[7](c, ¢, b) im-
plies than a transition by 7 from program point ¢ to program point ¢’ can never
change the value of Boolean expression b

unchanged[7](c,c’,b) = Vs,s' : (ws=cA7(s,s') Ams' =) = ([b]s = [b]s).
47
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Soundness of the dataflow analysis (cont’d)
. Define

Ra = Abe{(s, ') | (ws', b) € A A[b]s = [b]s'}
Ra 2 Ab-{5eXt|3i<|5|: (5, 5)ecRalb)}

and the abstraction

—

ap(T)(c,b) 2 VSeT :mw5g=c=35ecRabd)
Yp(P) £ {5|Vbe Ay: P(w3y,b) = 5 € Ra(b)}

il

such that (£F, C) 2= (I' x Ay, — B, <.

D

Q1

e Theorem 12 dp(7T) < préB[[T]] = gfpﬁB[[T]] £ p. O

Proof 7+ = pr% AT - BLU72gT and fixpoint abstraction (Lem. 8)

48
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Calculational design of the dataflow analysis

PROOF By (I-a), we have 7+ = Ifp5 AT+ B U723 T so, by Lem. 8, it is
sufficient to prove the semi-commutativity property

ap(BIUFST) = ap(B)A an(73T) & BIl(@n(T)

— d@p(B")(e;b)

=VieB!:m5;=c=FecRa(h) {def. @pS$
=VseB:ms=c= (s, s) € Ra(b) {def. B! and R4 (b)§
—VseB:ims=c= (e beA {def. R4 §
= true {when (¢, b) € A§
= false {when Js € B : s = c A (e, b) & A
= Blr](@p(T)(e.b) {def. B[r]§

— dp(#?5T)(e.b)
= VFe T imdy=c= 5 eRald) ldef. @p§

Fi(r(s,8)ASTET Ams=c) = 555 € Ra(h) {def. 3 and 72§

S(r(s, ) ASTET Ams =c) = (3 < |s8'5] : (s, (s55);) € Ra (b))
{def. Rp§

= Vs,8,5: (r(s,s) AS'S € T Ams = ¢) = (3j < |55 : (m(ss'5);, b) €
AN [os = [ol(s5'5);) {def. Ry §

= Vs,8,5: (1(s,8) AT € T Ams = ¢) = ((ms, b) € AV (Fj < |53
b) € AA[b]s = [b](s'5);)) {separating the
e, ) € AVVs, s, 5: (r(s,8) AT €T Ams =) = (3] < |5] : (m(s'3);,
b) € AN [b]s = [b](s');) def. =5
= (e, b) € AVVs,s': (r(s,8) Ams =) = (V'5 € T : 3j < |s/5] : (m(s'5);,

b) € AN [b]s = [bI(s');) {def. 5§

< (e, b) € AVVs,s': (r(s,8") Ams = c) = ([b]s = [b]s' AVs's" € T : (3j <

|s'5"| : ((s'5");. b) € AA[b]s’ = [b](s'5");)) {transitivity of = and 5’ = 5§

= (e.b) € AVVs, s (r(s,s)Ams = ¢) = ([b]s = [b]s' AVs'5" € T - m(s'5"
ms' = (3 < |85 : (w(s'3");, b) € AN o](s'5)0 = [b)(s'5");))

Us'5"o = 5§

Future Of Software Engineering Symposium, ETH Zilrich, 22-23 November 2010

= (e, b) € AVVs,s' : (r(s,s) Ams = ¢) = ([b]s = [b]s' AVE € T :
ws' = (3j < |5 : (x5}, b) € AN [b]5 = [b]5))) {letting ;
by € AV Vs, s (1(s.8') Ams = cAms' =) = ([b]s = [b]s’ A V3

= ((
T:mdg=d = (3 < |5]: (75, b) € AN [b]5o = [6]5;)) {letting ¢ = ms'§
(e, b) € AVVE Vs, s' 1 (T(s,s') Ams = cAms’ =) = (Vs,s : (ws =
enT(s, 8" )Ams' = ) = ([b]s = [b]s)AVS € T : w8y = ¢ = (3j < |7] : (w5,
b) € ANb]50 = [b]5))  {since A= (A= BAC) implies A = (BAC)S
(e b) € AVYC : (35,8 i T(s,) Ams = eAms' = ¢) = (Vs,8 : (ws =
cAr(s, s )Ams' = ) = ([b]s = [b]s')AVS € T : w5 = ¢ = (3j < |3] : (w5,
b) € AN bl50 = [b]5))) U )= Biff ¥z : (A = B)S§
= e by € AVVY : (35,8 i 7(s,8) Ams = cAws' = &) = (Vs8¢ (ws =
eAT(s, ') Ams' = ') = ([bls = [bls') AVS € T : w0 = ¢ = (3j < |5] : (3,
5;) € Ra(b) {def. Ra £ X0+ {(s, /) | (ws’, b) € AA[b]s = [b]s'}§
= (e, b) € AVVE : (35,8 : 7(s,8) Ams = cAms’ = ¢) = (Vs,8 : (ws =
enT(s,8) Ams' =) = ([b]s = [b]s) AVS € T : w8y = ¢’ = § € Ra(b))
{def. Ra(b)§
< (e, b) € AVY € succlr](c) : (s, 5t (ms = cAT(s,5) Ams’ = ) = ([b]s =
[b]s) AVE €T : w5y =’ = § € Ra(h)
{det. succ[r](¢) 2 {¢' € I'| 35,8 : 7(5,8") Amws = cAms’ = }§

= (e, b) € AVYE € succr](e) : (95,5 : (ms = cAr(s,s) Ams' = ) = ([olls =

[o]s") Adp(T) (b)) {def. @p(T)(c,b) V5 €T : w5o = c = 5§ € Ra(h)§

< (e, b) € AV Ve € succ[r](c) : unchanged[7](c, ¢, b) A @ p(T)(c,b)  {def.
unchanged[7](c, ', b) = Vs, s’ : (ms = cAr(s, ') Ams' = ') = ([b]s = [b]s')§
= Blr(@p(T)(e.b) (def. B[S O

Just to show that
is is machine-
checkable

49
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Backward expression propagation-based
precondition generation

e Precondition generation. The syntactic precondition generated at entry control
point i € 3 2 {i € I'| Is € J: s = i} is (assuming && P £ true)

P, £
beAy, P(i,b)

The set of states for which the syntactic precondition P; is evaluated to true at
program point ¢ € I" is

P, & {sc X |ms=iA[P;]s}
and so for all program entry points (in case there is more than one)

Py 2 {s€X|3€Tr:5€ P}
e Theorem 13 P NT C P5. O

50
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Example

void Al1NotNull(Ptr([] A) {

/*
/*

[

*/ int i = 0;

N

(assert (A
/*
/*
/*
/*
/*

*/ i++;
*/ }
2%/ 3

0 N O O

*/ while /* 3: */

!= null); i < A.length) {

1 ox/ assert((A != null) && (A[i] '= null));
*/  A[i].f = new Object();

the assertion A != null is checked on all paths and
A is not changed (only its elements are), so the data flow analysis is able to move the

assertion as a precondition.

eThe dataflow analysis is a sound abstraction of the

O

trace semantics but too imprecise
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(Il1) Backward path
condition and
expression propagation
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Abstract domain B/=

. IB :visible side-effect and error free Boolean
expressions on scalar variables

e b b implies that Vs € X' : [b]s = [b']s. abstract
implication

e b=b £bEe b AV & b abstract equivalence

« b ebl/= encoding of equivalence class by a representant
o <]B/E, |:>> abstract domain of Boolean expressions

(Trivial) example:

x==-3 x==3
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Abstract domain <IB"). =)

. B2 {b, ~ b, | b, € BAb, € BAb, & b,}

interpretation of b, ~ b, when the path condition b, holds, an execution
path will be followed to some assert(b) and checking b, at the beginning of
the path is the same as checking this b later in the path when reaching the
assertion.

- Example odd(x) ~y >= 0
if ( odd(x) ) {
yt++;
assert(y > 0);
} else {

assert(y < 0); }

e by~ by B by, ~ b, = b, B b, Ab, = b, order

54
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Intuitive meaning of b, ~» b,

assert(b) = false
assert(b) = false
assert(b) = true

assert(b’) = true
assert(b’) = true

55
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. i it i —
Abstract domains (p(B”), €) and I' — (B )
e each b, ~ b, corresponding to a different path to an assertion

« a set of conditions v, ~ b, attached to each program point

e Example 16 The program on the left has abstract properties given on the right.

/% 1: %/ if (odd(x) ) { p(1) = {odd(x) ~» y >= 0,70dd(x) ~y < 0}
/% 2: %/ y++; p(2) = {true~ 7y >= 0}
/* 3: */ assert(y > 0); p(3) = {true~y > 0}
} else {
/x 4: %/ assert(y < 0); } p(4) = {true~y < 0}
/% 5: %/ p(6) =0 0

«Infinitely many paths: widening

A simple widening to enforce convergence would limit the size of the elements of

p(IB”), which is sound since eliminating a pair b, ~ b, would just lead to ignore
some assertion in the precondition, which is always correct.
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Concretization

« Concretization of b, ~> b, for a given program point c
7. € B’ = p({5 € 5+ | mdg = c})
Ye(bp ~b,) = {5 € St | w5y =cA [b,]50 = (Fj < |5] : [ba]S0 = [A(7S,)]5;)}-

A(c) 2 /\(c,b)GAb

« Concretization of a set of b, ~» b, for a given program point ¢
_ =2 . & -
e € p(B) = p({§ € L7 | w50 =c})

7.(C) £ m Ye(bp ~ ba)
bp~b, € C

« Concretization for all program points ¢
. =2 =
¥ € (I'=p(B)) = p(X)
(o) £ |J {5 €7elo(e)) | 750 = ¢}

cel

v is decreasing
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Command, successor and predecessor of a program point

— c: x:=e; c':... cmd(c,c’) 2x:=e succ(c) £ {c'} pred(c’) £ {c}
— c: assert(b); ¢’:... cmd(c,¢’) £b succ(c) 2 {c'} pred(c’) 2 {c}
— c: if b then cmd(c,c;) 2b succ(c) = {cé,c}}
chi...cy: cmd(c, c}) £ p pred(cy) £ {c}
else cmd(cy, ) £ skip succ(cy) £ {c'}
c}: .. .c/]ﬁ: cmd(cljﬁ7 d) & skip succ(c;) 21 pred(cy) 2 {c}
fi; /... pred(c’) £ {cf,c}
— ¢ :while ¢’: b do cmd(c,c’) £ skip succ(c) £ {c'} pred(c’) £ {c,c}}
Cpt...Cp: emd(c’,cp) £ b succ(c’) 2 {c},c"} pred(cy) 2 {c'}
od; ¢”... emd(c’, ") 2 b succ(cy) £ {c'} pred(c”) £ {c'}

cmd(cy,c) £ skip
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Backward symbolic execution

. C
« We compute iteratively the under-approximation p C |fp - B

e Backward path condition and checked expression propagation. The system
of backward equations p = B(p) is (recall that |J0 = 0)
B(p)c = J B(emd(c,c’),b~ ) U {true ~ b | {c, b) € A}
c’€succ(c), b~b Ep(c’)
cerl
for the substitution of €’ for z in e)
b, ~» by}
byx:=e]~> byx:=e]} if by[x:=e] € BAb,[x:=¢] € B
Abp[x :=e] # b.[x :=e]
otherwise
b && by, ~> by} if b&&b, € BAb&& b, i b,
otherwise

where (writing ez := ¢’
B(Sklpa bP ~ ba)
B(x:=e,b, ~ b,)

Y
Y

B(b, b, ~ by)

S S A

1> 1> [1>
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Soundness of the backward symbolic execution

Theorem 18 If p C Ifp < B then 7+ C A(p). O

Observe that B can be E>-overapproximated (e.g. to allow for simplifications of
the Boolean expressions).

PROOF Apply Cor. 10 to 77 = gfp 5. AT « B U725 T (L-b). O

Future Of Software Engineering Symposium, ETH Zilrich, 22-23 November 2010
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Example Backward symbolic execution-based precondition generation

Given an analysis p C h‘pg B, the syntactic pre-

Example 22 The analysis of the following program condition generated at entry control point i € J, = {i € I' | Is € T : ws = i}
/x 1: %/ while (x !'= 0) { is
/x 2: */ assert(x > 0); A | g i £y
v 3wy - P; bpwgéaggp(i)(.(bp) Il (ba)) (again, assuming && () = true)
/* 4: x/ } /x B: x/
leads to the following iterates at program point 1: Example
(1) =0 Initialization
pt(1) = {x#0~ x>0} I(x !'=0) |l (x> 0)
pA(1) = pt(1) since (xZ0Ax>0Ax—1#0)~ (x—1>0) /* 1: %/ while (x !'= 0) {
=x>1~x>1 O /* 20 x/ assert(x > 0);
/* 3: %/ b
/x 4: %/ } /x5 */
6l 62
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General idea

e The previous analyzes for scalar variables can be
applied elementwise to collections
= much too costly

(IV) Forwal‘d anal)'SiS e Apply segmentwise to collections!
fOI’ COI IeCtionS e Forward or backward symbolic execution might

be costly, an efficient solution is needed
— segmented forward dataflow analysis

63 64
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Segmentation” Basic abstract domains for segments

e Example a [0,000) | [-100,100 |E200,000) . Mod_iﬁcation analysis
! f f ! ML {2 eCeCdC 0.
A: <{0},[0,100],{a}7,[-100,100], {b}7,[-100,-1], {n}?> ¢ : all elements in the segment must be equal to
e Formally, the abstract domain functor is their initial value

0 : otherwise, may be different

S(A) & {(BxA)x (Bx Ax {o2) x (Bx {w2)) | k> 00U {L)  Checking analysis

Looelt VA {e? . 2 M2 As ... A1 {e? ... e ™ A A
(o AL B Ao 8 C2 {LneT) lcncTicect
expressions lower abstract upper possible ¢ :all elements A[7] in the segment must have

on scalar variables bound of property of all bound of emptyness
(all have equal  segment elementsin segment of segment
values) (included) segment (excluded)

been checked in assert(b (A[7])) while equal to
their initial value (determined by
the modification analysis)

?:segment ma be empty, - segment is not empt
E 4 oY ¢ o n :none of the elements have been checked

() To appear in POPL201 I.
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Abstract domain for collections Example : (I) program
>egment Segment void Al1NotNull(Ptr[] A) {
modification checking /* 1: %/ int i = 0;
analysis analysis /* 2: x/ while /¥ 3: %/
J (assert(A !'= null); i < A.length) {
/* 4: */

e l—-XeX—SWM)xA®X) —SC)

[ [ I /*x 4: x/ assert((A !'= null) && (A[i] '= null));
. . * b: * Afi] . f = Object();
Program Collection Assertions on X j* 6: *j 1&] new Object()
point  variable /x 70 %/ 3}
For each assertion in {(c, b(X,1)) € A(X) (where c is /* 8: x/ }

a program point designating an assert(b) and b(X,1i) is a side effect free Boolean
expression checking a property of element X[i] of collection X (9))

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]),
the modification analysis must check that the array A has not been modified for all these indexes.
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/*
/*

/*
/%
/*
/%
/*

Example : (Ila) analysis

void Al1lNotNull(Ptr[] A) {
*/ dint i = O;
2: %/ while /* 3: *x/
(assert(A !'= null); i < A.length) {

{0}0{i}e{A.length} - {0}c{i}n{A.length}

*/ assert((A '= null) && (A[i] '= null));
x/  A[i].f = new Object();

*x/ i++;
*/ }

*/ } {0}0{i,A.length}? - {0}c{i,A.length}?

[N

0 N O O
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Example : (Ilb) modification analysis

void Al1lNotNull(Ptr[] A) {
/* */ dint i = O;
/* 2: x/ while /* 3: %/
(assert(A !'= null); i < A.length) {

{0}0{i}e{A.length} - {O}c{i}n{A.length}

*/  assert((A '= null) && (A[i] '= null));

*/ A[i] .f = new Object();

*x/ i++;

x/ }

*/ } {0}0{i,A.length}? - {0}c{i,A.length}?
+

[=Y

/*
/%
/*
/%
/*

0 N O O

(A[i] != null)is
checked while A[ 1]
unmodified since code
entry
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/%
/%

/%

/*
/*
/*
/*
/*

Example : (Ill) result

void AllNotNull(Ptr([] A) {
*/ int i = 0;
2: *x/ while /* 3: */
(assert(A !'= null); i < A.length) {

{0}0{i}e{A.length} - {O}c{i}n{A.length}
*/  assert((A '= null) && (A[i] '= null));
x/  A[i].f = new Object();
*/ i++;
x/ 3}
*/ } {0}0{i,A.length}? = {O}c{i,A.length}?

[

00 N O O

all A[ i] have been
checked in (A[i] !=
null) while unmodified
since code entry

(A[1] != null)is
checked while A[ 1]
unmodified since code

entry -
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Details of the analysis

(a) 1: {oYe{A.length}? - {0}n{A.length}?
no element yet modified (¢) and none checked (n), array may be empty
(b) 2: {0,i}e{A.length}? - {0,i}n{A.length}? i=0
(¢) 3: LU ({0,i}e{A.length}? - {0,i}n{A.length}?) join
={0,i}e{A.length}? - {0,i}n{A.length}?
(d) 4: {0,iYe{A.length} - {0,i}n{A.length}
last and only segment hence array not empty (since A.length > i = 0)
(e) 5: {0,iYe{A.length} - {0,i}c{1,i+1}n{A.length}?
A[i] checked while unmodified
(f) 6: {0,i}0{1,i+1}e{A.length}? - {0,i}c{1,i+1}In{A.length}?
A[1] appears on the left handside of an assignment, hence is potentially modified
(9) 7: {0,i-1}0{1,iYe{A.length}? - {0,i-1}c{1,i}n{A.length}?

invertible assignment igiq = inew — 1
(h) 3: {0,iYe{A.length}? U {0,i-1}0{1,i}e{A.length}? - join
{0,i}n{A.length}? U {0,i-1}c{1,i}n{A.length}?

= {0}e{i}7e¢{A.length}? LI {0}0{i}e{A.length}? - segment unification
{03 L{i}7n{A.length}? L {0}c{i}n{A.length}?
= {0}0{i}7¢{A.length}? - {0}c{i}?n{A.length}?
segmentwise join e U0 =0, eUe=¢, LUc=c,nlUn=n
(i) 4: {0}0{i}7e{A.length} - {0}c{i}?n{A.length}ast segment not empty
(j) 5: {0¥0{i}7e{A.length} - {0}c{i}?c{i+1}n{A.length}?
A[i] checked while unmodified
(k) 6: {0¥0{i}7o{i+1}e{A.length}? - {0}c{i}7c{i+1}n{A.length}?
Ali] potentially modified

that the
analysis is
very fast!

Just to show

(1) 7: {0}0{i-1}70{i}e{A.length}? - {0}c{i-1}7c{i}n{A.length}?
invertible assignment igq = inew — 1
(m) 3: {0}0{i}?e{A.length}? LI {0}0{i-1}0{i}e{A.length}? - join
{0¥c{i}?n{A.length}? U {0}c{i-1}c{i}n{A.length}?
= {0}0{i}?¢{A.length}? L {0}0{i}7e{A.length}? -segment unification
{0¥c{i}?n{A.length}? L {0}c{i}?n{A.length}?
= {0}0{i}?¢{A.length}? - {0}c{i}?n{A.length}?
segmentwise join, convergence
(n) 8: {0}0{i,A.length}? - {0}c{i,A.length}?
i < A.length in segmentation and > in test negation so i = A.length.
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Code generated for the precondition

® Result of the checking analysis (at any point
dominating the code exit) for an assert (b(X,1i))
on collection X at a program point ¢

B.1C1 B> [72]02 ce Cn_an[?n] € 3(@)
e Let A C [1,n) be the set of indices k € A for which Cj, = .

e The precondition is

&& && && ForAll(1,,hy,i => b(X,i)) (4)
XeX (c,b(X,i))EA(X) k€A ’
where Jey, € By, e}, € B4 such that the value of ey (resp. €}) at program point £
is always equal to that of 1; (resp. hy) on program entry and is less that the size of
the collection on program entry.

Theorem 23 The precondition (4) based on a sound modification and checking static
analysis & is sound.
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Precondition inference from assertions

e Our point of view that only definite (and not
potential) assertion violations should be checked in
preconditions looks original (and debatable?)

e The analyzes for scalar and collection variables have

ConCIUSiOn been chosen to be simple

e for scalability of the analyzes

e for understandability of the automatic program
annotation

e Currently being implemented
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THE END,
THANK YOU
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