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Motivation
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Karine Arnout and Betrand Meyer: Spotting Hidden Contracts: The .NET 
example , in Computer (IEEE), vol. 36, no. 11, November 2003, pages 48-55.

“At the time, I thought that contract inference was a bad 
idea: if you extract contracts from the code, you will 
document what is there, including the bugs.”
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From http://se.ethz.ch/~meyer/publications/index_date.html:
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Objective
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Example
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void AllNotNull(Ptr[] A) {

/* 1: */ int i = 0;

/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {

/* 4: */ assert((A != null) && (A[i] != null));

/* 5: */ A[i].f = new Object();

/* 6: */ i++;

/* 7: */ }

/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modified
at program point 5:. ��

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposed e.g.
in [9, Sect. 10-4.6]) or [8, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that efficient code can be generated to check it.
Moreover this is stronger than strictly required (e.g. the code x = random(); assert(x

==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side effect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;

while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))

{ return false };

i++ }

return true }

Modifications of i have no visible side effects while those of elements of A do have,
so the assignment A[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. ��

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and efficient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) using ForAll quantifiers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. ��
The semantics of code is formalized in Sect. 2 and that of specifications by runtime
assertions in Sect. 3. The contract precondition inference problem is defined in Sect. 4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect. 5 and used in Sect. 6 to provide a fixpoint solution to
the contract precondition inference problem. Several effective contract precondition
inference are then proposed, by data flow analysis in Sect. 7, for scalar variables both
by forward symbolic analysis in Sect. 8 and by backward symbolic analysis in Sect. 9,
for collections by forward analysis in Sect. 10. Sect. 11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [8], the small-step operational se-
mantics of code is assumed to be given by a transition system �Σ, τ, I� where Σ is a
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Abstract. In the context of design by contracts, programmers often insert asser-

tions in their code to be optionally checked at runtime, at least during the debugging

phase. These assertions would better be given as a precondition of the method-

/procedure (e.g. for separate static analysis). We define precisely and formally the

contract inference problem from intermittent assertions inserted in the code by the

programmer. Our definition excludes no good run even when a non-deterministic

choice (e.g. an interactive input) could lead to a bad one. We then introduce new

abstract interpretation-based methods to automatically infer both the static contract

precondition of a method/procedure and the code to check it at runtime on scalar

and collection variables.

1 Introduction

In the context of static program analysis for design by contract [20,21], it is quite
frequent that preconditions for the code (i.e. a program/module/method/procedure/-
function/assembly/etc) have been only partially specified by the programmer (or even
not at all for legacy code) and need to be automatically strengthened or inferred by
taking into account the implicit language assertions (e.g. runtime errors) and the
explicit programmer assertions (e.g. assertions and contracts of called methods/pro-
cedures). Besides the methodological advantage of anticipating future inevitable re-
quirements when running a code, precise contracts are necessary in the context of a
separate program analysis as e.g. in Clousot, an abstract interpretation-based static
contract checker for .NET [16]. We work in the context of contracts embedded in
the code [4] so that specification conditions are expressed in the programming lan-
guage itself (and extracted by the compiler for use in contract related tools). The
precondition inference problem for a code is twofold [4]

– Static analysis problem: infer the entry semantic precondition from control flow
dependent language and programmer assertions embedded in the code to guard,
whenever possible, against inevitable errors;

– Code synthesis problem: generate pure code checking for that precondition. This
checking code must be separable from the checked code and should only involve
elements visible to all callers of the checked code.

Example 1 The problem is illustrated by the following AllNotNull procedure where
the precondition that the array A and all array elements should not be null A �=
null∧∀i ∈ [0, A.length) : A[i] �= null is checked by the implicit language assertions
while iterating over the array.
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1 Introduction

In the context of static program analysis for design by contract [20,21], it is quite
frequent that preconditions for the code (i.e. a program/module/method/procedure/-
function/assembly/etc) have been only partially specified by the programmer (or even
not at all for legacy code) and need to be automatically strengthened or inferred by
taking into account the implicit language assertions (e.g. runtime errors) and the
explicit programmer assertions (e.g. assertions and contracts of called methods/pro-
cedures). Besides the methodological advantage of anticipating future inevitable re-
quirements when running a code, precise contracts are necessary in the context of a
separate program analysis as e.g. in Clousot, an abstract interpretation-based static
contract checker for .NET [16]. We work in the context of contracts embedded in
the code [4] so that specification conditions are expressed in the programming lan-
guage itself (and extracted by the compiler for use in contract related tools). The
precondition inference problem for a code is twofold [4]

– Static analysis problem: infer the entry semantic precondition from control flow
dependent language and programmer assertions embedded in the code to guard,
whenever possible, against inevitable errors;

– Code synthesis problem: generate pure code checking for that precondition. This
checking code must be separable from the checked code and should only involve
elements visible to all callers of the checked code.

Example 1 The problem is illustrated by the following AllNotNull procedure where
the precondition that the array A and all array elements should not be null A �=
null∧∀i ∈ [0, A.length) : A[i] �= null is checked by the implicit language assertions
while iterating over the array.
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Understanding the 
problem
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First alternative: eliminating potential errors
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Defects of potential error elimination
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Second alternative: eliminating definite errors
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Advantage of eliminating only definite errors
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On non-termination (cont’d)
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void Collatz(int n) {
   requires (n >= 1);
   while (n != 1) {
      if (odd (n)) {
         n = 3*n+1
      } else {
         n = n / 2
      }
   }
}

12
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On non-termination (cont’d)

! 2$)-(4+,

Collatz(p);
assert(false);

• assert(false) if  Collatz always terminates

• assert(p >= 1) if  Collatz may not terminate 

• or even better

                    assert(NecessaryConditionForCollatzNotToTerminate(p))
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A compromise on non-termination
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Problem formalization
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Program small-step operational semantics

Set of states Transition relation Initial states
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set of states, τ ∈ ℘(Σ×Σ) is a non-deterministic transition relation between a state
and its possible successors, and I ∈ ℘(Σ) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write τ(s, s�) for �s, s�� ∈ τ . The final
or blocking states without any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) are B � {s ∈ Σ | ∀s� : ¬τ(s, s�)}. If
the code must satisfy a global invariant G ∈ ℘(Σ) (e.g. class invariant for a method),
we assume this to be included in the definition of the transition relation τ (e.g.
τ ⊆ G × G). We use a map π ∈ Σ → Γ of states of Σ into control points in Γ
which is assumed to be of finite cardinality. The program has scalar variables x ∈ x,
collection variables X ∈ X and visible side effect free expressions e ∈ E, including
Boolean expressions b ∈ B ⊆ E. Collection variables X have elements X[i] ranging
from 0 to X.count− 1 (A.length− 1 for arrays A). The value of e ∈ E in state s ∈ Σ
is �e�s ∈ V. The values V include the Booleans B � {true, false} where the complete
Boolean algebra �B, ⇒� is ordered by false ⇒ true. The value �X�s of a collection X
in a state s ∈ Σ is a pair �X�s = �n, X� where n = �X.count�s � 0 is a non-negative
integer and X ∈ [0, n) → V denotes the value X(i) of i-th element, i ∈ [0, n), in the
collection. When i ∈ [0, n), we define �X�s[i] � X(i) (= �X[e]�s where �e�s = i) to
denote the i-th element in the collection.

Traces. We let traces be sequences of states in Σ. �Σ n is the set of non-empty finite
traces �s = �s0 . . .�sn−1 of length |�s | � n � 0 including the empty trace �� of length
|�� | � 0. �Σ+ � �

n�1
�Σn is the set of non-empty finite traces and �Σ ∗ � �Σ+ ∪ {��}.

As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential composition of traces is �ss �s�s � � �ss�s � when �s,�s � ∈ �Σ ∗ and
s ∈ Σ, and is otherwise undefined. �S � �S � � {�ss�s � | �ss ∈ �S ∩ �Σ+ ∧ s�s � ∈ �S �}. The
partial execution traces or runs of �Σ, τ, I� are prefix traces generated by transitions,
as follows

�́τ n � {�s ∈ �Σn | ∀i ∈ [0, n− 1) : τ(�si,�si+1)} partial runs of length n � 0
�́τ + �

�

n�1

�́τ n non-empty finite partial runs

�τ n � {�s ∈ �́τ n | �sn−1 ∈ B} complete runs of length n � 0
�τ + �

�

n�1

�τ n non-empty finite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are �́τ +
I �

{�s ∈ �́τ + | �s0 ∈ I} (resp. �τ +
I � {�s ∈ �τ + | �s0 ∈ I}). Given S ⊆ Σ, we let �Sn � {�s ∈

Σn | �s0 ∈ S}, n � 1. Partial and maximal finite runs have the following fixpoint
characterization [10]

�́τ +
I = lfp

⊆
∅ λ �T .�I1 ∪ �T � �τ 2

�τ + = lfp
⊆
∅ λ �T . �B1 ∪ �τ 2 � �T = gfp

⊆
�Σ+ λ �T . �B1 ∪ �τ 2 � �T . (1-a,1-b)

3 Specification semantics
The specification includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = {�cj , bj� | j ∈ ∆}
whenever a runtime check assert(bj) is attached to a control point cj ∈ Γ , j ∈ ∆. A
is computed by a syntactic pre-analysis of the code. The Boolean expressions bj are
assumed to be both visible side effect free and always well-defined when evaluated,

3

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, τ ∈ ℘(Σ×Σ) is a non-deterministic transition relation between a state
and its possible successors, and I ∈ ℘(Σ) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write τ(s, s�) for �s, s�� ∈ τ . The final
or blocking states without any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) are B � {s ∈ Σ | ∀s� : ¬τ(s, s�)}. If
the code must satisfy a global invariant G ∈ ℘(Σ) (e.g. class invariant for a method),
we assume this to be included in the definition of the transition relation τ (e.g.
τ ⊆ G × G). We use a map π ∈ Σ → Γ of states of Σ into control points in Γ
which is assumed to be of finite cardinality. The program has scalar variables x ∈ x,
collection variables X ∈ X and visible side effect free expressions e ∈ E, including
Boolean expressions b ∈ B ⊆ E. Collection variables X have elements X[i] ranging
from 0 to X.count− 1 (A.length− 1 for arrays A). The value of e ∈ E in state s ∈ Σ
is �e�s ∈ V. The values V include the Booleans B � {true, false} where the complete
Boolean algebra �B, ⇒� is ordered by false ⇒ true. The value �X�s of a collection X
in a state s ∈ Σ is a pair �X�s = �n, X� where n = �X.count�s � 0 is a non-negative
integer and X ∈ [0, n) → V denotes the value X(i) of i-th element, i ∈ [0, n), in the
collection. When i ∈ [0, n), we define �X�s[i] � X(i) (= �X[e]�s where �e�s = i) to
denote the i-th element in the collection.

Traces. We let traces be sequences of states in Σ. �Σ n is the set of non-empty finite
traces �s = �s0 . . .�sn−1 of length |�s | � n � 0 including the empty trace �� of length
|�� | � 0. �Σ+ � �

n�1
�Σn is the set of non-empty finite traces and �Σ ∗ � �Σ+ ∪ {��}.

As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential composition of traces is �ss �s�s � � �ss�s � when �s,�s � ∈ �Σ ∗ and
s ∈ Σ, and is otherwise undefined. �S � �S � � {�ss�s � | �ss ∈ �S ∩ �Σ+ ∧ s�s � ∈ �S �}. The
partial execution traces or runs of �Σ, τ, I� are prefix traces generated by transitions,
as follows

�́τ n � {�s ∈ �Σn | ∀i ∈ [0, n− 1) : τ(�si,�si+1)} partial runs of length n � 0
�́τ + �
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The partial (resp. complete/maximal) runs starting from an initial state are �́τ +
I �

{�s ∈ �́τ + | �s0 ∈ I} (resp. �τ +
I � {�s ∈ �τ + | �s0 ∈ I}). Given S ⊆ Σ, we let �Sn � {�s ∈

Σn | �s0 ∈ S}, n � 1. Partial and maximal finite runs have the following fixpoint
characterization [10]
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⊆
∅ λ �T .�I1 ∪ �T � �τ 2
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⊆
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⊆
�Σ+ λ �T . �B1 ∪ �τ 2 � �T . (1-a,1-b)

3 Specification semantics
The specification includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = {�cj , bj� | j ∈ ∆}
whenever a runtime check assert(bj) is attached to a control point cj ∈ Γ , j ∈ ∆. A
is computed by a syntactic pre-analysis of the code. The Boolean expressions bj are
assumed to be both visible side effect free and always well-defined when evaluated,
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set of states, τ ∈ ℘(Σ×Σ) is a non-deterministic transition relation between a state
and its possible successors, and I ∈ ℘(Σ) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write τ(s, s�) for �s, s�� ∈ τ . The final
or blocking states without any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) are B � {s ∈ Σ | ∀s� : ¬τ(s, s�)}. If
the code must satisfy a global invariant G ∈ ℘(Σ) (e.g. class invariant for a method),
we assume this to be included in the definition of the transition relation τ (e.g.
τ ⊆ G × G). We use a map π ∈ Σ → Γ of states of Σ into control points in Γ
which is assumed to be of finite cardinality. The program has scalar variables x ∈ x,
collection variables X ∈ X and visible side effect free expressions e ∈ E, including
Boolean expressions b ∈ B ⊆ E. Collection variables X have elements X[i] ranging
from 0 to X.count− 1 (A.length− 1 for arrays A). The value of e ∈ E in state s ∈ Σ
is �e�s ∈ V. The values V include the Booleans B � {true, false} where the complete
Boolean algebra �B, ⇒� is ordered by false ⇒ true. The value �X�s of a collection X
in a state s ∈ Σ is a pair �X�s = �n, X� where n = �X.count�s � 0 is a non-negative
integer and X ∈ [0, n) → V denotes the value X(i) of i-th element, i ∈ [0, n), in the
collection. When i ∈ [0, n), we define �X�s[i] � X(i) (= �X[e]�s where �e�s = i) to
denote the i-th element in the collection.

Traces. We let traces be sequences of states in Σ. �Σ n is the set of non-empty finite
traces �s = �s0 . . .�sn−1 of length |�s | � n � 0 including the empty trace �� of length
|�� | � 0. �Σ+ � �

n�1
�Σn is the set of non-empty finite traces and �Σ ∗ � �Σ+ ∪ {��}.

As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential composition of traces is �ss �s�s � � �ss�s � when �s,�s � ∈ �Σ ∗ and
s ∈ Σ, and is otherwise undefined. �S � �S � � {�ss�s � | �ss ∈ �S ∩ �Σ+ ∧ s�s � ∈ �S �}. The
partial execution traces or runs of �Σ, τ, I� are prefix traces generated by transitions,
as follows

�́τ n � {�s ∈ �Σn | ∀i ∈ [0, n− 1) : τ(�si,�si+1)} partial runs of length n � 0
�́τ + �

�

n�1

�́τ n non-empty finite partial runs

�τ n � {�s ∈ �́τ n | �sn−1 ∈ B} complete runs of length n � 0
�τ + �

�

n�1

�τ n non-empty finite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are �́τ +
I �

{�s ∈ �́τ + | �s0 ∈ I} (resp. �τ +
I � {�s ∈ �τ + | �s0 ∈ I}). Given S ⊆ Σ, we let �Sn � {�s ∈

Σn | �s0 ∈ S}, n � 1. Partial and maximal finite runs have the following fixpoint
characterization [10]

�́τ +
I = lfp

⊆
∅ λ �T .�I1 ∪ �T � �τ 2

�τ + = lfp
⊆
∅ λ �T . �B1 ∪ �τ 2 � �T = gfp

⊆
�Σ+ λ �T . �B1 ∪ �τ 2 � �T . (1-a,1-b)

3 Specification semantics
The specification includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = {�cj , bj� | j ∈ ∆}
whenever a runtime check assert(bj) is attached to a control point cj ∈ Γ , j ∈ ∆. A
is computed by a syntactic pre-analysis of the code. The Boolean expressions bj are
assumed to be both visible side effect free and always well-defined when evaluated,
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the consideration of infinite behaviors and the use of more expressive abstract do-
mains than segmentation to express relations between values of components of data
structures in asserts and on code entry while preserving scalability.
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rateurs monotones sur un treillis, analyse sémantique de programmes (in French). Thèse
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set of states, τ ∈ ℘(Σ×Σ) is a non-deterministic transition relation between a state
and its possible successors, and I ∈ ℘(Σ) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write τ(s, s�) for �s, s�� ∈ τ . The final
or blocking states without any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) are B � {s ∈ Σ | ∀s� : ¬τ(s, s�)}. If
the code must satisfy a global invariant G ∈ ℘(Σ) (e.g. class invariant for a method),
we assume this to be included in the definition of the transition relation τ (e.g.
τ ⊆ G × G). We use a map π ∈ Σ → Γ of states of Σ into control points in Γ
which is assumed to be of finite cardinality. The program has scalar variables x ∈ x,
collection variables X ∈ X and visible side effect free expressions e ∈ E, including
Boolean expressions b ∈ B ⊆ E. Collection variables X have elements X[i] ranging
from 0 to X.count− 1 (A.length− 1 for arrays A). The value of e ∈ E in state s ∈ Σ
is �e�s ∈ V. The values V include the Booleans B � {true, false} where the complete
Boolean algebra �B, ⇒� is ordered by false ⇒ true. The value �X�s of a collection X
in a state s ∈ Σ is a pair �X�s = �n, X� where n = �X.count�s � 0 is a non-negative
integer and X ∈ [0, n) → V denotes the value X(i) of i-th element, i ∈ [0, n), in the
collection. When i ∈ [0, n), we define �X�s[i] � X(i) (= �X[e]�s where �e�s = i) to
denote the i-th element in the collection.

Traces. We let traces be sequences of states in Σ. �Σ n is the set of non-empty finite
traces �s = �s0 . . .�sn−1 of length |�s | � n � 0 including the empty trace �� of length
|�� | � 0. �Σ+ � �

n�1
�Σn is the set of non-empty finite traces and �Σ ∗ � �Σ+ ∪ {��}.

As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential composition of traces is �ss �s�s � � �ss�s � when �s,�s � ∈ �Σ ∗ and
s ∈ Σ, and is otherwise undefined. �S � �S � � {�ss�s � | �ss ∈ �S ∩ �Σ+ ∧ s�s � ∈ �S �}. The
partial execution traces or runs of �Σ, τ, I� are prefix traces generated by transitions,
as follows

�́τ n � {�s ∈ �Σn | ∀i ∈ [0, n− 1) : τ(�si,�si+1)} partial runs of length n � 0
�́τ + �

�

n�1

�́τ n non-empty finite partial runs

�τ n � {�s ∈ �́τ n | �sn−1 ∈ B} complete runs of length n � 0
�τ + �

�

n�1

�τ n non-empty finite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are �́τ +
I �

{�s ∈ �́τ + | �s0 ∈ I} (resp. �τ +
I � {�s ∈ �τ + | �s0 ∈ I}). Given S ⊆ Σ, we let �Sn � {�s ∈

Σn | �s0 ∈ S}, n � 1. Partial and maximal finite runs have the following fixpoint
characterization [10]

�́τ +
I = lfp

⊆
∅ λ �T .�I1 ∪ �T � �τ 2

�τ + = lfp
⊆
∅ λ �T . �B1 ∪ �τ 2 � �T = gfp

⊆
�Σ+ λ �T . �B1 ∪ �τ 2 � �T . (1-a,1-b)

3 Specification semantics
The specification includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = {�cj , bj� | j ∈ ∆}
whenever a runtime check assert(bj) is attached to a control point cj ∈ Γ , j ∈ ∆. A
is computed by a syntactic pre-analysis of the code. The Boolean expressions bj are
assumed to be both visible side effect free and always well-defined when evaluated,

3

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, τ ∈ ℘(Σ×Σ) is a non-deterministic transition relation between a state
and its possible successors, and I ∈ ℘(Σ) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write τ(s, s�) for �s, s�� ∈ τ . The final
or blocking states without any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) are B � {s ∈ Σ | ∀s� : ¬τ(s, s�)}. If
the code must satisfy a global invariant G ∈ ℘(Σ) (e.g. class invariant for a method),
we assume this to be included in the definition of the transition relation τ (e.g.
τ ⊆ G × G). We use a map π ∈ Σ → Γ of states of Σ into control points in Γ
which is assumed to be of finite cardinality. The program has scalar variables x ∈ x,
collection variables X ∈ X and visible side effect free expressions e ∈ E, including
Boolean expressions b ∈ B ⊆ E. Collection variables X have elements X[i] ranging
from 0 to X.count− 1 (A.length− 1 for arrays A). The value of e ∈ E in state s ∈ Σ
is �e�s ∈ V. The values V include the Booleans B � {true, false} where the complete
Boolean algebra �B, ⇒� is ordered by false ⇒ true. The value �X�s of a collection X
in a state s ∈ Σ is a pair �X�s = �n, X� where n = �X.count�s � 0 is a non-negative
integer and X ∈ [0, n) → V denotes the value X(i) of i-th element, i ∈ [0, n), in the
collection. When i ∈ [0, n), we define �X�s[i] � X(i) (= �X[e]�s where �e�s = i) to
denote the i-th element in the collection.

Traces. We let traces be sequences of states in Σ. �Σ n is the set of non-empty finite
traces �s = �s0 . . .�sn−1 of length |�s | � n � 0 including the empty trace �� of length
|�� | � 0. �Σ+ � �

n�1
�Σn is the set of non-empty finite traces and �Σ ∗ � �Σ+ ∪ {��}.

As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential composition of traces is �ss �s�s � � �ss�s � when �s,�s � ∈ �Σ ∗ and
s ∈ Σ, and is otherwise undefined. �S � �S � � {�ss�s � | �ss ∈ �S ∩ �Σ+ ∧ s�s � ∈ �S �}. The
partial execution traces or runs of �Σ, τ, I� are prefix traces generated by transitions,
as follows

�́τ n � {�s ∈ �Σn | ∀i ∈ [0, n− 1) : τ(�si,�si+1)} partial runs of length n � 0
�́τ + �

�

n�1

�́τ n non-empty finite partial runs

�τ n � {�s ∈ �́τ n | �sn−1 ∈ B} complete runs of length n � 0
�τ + �

�

n�1

�τ n non-empty finite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are �́τ +
I �

{�s ∈ �́τ + | �s0 ∈ I} (resp. �τ +
I � {�s ∈ �τ + | �s0 ∈ I}). Given S ⊆ Σ, we let �Sn � {�s ∈

Σn | �s0 ∈ S}, n � 1. Partial and maximal finite runs have the following fixpoint
characterization [10]

�́τ +
I = lfp

⊆
∅ λ �T .�I1 ∪ �T � �τ 2

�τ + = lfp
⊆
∅ λ �T . �B1 ∪ �τ 2 � �T = gfp

⊆
�Σ+ λ �T . �B1 ∪ �τ 2 � �T . (1-a,1-b)

3 Specification semantics
The specification includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = {�cj , bj� | j ∈ ∆}
whenever a runtime check assert(bj) is attached to a control point cj ∈ Γ , j ∈ ∆. A
is computed by a syntactic pre-analysis of the code. The Boolean expressions bj are
assumed to be both visible side effect free and always well-defined when evaluated,
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set of states, τ ∈ ℘(Σ×Σ) is a non-deterministic transition relation between a state
and its possible successors, and I ∈ ℘(Σ) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write τ(s, s�) for �s, s�� ∈ τ . The final
or blocking states without any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) are B � {s ∈ Σ | ∀s� : ¬τ(s, s�)}. If
the code must satisfy a global invariant G ∈ ℘(Σ) (e.g. class invariant for a method),
we assume this to be included in the definition of the transition relation τ (e.g.
τ ⊆ G × G). We use a map π ∈ Σ → Γ of states of Σ into control points in Γ
which is assumed to be of finite cardinality. The program has scalar variables x ∈ x,
collection variables X ∈ X and visible side effect free expressions e ∈ E, including
Boolean expressions b ∈ B ⊆ E. Collection variables X have elements X[i] ranging
from 0 to X.count− 1 (A.length− 1 for arrays A). The value of e ∈ E in state s ∈ Σ
is �e�s ∈ V. The values V include the Booleans B � {true, false} where the complete
Boolean algebra �B, ⇒� is ordered by false ⇒ true. The value �X�s of a collection X
in a state s ∈ Σ is a pair �X�s = �n, X� where n = �X.count�s � 0 is a non-negative
integer and X ∈ [0, n) → V denotes the value X(i) of i-th element, i ∈ [0, n), in the
collection. When i ∈ [0, n), we define �X�s[i] � X(i) (= �X[e]�s where �e�s = i) to
denote the i-th element in the collection.

Traces. We let traces be sequences of states in Σ. �Σ n is the set of non-empty finite
traces �s = �s0 . . .�sn−1 of length |�s | � n � 0 including the empty trace �� of length
|�� | � 0. �Σ+ � �

n�1
�Σn is the set of non-empty finite traces and �Σ ∗ � �Σ+ ∪ {��}.

As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential composition of traces is �ss �s�s � � �ss�s � when �s,�s � ∈ �Σ ∗ and
s ∈ Σ, and is otherwise undefined. �S � �S � � {�ss�s � | �ss ∈ �S ∩ �Σ+ ∧ s�s � ∈ �S �}. The
partial execution traces or runs of �Σ, τ, I� are prefix traces generated by transitions,
as follows

�́τ n � {�s ∈ �Σn | ∀i ∈ [0, n− 1) : τ(�si,�si+1)} partial runs of length n � 0
�́τ + �

�

n�1

�́τ n non-empty finite partial runs

�τ n � {�s ∈ �́τ n | �sn−1 ∈ B} complete runs of length n � 0
�τ + �

�

n�1

�τ n non-empty finite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are �́τ +
I �

{�s ∈ �́τ + | �s0 ∈ I} (resp. �τ +
I � {�s ∈ �τ + | �s0 ∈ I}). Given S ⊆ Σ, we let �Sn � {�s ∈

Σn | �s0 ∈ S}, n � 1. Partial and maximal finite runs have the following fixpoint
characterization [10]

�́τ +
I = lfp

⊆
∅ λ �T .�I1 ∪ �T � �τ 2

�τ + = lfp
⊆
∅ λ �T . �B1 ∪ �τ 2 � �T = gfp

⊆
�Σ+ λ �T . �B1 ∪ �τ 2 � �T . (1-a,1-b)

3 Specification semantics
The specification includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = {�cj , bj� | j ∈ ∆}
whenever a runtime check assert(bj) is attached to a control point cj ∈ Γ , j ∈ ∆. A
is computed by a syntactic pre-analysis of the code. The Boolean expressions bj are
assumed to be both visible side effect free and always well-defined when evaluated,
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set of states, τ ∈ ℘(Σ×Σ) is a non-deterministic transition relation between a state
and its possible successors, and I ∈ ℘(Σ) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write τ(s, s�) for �s, s�� ∈ τ . The final
or blocking states without any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) are B � {s ∈ Σ | ∀s� : ¬τ(s, s�)}. If
the code must satisfy a global invariant G ∈ ℘(Σ) (e.g. class invariant for a method),
we assume this to be included in the definition of the transition relation τ (e.g.
τ ⊆ G × G). We use a map π ∈ Σ → Γ of states of Σ into control points in Γ
which is assumed to be of finite cardinality. The program has scalar variables x ∈ x,
collection variables X ∈ X and visible side effect free expressions e ∈ E, including
Boolean expressions b ∈ B ⊆ E. Collection variables X have elements X[i] ranging
from 0 to X.count− 1 (A.length− 1 for arrays A). The value of e ∈ E in state s ∈ Σ
is �e�s ∈ V. The values V include the Booleans B � {true, false} where the complete
Boolean algebra �B, ⇒� is ordered by false ⇒ true. The value �X�s of a collection X
in a state s ∈ Σ is a pair �X�s = �n, X� where n = �X.count�s � 0 is a non-negative
integer and X ∈ [0, n) → V denotes the value X(i) of i-th element, i ∈ [0, n), in the
collection. When i ∈ [0, n), we define �X�s[i] � X(i) (= �X[e]�s where �e�s = i) to
denote the i-th element in the collection.

Traces. We let traces be sequences of states in Σ. �Σ n is the set of non-empty finite
traces �s = �s0 . . .�sn−1 of length |�s | � n � 0 including the empty trace �� of length
|�� | � 0. �Σ+ � �

n�1
�Σn is the set of non-empty finite traces and �Σ ∗ � �Σ+ ∪ {��}.

As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential composition of traces is �ss �s�s � � �ss�s � when �s,�s � ∈ �Σ ∗ and
s ∈ Σ, and is otherwise undefined. �S � �S � � {�ss�s � | �ss ∈ �S ∩ �Σ+ ∧ s�s � ∈ �S �}. The
partial execution traces or runs of �Σ, τ, I� are prefix traces generated by transitions,
as follows

�́τ n � {�s ∈ �Σn | ∀i ∈ [0, n− 1) : τ(�si,�si+1)} partial runs of length n � 0
�́τ + �

�

n�1

�́τ n non-empty finite partial runs

�τ n � {�s ∈ �́τ n | �sn−1 ∈ B} complete runs of length n � 0
�τ + �

�

n�1

�τ n non-empty finite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are �́τ +
I �

{�s ∈ �́τ + | �s0 ∈ I} (resp. �τ +
I � {�s ∈ �τ + | �s0 ∈ I}). Given S ⊆ Σ, we let �Sn � {�s ∈

�Σn | �s0 ∈ S}, n � 1. Partial and maximal finite runs have the following fixpoint
characterization [10]

�́τ +
I = lfp

⊆
∅ λ �T .�I1 ∪ �T � �τ 2

�τ + = lfp
⊆
∅ λ �T . �B1 ∪ �τ 2 � �T = gfp

⊆
�Σ+ λ �T . �B1 ∪ �τ 2 � �T . (1-a,1-b)

3 Specification semantics
The specification includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = {�cj , bj� | j ∈ ∆}
whenever a runtime check assert(bj) is attached to a control point cj ∈ Γ , j ∈ ∆. A
is computed by a syntactic pre-analysis of the code. The Boolean expressions bj are
assumed to be both visible side effect free and always well-defined when evaluated,

3

⦁

⦁
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Collecting asserts
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Evaluation of expressions
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Bad states and bad traces

bad runs

good run

erroneous states
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Formal specification of 
the contract inference 

problem
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Contract precondition inference problem
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which may have to be checked by a prior assert (e.g. assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written

bj(x)) or to an element of a collection (written bj(X, i)). This defines

EA � {s ∈ Σ | ∃�c, b� ∈ A : πs = c ∧ ¬�b�s} erroneous or bad states
�́EA � {�s ∈ �Σ+ | ∃i < |�s | : �si ∈ EA} erroneous or bad runs.

As part of the implicit specification, and for the sake of brevity, we consider that pro-

gram executions should terminate. Otherwise the results are similar after revisiting

(1-a,1-b) for infinite runs as considered in [10].

4 The contract precondition inference problem

Definition 4 Given a transition system �Σ, τ, I� and a specification A, the contract

precondition inference problem consists in computing PA ∈ ℘(Σ) such that when
replacing the initial states I by PA ∩ I, we have

�τ +
PA∩I ⊆ �τ +

I (no new run is introduced) (2)

�τ +
I\PA

= �τ +
I \ �τ +

PA
⊆ �́EA (all eliminated runs are bad runs). (3) ��

The following lemma shows that, according to Def. 4, no finite maximal good run is

ever eliminated.

Lemma 5 (3) implies �τ +
I ∩ ¬�́EA ⊆ �τ +

PA
.

Choosing PA = I so that I \ PA = ∅ hence �τ +
I\PA

= ∅ is a trivial solution, so we

would like PA to be minimal, whenever possible (so that �τ +
I\PA

is maximal). Please

note that this is not the weakest (liberal) precondition [15], which yields the weakest

condition under which the code (either does not terminate or) terminates without

assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest (5) solution to the precondition inference problem in Def. 4
is PA � {s | ∃s�s ∈ �τ + ∩ ¬�́EA}. (4) ��

Instead of reasoning on the set PA of states from which there exists a good run

without any error, we can reason on the complement PA that is the set of states

from which all runs are bad in that they always lead to an error. Define PA to be

the set of states from which any complete run in �τ + does fail.

PA � ¬PA = {s | ∀s�s ∈ �τ +
: s�s ∈ �́EA}.

5 Basic elements of abstract interpretation

Galois connections. A Galois connection �L, �� −−−→←−−−
α

γ
�L, �� consists of posets �L,

��, �L, �� and maps α ∈ L → L, γ ∈ L → L such that ∀x ∈ L, y ∈ L : α(x) � y ⇔
x � γ(y). The dual is �L, �� −−−→←−−−

γ

α �L, ��. In a Galois connection, the abstraction
α preserves existing least upper bounds (lubs) hence is increasing so, by duality, the

concretization γ is increasing and preserves existing greatest lower bounds (glbs). If

�L, �� is a complete Boolean lattice with unique complement ¬ then the complement
isomorphism is �L, �� −−−→←−−−

¬
¬ �L, �� (since ¬x � y ⇔ x � ¬y).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ⊆ Q.

4
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The strongest solution

bad state

bad run

bad run

bad state
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bad run

good run
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], P is said to be stronger than Q and Q weaker than P if and only if P ⊆ Q.(5)
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Good and bad states
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A very brief recap of 
abstract interpretation
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which may have to be checked by a prior assert (e.g. assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written

bj(x)) or to an element of a collection (written bj(X, i)). This defines

EA � {s ∈ Σ | ∃�c, b� ∈ A : πs = c ∧ ¬�b�s} erroneous or bad states
�́EA � {�s ∈ �Σ+ | ∃i < |�s | : �si ∈ EA} erroneous or bad runs.

As part of the implicit specification, and for the sake of brevity, we consider that pro-

gram executions should terminate. Otherwise the results are similar after revisiting

(1-a,1-b) for infinite runs as considered in [10].

4 The contract precondition inference problem

Definition 4 Given a transition system �Σ, τ, I� and a specification A, the contract

precondition inference problem consists in computing PA ∈ ℘(Σ) such that when
replacing the initial states I by PA ∩ I, we have

�τ +
PA∩I ⊆ �τ +

I (no new run is introduced) (2)

�τ +
I\PA

= �τ +
I \ �τ +

PA
⊆ �́EA (all eliminated runs are bad runs). (3) ��

The following lemma shows that, according to Def. 4, no finite maximal good run is

ever eliminated.

Lemma 5 (3) implies �τ +
I ∩ ¬�́EA ⊆ �τ +

PA
.

Choosing PA = I so that I \ PA = ∅ hence �τ +
I\PA

= ∅ is a trivial solution, so we

would like PA to be minimal, whenever possible (so that �τ +
I\PA

is maximal). Please

note that this is not the weakest (liberal) precondition [15], which yields the weakest

condition under which the code (either does not terminate or) terminates without

assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest (5) solution to the precondition inference problem in Def. 4
is PA � {s | ∃s�s ∈ �τ + ∩ ¬�́EA}. (4) ��

Instead of reasoning on the set PA of states from which there exists a good run

without any error, we can reason on the complement PA that is the set of states

from which all runs are bad in that they always lead to an error. Define PA to be

the set of states from which any complete run in �τ + does fail.

PA � ¬PA = {s | ∀s�s ∈ �τ +
: s�s ∈ �́EA}.

5 Basic elements of abstract interpretation

Galois connections. A Galois connection �L, �� −−−→←−−−
α

γ
�L, �� consists of posets �L,

��, �L, �� and maps α ∈ L → L, γ ∈ L → L such that ∀x ∈ L, y ∈ L : α(x) � y ⇔
x � γ(y). The dual is �L, �� −−−→←−−−

γ

α �L, ��. In a Galois connection, the abstraction
α preserves existing least upper bounds (lubs) hence is increasing so, by duality, the

concretization γ is increasing and preserves existing greatest lower bounds (glbs). If

�L, �� is a complete Boolean lattice with unique complement ¬ then the complement
isomorphism is �L, �� −−−→←−−−

¬
¬ �L, �� (since ¬x � y ⇔ x � ¬y).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ⊆ Q.
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which may have to be checked by a prior assert (e.g. assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written

bj(x)) or to an element of a collection (written bj(X, i)). This defines

EA � {s ∈ Σ | ∃�c, b� ∈ A : πs = c ∧ ¬�b�s} erroneous or bad states
�́EA � {�s ∈ �Σ+ | ∃i < |�s | : �si ∈ EA} erroneous or bad runs.

As part of the implicit specification, and for the sake of brevity, we consider that pro-

gram executions should terminate. Otherwise the results are similar after revisiting

(1-a,1-b) for infinite runs as considered in [10].

4 The contract precondition inference problem

Definition 4 Given a transition system �Σ, τ, I� and a specification A, the contract

precondition inference problem consists in computing PA ∈ ℘(Σ) such that when
replacing the initial states I by PA ∩ I, we have

�τ +
PA∩I ⊆ �τ +

I (no new run is introduced) (2)

�τ +
I\PA

= �τ +
I \ �τ +

PA
⊆ �́EA (all eliminated runs are bad runs). (3) ��

The following lemma shows that, according to Def. 4, no finite maximal good run is

ever eliminated.

Lemma 5 (3) implies �τ +
I ∩ ¬�́EA ⊆ �τ +

PA
.

Choosing PA = I so that I \ PA = ∅ hence �τ +
I\PA

= ∅ is a trivial solution, so we

would like PA to be minimal, whenever possible (so that �τ +
I\PA

is maximal). Please

note that this is not the weakest (liberal) precondition [15], which yields the weakest

condition under which the code (either does not terminate or) terminates without

assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest (5) solution to the precondition inference problem in Def. 4
is PA � {s | ∃s�s ∈ �τ + ∩ ¬�́EA}. (4) ��

Instead of reasoning on the set PA of states from which there exists a good run

without any error, we can reason on the complement PA that is the set of states

from which all runs are bad in that they always lead to an error. Define PA to be

the set of states from which any complete run in �τ + does fail.

PA � ¬PA = {s | ∀s�s ∈ �τ +
: s�s ∈ �́EA}.

5 Basic elements of abstract interpretation

Galois connections. A Galois connection �L, �� −−−→←−−−
α

γ
�L, �� consists of posets �L,

��, �L, �� and maps α ∈ L → L, γ ∈ L → L such that ∀x ∈ L, y ∈ L : α(x) � y ⇔
x � γ(y). The dual is �L, �� −−−→←−−−

γ

α �L, ��. In a Galois connection, the abstraction
α preserves existing least upper bounds (lubs) hence is increasing so, by duality, the

concretization γ is increasing and preserves existing greatest lower bounds (glbs). If

�L, �� is a complete Boolean lattice with unique complement ¬ then the complement
isomorphism is �L, �� −−−→←−−−

¬
¬ �L, �� (since ¬x � y ⇔ x � ¬y).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ⊆ Q.
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Fixpoint abstraction. Recall from [12, 7.1.0.4] that

Lemma 7 If �L, �, ⊥� is a complete lattice or a cpo, F ∈ L → L is increasing, �L,

�� is a poset, α ∈ L → L is continuous (6),(7), F ∈ L → L commutes (resp. semi-
commutes) with F that is α ◦ F = F ◦ α (resp. α ◦ F � F ◦ α) then α(lfp �

⊥ F ) =
lfp

�
α(⊥)

F (resp. α(lfp �
⊥ F ) � lfp

�
α(⊥)

F ).

Applying Lem. 7 to �L, �� −−−→←−−−
¬
¬ �L, ��, we get Cor. 8 and by duality Cor. 9 below.

Corollary 8 (David Park) If F ∈ L → L is increasing on a complete Boolean
lattice �L, �, ⊥, ¬� then ¬ lfp

�
⊥ F = gfp

�
¬⊥ ¬ ◦ F ◦ ¬ .

Corollary 9 If �L, �, �� is a complete lattice or a dcpo, F ∈ L → L is increasing,
γ ∈ L → L is co-continuous (8), F ∈ L → L commutes with F that is γ ◦ F = F ◦ γ

then γ(gfp
�
� F ) = gfp

�
γ(�)

F .

6 Fixpoint strongest contract precondition
Following [10], let us define the abstraction generalizing [15] to traces

wlp[�T ] � λ �Q .�
s

�� ∀s�s ∈ �T : s�s ∈ �Q
�

wlp−1[ �Q] � λ P .�
s�s ∈ �Σ+

�� (s ∈ P ) ⇒ (s�s ∈ �Q)
�

such that �℘( �Σ+), ⊆� −−−−−−−−−−→←−−−−−−−−−−
λ �T .wlp[�T ]�Q

wlp−1[�Q ]
�℘(Σ), ⊇� and PA = wlp[�τ +](�́EA). By fixpoint

abstraction, it follows from (1-a) and Cor. 8 that

Theorem 10 PA = gfp
⊆
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P ) and PA = lfp
⊆
∅ λ P .¬EA ∩

(B∪ pre[t]P ) where pre[t]Q � {s | ∃s� ∈ Q : �s, s�� ∈ t} and �pre[t]Q � ¬pre[t](¬Q) =
{s | ∀s� : �s, s�� ∈ t ⇒ s� ∈ Q}. ��

If the set Σ of states is finite, as assumed in model-checking [2], the fixpoint definition
of PA in Th. 10 is computable iteratively, up to combinatorial explosion. The code
to check the precondition s ∈ PA can proceed by exhaustive enumeration. In case
this does not scale up or for infinite state systems, bounded model-checking [5] is an
alternative using

�k
i=0 �τ i instead of �τ + but, by Th. 6, the bounded prefix abstraction

αk(�T ) �
�
�s ∈ �T

�� |�s | � k
�

is unsound for approximating both PA and PA.

7 Contract precondition inference by data flow analysis
Instead of state-based reasonings, as in Sect. 4 and 6, we can consider symbolic (or
even syntactic) reasonings moving the code assertions to the code entry, when the
effect is the same. This can be done by a sound data flow analysis [18] when
1. the value of the visible side effect free Boolean expression on scalar or collection

variables in the assert is exactly the same as the value of this expression when
evaluated on entry;

2. the value of the expression checked on program entry is checked in an assert on
all paths that can be taken from the program entry.

We propose a backward data flow analysis to check for both sufficient conditions 1
and 2.

(6) α is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for α can be restricted to the iterates of the least fixpoint of F .
(8) γ is co-continuous if and only if it preserves existing glbs of decreasing chains.
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Fixpointabstraction.Recallfrom[12,7.1.0.4]that

Lemma7If�L,�,⊥�isacompletelatticeoracpo,F∈L→Lisincreasing,�L,

��isaposet,α∈L→Liscontinuous(6),(7),F∈L→Lcommutes(resp.semi-
commutes)withFthatisα◦F=F◦α(resp.α◦F�F◦α)thenα(lfp�

⊥F)=
lfp

�
α(⊥)F(resp.α(lfp�

⊥F)�lfp
�
α(⊥)F).

ApplyingLem.7to�L,��−−−→←−−−¬¬�L,��,wegetCor.8andbydualityCor.9below.

Corollary8(DavidPark)IfF∈L→LisincreasingonacompleteBoolean
lattice�L,�,⊥,¬�then¬lfp�

⊥F=gfp�
¬⊥¬◦F◦¬.

Corollary9If�L,�,��isacompletelatticeoradcpo,F∈L→Lisincreasing,
γ∈L→Lisco-continuous(8),F∈L→LcommuteswithFthatisγ◦F=F◦γ

thenγ(gfp
�
�F)=gfp�

γ(�)F.

6Fixpointstrongestcontractprecondition
Following[10],letusdefinetheabstractiongeneralizing[15]totraces

wlp[�T]�λ�Q.�
s

��
∀s�s∈�T:s�s∈�Q�

wlp−1
[�Q]�λP.�

s�s∈�Σ+��
(s∈P)⇒(s�s∈�Q)

�

suchthat�℘(�Σ+),⊆�−−−−−−−−−−→ ←−−−−−−−−−−
λ�T.wlp[�T]�Q

wlp−1[�Q]
�℘(Σ),⊇�andPA=wlp[�τ+](�́EA).Byfixpoint

abstraction,itfollowsfrom(1-a)andCor.8that

Theorem10PA=gfp
⊆
ΣλP.EA∪(¬B∩�pre[t]P)andPA=lfp

⊆
∅λP.¬EA∩

(B∪pre[t]P)wherepre[t]Q�{s|∃s�∈Q:�s,s��∈t}and�pre[t]Q�¬pre[t](¬Q)=
{s|∀s�:�s,s��∈t⇒s�∈Q}.��

IfthesetΣofstatesisfinite,asassumedinmodel-checking[2],thefixpointdefinition
ofPAinTh.10iscomputableiteratively,uptocombinatorialexplosion.Thecode
tocheckthepreconditions∈PAcanproceedbyexhaustiveenumeration.Incase
thisdoesnotscaleuporforinfinitestatesystems,boundedmodel-checking[5]isan
alternativeusing

�k
i=0�τiinsteadof�τ+but,byTh.6,theboundedprefixabstraction

αk(�T)�
�
�s∈�T��

|�s|�k
�

isunsoundforapproximatingbothPAandPA.

7Contractpreconditioninferencebydataflowanalysis
Insteadofstate-basedreasonings,asinSect.4and6,wecanconsidersymbolic(or
evensyntactic)reasoningsmovingthecodeassertionstothecodeentry,whenthe
effectisthesame.Thiscanbedonebyasounddataflowanalysis[18]when
1.thevalueofthevisiblesideeffectfreeBooleanexpressiononscalarorcollection

variablesintheassertisexactlythesameasthevalueofthisexpressionwhen
evaluatedonentry;

2.thevalueoftheexpressioncheckedonprogramentryischeckedinanasserton
allpathsthatcanbetakenfromtheprogramentry.

Weproposeabackwarddataflowanalysistocheckforbothsufficientconditions1
and2.

(6)αiscontinuousifandonlyifitpreservesexistinglubsofincreasingchains.
(7)ThecontinuityhypothesisforαcanberestrictedtotheiteratesoftheleastfixpointofF.
(8)γisco-continuousifandonlyifitpreservesexistingglbsofdecreasingchains.
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Example: complement isomorphism
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which may have to be checked by a prior assert (e.g. assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written

bj(x)) or to an element of a collection (written bj(X, i)). This defines

EA � {s ∈ Σ | ∃�c, b� ∈ A : πs = c ∧ ¬�b�s} erroneous or bad states
�́EA � {�s ∈ �Σ+ | ∃i < |�s | : �si ∈ EA} erroneous or bad runs.

As part of the implicit specification, and for the sake of brevity, we consider that pro-

gram executions should terminate. Otherwise the results are similar after revisiting

(1-a,1-b) for infinite runs as considered in [10].

4 The contract precondition inference problem

Definition 4 Given a transition system �Σ, τ, I� and a specification A, the contract

precondition inference problem consists in computing PA ∈ ℘(Σ) such that when
replacing the initial states I by PA ∩ I, we have

�τ +
PA∩I ⊆ �τ +

I (no new run is introduced) (2)

�τ +
I\PA

= �τ +
I \ �τ +

PA
⊆ �́EA (all eliminated runs are bad runs). (3) ��

The following lemma shows that, according to Def. 4, no finite maximal good run is

ever eliminated.

Lemma 5 (3) implies �τ +
I ∩ ¬�́EA ⊆ �τ +

PA
.

Choosing PA = I so that I \ PA = ∅ hence �τ +
I\PA

= ∅ is a trivial solution, so we

would like PA to be minimal, whenever possible (so that �τ +
I\PA

is maximal). Please

note that this is not the weakest (liberal) precondition [15], which yields the weakest

condition under which the code (either does not terminate or) terminates without

assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest (5) solution to the precondition inference problem in Def. 4
is PA � {s | ∃s�s ∈ �τ + ∩ ¬�́EA}. (4) ��

Instead of reasoning on the set PA of states from which there exists a good run

without any error, we can reason on the complement PA that is the set of states

from which all runs are bad in that they always lead to an error. Define PA to be

the set of states from which any complete run in �τ + does fail.

PA � ¬PA = {s | ∀s�s ∈ �τ +
: s�s ∈ �́EA}.

5 Basic elements of abstract interpretation

Galois connections. A Galois connection �L, �� −−−→←−−−
α

γ
�L, �� consists of posets �L,

��, �L, �� and maps α ∈ L → L, γ ∈ L → L such that ∀x ∈ L, y ∈ L : α(x) � y ⇔
x � γ(y). The dual is �L, �� −−−→←−−−

γ

α �L, ��. In a Galois connection, the abstraction
α preserves existing least upper bounds (lubs) hence is increasing so, by duality, the

concretization γ is increasing and preserves existing greatest lower bounds (glbs). If

�L, �� is a complete Boolean lattice with unique complement ¬ then the complement
isomorphism is �L, �� −−−→←−−−

¬
¬ �L, �� (since ¬x � y ⇔ x � ¬y).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ⊆ Q.
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which may have to be checked by a prior assert (e.g. assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written

bj(x)) or to an element of a collection (written bj(X, i)). This defines

EA � {s ∈ Σ | ∃�c, b� ∈ A : πs = c ∧ ¬�b�s} erroneous or bad states
�́EA � {�s ∈ �Σ+ | ∃i < |�s | : �si ∈ EA} erroneous or bad runs.

As part of the implicit specification, and for the sake of brevity, we consider that pro-

gram executions should terminate. Otherwise the results are similar after revisiting

(1-a,1-b) for infinite runs as considered in [10].

4 The contract precondition inference problem

Definition 4 Given a transition system �Σ, τ, I� and a specification A, the contract

precondition inference problem consists in computing PA ∈ ℘(Σ) such that when
replacing the initial states I by PA ∩ I, we have

�τ +
PA∩I ⊆ �τ +

I (no new run is introduced) (2)

�τ +
I\PA

= �τ +
I \ �τ +

PA
⊆ �́EA (all eliminated runs are bad runs). (3) ��

The following lemma shows that, according to Def. 4, no finite maximal good run is

ever eliminated.

Lemma 5 (3) implies �τ +
I ∩ ¬�́EA ⊆ �τ +

PA
.

Choosing PA = I so that I \ PA = ∅ hence �τ +
I\PA

= ∅ is a trivial solution, so we

would like PA to be minimal, whenever possible (so that �τ +
I\PA

is maximal). Please

note that this is not the weakest (liberal) precondition [15], which yields the weakest

condition under which the code (either does not terminate or) terminates without

assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest (5) solution to the precondition inference problem in Def. 4
is PA � {s | ∃s�s ∈ �τ + ∩ ¬�́EA}. (4) ��

Instead of reasoning on the set PA of states from which there exists a good run

without any error, we can reason on the complement PA that is the set of states

from which all runs are bad in that they always lead to an error. Define PA to be

the set of states from which any complete run in �τ + does fail.

PA � ¬PA = {s | ∀s�s ∈ �τ +
: s�s ∈ �́EA}.

5 Basic elements of abstract interpretation

Galois connections. A Galois connection �L, �� −−−→←−−−
α

γ
�L, �� consists of posets �L,

��, �L, �� and maps α ∈ L → L, γ ∈ L → L such that ∀x ∈ L, y ∈ L : α(x) � y ⇔
x � γ(y). The dual is �L, �� −−−→←−−−

γ

α �L, ��. In a Galois connection, the abstraction
α preserves existing least upper bounds (lubs) hence is increasing so, by duality, the

concretization γ is increasing and preserves existing greatest lower bounds (glbs). If

�L, �� is a complete Boolean lattice with unique complement ¬ then the complement
isomorphism is �L, �� −−−→←−−−

¬
¬ �L, �� (since ¬x � y ⇔ x � ¬y).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ⊆ Q.
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which may have to be checked by a prior assert (e.g. assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written

bj(x)) or to an element of a collection (written bj(X, i)). This defines

EA � {s ∈ Σ | ∃�c, b� ∈ A : πs = c ∧ ¬�b�s} erroneous or bad states
�́EA � {�s ∈ �Σ+ | ∃i < |�s | : �si ∈ EA} erroneous or bad runs.

As part of the implicit specification, and for the sake of brevity, we consider that pro-

gram executions should terminate. Otherwise the results are similar after revisiting

(1-a,1-b) for infinite runs as considered in [10].

4 The contract precondition inference problem

Definition 4 Given a transition system �Σ, τ, I� and a specification A, the contract

precondition inference problem consists in computing PA ∈ ℘(Σ) such that when
replacing the initial states I by PA ∩ I, we have

�τ +
PA∩I ⊆ �τ +

I (no new run is introduced) (2)

�τ +
I\PA

= �τ +
I \ �τ +

PA
⊆ �́EA (all eliminated runs are bad runs). (3) ��

The following lemma shows that, according to Def. 4, no finite maximal good run is

ever eliminated.

Lemma 5 (3) implies �τ +
I ∩ ¬�́EA ⊆ �τ +

PA
.

Choosing PA = I so that I \ PA = ∅ hence �τ +
I\PA

= ∅ is a trivial solution, so we

would like PA to be minimal, whenever possible (so that �τ +
I\PA

is maximal). Please

note that this is not the weakest (liberal) precondition [15], which yields the weakest

condition under which the code (either does not terminate or) terminates without

assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest (5) solution to the precondition inference problem in Def. 4
is PA � {s | ∃s�s ∈ �τ + ∩ ¬�́EA}. (4) ��

Instead of reasoning on the set PA of states from which there exists a good run

without any error, we can reason on the complement PA that is the set of states

from which all runs are bad in that they always lead to an error. Define PA to be

the set of states from which any complete run in �τ + does fail.

PA � ¬PA = {s | ∀s�s ∈ �τ +
: s�s ∈ �́EA}.

5 Basic elements of abstract interpretation

Galois connections. A Galois connection �L, �� −−−→←−−−
α

γ
�L, �� consists of posets �L,

��, �L, �� and maps α ∈ L → L, γ ∈ L → L such that ∀x ∈ L, y ∈ L : α(x) � y ⇔
x � γ(y). The dual is �L, �� −−−→←−−−

γ

α �L, ��. In a Galois connection, the abstraction
α preserves existing least upper bounds (lubs) hence is increasing so, by duality, the

concretization γ is increasing and preserves existing greatest lower bounds (glbs). If

�L, �� is a complete Boolean lattice with unique complement ¬ then the self-dual

complement isomorphism is �L, �� −−−→←−−−
¬
¬ �L, �� (since ¬x � y ⇔ x � ¬y).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ⊆ Q.
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Trace predicate transformerscont’d)
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Fixpoint abstraction. Recall from [12, 7.1.0.4] that

Lemma 7 If �L, �, ⊥� is a complete lattice or a cpo, F ∈ L → L is increasing, �L,

�� is a poset, α ∈ L → L is continuous (6),(7), F ∈ L → L commutes (resp. semi-
commutes) with F that is α ◦ F = F ◦ α (resp. α ◦ F � F ◦ α) then α(lfp �

⊥ F ) =
lfp

�
α(⊥)

F (resp. α(lfp �
⊥ F ) � lfp

�
α(⊥)

F ).

Applying Lem. 7 to �L, �� −−−→←−−−
¬
¬ �L, ��, we get Cor. 8 and by duality Cor. 9 below.

Corollary 8 (David Park) If F ∈ L → L is increasing on a complete Boolean
lattice �L, �, ⊥, ¬� then ¬ lfp

�
⊥ F = gfp

�
¬⊥ ¬ ◦ F ◦ ¬ .

Corollary 9 If �L, �, �� is a complete lattice or a dcpo, F ∈ L → L is increasing,
γ ∈ L → L is co-continuous (8), F ∈ L → L commutes with F that is γ ◦ F = F ◦ γ

then γ(gfp
�
� F ) = gfp

�
γ(�)

F .

6 Fixpoint strongest contract precondition
Following [10], let us define the abstraction generalizing [15] to traces

wlp[�T ] � λ �Q .�
s

�� ∀s�s ∈ �T : s�s ∈ �Q
�

wlp−1[ �Q] � λ P .�
s�s ∈ �Σ+

�� (s ∈ P ) ⇒ (s�s ∈ �Q)
�

such that �℘( �Σ+), ⊆� −−−−−−−−−−→←−−−−−−−−−−
λ �T .wlp[�T ]�Q

wlp−1[�Q ]
�℘(Σ), ⊇� and PA = wlp[�τ +](�́EA). By fixpoint

abstraction, it follows from (1-a) and Cor. 8 that

Theorem 10 PA = gfp
⊆
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P ) and PA = lfp
⊆
∅ λ P .¬EA ∩

(B∪ pre[t]P ) where pre[t]Q � {s | ∃s� ∈ Q : �s, s�� ∈ t} and �pre[t]Q � ¬pre[t](¬Q) =
{s | ∀s� : �s, s�� ∈ t ⇒ s� ∈ Q}. ��

If the set Σ of states is finite, as assumed in model-checking [2], the fixpoint definition
of PA in Th. 10 is computable iteratively, up to combinatorial explosion. The code
to check the precondition s ∈ PA can proceed by exhaustive enumeration. In case
this does not scale up or for infinite state systems, bounded model-checking [5] is an
alternative using

�k
i=0 �τ i instead of �τ + but, by Th. 6, the bounded prefix abstraction

αk(�T ) �
�
�s ∈ �T

�� |�s | � k
�

is unsound for approximating both PA and PA.

7 Contract precondition inference by data flow analysis
Instead of state-based reasonings, as in Sect. 4 and 6, we can consider symbolic (or
even syntactic) reasonings moving the code assertions to the code entry, when the
effect is the same. This can be done by a sound data flow analysis [18] when
1. the value of the visible side effect free Boolean expression on scalar or collection

variables in the assert is exactly the same as the value of this expression when
evaluated on entry;

2. the value of the expression checked on program entry is checked in an assert on
all paths that can be taken from the program entry.

We propose a backward data flow analysis to check for both sufficient conditions 1
and 2.

(6) α is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for α can be restricted to the iterates of the least fixpoint of F .
(8) γ is co-continuous if and only if it preserves existing glbs of decreasing chains.

5
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Fixpoint abstraction (cont’d)
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Fixpoint abstraction. Recall from [12, 7.1.0.4] that

Lemma 7 If �L, �, ⊥� is a complete lattice or a cpo, F ∈ L → L is increasing, �L,

�� is a poset, α ∈ L → L is continuous (6),(7), F ∈ L → L commutes (resp. semi-
commutes) with F that is α ◦ F = F ◦ α (resp. α ◦ F � F ◦ α) then α(lfp �

⊥ F ) =
lfp

�
α(⊥)

F (resp. α(lfp �
⊥ F ) � lfp

�
α(⊥)

F ).

Applying Lem. 7 to �L, �� −−−→←−−−
¬
¬ �L, ��, we get Cor. 8 and by duality Cor. 9 below.

Corollary 8 (David Park) If F ∈ L → L is increasing on a complete Boolean
lattice �L, �, ⊥, ¬� then ¬ lfp

�
⊥ F = gfp

�
¬⊥ ¬ ◦ F ◦ ¬ .

Corollary 9 If �L, �, �� is a complete lattice or a dcpo, F ∈ L → L is increasing,
γ ∈ L → L is co-continuous (8), F ∈ L → L commutes with F that is γ ◦ F = F ◦ γ

then γ(gfp
�
� F ) = gfp

�
γ(�)

F .

6 Fixpoint strongest contract precondition
Following [10], let us define the abstraction generalizing [15] to traces

wlp[�T ] � λ �Q .�
s

�� ∀s�s ∈ �T : s�s ∈ �Q
�

wlp−1[ �Q] � λ P .�
s�s ∈ �Σ+

�� (s ∈ P ) ⇒ (s�s ∈ �Q)
�

such that �℘( �Σ+), ⊆� −−−−−−−−−−→←−−−−−−−−−−
λ �T .wlp[�T ]�Q

wlp−1[�Q ]
�℘(Σ), ⊇� and PA = wlp[�τ +](�́EA). By fixpoint

abstraction, it follows from (1-a) and Cor. 8 that

Theorem 10 PA = gfp
⊆
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P ) and PA = lfp
⊆
∅ λ P .¬EA ∩

(B∪ pre[t]P ) where pre[t]Q � {s | ∃s� ∈ Q : �s, s�� ∈ t} and �pre[t]Q � ¬pre[t](¬Q) =
{s | ∀s� : �s, s�� ∈ t ⇒ s� ∈ Q}. ��

If the set Σ of states is finite, as assumed in model-checking [2], the fixpoint definition
of PA in Th. 10 is computable iteratively, up to combinatorial explosion. The code
to check the precondition s ∈ PA can proceed by exhaustive enumeration. In case
this does not scale up or for infinite state systems, bounded model-checking [5] is an
alternative using

�k
i=0 �τ i instead of �τ + but, by Th. 6, the bounded prefix abstraction

αk(�T ) �
�
�s ∈ �T

�� |�s | � k
�

is unsound for approximating both PA and PA.

7 Contract precondition inference by data flow analysis
Instead of state-based reasonings, as in Sect. 4 and 6, we can consider symbolic (or
even syntactic) reasonings moving the code assertions to the code entry, when the
effect is the same. This can be done by a sound data flow analysis [18] when
1. the value of the visible side effect free Boolean expression on scalar or collection

variables in the assert is exactly the same as the value of this expression when
evaluated on entry;

2. the value of the expression checked on program entry is checked in an assert on
all paths that can be taken from the program entry.

We propose a backward data flow analysis to check for both sufficient conditions 1
and 2.

(6) α is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for α can be restricted to the iterates of the least fixpoint of F .
(8) γ is co-continuous if and only if it preserves existing glbs of decreasing chains.

5

(6) α is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for α can be restricted to the iterates of the least fixpoint of F .
(8) γ is co-continuous if and only if it preserves existing glbs of decreasing chains.33

Future Of Software Engineering Symposium, ETH Zürich, 22–23 November 2010                                                                                                                                                                       © P. Cousot

Fixpoint abstraction (cont’d)
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Fixpoint abstraction. Recall from [12, 7.1.0.4] that

Lemma 7 If �L, �, ⊥� is a complete lattice or a cpo, F ∈ L → L is increasing, �L,

�� is a poset, α ∈ L → L is continuous (6),(7), F ∈ L → L commutes (resp. semi-
commutes) with F that is α ◦ F = F ◦ α (resp. α ◦ F � F ◦ α) then α(lfp �

⊥ F ) =
lfp

�
α(⊥)

F (resp. α(lfp �
⊥ F ) � lfp

�
α(⊥)

F ).

Applying Lem. 7 to �L, �� −−−→←−−−
¬
¬ �L, ��, we get Cor. 8 and by duality Cor. 9 below.

Corollary 8 (David Park) If F ∈ L → L is increasing on a complete Boolean
lattice �L, �, ⊥, ¬� then ¬ lfp

�
⊥ F = gfp

�
¬⊥ ¬ ◦ F ◦ ¬ .

Corollary 9 If �L, �, �� is a complete lattice or a dcpo, F ∈ L → L is increasing,
γ ∈ L → L is co-continuous (8), F ∈ L → L commutes with F that is γ ◦ F = F ◦ γ

then γ(gfp
�
� F ) = gfp

�
γ(�)

F .

6 Fixpoint strongest contract precondition
Following [10], let us define the abstraction generalizing [15] to traces

wlp[�T ] � λ �Q .�
s

�� ∀s�s ∈ �T : s�s ∈ �Q
�

wlp−1[ �Q] � λ P .�
s�s ∈ �Σ+

�� (s ∈ P ) ⇒ (s�s ∈ �Q)
�

such that �℘( �Σ+), ⊆� −−−−−−−−−−→←−−−−−−−−−−
λ �T .wlp[�T ]�Q

wlp−1[�Q ]
�℘(Σ), ⊇� and PA = wlp[�τ +](�́EA). By fixpoint

abstraction, it follows from (1-a) and Cor. 8 that

Theorem 10 PA = gfp
⊆
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P ) and PA = lfp
⊆
∅ λ P .¬EA ∩

(B∪ pre[t]P ) where pre[t]Q � {s | ∃s� ∈ Q : �s, s�� ∈ t} and �pre[t]Q � ¬pre[t](¬Q) =
{s | ∀s� : �s, s�� ∈ t ⇒ s� ∈ Q}. ��

If the set Σ of states is finite, as assumed in model-checking [2], the fixpoint definition
of PA in Th. 10 is computable iteratively, up to combinatorial explosion. The code
to check the precondition s ∈ PA can proceed by exhaustive enumeration. In case
this does not scale up or for infinite state systems, bounded model-checking [5] is an
alternative using

�k
i=0 �τ i instead of �τ + but, by Th. 6, the bounded prefix abstraction

αk(�T ) �
�
�s ∈ �T

�� |�s | � k
�

is unsound for approximating both PA and PA.

7 Contract precondition inference by data flow analysis
Instead of state-based reasonings, as in Sect. 4 and 6, we can consider symbolic (or
even syntactic) reasonings moving the code assertions to the code entry, when the
effect is the same. This can be done by a sound data flow analysis [18] when
1. the value of the visible side effect free Boolean expression on scalar or collection

variables in the assert is exactly the same as the value of this expression when
evaluated on entry;

2. the value of the expression checked on program entry is checked in an assert on
all paths that can be taken from the program entry.

We propose a backward data flow analysis to check for both sufficient conditions 1
and 2.

(6) α is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for α can be restricted to the iterates of the least fixpoint of F .
(8) γ is co-continuous if and only if it preserves existing glbs of decreasing chains.
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Fixpoint abstraction. Recall from [12, 7.1.0.4] that

Lemma 7 If �L, �, ⊥� is a complete lattice or a cpo, F ∈ L → L is increasing, �L,

�� is a poset, α ∈ L → L is continuous (6),(7), F ∈ L → L commutes (resp. semi-
commutes) with F that is α ◦ F = F ◦ α (resp. α ◦ F � F ◦ α) then α(lfp �

⊥ F ) =
lfp

�
α(⊥)

F (resp. α(lfp �
⊥ F ) � lfp

�
α(⊥)

F ).

Applying Lem. 7 to �L, �� −−−→←−−−
¬
¬ �L, ��, we get Cor. 8 and by duality Cor. 9 below.

Corollary 8 (David Park) If F ∈ L → L is increasing on a complete Boolean
lattice �L, �, ⊥, ¬� then ¬ lfp

�
⊥ F = gfp

�
¬⊥ ¬ ◦ F ◦ ¬ .

Corollary 9 If �L, �, �� is a complete lattice or a dcpo, F ∈ L → L is increasing,
γ ∈ L → L is co-continuous (8), F ∈ L → L commutes with F that is γ ◦ F = F ◦ γ

then γ(gfp
�
� F ) = gfp

�
γ(�)

F .

6 Fixpoint strongest contract precondition
Following [10], let us define the abstraction generalizing [15] to traces

wlp[�T ] � λ �Q .�
s

�� ∀s�s ∈ �T : s�s ∈ �Q
�

wlp−1[ �Q] � λ P .�
s�s ∈ �Σ+

�� (s ∈ P ) ⇒ (s�s ∈ �Q)
�

such that �℘( �Σ+), ⊆� −−−−−−−−−−→←−−−−−−−−−−
λ �T .wlp[�T ]�Q

wlp−1[�Q ]
�℘(Σ), ⊇� and PA = wlp[�τ +](�́EA). By fixpoint

abstraction, it follows from (1-a) and Cor. 8 that

Theorem 10 PA = gfp
⊆
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P ) and PA = lfp
⊆
∅ λ P .¬EA ∩

(B∪ pre[t]P ) where pre[t]Q � {s | ∃s� ∈ Q : �s, s�� ∈ t} and �pre[t]Q � ¬pre[t](¬Q) =
{s | ∀s� : �s, s�� ∈ t ⇒ s� ∈ Q}. ��

If the set Σ of states is finite, as assumed in model-checking [2], the fixpoint definition
of PA in Th. 10 is computable iteratively, up to combinatorial explosion. The code
to check the precondition s ∈ PA can proceed by exhaustive enumeration. In case
this does not scale up or for infinite state systems, bounded model-checking [5] is an
alternative using

�k
i=0 �τ i instead of �τ + but, by Th. 6, the bounded prefix abstraction

αk(�T ) �
�
�s ∈ �T

�� |�s | � k
�

is unsound for approximating both PA and PA.

7 Contract precondition inference by data flow analysis
Instead of state-based reasonings, as in Sect. 4 and 6, we can consider symbolic (or
even syntactic) reasonings moving the code assertions to the code entry, when the
effect is the same. This can be done by a sound data flow analysis [18] when
1. the value of the visible side effect free Boolean expression on scalar or collection

variables in the assert is exactly the same as the value of this expression when
evaluated on entry;

2. the value of the expression checked on program entry is checked in an assert on
all paths that can be taken from the program entry.

We propose a backward data flow analysis to check for both sufficient conditions 1
and 2.

(6) α is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for α can be restricted to the iterates of the least fixpoint of F .
(8) γ is co-continuous if and only if it preserves existing glbs of decreasing chains.
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(6) α is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for α can be restricted to the iterates of the least fixpoint of F .
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Fixpoint strongest contract precondition (proof)

Proof sketch:�́τ +
I = lfp

⊆
∅ λ �T .�I1 ∪ �T � �τ 2

�τ +
= lfp

⊆
∅ λ �T . �B1 ∪ �τ 2 � �T = gfp

⊆
�Σ+ λ �T . �B1 ∪ �τ 2 � �T . (1-a,1-b)

3 Specification semantics

The specification includes the existing precondition and postcondition, if any,

the language and programmer assertions, made explicit in the form

A = {�cj , bj� | j ∈ ∆}

whenever a runtime check assert(bj) is attached to a control point cj ∈ Γ ,

j ∈ ∆. A is computed by a syntactic pre-analysis of the code. The Boolean

expressions bj are assumed to be both visible side effect free and always well-

defined when evaluated, which may have to be checked by a prior assert (e.g.
assert((A!= null) && (A[i] == 0))). For simplicity, we assume that bj ei-

ther refers to a scalar variable (written bj(x)) or to an element of a collection

(written bj(X, i)). This defines

EA � {s ∈ Σ | ∃�c, b� ∈ A : πs = c ∧ ¬�b�s} erroneous or bad states
�́EA � {�s ∈ �Σ+ | ∃i < |�s | : �si ∈ EA} erroneous or bad runs.

As part of the implicit specification, and for the sake of brevity, we consider that

program executions should terminate. Otherwise the results are similar after

revisiting (1-a,1-b) for infinite runs as considered in [?].

4 The contract precondition inference problem

Definition 4 Given a transition system �Σ, τ, I� with maximal finite runs �τ +
I

and a specification A, the contract precondition inference problem consists in
computing PA ∈ ℘(Σ) such that when replacing the initial states I by PA ∩ I,
we have

�τ +
PA∩I ⊆ �τ +

I (no new run is introduced) (2)

�τ +
I\PA

= �τ +
I \ �τ +

PA
⊆ �́EA (all eliminated runs are bad runs). (3) ��

In Def. 4, we have

�τ +
I\PA

= {s�s ∈ �τ + | s ∈ I \ PA} �def. �τ +
Q, Q ∈ ℘(Σ)�

= {s�s ∈ �τ + | s ∈ I ∧ s �∈ PA} �def. \ �
= {s�s ∈ �τ + | s ∈ I} ∩ ¬{s�s ∈ �τ + | s ∈ PA} �def. ∩ and ¬ �
= �τ +

I ∩ ¬�τ +
PA

�def. �τ +
Q, Q ∈ ℘(Σ)� (4)

= �τ +
I \ �τ +

PA
�def. \ � ��

5

By the dual of Lem. 8, we get (in particular since �L, �� −−−→←−−−
α

γ
�L, �� implies

�L, �� −−−→←−−−
γ

α �L, ��)

Corollary 10 If �L, �, �� is a complete lattice or a dcpo, F ∈ L → L is
increasing, γ ∈ L → L is co-continuous (12), F ∈ L → L commutes with F that
is γ ◦ F = F ◦ γ then γ(gfp

�
� F ) = gfp

�
γ(�)

F .

6 Fixpoint strongest contract precondition

Following [?], let us define the abstraction generalizing [?] to traces

wlp[�T ] � λ �Q .�
s

�� ∀s�s ∈ �T : s�s ∈ �Q
�

wlp−1[ �Q] � λ P .�
s�s ∈ �Σ+

�� (s ∈ P ) ⇒ (s�s ∈ �Q)
�

such that �℘( �Σ+), ⊆� −−−−−−−−−−−→←−−−−−−−−−−−
λ �T .wlp[�T ]�Q

wlp−1[�Q ]
�℘(Σ), ⊇� and PA = wlp[�τ +](�́EA).

Proof

wlp[�T ] ⊇ P

⇔
�
s

�� ∀s�s ∈ �T : s�s ∈ �Q
�
⊇ P �def. wlp�

⇔ ∀s ∈ P : ∀s�s ∈ �T : s�s ∈ �Q �def. ⊇�
⇔ ∀s�s ∈ �T : (s ∈ P ) ⇒ (s�s ∈ �Q) �def. ⇒�
⇔ �T ⊆

�
s�s ∈ �Σ+

�� (s ∈ P ) ⇒ (s�s ∈ �Q)
�

�def. ⊆�
⇔ �T ⊆ wlp−1[ �Q](P ) �def. wlp−1� ��

By fixpoint abstraction, it follows from (1-a) and Cor. 9 that

Theorem 11 PA = gfp
⊆
Σ

λ P .EA∪(¬B∩�pre[t]P ) and PA = lfp
⊆
∅ λ P .¬EA∩

(B ∪ pre[t]P ) where pre[t]Q � {s | ∃s� ∈ Q : �s, s�� ∈ t} and �pre[t]Q �
¬pre[t](¬Q) = {s | ∀s� : �s, s�� ∈ t ⇒ s� ∈ Q}. ��

Proof

wlp[∅](�́EA)
= {s | ∀s�s ∈ ∅ : s�s ∈ �́EA} �def. wlp�
= Σ �∀x ∈ ∅ : P (x) is true�

wlp[�B1 ∪ �τ 2 � �T ](�́EA)
= wlp[�B1](�́EA) ∩ wlp[�τ 2 � �T ](�́EA) �Galois connections preserve existing lubs�
= {s | ∀s�s ∈ �B1 : s�s ∈ �́EA} ∩ {s | ∀s�s ∈ �τ 2 � �T : s�s ∈ �́EA} �def. wlp�

(12) γ is co-continuous if and only if it preserves existing glbs of decreasing chains.
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= {s | s ∈ B ⇒ s ∈ EA} ∩ {s | ∀s�s ∈ �τ 2 � �T : s�s ∈ �́EA} �def. �B1 and �́EA�
= (¬B ∪ EA) ∩ {s | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (∃i < |ss��s | : (ss��s)i ∈ EA)}

�def � and �́EA�
= (¬B∪EA)∩ {s | ∀s�,�s : (τ(s, s�)∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨ ∃i < |s��s | : (s��s)i ∈

EA)} �separating the case i = 0�
= (¬B ∪ EA) ∩ ({s ∈ EA | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨ ∃i < |s��s | :

(s��s)i ∈ EA)}∪ {s �∈ EA | ∀s�,�s : (τ(s, s�)∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨∃i < |s��s | :
(s��s)i ∈ EA)}) �X = (X ∩ Y ) ∪ (X ∩ ¬Y )�

= (¬B ∪ EA) ∩ (EA ∪ {s �∈ EA | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (∃i < |s��s | :
(s��s)i ∈ EA)}) �def. ∨�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ {s� | ∀�s : (s��s ∈ �T ) ⇒ (∃i <
|s��s | : (s��s)i ∈ EA)}}) �def. ∪, ⇒ and ∈�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ {s� | ∀�s : (s��s ∈ �T ) ⇒ (∃i <
|s��s | : (s��s)i ∈ EA)}}) �def. ∪, ⇒ and ∈�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ wlp[�T ](�́EA)}) �def. wlp�
= (¬B ∪ EA) ∩ (EA ∪ �pre[t](wlp[�T ](�́EA))) �def. �pre�
= EA ∪ (¬B ∩ �pre[t](wlp[�T ](�́EA))) �commutativity and distributivity�

PA = wlp[�τ +](�́EA) �def. PA and wlp�
= wlp[lfp⊆

∅ λ �T . �B1 ∪ �τ 2 � �T ](�́EA) �by (1-a)�
= lfp

⊇
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P )
�by Galois connection, commutativity, Lem. 8, and wlp[∅](�́EA) = Σ�

= gfp
⊆
Σ

λP .EA ∪ (¬B ∩ �pre[t]P ) �by duality�

PA = ¬PA �def. PA�
= ¬gfp

⊆
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P ) �as shown above�
= lfp

⊆
¬Σ

λ P .¬(EA ∪ (¬B ∩ �pre[t](¬P ))) �by Cor. 9�
= lfp

⊆
∅ λP .¬EA ∩ (B ∪ ¬�pre[t](¬P )) �de Morgan law�

= lfp
⊆
∅ λP .¬EA ∩ (B ∪ pre[t]P ) �def. �pre[t]Q � ¬pre[t](¬Q).� ��

If the set Σ of states is finite, as assumed in model-checking [?], the fixpoint
definition of PA in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the precondition s ∈ PA can proceed by exhaustive
enumeration. In case this does not scale up or for infinite state systems, bounded
model-checking [?] is an alternative using

�k
i=0 �τ i instead of �τ + but, by Th. 6,

the bounded prefix abstraction αk(�T ) �
�
�s ∈ �T

�� |�s | � k
�

is unsound for
approximating both PA and PA.

Proof We have Pk
A � {s | ∃s�s ∈

�k
i=0 �τ i ∩ ¬�́EA} ⊆ {s | ∃s�s ∈ �τ + ∩ ¬�́EA} �

PA, but this provides an under-approximation, which is unsound since, by Th. 6,

10

By the dual of Lem. 8, we get (in particular since �L, �� −−−→←−−−
α

γ
�L, �� implies

�L, �� −−−→←−−−
γ

α �L, ��)

Corollary 10 If �L, �, �� is a complete lattice or a dcpo, F ∈ L → L is
increasing, γ ∈ L → L is co-continuous (12), F ∈ L → L commutes with F that
is γ ◦ F = F ◦ γ then γ(gfp

�
� F ) = gfp

�
γ(�)

F .

6 Fixpoint strongest contract precondition

Following [?], let us define the abstraction generalizing [?] to traces

wlp[�T ] � λ �Q .�
s

�� ∀s�s ∈ �T : s�s ∈ �Q
�

wlp−1[ �Q] � λ P .�
s�s ∈ �Σ+

�� (s ∈ P ) ⇒ (s�s ∈ �Q)
�

such that �℘( �Σ+), ⊆� −−−−−−−−−−−→←−−−−−−−−−−−
λ �T .wlp[�T ]�Q

wlp−1[�Q ]
�℘(Σ), ⊇� and PA = wlp[�τ +](�́EA).

Proof

wlp[�T ] ⊇ P

⇔
�
s

�� ∀s�s ∈ �T : s�s ∈ �Q
�
⊇ P �def. wlp�

⇔ ∀s ∈ P : ∀s�s ∈ �T : s�s ∈ �Q �def. ⊇�
⇔ ∀s�s ∈ �T : (s ∈ P ) ⇒ (s�s ∈ �Q) �def. ⇒�
⇔ �T ⊆

�
s�s ∈ �Σ+

�� (s ∈ P ) ⇒ (s�s ∈ �Q)
�

�def. ⊆�
⇔ �T ⊆ wlp−1[ �Q](P ) �def. wlp−1� ��

By fixpoint abstraction, it follows from (1-a) and Cor. 9 that

Theorem 11 PA = gfp
⊆
Σ

λ P .EA∪(¬B∩�pre[t]P ) and PA = lfp
⊆
∅ λ P .¬EA∩

(B ∪ pre[t]P ) where pre[t]Q � {s | ∃s� ∈ Q : �s, s�� ∈ t} and �pre[t]Q �
¬pre[t](¬Q) = {s | ∀s� : �s, s�� ∈ t ⇒ s� ∈ Q}. ��

Proof

wlp[∅](�́EA)
= {s | ∀s�s ∈ ∅ : s�s ∈ �́EA} �def. wlp�
= Σ �∀x ∈ ∅ : P (x) is true�

wlp[�B1 ∪ �τ 2 � �T ](�́EA)
= wlp[�B1](�́EA) ∩ wlp[�τ 2 � �T ](�́EA) �Galois connections preserve existing lubs�
= {s | ∀s�s ∈ �B1 : s�s ∈ �́EA} ∩ {s | ∀s�s ∈ �τ 2 � �T : s�s ∈ �́EA} �def. wlp�

(12) γ is co-continuous if and only if it preserves existing glbs of decreasing chains.
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= {s | s ∈ B ⇒ s ∈ EA} ∩ {s | ∀s�s ∈ �τ 2 � �T : s�s ∈ �́EA} �def. �B1 and �́EA�
= (¬B ∪ EA) ∩ {s | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (∃i < |ss��s | : (ss��s)i ∈ EA)}

�def � and �́EA�
= (¬B∪EA)∩ {s | ∀s�,�s : (τ(s, s�)∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨ ∃i < |s��s | : (s��s)i ∈

EA)} �separating the case i = 0�
= (¬B ∪ EA) ∩ ({s ∈ EA | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨ ∃i < |s��s | :

(s��s)i ∈ EA)}∪ {s �∈ EA | ∀s�,�s : (τ(s, s�)∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨∃i < |s��s | :
(s��s)i ∈ EA)}) �X = (X ∩ Y ) ∪ (X ∩ ¬Y )�

= (¬B ∪ EA) ∩ (EA ∪ {s �∈ EA | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (∃i < |s��s | :
(s��s)i ∈ EA)}) �def. ∨�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ {s� | ∀�s : (s��s ∈ �T ) ⇒ (∃i <
|s��s | : (s��s)i ∈ EA)}}) �def. ∪, ⇒ and ∈�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ {s� | ∀�s : (s��s ∈ �T ) ⇒ (∃i <
|s��s | : (s��s)i ∈ EA)}}) �def. ∪, ⇒ and ∈�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ wlp[�T ](�́EA)}) �def. wlp�
= (¬B ∪ EA) ∩ (EA ∪ �pre[t](wlp[�T ](�́EA))) �def. �pre�
= EA ∪ (¬B ∩ �pre[t](wlp[�T ](�́EA))) �commutativity and distributivity�

PA = wlp[�τ +](�́EA) �def. PA and wlp�
= wlp[lfp⊆

∅ λ �T . �B1 ∪ �τ 2 � �T ](�́EA) �by (1-a)�
= lfp

⊇
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P )
�by Galois connection, commutativity, Lem. 8, and wlp[∅](�́EA) = Σ�

= gfp
⊆
Σ

λP .EA ∪ (¬B ∩ �pre[t]P ) �by duality�

PA = ¬PA �def. PA�
= ¬gfp

⊆
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P ) �as shown above�
= lfp

⊆
¬Σ

λ P .¬(EA ∪ (¬B ∩ �pre[t](¬P ))) �by Cor. 9�
= lfp

⊆
∅ λP .¬EA ∩ (B ∪ ¬�pre[t](¬P )) �de Morgan law�

= lfp
⊆
∅ λP .¬EA ∩ (B ∪ pre[t]P ) �def. �pre[t]Q � ¬pre[t](¬Q).� ��

If the set Σ of states is finite, as assumed in model-checking [?], the fixpoint
definition of PA in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the precondition s ∈ PA can proceed by exhaustive
enumeration. In case this does not scale up or for infinite state systems, bounded
model-checking [?] is an alternative using

�k
i=0 �τ i instead of �τ + but, by Th. 6,

the bounded prefix abstraction αk(�T ) �
�
�s ∈ �T

�� |�s | � k
�

is unsound for
approximating both PA and PA.

Proof We have Pk
A � {s | ∃s�s ∈

�k
i=0 �τ i ∩ ¬�́EA} ⊆ {s | ∃s�s ∈ �τ + ∩ ¬�́EA} �

PA, but this provides an under-approximation, which is unsound since, by Th. 6,
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= {s | s ∈ B ⇒ s ∈ EA} ∩ {s | ∀s�s ∈ �τ 2 � �T : s�s ∈ �́EA} �def. �B1 and �́EA�
= (¬B ∪ EA) ∩ {s | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (∃i < |ss��s | : (ss��s)i ∈ EA)}

�def � and �́EA�
= (¬B∪EA)∩ {s | ∀s�,�s : (τ(s, s�)∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨ ∃i < |s��s | : (s��s)i ∈

EA)} �separating the case i = 0�
= (¬B ∪ EA) ∩ ({s ∈ EA | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨ ∃i < |s��s | :

(s��s)i ∈ EA)}∪ {s �∈ EA | ∀s�,�s : (τ(s, s�)∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨∃i < |s��s | :
(s��s)i ∈ EA)}) �X = (X ∩ Y ) ∪ (X ∩ ¬Y )�

= (¬B ∪ EA) ∩ (EA ∪ {s �∈ EA | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (∃i < |s��s | :
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Fixpoint strongest contract precondition (proof)

Q,$$5"-?+*%=6�́τ +
I = lfp

⊆
∅ λ �T .�I1 ∪ �T � �τ 2

�τ +
= lfp

⊆
∅ λ �T . �B1 ∪ �τ 2 � �T = gfp

⊆
�Σ+ λ �T . �B1 ∪ �τ 2 � �T . (1-a,1-b)

3 Specification semantics

The specification includes the existing precondition and postcondition, if any,

the language and programmer assertions, made explicit in the form

A = {�cj , bj� | j ∈ ∆}

whenever a runtime check assert(bj) is attached to a control point cj ∈ Γ ,

j ∈ ∆. A is computed by a syntactic pre-analysis of the code. The Boolean

expressions bj are assumed to be both visible side effect free and always well-

defined when evaluated, which may have to be checked by a prior assert (e.g.
assert((A!= null) && (A[i] == 0))). For simplicity, we assume that bj ei-

ther refers to a scalar variable (written bj(x)) or to an element of a collection

(written bj(X, i)). This defines

EA � {s ∈ Σ | ∃�c, b� ∈ A : πs = c ∧ ¬�b�s} erroneous or bad states
�́EA � {�s ∈ �Σ+ | ∃i < |�s | : �si ∈ EA} erroneous or bad runs.

As part of the implicit specification, and for the sake of brevity, we consider that

program executions should terminate. Otherwise the results are similar after

revisiting (1-a,1-b) for infinite runs as considered in [?].

4 The contract precondition inference problem

Definition 4 Given a transition system �Σ, τ, I� with maximal finite runs �τ +
I

and a specification A, the contract precondition inference problem consists in
computing PA ∈ ℘(Σ) such that when replacing the initial states I by PA ∩ I,
we have

�τ +
PA∩I ⊆ �τ +

I (no new run is introduced) (2)

�τ +
I\PA

= �τ +
I \ �τ +

PA
⊆ �́EA (all eliminated runs are bad runs). (3) ��

In Def. 4, we have

�τ +
I\PA

= {s�s ∈ �τ + | s ∈ I \ PA} �def. �τ +
Q, Q ∈ ℘(Σ)�

= {s�s ∈ �τ + | s ∈ I ∧ s �∈ PA} �def. \ �
= {s�s ∈ �τ + | s ∈ I} ∩ ¬{s�s ∈ �τ + | s ∈ PA} �def. ∩ and ¬ �
= �τ +

I ∩ ¬�τ +
PA

�def. �τ +
Q, Q ∈ ℘(Σ)� (4)

= �τ +
I \ �τ +

PA
�def. \ � ��

5

By the dual of Lem. 8, we get (in particular since �L, �� −−−→←−−−
α

γ
�L, �� implies

�L, �� −−−→←−−−
γ

α �L, ��)

Corollary 10 If �L, �, �� is a complete lattice or a dcpo, F ∈ L → L is
increasing, γ ∈ L → L is co-continuous (12), F ∈ L → L commutes with F that
is γ ◦ F = F ◦ γ then γ(gfp

�
� F ) = gfp

�
γ(�)

F .

6 Fixpoint strongest contract precondition

Following [?], let us define the abstraction generalizing [?] to traces

wlp[�T ] � λ �Q .�
s

�� ∀s�s ∈ �T : s�s ∈ �Q
�

wlp−1[ �Q] � λ P .�
s�s ∈ �Σ+

�� (s ∈ P ) ⇒ (s�s ∈ �Q)
�

such that �℘( �Σ+), ⊆� −−−−−−−−−−−→←−−−−−−−−−−−
λ �T .wlp[�T ]�Q

wlp−1[�Q ]
�℘(Σ), ⊇� and PA = wlp[�τ +](�́EA).

Proof

wlp[�T ] ⊇ P

⇔
�
s

�� ∀s�s ∈ �T : s�s ∈ �Q
�
⊇ P �def. wlp�

⇔ ∀s ∈ P : ∀s�s ∈ �T : s�s ∈ �Q �def. ⊇�
⇔ ∀s�s ∈ �T : (s ∈ P ) ⇒ (s�s ∈ �Q) �def. ⇒�
⇔ �T ⊆

�
s�s ∈ �Σ+

�� (s ∈ P ) ⇒ (s�s ∈ �Q)
�

�def. ⊆�
⇔ �T ⊆ wlp−1[ �Q](P ) �def. wlp−1� ��

By fixpoint abstraction, it follows from (1-a) and Cor. 9 that

Theorem 11 PA = gfp
⊆
Σ

λ P .EA∪(¬B∩�pre[t]P ) and PA = lfp
⊆
∅ λ P .¬EA∩

(B ∪ pre[t]P ) where pre[t]Q � {s | ∃s� ∈ Q : �s, s�� ∈ t} and �pre[t]Q �
¬pre[t](¬Q) = {s | ∀s� : �s, s�� ∈ t ⇒ s� ∈ Q}. ��

Proof

wlp[∅](�́EA)
= {s | ∀s�s ∈ ∅ : s�s ∈ �́EA} �def. wlp�
= Σ �∀x ∈ ∅ : P (x) is true�

wlp[�B1 ∪ �τ 2 � �T ](�́EA)
= wlp[�B1](�́EA) ∩ wlp[�τ 2 � �T ](�́EA) �Galois connections preserve existing lubs�
= {s | ∀s�s ∈ �B1 : s�s ∈ �́EA} ∩ {s | ∀s�s ∈ �τ 2 � �T : s�s ∈ �́EA} �def. wlp�

(12) γ is co-continuous if and only if it preserves existing glbs of decreasing chains.
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= {s | s ∈ B ⇒ s ∈ EA} ∩ {s | ∀s�s ∈ �τ 2 � �T : s�s ∈ �́EA} �def. �B1 and �́EA�
= (¬B ∪ EA) ∩ {s | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (∃i < |ss��s | : (ss��s)i ∈ EA)}

�def � and �́EA�
= (¬B∪EA)∩ {s | ∀s�,�s : (τ(s, s�)∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨ ∃i < |s��s | : (s��s)i ∈

EA)} �separating the case i = 0�
= (¬B ∪ EA) ∩ ({s ∈ EA | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨ ∃i < |s��s | :

(s��s)i ∈ EA)}∪ {s �∈ EA | ∀s�,�s : (τ(s, s�)∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨∃i < |s��s | :
(s��s)i ∈ EA)}) �X = (X ∩ Y ) ∪ (X ∩ ¬Y )�

= (¬B ∪ EA) ∩ (EA ∪ {s �∈ EA | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (∃i < |s��s | :
(s��s)i ∈ EA)}) �def. ∨�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ {s� | ∀�s : (s��s ∈ �T ) ⇒ (∃i <
|s��s | : (s��s)i ∈ EA)}}) �def. ∪, ⇒ and ∈�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ {s� | ∀�s : (s��s ∈ �T ) ⇒ (∃i <
|s��s | : (s��s)i ∈ EA)}}) �def. ∪, ⇒ and ∈�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ wlp[�T ](�́EA)}) �def. wlp�
= (¬B ∪ EA) ∩ (EA ∪ �pre[t](wlp[�T ](�́EA))) �def. �pre�
= EA ∪ (¬B ∩ �pre[t](wlp[�T ](�́EA))) �commutativity and distributivity�

PA = wlp[�τ +](�́EA) �def. PA and wlp�
= wlp[lfp⊆

∅ λ �T . �B1 ∪ �τ 2 � �T ](�́EA) �by (1-a)�
= lfp

⊇
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P )
�by Galois connection, commutativity, Lem. 8, and wlp[∅](�́EA) = Σ�

= gfp
⊆
Σ

λP .EA ∪ (¬B ∩ �pre[t]P ) �by duality�

PA = ¬PA �def. PA�
= ¬gfp

⊆
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P ) �as shown above�
= lfp

⊆
¬Σ

λ P .¬(EA ∪ (¬B ∩ �pre[t](¬P ))) �by Cor. 9�
= lfp

⊆
∅ λP .¬EA ∩ (B ∪ ¬�pre[t](¬P )) �de Morgan law�

= lfp
⊆
∅ λP .¬EA ∩ (B ∪ pre[t]P ) �def. �pre[t]Q � ¬pre[t](¬Q).� ��

If the set Σ of states is finite, as assumed in model-checking [?], the fixpoint
definition of PA in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the precondition s ∈ PA can proceed by exhaustive
enumeration. In case this does not scale up or for infinite state systems, bounded
model-checking [?] is an alternative using

�k
i=0 �τ i instead of �τ + but, by Th. 6,

the bounded prefix abstraction αk(�T ) �
�
�s ∈ �T

�� |�s | � k
�

is unsound for
approximating both PA and PA.

Proof We have Pk
A � {s | ∃s�s ∈

�k
i=0 �τ i ∩ ¬�́EA} ⊆ {s | ∃s�s ∈ �τ + ∩ ¬�́EA} �

PA, but this provides an under-approximation, which is unsound since, by Th. 6,
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α

γ
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γ
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�
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s�s ∈ �Σ+
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such that �℘( �Σ+), ⊆� −−−−−−−−−−−→←−−−−−−−−−−−
λ �T .wlp[�T ]�Q

wlp−1[�Q ]
�℘(Σ), ⊇� and PA = wlp[�τ +](�́EA).

Proof

wlp[�T ] ⊇ P

⇔
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s

�� ∀s�s ∈ �T : s�s ∈ �Q
�
⊇ P �def. wlp�
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⇔ ∀s�s ∈ �T : (s ∈ P ) ⇒ (s�s ∈ �Q) �def. ⇒�
⇔ �T ⊆

�
s�s ∈ �Σ+

�� (s ∈ P ) ⇒ (s�s ∈ �Q)
�

�def. ⊆�
⇔ �T ⊆ wlp−1[ �Q](P ) �def. wlp−1� ��

By fixpoint abstraction, it follows from (1-a) and Cor. 9 that

Theorem 11 PA = gfp
⊆
Σ

λ P .EA∪(¬B∩�pre[t]P ) and PA = lfp
⊆
∅ λ P .¬EA∩

(B ∪ pre[t]P ) where pre[t]Q � {s | ∃s� ∈ Q : �s, s�� ∈ t} and �pre[t]Q �
¬pre[t](¬Q) = {s | ∀s� : �s, s�� ∈ t ⇒ s� ∈ Q}. ��

Proof

wlp[∅](�́EA)
= {s | ∀s�s ∈ ∅ : s�s ∈ �́EA} �def. wlp�
= Σ �∀x ∈ ∅ : P (x) is true�

wlp[�B1 ∪ �τ 2 � �T ](�́EA)
= wlp[�B1](�́EA) ∩ wlp[�τ 2 � �T ](�́EA) �Galois connections preserve existing lubs�
= {s | ∀s�s ∈ �B1 : s�s ∈ �́EA} ∩ {s | ∀s�s ∈ �τ 2 � �T : s�s ∈ �́EA} �def. wlp�

(12) γ is co-continuous if and only if it preserves existing glbs of decreasing chains.
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= {s | s ∈ B ⇒ s ∈ EA} ∩ {s | ∀s�s ∈ �τ 2 � �T : s�s ∈ �́EA} �def. �B1 and �́EA�
= (¬B ∪ EA) ∩ {s | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (∃i < |ss��s | : (ss��s)i ∈ EA)}

�def � and �́EA�
= (¬B∪EA)∩ {s | ∀s�,�s : (τ(s, s�)∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨ ∃i < |s��s | : (s��s)i ∈

EA)} �separating the case i = 0�
= (¬B ∪ EA) ∩ ({s ∈ EA | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨ ∃i < |s��s | :

(s��s)i ∈ EA)}∪ {s �∈ EA | ∀s�,�s : (τ(s, s�)∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨∃i < |s��s | :
(s��s)i ∈ EA)}) �X = (X ∩ Y ) ∪ (X ∩ ¬Y )�

= (¬B ∪ EA) ∩ (EA ∪ {s �∈ EA | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (∃i < |s��s | :
(s��s)i ∈ EA)}) �def. ∨�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ {s� | ∀�s : (s��s ∈ �T ) ⇒ (∃i <
|s��s | : (s��s)i ∈ EA)}}) �def. ∪, ⇒ and ∈�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ {s� | ∀�s : (s��s ∈ �T ) ⇒ (∃i <
|s��s | : (s��s)i ∈ EA)}}) �def. ∪, ⇒ and ∈�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ wlp[�T ](�́EA)}) �def. wlp�
= (¬B ∪ EA) ∩ (EA ∪ �pre[t](wlp[�T ](�́EA))) �def. �pre�
= EA ∪ (¬B ∩ �pre[t](wlp[�T ](�́EA))) �commutativity and distributivity�

PA = wlp[�τ +](�́EA) �def. PA and wlp�
= wlp[lfp⊆

∅ λ �T . �B1 ∪ �τ 2 � �T ](�́EA) �by (1-a)�
= lfp

⊇
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P )
�by Galois connection, commutativity, Lem. 8, and wlp[∅](�́EA) = Σ�

= gfp
⊆
Σ

λP .EA ∪ (¬B ∩ �pre[t]P ) �by duality�

PA = ¬PA �def. PA�
= ¬gfp

⊆
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P ) �as shown above�
= lfp

⊆
¬Σ

λ P .¬(EA ∪ (¬B ∩ �pre[t](¬P ))) �by Cor. 9�
= lfp

⊆
∅ λP .¬EA ∩ (B ∪ ¬�pre[t](¬P )) �de Morgan law�

= lfp
⊆
∅ λP .¬EA ∩ (B ∪ pre[t]P ) �def. �pre[t]Q � ¬pre[t](¬Q).� ��

If the set Σ of states is finite, as assumed in model-checking [?], the fixpoint
definition of PA in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the precondition s ∈ PA can proceed by exhaustive
enumeration. In case this does not scale up or for infinite state systems, bounded
model-checking [?] is an alternative using

�k
i=0 �τ i instead of �τ + but, by Th. 6,

the bounded prefix abstraction αk(�T ) �
�
�s ∈ �T

�� |�s | � k
�

is unsound for
approximating both PA and PA.

Proof We have Pk
A � {s | ∃s�s ∈

�k
i=0 �τ i ∩ ¬�́EA} ⊆ {s | ∃s�s ∈ �τ + ∩ ¬�́EA} �

PA, but this provides an under-approximation, which is unsound since, by Th. 6,
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= {s | s ∈ B ⇒ s ∈ EA} ∩ {s | ∀s�s ∈ �τ 2 � �T : s�s ∈ �́EA} �def. �B1 and �́EA�
= (¬B ∪ EA) ∩ {s | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (∃i < |ss��s | : (ss��s)i ∈ EA)}

�def � and �́EA�
= (¬B∪EA)∩ {s | ∀s�,�s : (τ(s, s�)∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨ ∃i < |s��s | : (s��s)i ∈

EA)} �separating the case i = 0�
= (¬B ∪ EA) ∩ ({s ∈ EA | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨ ∃i < |s��s | :

(s��s)i ∈ EA)}∪ {s �∈ EA | ∀s�,�s : (τ(s, s�)∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨∃i < |s��s | :
(s��s)i ∈ EA)}) �X = (X ∩ Y ) ∪ (X ∩ ¬Y )�

= (¬B ∪ EA) ∩ (EA ∪ {s �∈ EA | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (∃i < |s��s | :
(s��s)i ∈ EA)}) �def. ∨�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ {s� | ∀�s : (s��s ∈ �T ) ⇒ (∃i <
|s��s | : (s��s)i ∈ EA)}}) �def. ∪, ⇒ and ∈�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ {s� | ∀�s : (s��s ∈ �T ) ⇒ (∃i <
|s��s | : (s��s)i ∈ EA)}}) �def. ∪, ⇒ and ∈�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ wlp[�T ](�́EA)}) �def. wlp�
= (¬B ∪ EA) ∩ (EA ∪ �pre[t](wlp[�T ](�́EA))) �def. �pre�
= EA ∪ (¬B ∩ �pre[t](wlp[�T ](�́EA))) �commutativity and distributivity�

PA = wlp[�τ +](�́EA) �def. PA and wlp�
= wlp[lfp⊆

∅ λ �T . �B1 ∪ �τ 2 � �T ](�́EA) �by (1-a)�
= lfp

⊇
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P )
�by Galois connection, commutativity, Lem. 8, and wlp[∅](�́EA) = Σ�

= gfp
⊆
Σ

λP .EA ∪ (¬B ∩ �pre[t]P ) �by duality�

PA = ¬PA �def. PA�
= ¬gfp

⊆
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P ) �as shown above�
= lfp

⊆
¬Σ

λ P .¬(EA ∪ (¬B ∩ �pre[t](¬P ))) �by Cor. 9�
= lfp

⊆
∅ λP .¬EA ∩ (B ∪ ¬�pre[t](¬P )) �de Morgan law�

= lfp
⊆
∅ λP .¬EA ∩ (B ∪ pre[t]P ) �def. �pre[t]Q � ¬pre[t](¬Q).� ��

If the set Σ of states is finite, as assumed in model-checking [?], the fixpoint
definition of PA in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the precondition s ∈ PA can proceed by exhaustive
enumeration. In case this does not scale up or for infinite state systems, bounded
model-checking [?] is an alternative using

�k
i=0 �τ i instead of �τ + but, by Th. 6,

the bounded prefix abstraction αk(�T ) �
�
�s ∈ �T

�� |�s | � k
�

is unsound for
approximating both PA and PA.

Proof We have Pk
A � {s | ∃s�s ∈

�k
i=0 �τ i ∩ ¬�́EA} ⊆ {s | ∃s�s ∈ �τ + ∩ ¬�́EA} �

PA, but this provides an under-approximation, which is unsound since, by Th. 6,
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= {s | s ∈ B ⇒ s ∈ EA} ∩ {s | ∀s�s ∈ �τ 2 � �T : s�s ∈ �́EA} �def. �B1 and �́EA�
= (¬B ∪ EA) ∩ {s | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (∃i < |ss��s | : (ss��s)i ∈ EA)}

�def � and �́EA�
= (¬B∪EA)∩ {s | ∀s�,�s : (τ(s, s�)∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨ ∃i < |s��s | : (s��s)i ∈

EA)} �separating the case i = 0�
= (¬B ∪ EA) ∩ ({s ∈ EA | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨ ∃i < |s��s | :

(s��s)i ∈ EA)}∪ {s �∈ EA | ∀s�,�s : (τ(s, s�)∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨∃i < |s��s | :
(s��s)i ∈ EA)}) �X = (X ∩ Y ) ∪ (X ∩ ¬Y )�

= (¬B ∪ EA) ∩ (EA ∪ {s �∈ EA | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (∃i < |s��s | :
(s��s)i ∈ EA)}) �def. ∨�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ {s� | ∀�s : (s��s ∈ �T ) ⇒ (∃i <
|s��s | : (s��s)i ∈ EA)}}) �def. ∪, ⇒ and ∈�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ {s� | ∀�s : (s��s ∈ �T ) ⇒ (∃i <
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= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ wlp[�T ](�́EA)}) �def. wlp�
= (¬B ∪ EA) ∩ (EA ∪ �pre[t](wlp[�T ](�́EA))) �def. �pre�
= EA ∪ (¬B ∩ �pre[t](wlp[�T ](�́EA))) �commutativity and distributivity�

PA = wlp[�τ +](�́EA) �def. PA and wlp�
= wlp[lfp⊆

∅ λ �T . �B1 ∪ �τ 2 � �T ](�́EA) �by (1-a)�
= lfp

⊇
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P )
�by Galois connection, commutativity, Lem. 8, and wlp[∅](�́EA) = Σ�

= gfp
⊆
Σ

λP .EA ∪ (¬B ∩ �pre[t]P ) �by duality�

PA = ¬PA �def. PA�
= ¬gfp

⊆
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P ) �as shown above�
= lfp

⊆
¬Σ

λ P .¬(EA ∪ (¬B ∩ �pre[t](¬P ))) �by Cor. 9�
= lfp

⊆
∅ λP .¬EA ∩ (B ∪ ¬�pre[t](¬P )) �de Morgan law�

= lfp
⊆
∅ λP .¬EA ∩ (B ∪ pre[t]P ) �def. �pre[t]Q � ¬pre[t](¬Q).� ��

If the set Σ of states is finite, as assumed in model-checking [?], the fixpoint
definition of PA in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the precondition s ∈ PA can proceed by exhaustive
enumeration. In case this does not scale up or for infinite state systems, bounded
model-checking [?] is an alternative using

�k
i=0 �τ i instead of �τ + but, by Th. 6,

the bounded prefix abstraction αk(�T ) �
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is unsound for
approximating both PA and PA.
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= {s | s ∈ B ⇒ s ∈ EA} ∩ {s | ∀s�s ∈ �τ 2 � �T : s�s ∈ �́EA} �def. �B1 and �́EA�
= (¬B ∪ EA) ∩ {s | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (∃i < |ss��s | : (ss��s)i ∈ EA)}

�def � and �́EA�
= (¬B∪EA)∩ {s | ∀s�,�s : (τ(s, s�)∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨ ∃i < |s��s | : (s��s)i ∈

EA)} �separating the case i = 0�
= (¬B ∪ EA) ∩ ({s ∈ EA | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨ ∃i < |s��s | :

(s��s)i ∈ EA)}∪ {s �∈ EA | ∀s�,�s : (τ(s, s�)∧ s��s ∈ �T ) ⇒ (s ∈ EA ∨∃i < |s��s | :
(s��s)i ∈ EA)}) �X = (X ∩ Y ) ∪ (X ∩ ¬Y )�

= (¬B ∪ EA) ∩ (EA ∪ {s �∈ EA | ∀s�,�s : (τ(s, s�) ∧ s��s ∈ �T ) ⇒ (∃i < |s��s | :
(s��s)i ∈ EA)}) �def. ∨�
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PA = wlp[�τ +](�́EA) �def. PA and wlp�
= wlp[lfp⊆

∅ λ �T . �B1 ∪ �τ 2 � �T ](�́EA) �by (1-a)�
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⊇
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P )
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⊆
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λP .EA ∪ (¬B ∩ �pre[t]P ) �by duality�

PA = ¬PA �def. PA�
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λ P .EA ∪ (¬B ∩ �pre[t]P ) �as shown above�
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λ P .¬(EA ∪ (¬B ∩ �pre[t](¬P ))) �by Cor. 9�
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⊆
∅ λP .¬EA ∩ (B ∪ ¬�pre[t](¬P )) �de Morgan law�

= lfp
⊆
∅ λP .¬EA ∩ (B ∪ pre[t]P ) �def. �pre[t]Q � ¬pre[t](¬Q).� ��

If the set Σ of states is finite, as assumed in model-checking [?], the fixpoint
definition of PA in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the precondition s ∈ PA can proceed by exhaustive
enumeration. In case this does not scale up or for infinite state systems, bounded
model-checking [?] is an alternative using

�k
i=0 �τ i instead of �τ + but, by Th. 6,

the bounded prefix abstraction αk(�T ) �
�
�s ∈ �T

�� |�s | � k
�

is unsound for
approximating both PA and PA.
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PA, but this provides an under-approximation, which is unsound since, by Th. 6,
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By the dual of Lem. 8, we get (in particular since �L, �� −−−→←−−−
α

γ
�L, �� implies

�L, �� −−−→←−−−
γ

α �L, ��)

Corollary 10 If �L, �, �� is a complete lattice or a dcpo, F ∈ L → L is
increasing, γ ∈ L → L is co-continuous (12), F ∈ L → L commutes with F that
is γ ◦ F = F ◦ γ then γ(gfp

�
� F ) = gfp

�
γ(�)

F .

6 Fixpoint strongest contract precondition

Following [?], let us define the abstraction generalizing [?] to traces

wlp[�T ] � λ �Q .�
s

�� ∀s�s ∈ �T : s�s ∈ �Q
�

wlp−1[ �Q] � λ P .�
s�s ∈ �Σ+

�� (s ∈ P ) ⇒ (s�s ∈ �Q)
�

such that �℘( �Σ+), ⊆� −−−−−−−−−−−→←−−−−−−−−−−−
λ �T .wlp[�T ]�Q

wlp−1[�Q ]
�℘(Σ), ⊇� and PA = wlp[�τ +](�́EA).

Proof

wlp[�T ] ⊇ P

⇔
�
s

�� ∀s�s ∈ �T : s�s ∈ �Q
�
⊇ P �def. wlp�

⇔ ∀s ∈ P : ∀s�s ∈ �T : s�s ∈ �Q �def. ⊇�
⇔ ∀s�s ∈ �T : (s ∈ P ) ⇒ (s�s ∈ �Q) �def. ⇒�
⇔ �T ⊆

�
s�s ∈ �Σ+

�� (s ∈ P ) ⇒ (s�s ∈ �Q)
�

�def. ⊆�
⇔ �T ⊆ wlp−1[ �Q](P ) �def. wlp−1� ��

By fixpoint abstraction, it follows from (1-a) and Cor. 9 that

Theorem 11 PA = gfp
⊆
Σ

λ P .EA∪(¬B∩�pre[t]P ) and PA = lfp
⊆
∅ λ P .¬EA∩

(B ∪ pre[t]P ) where pre[t]Q � {s | ∃s� ∈ Q : �s, s�� ∈ t} and �pre[t]Q �
¬pre[t](¬Q) = {s | ∀s� : �s, s�� ∈ t ⇒ s� ∈ Q}. ��

Proof

wlp[∅](�́EA)
= {s | ∀s�s ∈ ∅ : s�s ∈ �́EA} �def. wlp�
= Σ �∀x ∈ ∅ : P (x) is true�

wlp[�B1 ∪ �τ 2 � �T ](�́EA)
= wlp[�B1](�́EA) ∩ wlp[�τ 2 � �T ](�́EA) �Galois connections preserve existing lubs�
= {s | ∀s�s ∈ �B1 : s�s ∈ �́EA} ∩ {s | ∀s�s ∈ �τ 2 � �T : s�s ∈ �́EA} �def. wlp�

(12) γ is co-continuous if and only if it preserves existing glbs of decreasing chains.
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Under-approximations

• Extremely hard not to be trivial:

• Tests

• Bounded model checking:

is unsound both for         and    

• Proposed solution: computer under-approximations 
symbolically by program expression propagation
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Fixpoint abstraction. Recall from [12, 7.1.0.4] that

Lemma 7 If �L, �, ⊥� is a complete lattice or a cpo, F ∈ L → L is increasing, �L,

�� is a poset, α ∈ L → L is continuous (6),(7), F ∈ L → L commutes (resp. semi-
commutes) with F that is α ◦ F = F ◦ α (resp. α ◦ F � F ◦ α) then α(lfp �

⊥ F ) =
lfp

�
α(⊥)

F (resp. α(lfp �
⊥ F ) � lfp

�
α(⊥)

F ).

Applying Lem. 7 to �L, �� −−−→←−−−
¬
¬ �L, ��, we get Cor. 8 and by duality Cor. 9 below.

Corollary 8 (David Park) If F ∈ L → L is increasing on a complete Boolean
lattice �L, �, ⊥, ¬� then ¬ lfp

�
⊥ F = gfp

�
¬⊥ ¬ ◦ F ◦ ¬ .

Corollary 9 If �L, �, �� is a complete lattice or a dcpo, F ∈ L → L is increasing,
γ ∈ L → L is co-continuous (8), F ∈ L → L commutes with F that is γ ◦ F = F ◦ γ

then γ(gfp
�
� F ) = gfp

�
γ(�)

F .

6 Fixpoint strongest contract precondition
Following [10], let us define the abstraction generalizing [15] to traces

wlp[�T ] � λ �Q .�
s

�� ∀s�s ∈ �T : s�s ∈ �Q
�

wlp−1[ �Q] � λ P .�
s�s ∈ �Σ+

�� (s ∈ P ) ⇒ (s�s ∈ �Q)
�

such that �℘( �Σ+), ⊆� −−−−−−−−−−→←−−−−−−−−−−
λ �T .wlp[�T ]�Q

wlp−1[�Q ]
�℘(Σ), ⊇� and PA = wlp[�τ +](�́EA). By fixpoint

abstraction, it follows from (1-a) and Cor. 8 that

Theorem 10 PA = gfp
⊆
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P ) and PA = lfp
⊆
∅ λ P .¬EA ∩

(B∪ pre[t]P ) where pre[t]Q � {s | ∃s� ∈ Q : �s, s�� ∈ t} and �pre[t]Q � ¬pre[t](¬Q) =
{s | ∀s� : �s, s�� ∈ t ⇒ s� ∈ Q}. ��
If the set Σ of states is finite, as assumed in model-checking [2], the fixpoint definition
of PA in Th. 10 is computable iteratively, up to combinatorial explosion. The code
to check the precondition s ∈ PA can proceed by exhaustive enumeration. In case
this does not scale up or for infinite state systems, bounded model-checking [5] is an
alternative using

�k
i=0 �τ i instead of �τ + but, by Th. 6, the bounded prefix abstraction

αk(�T ) �
�
�s0 . . .�smin(k,|�s |)−1

�� �s ∈ �T
�

is unsound for approximating both PA and
PA.

7 Contract precondition inference by data flow analysis
Instead of state-based reasonings, as in Sect. 4 and 6, we can consider symbolic (or
even syntactic) reasonings moving the code assertions to the code entry, when the
effect is the same. This can be done by a sound data flow analysis [18] when
1. the value of the visible side effect free Boolean expression on scalar or collection

variables in the assert is exactly the same as the value of this expression when
evaluated on entry;

2. the value of the expression checked on program entry is checked in an assert on
all paths that can be taken from the program entry.

We propose a backward data flow analysis to check for both sufficient conditions 1
and 2.

(6) α is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for α can be restricted to the iterates of the least fixpoint of F .
(8) γ is co-continuous if and only if it preserves existing glbs of decreasing chains.

5
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(s��s)i ∈ EA)}) �def. ∨�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ {s� | ∀�s : (s��s ∈ �T ) ⇒ (∃i <
|s��s | : (s��s)i ∈ EA)}}) �def. ∪, ⇒ and ∈�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ {s� | ∀�s : (s��s ∈ �T ) ⇒ (∃i <
|s��s | : (s��s)i ∈ EA)}}) �def. ∪, ⇒ and ∈�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ wlp[�T ](�́EA)}) �def. wlp�
= (¬B ∪ EA) ∩ (EA ∪ �pre[t](wlp[�T ](�́EA))) �def. �pre�
= EA ∪ (¬B ∩ �pre[t](wlp[�T ](�́EA))) �commutativity and distributivity�

PA = wlp[�τ +](�́EA) �def. PA and wlp�
= wlp[lfp⊆

∅ λ �T . �B1 ∪ �τ 2 � �T ](�́EA) �by (1-a)�
= lfp

⊇
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P )
�by Galois connection, commutativity, Lem. 8, and wlp[∅](�́EA) = Σ�

= gfp
⊆
Σ

λP .EA ∪ (¬B ∩ �pre[t]P ) �by duality�

PA = ¬PA �def. PA�
= ¬gfp

⊆
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P ) �as shown above�
= lfp

⊆
¬Σ

λ P .¬(EA ∪ (¬B ∩ �pre[t](¬P ))) �by Cor. 9�
= lfp

⊆
∅ λP .¬EA ∩ (B ∪ ¬�pre[t](¬P )) �de Morgan law�

= lfp
⊆
∅ λP .¬EA ∩ (B ∪ pre[t]P ) �def. �pre[t]Q � ¬pre[t](¬Q).� ��

If the set Σ of states is finite, as assumed in model-checking [?], the fixpoint
definition of PA in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the precondition s ∈ PA can proceed by exhaustive
enumeration. In case this does not scale up or for infinite state systems, bounded
model-checking [?] is an alternative using

�k
i=0 �τ i instead of �τ + but, by Th. 6,

the bounded prefix abstraction αk(�T ) �
�
�s ∈ �T

�� |�s | � k
�

is unsound for
approximating both PA and PA.

Proof We have Pk
A � {s | ∃s�s ∈

�k
i=0 �τ i ∩ ¬�́EA} ⊆ {s | ∃s�s ∈ �τ + ∩ ¬�́EA} �

PA, but this provides an under-approximation, which is unsound since, by Th. 6,
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= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ {s� | ∀�s : (s��s ∈ �T ) ⇒ (∃i <
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= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ {s� | ∀�s : (s��s ∈ �T ) ⇒ (∃i <
|s��s | : (s��s)i ∈ EA)}}) �def. ∪, ⇒ and ∈�

= (¬B ∪ EA) ∩ (EA ∪ {s | ∀s� : τ(s, s�) ⇒ s� ∈ wlp[�T ](�́EA)}) �def. wlp�
= (¬B ∪ EA) ∩ (EA ∪ �pre[t](wlp[�T ](�́EA))) �def. �pre�
= EA ∪ (¬B ∩ �pre[t](wlp[�T ](�́EA))) �commutativity and distributivity�

PA = wlp[�τ +](�́EA) �def. PA and wlp�
= wlp[lfp⊆

∅ λ �T . �B1 ∪ �τ 2 � �T ](�́EA) �by (1-a)�
= lfp

⊇
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P )
�by Galois connection, commutativity, Lem. 8, and wlp[∅](�́EA) = Σ�

= gfp
⊆
Σ

λP .EA ∪ (¬B ∩ �pre[t]P ) �by duality�

PA = ¬PA �def. PA�
= ¬gfp

⊆
Σ

λ P .EA ∪ (¬B ∩ �pre[t]P ) �as shown above�
= lfp

⊆
¬Σ

λ P .¬(EA ∪ (¬B ∩ �pre[t](¬P ))) �by Cor. 9�
= lfp

⊆
∅ λP .¬EA ∩ (B ∪ ¬�pre[t](¬P )) �de Morgan law�

= lfp
⊆
∅ λP .¬EA ∩ (B ∪ pre[t]P ) �def. �pre[t]Q � ¬pre[t](¬Q).� ��

If the set Σ of states is finite, as assumed in model-checking [?], the fixpoint
definition of PA in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the precondition s ∈ PA can proceed by exhaustive
enumeration. In case this does not scale up or for infinite state systems, bounded
model-checking [?] is an alternative using

�k
i=0 �τ i instead of �τ + but, by Th. 6,

the bounded prefix abstraction αk(�T ) �
�
�s ∈ �T

�� |�s | � k
�

is unsound for
approximating both PA and PA.

Proof We have Pk
A � {s | ∃s�s ∈

�k
i=0 �τ i ∩ ¬�́EA} ⊆ {s | ∃s�s ∈ �τ + ∩ ¬�́EA} �

PA, but this provides an under-approximation, which is unsound since, by Th. 6,
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The soundness follows from ∀�s ∈ �τ + : ∀j < |�s | : φ(c)[�x := ��x��s0][�x := ��x��sj ] =

∀�s ∈ �τ + : ∀j < |�s | : ∀i ∈ ∆π�sj : pπ�sj ,i[�x := ��x��s0] ⇒ ��x��sj = �eπ�sj ,i[�x := ��x��s0]

where ��x�s is the value of the vector �x of scalar variables in state s.
This suggests a method for calculating the precondition by adding for each as-

sertion c:assert(b) the condition
�

i∈∆c
pc,i[�x := �x] ⇒ b[�x := �ec,i[�x := �x]] which is

checked on the initial values of variables.

Example 15 For the program

/* 1: x=x0 & y=y0 */ if (x == 0 ) {
/* 2: x0=0 & x=x0 & y=y0 */ x++;
/* 3: x0=0 & x=x0+1 & y=y0 */ assert(x==y);

}

the precondition at program point 1: is (!(x==0)||(x+1==y)). ��

Of course the iterative computation of lfp
⇒̇

F will in general not terminate so that

a widening [11] is needed. A simple one would bound the number of iterations and

widen
�

i∈∆c
pc,i(�x) ∧ �x = �ec,i(�x) to

�
i∈∆c

pc,i(�x) ⇒ �x = �ec,i(�x).

9 Contract precondition inference by backward symbolic
analysis

Backward symbolic precondition analysis of simple assertions. The symbolic

relation between entry and assert conditions can be also established backwards,

starting from the assert conditions and propagating towards the entry points taking

assignments and tests into account with widening around unbounded loops. We first

consider simple assertions involving only scalar variables (including e.g. the size of

collections as needed in Sect. 10).

Abstract domain. Given the set B of visible side effect free Boolean expressions on

scalar variables, we consider the abstract domain B/≡ containing the infimum false
(unreachable), the supremum true (unknown) and equivalence classes of expressions

[b]/≡ for the abstract equivalence of expressions ≡ abstracting semantic equality that

is b ≡ b� ⇒ ∀s ∈ Σ : �b�s = �b��s. The equivalence classes are encoded by choosing

an arbitrary representative b� ∈ [b]/≡. The abstract equivalence ≡ can be chosen

within a wide range of possibilities, from syntactic equality, to the use of a simplifier,

of abstract domains, or that of a SMT solver. This provides an abstract implication

b �⇒ b� underapproximating the concrete implication ⇒ in that b �⇒ b� implies that

∀s ∈ Σ : �b�s ⇒ �b��s. The equivalence is defined as b ≡ b� � b �⇒ b� ∧ b� �⇒ b. The

basic abstract domain is therefore �B/≡, �⇒�.
We now define the abstract domain functor

B
2 � {bp ❀ ba | bp ∈ B ∧ ba ∈ B ∧ bp ��⇒ ba}

Notice that bp ❀ ba denotes the pair �[bp]/≡, [ba]/≡� of B/≡ × B/≡. The interpre-

tation of bp ❀ ba is that when the path condition bp holds, an execution path will

be followed to some assert(b) and checking ba at the beginning of the path is the

same as checking this b later in the path when reaching the assertion. We exclude

the elements such that bp �⇒ ba which implies bp ⇒ ba so that no precondition is

needed. An example is if (bp) { assert(ba) } where the assertion has already

been checked on the paths leading to that assertion. The abstract ordering on B
2

is

bp ❀ ba �⇒ b�p ❀ b�a � b�p �⇒ bp ∧ ba �⇒ b�a.
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the consideration of infinite behaviors and the use of more expressive abstract do-
mains than segmentation to express relations between values of components of data
structures in asserts and on code entry while preserving scalability.

References
[1] Arnout, K., Meyer, B.: Uncovering hidden contracts: The .NET example. IEEE Com-

puter 36(11), 48–55 (2003)
[2] Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
[3] Barnett, M., Fähndrich, M., Garbervetsky, D., Logozzo, F.: Annotations for (more)

precise points-to analysis. In: IWACO ’07. DSV Report series No. 07-010, Stockholm
University and KTH (2007)

[4] Barnett, M., Fähndrich, M., Logozzo, F.: Embedded contract languages. In: SAC’10.
pp. 2103–2110. ACM Press (2010)

[5] Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking.
Advances in Computers 58, 118–149 (2003)

[6] Bourdoncle, F.: Abstract debugging of higher-order imperative languages. In: PLDI ’93.
pp. 46–55. ACM Press (1993)

[7] Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis by
means of bi-abduction. In: 36th POPL. pp. 289–300. ACM Press (2009)
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d’État ès sciences mathématiques, Université scientifique et médicale de Grenoble (1978)

[9] Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S., Jones, N. (eds.)
Program Flow Analysis: Theory and Applications, chap. 10, pp. 303–342. Prentice-Hall
(1981)

[10] Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by
abstract interpretation. TCS 277(1—2), 47–103 (2002)

[11] Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive proce-
dures. In: Neuhold, E. (ed.) IFIP Conf. on Formal Description of Programming Con-
cepts. pp. 237–277. North-Holland (1977)

[12] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6th

POPL. pp. 269–282. ACM Press (1979)
[13] Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.

Journal of Logic Programming 13(2–3), 103–179 (1992),
[14] Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully au-

tomatic and scalable array content analysis. Tech. rep., MSR-TR-2009-194, MSR Red-
mond (Sep 2009)

[15] Dijkstra, E.: Guarded commands, nondeterminacy and formal derivation of programs.
CACM 18(8), 453–457 (1975)

[16] Fähndrich, M., Logozzo, F.: Clousot: Static contract checking with abstract interpre-
tation. In: FoVeOOS: Conference on Formal Verification of Object-Oriented software.
Springer-Verlag (2010)

[17] Gulwani, S., Tiwari, A.: Computing procedure summaries for interprocedural analysis.
In: ESOP ’07, pp. 253–267. LNCS 4421, Springer (2007)

[18] Hecht, M.: Flow Analysis of Computer Programs. Elsevier North-Holland (1977)
[19] King, J.: Symbolic execution and program testing. CACM 19(7), 385–394 (1976)
[20] Meyer, B.: Eiffel: The Language. Prentice Hall (1991)
[21] Meyer, B.: Applying “Design by Contract”. IEEE Computer 25(10), 40–51 (1992)
[22] Moy, Y.: Sufficient preconditions for modular assertion checking. In: VMCAI 08. pp.

188–202. LNCS 4905, Springer (2008)
[23] Rival, X.: Understanding the origin of alarms in Astrée. In: SAS ’05, pp. 303–319.

LNCS 3672, Springer (2005)
[24] T.Lev-Ami, Sagiv, M., Reps, T., Gulwani, S.: Backward analysis for inferring quantified

preconditions. Tr-2007-12-01, Tel Aviv University (2007)

15

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

the consideration of infinite behaviors and the use of more expressive abstract do-
mains than segmentation to express relations between values of components of data
structures in asserts and on code entry while preserving scalability.

References
[1] Arnout, K., Meyer, B.: Uncovering hidden contracts: The .NET example. IEEE Com-

puter 36(11), 48–55 (2003)
[2] Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
[3] Barnett, M., Fähndrich, M., Garbervetsky, D., Logozzo, F.: Annotations for (more)

precise points-to analysis. In: IWACO ’07. DSV Report series No. 07-010, Stockholm
University and KTH (2007)

[4] Barnett, M., Fähndrich, M., Logozzo, F.: Embedded contract languages. In: SAC’10.
pp. 2103–2110. ACM Press (2010)

[5] Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking.
Advances in Computers 58, 118–149 (2003)

[6] Bourdoncle, F.: Abstract debugging of higher-order imperative languages. In: PLDI ’93.
pp. 46–55. ACM Press (1993)

[7] Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis by
means of bi-abduction. In: 36th POPL. pp. 289–300. ACM Press (2009)
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General idea
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we look for an overapproximation PA ⊆ PA, not missing any initial state from
which a good run is possible.

For the complement PA, we have P
k
A � {s | ∀s�s ∈

�k
i=0 �τ i : s�s ∈ �́EA} ⊇ {s |

∀s�s ∈ �τ + : s�s ∈ �́EA} = PA, but this provides an over-approximation, which
is unsound since we look for an underapproximation P ⊆ PA, eliminating only
initial states from which no good run is possible. ��

7 Contract precondition inference by data flow analysis

Instead of state-based reasonings, as in Sect. 4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the effect is the same. This can be done by a sound data flow analysis [?] when
1. the value of the visible side effect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in an assert
on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved
in the expression have been changed in any possible execution between the entry
and the assert, which can be determined by a forward data flow analysis. But
condition 2 is better handled backwards, so we propose a backward data flow
analysis to check for both sufficient conditions 1 and 2.

Backward expression propagation. Let c ∈ Γ be a control point and b be a
Boolean expression. For example b can contain ForAll or Exists assertions on
unmodified collections without free scalar variables and no visible side effect (see
Sect. 10 otherwise). P (c, b) holds at program point c when Boolean expression
b will definitely be checked in an assert(b) on all paths from c without being
changed up to this check. P = gfp

⇒̇
B�τ� is the ⇒̇-greatest solution of the

backward system of equations (where ⇒̇ is the pointwise extension of logical
implication ⇒)�

P (c, b) = B�τ�(P )(c, b)
c ∈ Γ, b ∈ Ab

where the expressions and control points of asserts are respectively Ab � {b |
∃c : �c, b� ∈ A} and Ac � {c | ∃b : �c, b� ∈ A}, the transformer B ∈ (Γ ×Ab →
B) → (Γ ×Ab → B) is

B�τ�(P )(c, b) = true when �c, b� ∈ A (assert(b) at c)
B�τ�(P )(c, b) = false when ∃s ∈ B : πs = c ∧ �c, b� �∈ A (exit at c)

B�τ�(P )(c, b) =
�

c�∈succ�τ�(c)
unchanged�τ�(c, c�, b) ∧ P (c�, b) (otherwise)

the set succ�τ�(c) of successors of the program point c ∈ Γ satisfies
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Dataflow analysis (cont’d)

we look for an overapproximation PA ⊆ PA, not missing any initial state from
which a good run is possible.

For the complement PA, we have P
k
A � {s | ∀s�s ∈

�k
i=0 �τ i : s�s ∈ �́EA} ⊇ {s |

∀s�s ∈ �τ + : s�s ∈ �́EA} = PA, but this provides an over-approximation, which
is unsound since we look for an underapproximation P ⊆ PA, eliminating only
initial states from which no good run is possible. ��

7 Contract precondition inference by data flow analysis

Instead of state-based reasonings, as in Sect. 4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the effect is the same. This can be done by a sound data flow analysis [?] when
1. the value of the visible side effect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
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Dataflow analysis (cont’d)

⦁

⦁
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inition [?]. Define

RA � λ b . {�s, s�� | �πs�, b� ∈ A ∧ �b�s = �b�s�}
�RA � λ b . {�s ∈ �Σ+ | ∃i < |�s | : ��s0, �si� ∈ RA(b)}
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�αD(�T )(c, b) � ∀�s ∈ �T : π�s0 = c ⇒ �s ∈ �RA(b)

�γD(P ) � {�s | ∀b ∈ Ab : P (π�s0, b) ⇒ �s ∈ �RA(b)}

such that � �Σ+, ⊆� −−−−→←−−−−
�αD

�γ D �Γ ×Ab → B, ⇐̇�.

Proof

�αD(�T ) ⇐̇ P

⇔ ∀c ∈ Γ : ∀b ∈ Ab : P (c, b) ⇒ �αD(�T )(c, b) �pointwise def. ⇒̇�
⇔ ∀c ∈ Γ : ∀b ∈ Ab : P (c, b) ⇒ (∀�s ∈ �T : π�s0 = c ⇒ �s ∈ �RA(b)) �def. �αD�
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⇔ ∀�s ∈ �T : ∀b ∈ Ab : P (π�s0, b) ⇒ �s ∈ �RA(b)

�(⇒) for c = π�s0, (⇐) true when �s0 �= c�
⇔ �T ⊆ {�s | ∀b ∈ Ab : P (π�s0, b) ⇒ �s ∈ �RA(b)} �def. ⊆�
⇔ �T ⊆ �γD(P ) �def. �γD� ��

By (1-a) and Lem. 8, we have

Theorem 12 �αD(�τ +) ⇐̇ lfp
⇐̇

B�τ� = gfp
⇒̇

B�τ� � P . ��

Proof By (1-a), we have �τ + = lfp
⊆
∅ λ �T . �B1 ∪ �τ 2 � �T so, by Lem. 8, it is

sufficient to prove the semi-commutativity property �αD(�B1∪�τ 2� �T ) = �αD(�B1)∧̇
�αD(�τ 2 � �T ) ⇐̇ B�τ�(�αD(�T )). We proceed pointwise, and there are two cases.
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Q,$$5 and fixpoint abstraction (Lem. 8) 
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= ∀s ∈ B : πs = c ⇒ �s, s� ∈ RA(b) �def. �B1 and �RA(b)�
= ∀s ∈ B : πs = c ⇒ �c, b� ∈ A �def. RA�
= true �when �c, b� ∈ A�
= false �when ∃s ∈ B : πs = c ∧ �c, b� �∈ A�
= B�τ�(�αD(�T )(c, b) �def. B�τ��

�αD(�τ 2 � �T )(c, b)

= ∀�s ∈ �τ 2 � �T : π�s0 = c ⇒ �s ∈ �RA(b) �def. �αD�

= ∀s, s�,�s : (τ(s, s�) ∧ s��s ∈ �T ∧ πs = c) ⇒ ss��s ∈ �RA(b) �def. � and �τ 2�

= ∀s, s�,�s : (τ(s, s�) ∧ s��s ∈ �T ∧ πs = c) ⇒ (∃j < |ss��s | : �s, (ss��s)j� ∈ RA(b))

�def. �RA�

= ∀s, s�,�s : (τ(s, s�) ∧ s��s ∈ �T ∧ πs = c) ⇒ (∃j < |ss��s | : �π(ss��s)j , b� ∈
A ∧ �b�s = �b�(ss��s)j) �def. RA�

= ∀s, s�,�s : (τ(s, s�)∧ s��s ∈ �T ∧πs = c) ⇒ (�πs, b� ∈ A∨ (∃j < |s��s | : �π(s��s)j ,
b� ∈ A ∧ �b�s = �b�(s��s)j)) �separating the case j = 0�

⇐ �c, b� ∈ A ∨ ∀s, s�,�s : (τ(s, s�) ∧ s��s ∈ �T ∧ πs = c) ⇒ (∃j < |s��s | : �π(s��s)j ,
b� ∈ A ∧ �b�s = �b�(s��s)j) �def. ⇒�

= �c, b� ∈ A ∨ ∀s, s� :
�
τ(s, s�) ∧ πs = c

�
⇒

�
∀s��s ∈ �T : ∃j < |s��s | : �π(s��s)j ,

b� ∈ A ∧ �b�s = �b�(s��s)j

�
�def. ⇒�

⇐ �c, b� ∈ A ∨ ∀s, s� :
�
τ(s, s�) ∧ πs = c

�
⇒

�
�b�s = �b�s� ∧ ∀s��s � ∈ �T : (∃j <

|s��s � | : �π(s��s �)j , b� ∈ A∧ �b�s� = �b�(s��s �)j)
�

�transitivity of = and �s� = �s�
= �c, b� ∈ A∨∀s, s� :

�
τ(s, s�)∧πs = c

�
⇒

�
�b�s = �b�s�∧∀s��s � ∈ �T : π(s��s �)0 =

πs� ⇒ (∃j < |s��s � | : �π(s��s �)j , b� ∈ A ∧ �b�(s��s �)0 = �b�(s��s �)j)
�

�(s��s �)0 = s��

= �c, b� ∈ A ∨ ∀s, s� :
�
τ(s, s�) ∧ πs = c

�
⇒

�
�b�s = �b�s� ∧ ∀�s ∈ �T : π�s0 =

πs� ⇒ (∃j < |�s | : �π�sj , b� ∈ A ∧ �b��s0 = �b��sj)
�

�letting �s = s��s ��
= �c, b� ∈ A ∨ ∀c� : ∀s, s� :

�
τ(s, s�) ∧ πs = c ∧ πs� = c�� ⇒

�
�b�s = �b�s� ∧ ∀�s ∈

�T : π�s0 = c� ⇒ (∃j < |�s | : �π�sj , b� ∈ A ∧ �b��s0 = �b��sj)
�

�letting c� = πs��
⇐ �c, b� ∈ A ∨ ∀c� : ∀s, s� :

�
τ(s, s�) ∧ πs = c ∧ πs� = c�� ⇒

�
∀s, s� : (πs =

c∧τ(s, s�)∧πs� = c�) ⇒ (�b�s = �b�s�)∧∀�s ∈ �T : π�s0 = c� ⇒ (∃j < |�s | : �π�sj ,
b� ∈ A ∧ �b��s0 = �b��sj)

�
�since A ⇒ (A ⇒ B ∧ C) implies A ⇒ (B ∧ C)�

⇐ �c, b� ∈ A ∨ ∀c� :
�
∃s, s� : τ(s, s�) ∧ πs = c ∧ πs� = c�� ⇒

�
∀s, s� : (πs =

c∧τ(s, s�)∧πs� = c�) ⇒ (�b�s = �b�s�)∧∀�s ∈ �T : π�s0 = c� ⇒ (∃j < |�s | : �π�sj ,
b� ∈ A ∧ �b��s0 = �b��sj)

�
�(∃x : A) ⇒ B iff ∀x : (A ⇒ B)�
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= �c, b� ∈ A ∨ ∀c� :

�
∃s, s� : τ(s, s�) ∧ πs = c ∧ πs� = c�

�
⇒

�
∀s, s� : (πs =

c∧τ(s, s�)∧πs� = c�) ⇒ (�b�s = �b�s�)∧∀�s ∈ �T : π�s0 = c� ⇒ (∃j < |�s | : ��s0,
�sj� ∈ RA(b))

�
�def. RA � λ b . {�s, s�� | �πs�, b� ∈ A ∧ �b�s = �b�s�}�

= �c, b� ∈ A ∨ ∀c� :
�
∃s, s� : τ(s, s�) ∧ πs = c ∧ πs� = c�

�
⇒

�
∀s, s� : (πs =

c ∧ τ(s, s�) ∧ πs� = c�) ⇒ (�b�s = �b�s�) ∧ ∀�s ∈ �T : π�s0 = c� ⇒ �s ∈ �RA(b)
�

�def. �RA(b)�

⇐ �c, b� ∈ A∨∀c� ∈ succ�τ�(c) : (∀s, s� : (πs = c∧ τ(s, s�)∧πs� = c�) ⇒ (�b�s =
�b�s�) ∧ ∀�s ∈ �T : π�s0 = c� ⇒ �s ∈ �RA(b))

�def. succ�τ�(c) ⊇ {c� ∈ Γ | ∃s, s� : τ(s, s�) ∧ πs = c ∧ πs� = c�}�

= �c, b� ∈ A∨∀c� ∈ succ�τ�(c) : (∀s, s� : (πs = c∧ τ(s, s�)∧πs� = c�) ⇒ (�b�s =
�b�s�) ∧ �αD(�T )(c�, b)) �def. �αD(�T )(c, b) � ∀�s ∈ �T : π�s0 = c ⇒ �s ∈ �RA(b)�

⇐ �c, b� ∈ A ∨ ∀c� ∈ succ�τ�(c) : unchanged�τ�(c, c�, b) ∧ �αD(�T )(c�, b) �def.
unchanged�τ�(c, c�, b) ⇒ ∀s, s� : (πs = c∧τ(s, s�)∧πs� = c�) ⇒ (�b�s = �b�s�)�

= B�τ�(�αD(�T ))(c, b) �def. B�τ�� ��

Precondition generation. The syntactic precondition generated at entry con-
trol point i ∈ Iπ � {s ∈ I | πs = i} is (assuming && ∅ � true)

Pi � &&
b∈Ab, P (i,b)

b

The set of states for which the syntactic precondition Pi is evaluated to true at
program point i ∈ Γ is

Pi � {s ∈ Σ | πs = i ∧ � Pi�s}

and so for all program entry points (in case there is more than one)

PI � {s ∈ Σ | ∃i ∈ Iπ : s ∈ Pi}

We have

Theorem 13 PA ∩ I ⊆ PI. ��

Proof Assume, by reductio ad absurdum, that PA ∩ I �⊆ PI. Then there is an
initial state in PA ∩ I not in PI. By def. (5) of PA, this state initiates a good
run �s ∈ �τ + ∩ ¬�E+

A which is refused on entry point i ∈ Iπ such that π�s0 = i
(the run start at program point i). This means that ∃b ∈ Ab such that P (i, b)
(since otherwise b would not have been checked) and ¬�b��s0 (the run is rejected
on entry) while ∀j < |�s | : �sj �∈ EA so ∀j < |�s | : ∀�π�sj , b’� ∈ A : �b’��sj (since
EA � {s ∈ Σ | ∃�c, b� ∈ A : πs = c ∧ �b�s = false}). But

P (i, b)

⇒ �αD(�τ +)(i, b) �by Th. 12�
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succ�τ�(c) ⊇ {c� ∈ Γ | ∃s, s� : πs = c ∧ τ(s, s�) ∧ πs� = c�}

(succ�τ�(c) � Γ yields a flow-insensitive analysis) and unchanged�τ�(c, c�, b) im-
plies than a transition by τ from program point c to program point c� can never
change the value of Boolean expression b

unchanged�τ�(c, c�, b) ⇒ ∀s, s� : (πs = c ∧ τ(s, s�) ∧ πs� = c�) ⇒ (�b�s = �b�s�).

unchanged�τ�(c, c�, b) can be a syntactic underapproximation of its semantic def-
inition [?]. Define

RA � λ b . {�s, s�� | �πs�, b� ∈ A ∧ �b�s = �b�s�}
�RA � λ b . {�s ∈ �Σ+ | ∃i < |�s | : ��s0, �si� ∈ RA(b)}

and the abstraction

�αD(�T )(c, b) � ∀�s ∈ �T : π�s0 = c ⇒ �s ∈ �RA(b)

�γD(P ) � {�s | ∀b ∈ Ab : P (π�s0, b) ⇒ �s ∈ �RA(b)}

such that � �Σ+, ⊆� −−−−→←−−−−
�αD

�γ D �Γ ×Ab → B, ⇐̇�.

Proof

�αD(�T ) ⇐̇ P

⇔ ∀c ∈ Γ : ∀b ∈ Ab : P (c, b) ⇒ �αD(�T )(c, b) �pointwise def. ⇒̇�
⇔ ∀c ∈ Γ : ∀b ∈ Ab : P (c, b) ⇒ (∀�s ∈ �T : π�s0 = c ⇒ �s ∈ �RA(b)) �def. �αD�
⇔ ∀c ∈ Γ : ∀�s ∈ �T : ∀b ∈ Ab : P (c, b) ⇒ (π�s0 = c ⇒ �s ∈ �RA(b)) �def. ∀�
⇔ ∀�s ∈ �T : ∀b ∈ Ab : P (π�s0, b) ⇒ �s ∈ �RA(b)

�(⇒) for c = π�s0, (⇐) true when �s0 �= c�
⇔ �T ⊆ {�s | ∀b ∈ Ab : P (π�s0, b) ⇒ �s ∈ �RA(b)} �def. ⊆�
⇔ �T ⊆ �γD(P ) �def. �γD� ��

By (1-a) and Lem. 8, we have

Theorem 12 �αD(�τ +) ⇐̇ lfp
⇐̇

B�τ� = gfp
⇒̇

B�τ� � P . ��

Proof By (1-a), we have �τ + = lfp
⊆
∅ λ �T . �B1 ∪ �τ 2 � �T so, by Lem. 8, it is

sufficient to prove the semi-commutativity property �αD(�B1∪�τ 2� �T ) = �αD(�B1)∧̇
�αD(�τ 2 � �T ) ⇐̇ B�τ�(�αD(�T )). We proceed pointwise, and there are two cases.

�αD(�B1)(c, b)
= ∀�s ∈ �B1 : π�s0 = c ⇒ �s ∈ �RA(b) �def. �αD�
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= ∀s ∈ B : πs = c ⇒ �s, s� ∈ RA(b) �def. �B1 and �RA(b)�
= ∀s ∈ B : πs = c ⇒ �c, b� ∈ A �def. RA�
= true �when �c, b� ∈ A�
= false �when ∃s ∈ B : πs = c ∧ �c, b� �∈ A�
= B�τ�(�αD(�T )(c, b) �def. B�τ��

�αD(�τ 2 � �T )(c, b)

= ∀�s ∈ �τ 2 � �T : π�s0 = c ⇒ �s ∈ �RA(b) �def. �αD�

= ∀s, s�,�s : (τ(s, s�) ∧ s��s ∈ �T ∧ πs = c) ⇒ ss��s ∈ �RA(b) �def. � and �τ 2�

= ∀s, s�,�s : (τ(s, s�) ∧ s��s ∈ �T ∧ πs = c) ⇒ (∃j < |ss��s | : �s, (ss��s)j� ∈ RA(b))

�def. �RA�

= ∀s, s�,�s : (τ(s, s�) ∧ s��s ∈ �T ∧ πs = c) ⇒ (∃j < |ss��s | : �π(ss��s)j , b� ∈
A ∧ �b�s = �b�(ss��s)j) �def. RA�

= ∀s, s�,�s : (τ(s, s�)∧ s��s ∈ �T ∧πs = c) ⇒ (�πs, b� ∈ A∨ (∃j < |s��s | : �π(s��s)j ,
b� ∈ A ∧ �b�s = �b�(s��s)j)) �separating the case j = 0�

⇐ �c, b� ∈ A ∨ ∀s, s�,�s : (τ(s, s�) ∧ s��s ∈ �T ∧ πs = c) ⇒ (∃j < |s��s | : �π(s��s)j ,
b� ∈ A ∧ �b�s = �b�(s��s)j) �def. ⇒�

= �c, b� ∈ A ∨ ∀s, s� :
�
τ(s, s�) ∧ πs = c

�
⇒

�
∀s��s ∈ �T : ∃j < |s��s | : �π(s��s)j ,

b� ∈ A ∧ �b�s = �b�(s��s)j

�
�def. ⇒�

⇐ �c, b� ∈ A ∨ ∀s, s� :
�
τ(s, s�) ∧ πs = c

�
⇒

�
�b�s = �b�s� ∧ ∀s��s � ∈ �T : (∃j <

|s��s � | : �π(s��s �)j , b� ∈ A∧ �b�s� = �b�(s��s �)j)
�

�transitivity of = and �s� = �s�
= �c, b� ∈ A∨∀s, s� :

�
τ(s, s�)∧πs = c

�
⇒

�
�b�s = �b�s�∧∀s��s � ∈ �T : π(s��s �)0 =

πs� ⇒ (∃j < |s��s � | : �π(s��s �)j , b� ∈ A ∧ �b�(s��s �)0 = �b�(s��s �)j)
�

�(s��s �)0 = s��

= �c, b� ∈ A ∨ ∀s, s� :
�
τ(s, s�) ∧ πs = c

�
⇒

�
�b�s = �b�s� ∧ ∀�s ∈ �T : π�s0 =

πs� ⇒ (∃j < |�s | : �π�sj , b� ∈ A ∧ �b��s0 = �b��sj)
�

�letting �s = s��s ��
= �c, b� ∈ A ∨ ∀c� : ∀s, s� :

�
τ(s, s�) ∧ πs = c ∧ πs� = c�� ⇒

�
�b�s = �b�s� ∧ ∀�s ∈

�T : π�s0 = c� ⇒ (∃j < |�s | : �π�sj , b� ∈ A ∧ �b��s0 = �b��sj)
�

�letting c� = πs��
⇐ �c, b� ∈ A ∨ ∀c� : ∀s, s� :

�
τ(s, s�) ∧ πs = c ∧ πs� = c�� ⇒

�
∀s, s� : (πs =

c∧τ(s, s�)∧πs� = c�) ⇒ (�b�s = �b�s�)∧∀�s ∈ �T : π�s0 = c� ⇒ (∃j < |�s | : �π�sj ,
b� ∈ A ∧ �b��s0 = �b��sj)

�
�since A ⇒ (A ⇒ B ∧ C) implies A ⇒ (B ∧ C)�

⇐ �c, b� ∈ A ∨ ∀c� :
�
∃s, s� : τ(s, s�) ∧ πs = c ∧ πs� = c�� ⇒

�
∀s, s� : (πs =

c∧τ(s, s�)∧πs� = c�) ⇒ (�b�s = �b�s�)∧∀�s ∈ �T : π�s0 = c� ⇒ (∃j < |�s | : �π�sj ,
b� ∈ A ∧ �b��s0 = �b��sj)

�
�(∃x : A) ⇒ B iff ∀x : (A ⇒ B)�
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= ∀s ∈ B : πs = c ⇒ �s, s� ∈ RA(b) �def. �B1 and �RA(b)�
= ∀s ∈ B : πs = c ⇒ �c, b� ∈ A �def. RA�
= true �when �c, b� ∈ A�
= false �when ∃s ∈ B : πs = c ∧ �c, b� �∈ A�
= B�τ�(�αD(�T )(c, b) �def. B�τ��

�αD(�τ 2 � �T )(c, b)

= ∀�s ∈ �τ 2 � �T : π�s0 = c ⇒ �s ∈ �RA(b) �def. �αD�

= ∀s, s�,�s : (τ(s, s�) ∧ s��s ∈ �T ∧ πs = c) ⇒ ss��s ∈ �RA(b) �def. � and �τ 2�

= ∀s, s�,�s : (τ(s, s�) ∧ s��s ∈ �T ∧ πs = c) ⇒ (∃j < |ss��s | : �s, (ss��s)j� ∈ RA(b))

�def. �RA�

= ∀s, s�,�s : (τ(s, s�) ∧ s��s ∈ �T ∧ πs = c) ⇒ (∃j < |ss��s | : �π(ss��s)j , b� ∈
A ∧ �b�s = �b�(ss��s)j) �def. RA�

= ∀s, s�,�s : (τ(s, s�)∧ s��s ∈ �T ∧πs = c) ⇒ (�πs, b� ∈ A∨ (∃j < |s��s | : �π(s��s)j ,
b� ∈ A ∧ �b�s = �b�(s��s)j)) �separating the case j = 0�

⇐ �c, b� ∈ A ∨ ∀s, s�,�s : (τ(s, s�) ∧ s��s ∈ �T ∧ πs = c) ⇒ (∃j < |s��s | : �π(s��s)j ,
b� ∈ A ∧ �b�s = �b�(s��s)j) �def. ⇒�

= �c, b� ∈ A ∨ ∀s, s� :
�
τ(s, s�) ∧ πs = c

�
⇒

�
∀s��s ∈ �T : ∃j < |s��s | : �π(s��s)j ,

b� ∈ A ∧ �b�s = �b�(s��s)j

�
�def. ⇒�

⇐ �c, b� ∈ A ∨ ∀s, s� :
�
τ(s, s�) ∧ πs = c

�
⇒

�
�b�s = �b�s� ∧ ∀s��s � ∈ �T : (∃j <

|s��s � | : �π(s��s �)j , b� ∈ A∧ �b�s� = �b�(s��s �)j)
�

�transitivity of = and �s� = �s�
= �c, b� ∈ A∨∀s, s� :

�
τ(s, s�)∧πs = c

�
⇒

�
�b�s = �b�s�∧∀s��s � ∈ �T : π(s��s �)0 =

πs� ⇒ (∃j < |s��s � | : �π(s��s �)j , b� ∈ A ∧ �b�(s��s �)0 = �b�(s��s �)j)
�

�(s��s �)0 = s��

= �c, b� ∈ A ∨ ∀s, s� :
�
τ(s, s�) ∧ πs = c

�
⇒

�
�b�s = �b�s� ∧ ∀�s ∈ �T : π�s0 =

πs� ⇒ (∃j < |�s | : �π�sj , b� ∈ A ∧ �b��s0 = �b��sj)
�

�letting �s = s��s ��
= �c, b� ∈ A ∨ ∀c� : ∀s, s� :

�
τ(s, s�) ∧ πs = c ∧ πs� = c�� ⇒

�
�b�s = �b�s� ∧ ∀�s ∈

�T : π�s0 = c� ⇒ (∃j < |�s | : �π�sj , b� ∈ A ∧ �b��s0 = �b��sj)
�

�letting c� = πs��
⇐ �c, b� ∈ A ∨ ∀c� : ∀s, s� :

�
τ(s, s�) ∧ πs = c ∧ πs� = c�� ⇒

�
∀s, s� : (πs =

c∧τ(s, s�)∧πs� = c�) ⇒ (�b�s = �b�s�)∧∀�s ∈ �T : π�s0 = c� ⇒ (∃j < |�s | : �π�sj ,
b� ∈ A ∧ �b��s0 = �b��sj)

�
�since A ⇒ (A ⇒ B ∧ C) implies A ⇒ (B ∧ C)�

⇐ �c, b� ∈ A ∨ ∀c� :
�
∃s, s� : τ(s, s�) ∧ πs = c ∧ πs� = c�� ⇒

�
∀s, s� : (πs =

c∧τ(s, s�)∧πs� = c�) ⇒ (�b�s = �b�s�)∧∀�s ∈ �T : π�s0 = c� ⇒ (∃j < |�s | : �π�sj ,
b� ∈ A ∧ �b��s0 = �b��sj)

�
�(∃x : A) ⇒ B iff ∀x : (A ⇒ B)�
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succ�τ�(c) ⊇ {c� ∈ Γ | ∃s, s� : πs = c ∧ τ(s, s�) ∧ πs� = c�}

(succ�τ�(c) � Γ yields a flow-insensitive analysis) and unchanged�τ�(c, c�, b) im-
plies than a transition by τ from program point c to program point c� can never
change the value of Boolean expression b

unchanged�τ�(c, c�, b) ⇒ ∀s, s� : (πs = c ∧ τ(s, s�) ∧ πs� = c�) ⇒ (�b�s = �b�s�).

unchanged�τ�(c, c�, b) can be a syntactic underapproximation of its semantic def-
inition [?]. Define

RA � λ b . {�s, s�� | �πs�, b� ∈ A ∧ �b�s = �b�s�}
�RA � λ b . {�s ∈ �Σ+ | ∃i < |�s | : ��s0, �si� ∈ RA(b)}

and the abstraction

�αD(�T )(c, b) � ∀�s ∈ �T : π�s0 = c ⇒ �s ∈ �RA(b)

�γD(P ) � {�s | ∀b ∈ Ab : P (π�s0, b) ⇒ �s ∈ �RA(b)}

such that � �Σ+, ⊆� −−−−→←−−−−
�αD

�γ D �Γ ×Ab → B, ⇐̇�.

Proof
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�(∃x : A) ⇒ B iff ∀x : (A ⇒ B)�
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= �c, b� ∈ A ∨ ∀c� :
�
∃s, s� : τ(s, s�) ∧ πs = c ∧ πs� = c�

�
⇒

�
∀s, s� : (πs =

c∧τ(s, s�)∧πs� = c�) ⇒ (�b�s = �b�s�)∧∀�s ∈ �T : π�s0 = c� ⇒ (∃j < |�s | : ��s0,
�sj� ∈ RA(b))

�
�def. RA � λ b . {�s, s�� | �πs�, b� ∈ A ∧ �b�s = �b�s�}�

= �c, b� ∈ A ∨ ∀c� :
�
∃s, s� : τ(s, s�) ∧ πs = c ∧ πs� = c�

�
⇒

�
∀s, s� : (πs =

c ∧ τ(s, s�) ∧ πs� = c�) ⇒ (�b�s = �b�s�) ∧ ∀�s ∈ �T : π�s0 = c� ⇒ �s ∈ �RA(b)
�

�def. �RA(b)�

⇐ �c, b� ∈ A∨∀c� ∈ succ�τ�(c) : (∀s, s� : (πs = c∧ τ(s, s�)∧πs� = c�) ⇒ (�b�s =
�b�s�) ∧ ∀�s ∈ �T : π�s0 = c� ⇒ �s ∈ �RA(b))

�def. succ�τ�(c) ⊇ {c� ∈ Γ | ∃s, s� : τ(s, s�) ∧ πs = c ∧ πs� = c�}�

= �c, b� ∈ A∨∀c� ∈ succ�τ�(c) : (∀s, s� : (πs = c∧ τ(s, s�)∧πs� = c�) ⇒ (�b�s =
�b�s�) ∧ �αD(�T )(c�, b)) �def. �αD(�T )(c, b) � ∀�s ∈ �T : π�s0 = c ⇒ �s ∈ �RA(b)�

⇐ �c, b� ∈ A ∨ ∀c� ∈ succ�τ�(c) : unchanged�τ�(c, c�, b) ∧ �αD(�T )(c�, b) �def.
unchanged�τ�(c, c�, b) ⇒ ∀s, s� : (πs = c∧τ(s, s�)∧πs� = c�) ⇒ (�b�s = �b�s�)�

= B�τ�(�αD(�T ))(c, b) �def. B�τ�� ��

Precondition generation. The syntactic precondition generated at entry con-
trol point i ∈ Iπ � {s ∈ I | πs = i} is (assuming && ∅ � true)

Pi � &&
b∈Ab, P (i,b)

b

The set of states for which the syntactic precondition Pi is evaluated to true at
program point i ∈ Γ is

Pi � {s ∈ Σ | πs = i ∧ � Pi�s}

and so for all program entry points (in case there is more than one)

PI � {s ∈ Σ | ∃i ∈ Iπ : s ∈ Pi}

We have

Theorem 13 PA ∩ I ⊆ PI. ��

Proof Assume, by reductio ad absurdum, that PA ∩ I �⊆ PI. Then there is an
initial state in PA ∩ I not in PI. By def. (5) of PA, this state initiates a good
run �s ∈ �τ + ∩ ¬�E+

A which is refused on entry point i ∈ Iπ such that π�s0 = i
(the run start at program point i). This means that ∃b ∈ Ab such that P (i, b)
(since otherwise b would not have been checked) and ¬�b��s0 (the run is rejected
on entry) while ∀j < |�s | : �sj �∈ EA so ∀j < |�s | : ∀�π�sj , b’� ∈ A : �b’��sj (since
EA � {s ∈ Σ | ∃�c, b� ∈ A : πs = c ∧ �b�s = false}). But

P (i, b)

⇒ �αD(�τ +)(i, b) �by Th. 12�
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Backward expression propagation. Let c ∈ Γ be a control point and b be a
Boolean expression. For example b can contain ForAll or Exists assertions on un-
modified collections without free scalar variables and no visible side effect (see Sect. 10
otherwise). P (c, b) holds at program point c when Boolean expression b will definitely
be checked in an assert(b) on all paths from c without being changed up to this
check. P = gfp

⇒̇
B�τ� is the ⇒̇-greatest solution of the backward system of equations

(where ⇒̇ is the pointwise extension of logical implication ⇒)�
P (c, b) = B�τ�(P )(c, b)
c ∈ Γ, b ∈ Ab

where the expressions and control points of asserts are respectively Ab � {b | ∃c : �c,
b� ∈ A} and Ac � {c | ∃b : �c, b� ∈ A}, the transformer B ∈ (Γ × Ab → B) →
(Γ ×Ab → B) is

B�τ�(P )(c, b) = true when �c, b� ∈ A (assert(b) at c)
B�τ�(P )(c, b) = false when ∃s ∈ B : πs = c ∧ �c, b� �∈ A (exit at c)

B�τ�(P )(c, b) =
�

c�∈succ�τ�(c)
unchanged�τ�(c, c�, b) ∧ P (c�, b) (otherwise)

the set succ�τ�(c) of successors of the program point c ∈ Γ satisfies
succ�τ�(c) ⊇ {c� ∈ Γ | ∃s, s� : πs = c ∧ τ(s, s�) ∧ πs� = c�}

(succ�τ�(c) � Γ yields a flow-insensitive analysis) and unchanged�τ�(c, c�, b) implies
than a transition by τ from program point c to program point c� can never change
the value of Boolean expression b

unchanged�τ�(c, c�, b) ⇒ ∀s, s� : (πs = c ∧ τ(s, s�) ∧ πs� = c�) ⇒ (�b�s = �b�s�).
unchanged�τ�(c, c�, b) can be a syntactic underapproximation of its semantic definition
[3]. Define

RA � λ b . {�s, s�� | �πs�, b� ∈ A ∧ �b�s = �b�s�}
�RA � λ b . {�s ∈ �Σ+ | ∃i < |�s | : ��s0, �si� ∈ RA(b)}

and the abstraction
�αD(�T )(c, b) � ∀�s ∈ �T : π�s0 = c ⇒ �s ∈ �RA(b)

�γD(P ) � {�s | ∀b ∈ Ab : P (π�s0, b) ⇒ �s ∈ �RA(b)}

such that � �Σ+, ⊆� −−−−→←−−−−
�αD

�γ D �Γ ×Ab → B, ⇐̇�. By (1-a) and Lem. 7, we have

Theorem 11 �αD(�τ +) ⇐̇ lfp
⇐̇

B�τ� = gfp
⇒̇

B�τ� � P . ��

Precondition generation. The syntactic precondition generated at entry control
point i ∈ Iπ � {i ∈ Γ | ∃s ∈ I : πs = i} is (assuming && ∅ � true)

Pi � &&
b∈Ab, P (i,b)

b

The set of states for which the syntactic precondition Pi is evaluated to true at
program point i ∈ Γ is Pi � {s ∈ Σ | πs = i ∧ � Pi�s} and so for all program entry
points (in case there is more than one) PI � {s ∈ Σ | ∃i ∈ Iπ : s ∈ Pi}. We have

Theorem 12 PA ∩ I ⊆ PI. ��

By Th. 6 and 12, the precondition generation is sound: a rejected initial state would
inevitably have lead to an assertion failure.
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Example 13 Continuing Ex. 1, the assertion A != null is checked on all paths and

A is not changed (only its elements are), so the data flow analysis is able to move the

assertion as a precondition. ��
However, the data flow abstraction is rather imprecise because a precondition is

checked on code entry only if

1. the exact same precondition is checked in an assert (since scalar and collection

variable modifications are not taken into account, other than annihilating the

backward propagation);

2. and this, whichever execution path is taken (conditions are not taken into account).

We propose remedies to 1 and 2 in the following Sect. 8 and 9.

8 Contract precondition inference for scalar variables by
forward symbolic analysis

Let us define the cmd, succ and pred functions mapping control points to their com-

mand, successors and predecessors (∀c, c� ∈ Γ : c� ∈ pred(c) ⇔ c ∈ succ(c�)).

c: x:=e; c�:... cmd(c, c�) � x:=e succ(c) � {c�} pred(c�) � {c}
c: assert(b); c�:... cmd(c, c�) � b succ(c) � {c�} pred(c�) � {c}
c: if b then cmd(c, c�t) � b succ(c) � {c�t, c�f}
c�t:...c

��
t : cmd(c, c�f ) � ¬b pred(c�t) � {c}

else cmd(c��t , c�) � skip succ(c��t ) � {c�}
c�f:...c

��
f: cmd(c��f , c�) � skip succ(c��f ) � {c�} pred(c�f ) � {c}

fi; c�... pred(c�) � {c��t , c��f}
c :while c�: b do cmd(c, c�) � skip succ(c) � {c�} pred(c�) � {c, c��b }
c�b:...c

��
b : cmd(c�, c�b) � b succ(c�) � {c�b, c

��} pred(c�b) � {c�}
od; c��... cmd(c�, c��) � ¬b succ(c��b ) � {c�} pred(c��) � {c�}

cmd(c��b , c) � skip

For programs with scalar variables �x, we denote by �x (or x0) their initial values

and by �x their current values. Following [8, Sect. 3.4.5], the symbolic execution [19]

attaches invariants Φ(c) to program points c ∈ Γ defined as the pointwise ⇒̇-least

fixpoint of the system of equations Φ = F (Φ) with




F (Φ)c =

�

c� ∈ pred(c)

F(cmd(c�, c), Φ(c�)) ∨
�

c∈Iπ

(�x = �x)

c ∈ Γ

where pred(c) = ∅ for program entry points c ∈ Iπ and the forward transformers are

in Floyd’s style (the predicates φ depends only on the symbolic initial �x and current

�x values of the program variables �x)

F(skip, φ) � φ

F(x:=e, φ) � ∃�x �
: φ[�x := �x �

] ∧ dom(e, �x �
) ∧ �x = �x �

[x := e[�x := �x �
]]

F(b, φ) � φ ∧ dom(b, �x) ∧ b[�x := �x]

where dom(e, �x) is the condition on �x for evaluating e as a function of �x without

runtime error. By allowing infinitary disjunctions, we have [8, Sect. 3.4.5]

Theorem 14 Φ = lfp
⇒̇

F has the form Φ(c) =
�

i∈∆c
pc,i(�x) ∧ �x = �ec,i(�x) where

pc,i(�x) is a Boolean expression defining the condition for control to reach the current
program point c as a function of the initial values �x of the scalar variables �x and
�ei(�x) defines the current values �x of the scalar variables �x as a function of their
initial values �x when reaching program point c with path condition pc,i(�x) true. ��
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void AllNotNull(Ptr[] A) {

/* 1: */ int i = 0;

/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {

/* 4: */ assert((A != null) && (A[i] != null));

/* 5: */ A[i].f = new Object();

/* 6: */ i++;

/* 7: */ }

/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modified
at program point 5:. ��

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposed e.g.
in [9, Sect. 10-4.6]) or [8, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that efficient code can be generated to check it.
Moreover this is stronger than strictly required (e.g. the code x = random(); assert(x

==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side effect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;

while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))

{ return false };

i++ }

return true }

Modifications of i have no visible side effects while those of elements of A do have,
so the assignment A[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. ��

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and efficient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) using ForAll quantifiers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. ��
The semantics of code is formalized in Sect. 2 and that of specifications by runtime
assertions in Sect. 3. The contract precondition inference problem is defined in Sect. 4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect. 5 and used in Sect. 6 to provide a fixpoint solution to
the contract precondition inference problem. Several effective contract precondition
inference are then proposed, by data flow analysis in Sect. 7, for scalar variables both
by forward symbolic analysis in Sect. 8 and by backward symbolic analysis in Sect. 9,
for collections by forward analysis in Sect. 10. Sect. 11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [8], the small-step operational se-
mantics of code is assumed to be given by a transition system �Σ, τ, I� where Σ is a

2
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Abstract domain

9 Contract precondition inference by backward symbolic
analysis

Backward symbolic precondition analysis of simple assertions. The

symbolic relation between entry and assert conditions can be also established

backwards, starting from the assert conditions and propagating towards the

entry points taking assignments and tests into account with widening around

unbounded loops. The advantage is that we start from a known condition and

assignments and tests are easily handled symbolically using Hoare’s weakest pre-

condition rule.We first consider simple assertions involving only scalar variables

(including e.g. the size of collections as needed in Sect. 10).

In general the assertions on structured data are on elements of this data.

Propagating these checks in the precondition will just duplicate the traversal

on the data structure to test individual elements. At runtime, this duplicates

the data structure traversal, which is the main reason which programmers do

hesitate to write a contract precondition which is rechecked in assertions, which

provides more precise information at debug time. Moreover, for static analysis,

the information collected on individual elements of data structures through deep

traversals is likely to be abstracted away. So the interest of a contract precondi-

tion on data structure seems to be obvious in the case of a global data structure

property which is easily checked at runtime and efficiently abstracted without

loss of precision in the static analysis.

Abstract domain. Given the set B of visible side effect free Boolean expres-

sions on scalar variables (which can be chosen as a subset of the Boolean ex-

pressions of the language), we consider the abstract domain B/≡ containing the

infimum false (unreachable), the supremum true (unknown) and equivalence

classes of expressions [b]/≡ for the abstract equivalence of expressions≡ abstract-

ing semantic equality that is b ≡ b� ⇒ ∀s ∈ Σ : �b�s = �b��s. The equivalence

classes are encoded by choosing an arbitrary representative b� ∈ [b]/≡.

The abstract equivalence ≡ can be chosen within a wide range of possibilities,

from syntactic equality, to the use of a simplifier, of abstract domains, or that of

a SMT solver. This provides an abstract implication b �⇒ b� underapproximating

the concrete implication ⇒ in that b �⇒ b� implies that ∀s ∈ Σ : �b�s ⇒ �b��s.
The equivalence is defined as b ≡ b� � b �⇒ b� ∧ b� �⇒ b. The basic abstract

domain is therefore �B/≡, �⇒�.
We now define the abstract domain functor

B
2 � {bp ❀ ba | bp ∈ B ∧ ba ∈ B ∧ bp ��⇒ ba}

Notice that bp ❀ ba denotes the pair �[bp]/≡, [ba]/≡� of B/≡ × B/≡. The

interpretation of bp ❀ ba is that when the path condition bp holds, an execution

path will be followed to some assert(b) and checking ba at the beginning of

the path is the same as checking this b later in the path when reaching the

assertion. We exclude the elements such that bp �⇒ ba which implies bp ⇒ ba so

that no precondition is needed. An example is if (bp) { assert(ba) } where
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⦁ abstract domain of Boolean expressions

⦁ (Trivial) example:
x==0 x==1 x==2 x==3

true

false

x==-1x==-2x==-3
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a SMT solver. This provides an abstract implication b �⇒ b� underapproximating

the concrete implication ⇒ in that b �⇒ b� implies that ∀s ∈ Σ : �b�s ⇒ �b��s.
The equivalence is defined as b ≡ b� � b �⇒ b� ∧ b� �⇒ b. The basic abstract

domain is therefore �B/≡, �⇒�.
We now define the abstract domain functor

B
2 � {bp ❀ ba | bp ∈ B ∧ ba ∈ B ∧ bp ��⇒ ba}

Notice that bp ❀ ba denotes the pair �[bp]/≡, [ba]/≡� of B/≡ × B/≡. The

interpretation of bp ❀ ba is that when the path condition bp holds, an execution

path will be followed to some assert(b) and checking ba at the beginning of

the path is the same as checking this b later in the path when reaching the

assertion. We exclude the elements such that bp �⇒ ba which implies bp ⇒ ba so

that no precondition is needed. An example is if (bp) { assert(ba) } where
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9 Contract precondition inference by backward symbolic
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Backward symbolic precondition analysis of simple assertions. The

symbolic relation between entry and assert conditions can be also established

backwards, starting from the assert conditions and propagating towards the

entry points taking assignments and tests into account with widening around
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sions on scalar variables (which can be chosen as a subset of the Boolean ex-

pressions of the language), we consider the abstract domain B/≡ containing the

infimum false (unreachable), the supremum true (unknown) and equivalence

classes of expressions [b]/≡ for the abstract equivalence of expressions≡ abstract-

ing semantic equality that is b ≡ b� ⇒ ∀s ∈ Σ : �b�s = �b��s. The equivalence

classes are encoded by choosing an arbitrary representative b� ∈ [b]/≡.

The abstract equivalence ≡ can be chosen within a wide range of possibilities,

from syntactic equality, to the use of a simplifier, of abstract domains, or that of

a SMT solver. This provides an abstract implication b �⇒ b� underapproximating

the concrete implication ⇒ in that b �⇒ b� implies that ∀s ∈ Σ : �b�s ⇒ �b��s.
The equivalence is defined as b ≡ b� � b �⇒ b� ∧ b� �⇒ b. The basic abstract

domain is therefore �B/≡, �⇒�.
We now define the abstract domain functor

B
2 � {bp ❀ ba | bp ∈ B ∧ ba ∈ B ∧ bp ��⇒ ba}

Notice that bp ❀ ba denotes the pair �[bp]/≡, [ba]/≡� of B/≡ × B/≡. The

interpretation of bp ❀ ba is that when the path condition bp holds, an execution

path will be followed to some assert(b) and checking ba at the beginning of

the path is the same as checking this b later in the path when reaching the

assertion. We exclude the elements such that bp �⇒ ba which implies bp ⇒ ba so

that no precondition is needed. An example is if (bp) { assert(ba) } where
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The soundness follows from ∀�s ∈ �τ + : ∀j < |�s | : φ(c)[�x := ��x��s0][�x := ��x��sj ] =

∀�s ∈ �τ + : ∀j < |�s | : ∀i ∈ ∆π�sj : pπ�sj ,i[�x := ��x��s0] ⇒ ��x��sj = �eπ�sj ,i[�x := ��x��s0]

where ��x�s is the value of the vector �x of scalar variables in state s.
This suggests a method for calculating the precondition by adding for each as-

sertion c:assert(b) the condition
�

i∈∆c
pc,i[�x := �x] ⇒ b[�x := �ec,i[�x := �x]] which is

checked on the initial values of variables.

Example 15 For the program

/* 1: x=x0 & y=y0 */ if (x == 0 ) {
/* 2: x0=0 & x=x0 & y=y0 */ x++;
/* 3: x0=0 & x=x0+1 & y=y0 */ assert(x==y);

}

the precondition at program point 1: is (!(x==0)||(x+1==y)). ��

Of course the iterative computation of lfp
⇒̇

F will in general not terminate so that

a widening [11] is needed. A simple one would bound the number of iterations and

widen
�

i∈∆c
pc,i(�x) ∧ �x = �ec,i(�x) to

�
i∈∆c

pc,i(�x) ⇒ �x = �ec,i(�x).

9 Contract precondition inference by backward symbolic
analysis

Backward symbolic precondition analysis of simple assertions. The symbolic

relation between entry and assert conditions can be also established backwards,

starting from the assert conditions and propagating towards the entry points taking

assignments and tests into account with widening around unbounded loops. We first

consider simple assertions involving only scalar variables (including e.g. the size of

collections as needed in Sect. 10).

Abstract domain. Given the set B of visible side effect free Boolean expressions on

scalar variables, we consider the abstract domain B/≡ containing the infimum false
(unreachable), the supremum true (unknown) and equivalence classes of expressions

[b]/≡ for the abstract equivalence of expressions ≡ abstracting semantic equality that

is b ≡ b� ⇒ ∀s ∈ Σ : �b�s = �b��s. The equivalence classes are encoded by choosing

an arbitrary representative b� ∈ [b]/≡. The abstract equivalence ≡ can be chosen

within a wide range of possibilities, from syntactic equality, to the use of a simplifier,

of abstract domains, or that of a SMT solver. This provides an abstract implication

b �⇒ b� underapproximating the concrete implication ⇒ in that b �⇒ b� implies that

∀s ∈ Σ : �b�s ⇒ �b��s. The equivalence is defined as b ≡ b� � b �⇒ b� ∧ b� �⇒ b. The

basic abstract domain is therefore �B/≡, �⇒�.
We now define the abstract domain functor

B
2 � {bp ❀ ba | bp ∈ B ∧ ba ∈ B ∧ bp ��⇒ ba}

Notice that bp ❀ ba denotes the pair �[bp]/≡, [ba]/≡� of B/≡ × B/≡. The interpre-

tation of bp ❀ ba is that when the path condition bp holds, an execution path will

be followed to some assert(b) and checking ba at the beginning of the path is the

same as checking this b later in the path when reaching the assertion. We exclude

the elements such that bp �⇒ ba which implies bp ⇒ ba so that no precondition is

needed. An example is if (bp) { assert(ba) } where the assertion has already

been checked on the paths leading to that assertion. The abstract ordering on

�B2
, �⇒� is bp ❀ ba �⇒ b�p ❀ b�a � b�p �⇒ bp ∧ ba �⇒ b�a.
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the assertion has already been checked on the paths leading to that assertion.

The abstract ordering on �B2
, �⇒� is bp ❀ ba �⇒ b�p ❀ b�a � b�p �⇒ bp ∧ ba �⇒ b�a.

Different paths to different assertions are abstracted by elements of �℘(B
2
),

⊆�, each bp ❀ ba corresponding to a different path to an assertion. The number

of paths can grow indefinitely so �℘(B
2
), ⊆� must be equipped with a widening.

Finally our abstract domain will be �Γ → ℘(B
2
), ⊆̇� ordered pointwise so as

to attach an abstract property ρ(c) ∈ ℘(B
2
) to each program point c ∈ Γ .

Example 17 The program on the left has abstract properties given on the

right.

/* 1: */ if ( odd(x) ) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

ρ(1) = {odd(x) ❀ y >= 0,¬odd(x) ❀ y < 0}
ρ(2) = {true ❀ y >= 0}
ρ(3) = {true ❀ y > 0}

ρ(4) = {true ❀ y < 0}
ρ(5) = ∅ ��

Because the abstraction is syntactic, there may be no best abstraction, so we de-

fine the concretization (recall that A is the set of pairs �c, b� such that assert(b)
is checked at program point c and define A(c) � �

�c, b�∈A b)

γ̇ ∈ (Γ → ℘(B
2
)) → ℘( �Σ+

), γ̇(ρ) �
�

c ∈ Γ

{�s ∈ γc(ρ(c)) | π�s0 = c}

γc ∈ ℘(B
2
) → ℘({�s ∈ �Σ+ | π�s0 = c}), γc(C) �

�

bp❀ba ∈ C

γc(bp ❀ ba)

γc ∈ B
2 → ℘({�s ∈ �Σ+ | π�s0 = c})

γc(bp ❀ ba) � {�s ∈ �Σ+ | π�s0 = c ∧ �bp��s0 ⇒ (∃j < |�s | : �ba��s0 = �A(π�sj)��sj)}.

Observe that γ̇ is decreasing which corresponds to the intuition that an analysis

finding no path precondition bp ❀ ba defines all possible executions in �Σ+.

Backward path condition and checked expression propagation. The

system of backward equations ρ = B(ρ) is (recall that
�
∅ = ∅)





B(ρ)c =

�

c�∈succ(c), b❀b�∈ρ(c�)

B(cmd(c, c�), b ❀ b�) ∪ {true ❀ b | �c, b� ∈ A}

c ∈ Γ

where (writing e[x := e�] for the substitution of e� for x in e)

B(skip, bp ❀ ba) � {bp ❀ ba}
B(x:=e, bp ❀ ba) � {bp[x := e] ❀ ba[x := e]} if bp[x := e] ∈ B ∧ ba[x := e] ∈ B

∧ bp[x := e] ��⇒ bc[x := e]
� ∅ otherwise

B(b, bp ❀ ba) � {b && bp ❀ ba} if b && bp ∈ B ∧ b && bp ��⇒ ba

� ∅ otherwise

By Cor. 10 and (1-b), the analysis is sound, i.e.
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2
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⊆�, each bp ❀ ba corresponding to a different path to an assertion. The number

of paths can grow indefinitely so �℘(B
2
), ⊆� must be equipped with a widening.

Finally our abstract domain will be �Γ → ℘(B
2
), ⊆̇� ordered pointwise so as

to attach an abstract property ρ(c) ∈ ℘(B
2
) to each program point c ∈ Γ .

Example 17 The program on the left has abstract properties given on the

right.

/* 1: */ if ( odd(x) ) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

ρ(1) = {odd(x) ❀ y >= 0,¬odd(x) ❀ y < 0}
ρ(2) = {true ❀ y >= 0}
ρ(3) = {true ❀ y > 0}

ρ(4) = {true ❀ y < 0}
ρ(5) = ∅ ��

Because the abstraction is syntactic, there may be no best abstraction, so we de-

fine the concretization (recall that A is the set of pairs �c, b� such that assert(b)
is checked at program point c and define A(c) � �

�c, b�∈A b)

γ̇ ∈ (Γ → ℘(B
2
)) → ℘( �Σ+

), γ̇(ρ) �
�

c ∈ Γ

{�s ∈ γc(ρ(c)) | π�s0 = c}

γc ∈ ℘(B
2
) → ℘({�s ∈ �Σ+ | π�s0 = c}), γc(C) �

�

bp❀ba ∈ C

γc(bp ❀ ba)

γc ∈ B
2 → ℘({�s ∈ �Σ+ | π�s0 = c})

γc(bp ❀ ba) � {�s ∈ �Σ+ | π�s0 = c ∧ �bp��s0 ⇒ (∃j < |�s | : �ba��s0 = �A(π�sj)��sj)}.

Observe that γ̇ is decreasing which corresponds to the intuition that an analysis

finding no path precondition bp ❀ ba defines all possible executions in �Σ+.

Backward path condition and checked expression propagation. The

system of backward equations ρ = B(ρ) is (recall that
�
∅ = ∅)





B(ρ)c =

�

c�∈succ(c), b❀b�∈ρ(c�)

B(cmd(c, c�), b ❀ b�) ∪ {true ❀ b | �c, b� ∈ A}

c ∈ Γ

where (writing e[x := e�] for the substitution of e� for x in e)

B(skip, bp ❀ ba) � {bp ❀ ba}
B(x:=e, bp ❀ ba) � {bp[x := e] ❀ ba[x := e]} if bp[x := e] ∈ B ∧ ba[x := e] ∈ B

∧ bp[x := e] ��⇒ bc[x := e]
� ∅ otherwise

B(b, bp ❀ ba) � {b && bp ❀ ba} if b && bp ∈ B ∧ b && bp ��⇒ ba

� ∅ otherwise

By Cor. 10 and (1-b), the analysis is sound, i.e.
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assert(b’) = true

Intuitive meaning of

assert(b’) = true
assert(b) = true
assert(b) = false
assert(b) = false
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Different paths to different assertions are abstracted by elements of �℘(B
2
), ⊆�,

each bp ❀ ba corresponding to a different path to an assertion. The number of paths

can grow indefinitely so �℘(B
2
), ⊆� must be equipped with a widening.

Finally our abstract domain will be �Γ → ℘(B
2
), ⊆̇� ordered pointwise so as to

attach an abstract property ρ(c) ∈ ℘(B
2
) to each program point c ∈ Γ .

Example 16 The program on the left has abstract properties given on the right.

/* 1: */ if ( odd(x) ) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

ρ(1) = {odd(x) ❀ y >= 0,¬odd(x) ❀ y < 0}
ρ(2) = {true ❀ y >= 0}
ρ(3) = {true ❀ y > 0}

ρ(4) = {true ❀ y < 0}
ρ(5) = ∅ ��

Because the abstraction is syntactic, there may be no best abstraction, so we define

the concretization (recall that A is the set of pairs �c, b� such that assert(b) is

checked at program point c and define A(c) � �
�c, b�∈A b)

γ̇ ∈ (Γ → ℘(B
2
)) → ℘( �Σ+

), γ̇(ρ) �
�

c ∈ Γ

{�s ∈ γc(ρ(c)) | π�s0 = c}

γc ∈ ℘(B
2
) → ℘({�s ∈ �Σ+ | π�s0 = c}), γc(C) �

�

bp❀ba ∈ C

γc(bp ❀ ba)

γc ∈ B
2 → ℘({�s ∈ �Σ+ | π�s0 = c})

γc(bp ❀ ba) � {�s ∈ �Σ+ | π�s0 = c ∧ �bp��s0 ⇒ (∃j < |�s | : �ba��s0 = �A(π�sj)��sj)}.
Observe that γ̇ is decreasing which corresponds to the intuition that an analysis

finding no path precondition bp ❀ ba defines all possible executions in �Σ+.

Backward path condition and checked expression propagation. The system

of backward equations ρ = B(ρ) is (recall that
�
∅ = ∅)




B(ρ)c =

�

c�∈succ(c), b❀b�∈ρ(c�)

B(cmd(c, c�), b ❀ b�) ∪ {true ❀ b | �c, b� ∈ A}

c ∈ Γ

where (writing e[x := e�] for the substitution of e� for x in e)

B(skip, bp ❀ ba) � {bp ❀ ba}
B(x:=e, bp ❀ ba) � {bp[x := e] ❀ ba[x := e]} if bp[x := e] ∈ B ∧ ba[x := e] ∈ B

∧ bp[x := e] ��⇒ bc[x := e]
� ∅ otherwise

B(b, bp ❀ ba) � {b && bp ❀ ba} if b && bp ∈ B ∧ b && bp ��⇒ ba

� ∅ otherwise

By Cor. 9 and (1-b), the analysis is sound, i.e.

Theorem 17 If ρ ⊆̇ lfp
⊆̇

B then �τ + ⊆ γ̇(ρ). ��

Observe that B can be ˙�⇒ -overapproximated (e.g. to allow for simplifications of the

Boolean expressions).

Example 18 The analysis of the following program

/* 1: */ while (x != 0) {
/* 2: */ assert(x > 0);
/* 3: */ x--;
/* 4: */ } /* 5: */
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Different paths to different assertions are abstracted by elements of �℘(B
2
), ⊆�,

each bp ❀ ba corresponding to a different path to an assertion. The number of paths

can grow indefinitely so �℘(B
2
), ⊆� must be equipped with a widening.

Finally our abstract domain will be �Γ → ℘(B
2
), ⊆̇� ordered pointwise so as to

attach an abstract property ρ(c) ∈ ℘(B
2
) to each program point c ∈ Γ .

Example 16 The program on the left has abstract properties given on the right.

/* 1: */ if ( odd(x) ) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

ρ(1) = {odd(x) ❀ y >= 0,¬odd(x) ❀ y < 0}
ρ(2) = {true ❀ y >= 0}
ρ(3) = {true ❀ y > 0}

ρ(4) = {true ❀ y < 0}
ρ(5) = ∅ ��

Because the abstraction is syntactic, there may be no best abstraction, so we define

the concretization (recall that A is the set of pairs �c, b� such that assert(b) is

checked at program point c and define A(c) � �
�c, b�∈A b)

γ̇ ∈ (Γ → ℘(B
2
)) → ℘( �Σ+

), γ̇(ρ) �
�

c ∈ Γ

{�s ∈ γc(ρ(c)) | π�s0 = c}

γc ∈ ℘(B
2
) → ℘({�s ∈ �Σ+ | π�s0 = c}), γc(C) �

�

bp❀ba ∈ C

γc(bp ❀ ba)

γc ∈ B
2 → ℘({�s ∈ �Σ+ | π�s0 = c})

γc(bp ❀ ba) � {�s ∈ �Σ+ | π�s0 = c ∧ �bp��s0 ⇒ (∃j < |�s | : �ba��s0 = �A(π�sj)��sj)}.
Observe that γ̇ is decreasing which corresponds to the intuition that an analysis

finding no path precondition bp ❀ ba defines all possible executions in �Σ+.

Backward path condition and checked expression propagation. The system

of backward equations ρ = B(ρ) is (recall that
�
∅ = ∅)




B(ρ)c =

�

c�∈succ(c), b❀b�∈ρ(c�)

B(cmd(c, c�), b ❀ b�) ∪ {true ❀ b | �c, b� ∈ A}

c ∈ Γ

where (writing e[x := e�] for the substitution of e� for x in e)

B(skip, bp ❀ ba) � {bp ❀ ba}
B(x:=e, bp ❀ ba) � {bp[x := e] ❀ ba[x := e]} if bp[x := e] ∈ B ∧ ba[x := e] ∈ B

∧ bp[x := e] ��⇒ bc[x := e]
� ∅ otherwise

B(b, bp ❀ ba) � {b && bp ❀ ba} if b && bp ∈ B ∧ b && bp ��⇒ ba

� ∅ otherwise

By Cor. 9 and (1-b), the analysis is sound, i.e.

Theorem 17 If ρ ⊆̇ lfp
⊆̇

B then �τ + ⊆ γ̇(ρ). ��

Observe that B can be ˙�⇒ -overapproximated (e.g. to allow for simplifications of the

Boolean expressions).

Example 18 The analysis of the following program

/* 1: */ while (x != 0) {
/* 2: */ assert(x > 0);
/* 3: */ x--;
/* 4: */ } /* 5: */
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leads to the following iterates at program point 1: ρ0(1) = ∅, ρ1(1) = {x �= 0 ❀ x >
0}, which is stable since the next iterate is (x �= 0∧ x > 0∧ x− 1 �= 0) ❀ (x− 1 > 0)
≡ x > 1 ❀ x > 1, which is trivially satisfied hence not added to ρ2(1) = ρ1(1). ��

Example 19 The backward symbolic analysis of Ex. 1 moves the checks (A !=
null) to the precondition. ��

A simple widening to enforce convergence would limit the size of the elements of
℘(B2), which is sound since eliminating a pair bp ❀ ba would just lead to ignore
some assertion in the precondition, which is always correct.

Precondition generation. Given an analysis ρ ⊆̇ lfp
⊆

B, the syntactic precondi-
tion generated at entry control point i ∈ Iπ � {s ∈ I | πs = i} is

Pi � &&
bp❀ba∈ρ(i)

(!(bp) || (ba)) (again, assuming && ∅ � true)

Example 20 For Ex. 18, the precondition generated at program point 1 will be !(x
!= 0) || (x > 0) since the static analysis was able to show that only the first assert
in the loop does matter because when passed successfully it implies all the following
ones. ��

The set of states for which the syntactic precondition Pi is evaluated to true at
program point i ∈ Γ is Pi � {s ∈ Σ | πs = i ∧ � Pi�s} and so for all program entry
points (in case there is more than one) PI � {s ∈ Σ | ∃i ∈ Iπ : s ∈ Pi}.

Theorem 21 PA ∩ I ⊆ PI. ��

So, by Th. 6, the data flow analysis is sound, a rejected initial state would inevitably
have lead to an assertion failure.

10 Contract precondition inference for collections by forward
static analysis

Symbolic execution as considered in Sect. 8 and 9 for scalars is harder for data
structures since all the elements of the data structure must be handled individually
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arrays). The idea is to move to the precondition the assertions on elements of the
collection which can be proved to be unmodified before reaching the condition.

Abstract domain for scalar variables. For scalar variables x ∈ x, we assume that
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and pointwise extension of the order 0 � 0 ≺ 1 � 1 on A � {0, 1} where 0 means
“unmodified” and 1 “unknown”. The concretization is

γ(η, ζ) � {�s ∈ �Σ+ | ∀j < |�s | : �sj ∈ γx(η) ∧
∀x ∈ x : ζ(π�sj)(x) = 0 ⇒ �x��s0 = �x��sπ�sj}

Segmentation abstract domain. For collections X ∈ X, we propose to use seg-
mentation as introduced by [14]. A segmentation abstract property in S(A) depends
on abstract properties in A holding for elements of segments. So
S(A) � {(B ×A)× (B ×A× { , ?})k × (B × { , ?}) | k � 0} ∪ {⊥}

and the segmentation abstract properties have the form
{e1

1 ... e1
m1}A1 {e2

1 ... e2
m2}[?2]A2 . . . An−1 {en

1 ... en
mn}[?n]

where

10

⦁ &"-+*"$5"%$)4(;$)-"""""""""""""""&f&%=+4"*$"+&%=":,$/,&<":$()*

the assertion has already been checked on the paths leading to that assertion.

The abstract ordering on �B2
, �⇒� is bp ❀ ba �⇒ b�p ❀ b�a � b�p �⇒ bp ∧ ba �⇒ b�a.

Different paths to different assertions are abstracted by elements of �℘(B
2
),

⊆�, each bp ❀ ba corresponding to a different path to an assertion. The number

of paths can grow indefinitely so �℘(B
2
), ⊆� must be equipped with a widening.

Finally our abstract domain will be �Γ → ℘(B
2
), ⊆̇� ordered pointwise so as

to attach an abstract property ρ(c) ∈ ℘(B
2
) to each program point c ∈ Γ .

Example 17 The program on the left has abstract properties given on the

right.

/* 1: */ if ( odd(x) ) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

ρ(1) = {odd(x) ❀ y >= 0,¬odd(x) ❀ y < 0}
ρ(2) = {true ❀ y >= 0}
ρ(3) = {true ❀ y > 0}

ρ(4) = {true ❀ y < 0}
ρ(5) = ∅ ��

Because the abstraction is syntactic, there may be no best abstraction, so we de-

fine the concretization (recall that A is the set of pairs �c, b� such that assert(b)
is checked at program point c and define A(c) � �

�c, b�∈A b)

γ̇ ∈ (Γ → ℘(B
2
)) → ℘( �Σ+

), γ̇(ρ) �
�

c ∈ Γ

{�s ∈ γc(ρ(c)) | π�s0 = c}

γc ∈ ℘(B
2
) → ℘({�s ∈ �Σ+ | π�s0 = c}), γc(C) �

�

bp❀ba ∈ C

γc(bp ❀ ba)

γc ∈ B
2 → ℘({�s ∈ �Σ+ | π�s0 = c})

γc(bp ❀ ba) � {�s ∈ �Σ+ | π�s0 = c ∧ �bp��s0 ⇒ (∃j < |�s | : �ba��s0 = �A(π�sj)��sj)}.

Observe that γ̇ is decreasing which corresponds to the intuition that an analysis

finding no path precondition bp ❀ ba defines all possible executions in �Σ+.

Backward path condition and checked expression propagation. The

system of backward equations ρ = B(ρ) is (recall that
�
∅ = ∅)





B(ρ)c =

�

c�∈succ(c), b❀b�∈ρ(c�)

B(cmd(c, c�), b ❀ b�) ∪ {true ❀ b | �c, b� ∈ A}

c ∈ Γ

where (writing e[x := e�] for the substitution of e� for x in e)

B(skip, bp ❀ ba) � {bp ❀ ba}
B(x:=e, bp ❀ ba) � {bp[x := e] ❀ ba[x := e]} if bp[x := e] ∈ B ∧ ba[x := e] ∈ B

∧ bp[x := e] ��⇒ bc[x := e]
� ∅ otherwise

B(b, bp ❀ ba) � {b && bp ❀ ba} if b && bp ∈ B ∧ b && bp ��⇒ ba

� ∅ otherwise

By Cor. 10 and (1-b), the analysis is sound, i.e.

18
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⦁
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Observe that γ̇ is decreasing which corresponds to the intuition that an analysis

finding no path precondition bp ❀ ba defines all possible executions in �Σ+.

Backward path condition and checked expression propagation. The
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B(cmd(c, c�), b ❀ b�) ∪ {true ❀ b | �c, b� ∈ A}
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where (writing e[x := e�] for the substitution of e� for x in e)

B(skip, bp ❀ ba) � {bp ❀ ba}
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� ∅ otherwise
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By Cor. 10 and (1-b), the analysis is sound, i.e.
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Concretization of                 for a given program point c
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2
),
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), ⊆� must be equipped with a widening.

Finally our abstract domain will be �Γ → ℘(B
2
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2
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Observe that γ̇ is decreasing which corresponds to the intuition that an analysis
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system of backward equations ρ = B(ρ) is (recall that
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c�∈succ(c), b❀b�∈ρ(c�)

B(cmd(c, c�), b ❀ b�) ∪ {true ❀ b | �c, b� ∈ A}

c ∈ Γ

where (writing e[x := e�] for the substitution of e� for x in e)

B(skip, bp ❀ ba) � {bp ❀ ba}
B(x:=e, bp ❀ ba) � {bp[x := e] ❀ ba[x := e]} if bp[x := e] ∈ B ∧ ba[x := e] ∈ B

∧ bp[x := e] ��⇒ bc[x := e]
� ∅ otherwise

B(b, bp ❀ ba) � {b && bp ❀ ba} if b && bp ∈ B ∧ b && bp ��⇒ ba

� ∅ otherwise

By Cor. 10 and (1-b), the analysis is sound, i.e.
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2
),

⊆�, each bp ❀ ba corresponding to a different path to an assertion. The number
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2
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), ⊆̇� ordered pointwise so as

to attach an abstract property ρ(c) ∈ ℘(B
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) to each program point c ∈ Γ .
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Observe that γ̇ is decreasing which corresponds to the intuition that an analysis

finding no path precondition bp ❀ ba defines all possible executions in �Σ+.

Backward path condition and checked expression propagation. The

system of backward equations ρ = B(ρ) is (recall that
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c�∈succ(c), b❀b�∈ρ(c�)

B(cmd(c, c�), b ❀ b�) ∪ {true ❀ b | �c, b� ∈ A}

c ∈ Γ

where (writing e[x := e�] for the substitution of e� for x in e)

B(skip, bp ❀ ba) � {bp ❀ ba}
B(x:=e, bp ❀ ba) � {bp[x := e] ❀ ba[x := e]} if bp[x := e] ∈ B ∧ ba[x := e] ∈ B
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),

⊆�, each bp ❀ ba corresponding to a different path to an assertion. The number
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2
), ⊆� must be equipped with a widening.
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), ⊆̇� ordered pointwise so as

to attach an abstract property ρ(c) ∈ ℘(B
2
) to each program point c ∈ Γ .
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/* 2: */ y++;
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} else {
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, �⇒� is bp ❀ ba �⇒ b�p ❀ b�a � b�p �⇒ bp ∧ ba �⇒ b�a.

Different paths to different assertions are abstracted by elements of �℘(B
2
),

⊆�, each bp ❀ ba corresponding to a different path to an assertion. The number

of paths can grow indefinitely so �℘(B
2
), ⊆� must be equipped with a widening.

Finally our abstract domain will be �Γ → ℘(B
2
), ⊆̇� ordered pointwise so as

to attach an abstract property ρ(c) ∈ ℘(B
2
) to each program point c ∈ Γ .

Example 17 The program on the left has abstract properties given on the

right.
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/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

ρ(1) = {odd(x) ❀ y >= 0,¬odd(x) ❀ y < 0}
ρ(2) = {true ❀ y >= 0}
ρ(3) = {true ❀ y > 0}

ρ(4) = {true ❀ y < 0}
ρ(5) = ∅ ��

Because the abstraction is syntactic, there may be no best abstraction, so we de-

fine the concretization (recall that A is the set of pairs �c, b� such that assert(b)
is checked at program point c and define A(c) � �

�c, b�∈A b)

γ̇ ∈ (Γ → ℘(B
2
)) → ℘( �Σ+

), γ̇(ρ) �
�

c ∈ Γ

{�s ∈ γc(ρ(c)) | π�s0 = c}

γc ∈ ℘(B
2
) → ℘({�s ∈ �Σ+ | π�s0 = c}), γc(C) �

�

bp❀ba ∈ C

γc(bp ❀ ba)

γc ∈ B
2 → ℘({�s ∈ �Σ+ | π�s0 = c})

γc(bp ❀ ba) � {�s ∈ �Σ+ | π�s0 = c ∧ �bp��s0 ⇒ (∃j < |�s | : �ba��s0 = �A(π�sj)��sj)}.
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∅ = ∅)
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Command, successor and predecessor of a program point

⇒ ∀�s � ∈ �τ +
: π�s �

0 = i ⇒ �s � ∈ �RA(b) �def. �αD�

⇒ ∀�s � ∈ �τ +
: π�s �

0 = i ⇒ (∃k < |�s � | : ��s �
0, �s �

k� ∈ RA(b))

�def. �RA(b) � {�s ∈ �Σ+ | ∃i < |�s | : ��s0, �si� ∈ RA(b)}�

⇒ ∀�s � ∈ �τ +
: π�s �

0 = i ⇒ (∃k < |�s � | : �π�s �
k, b� ∈ A ∧ �b��s �

0 = �b��s �
k)

�def. RA(b) � {�s, s�� | �πs�, b� ∈ A ∧ �b�s = �b�s�}�

⇒ ¬�b��s0 ∧ (∀j < |�s | : ∀�π�sj , b’� ∈ A : �b’��sj) ∧ (∃k < |�s | : �π�sk, b� ∈
A ∧ �b��s0 = �b��sk) �for the rejected good run �s�

⇒ ∃k < |�s | : �π�sk, b� ∈ A ∧ ¬�b��sk ∧ �b��sk �a contradiction� ��

By Th. 6 and 13, the precondition generation is sound: a rejected initial state

would inevitably have lead to an assertion failure.

Example 14 Continuing Ex. 1, the assertion A != null is checked on all paths

and A is not changed (only its elements are), so the data flow analysis is able to

move the assertion as a precondition. ��

However, the data flow abstraction is rather imprecise because a precondition is

checked on code entry only if

1. the exact same precondition is checked in an assert (since scalar and collec-

tion variable modifications are not taken into account, other than annihilating

the backward propagation);

2. and this, whichever execution path is taken (conditions are not taken into

account).

We propose remedies to 1 and 2 in the following Sect. 8 and 9.

8 Contract precondition inference for scalar variables by
forward symbolic analysis

Let us define the cmd, succ and pred functions mapping control points to their

command, successors and predecessors (∀c, c� ∈ Γ : c� ∈ pred(c)⇔ c ∈ succ(c�
)).

c: x:=e; c�:... cmd(c, c�) � x:=e succ(c) � {c�} pred(c�) � {c}
c: assert(b); c�:... cmd(c, c�) � b succ(c) � {c�} pred(c�) � {c}
c: if b then cmd(c, c�

t) � b succ(c) � {c�
t, c

�
f}

c�
t:...c

��
t : cmd(c, c�

f ) � ¬b pred(c�
t) � {c}

else cmd(c��
t , c�) � skip succ(c��

t ) � {c�}
c�

f:...c
��
f: cmd(c��

f , c�) � skip succ(c��
f ) � {c�} pred(c�

f ) � {c}
fi; c�... pred(c�) � {c��

t , c��
f}

c :while c�: b do cmd(c, c�) � skip succ(c) � {c�} pred(c�) � {c, c��
b }

c�
b:...c

��
b : cmd(c�, c�

b) � b succ(c�) � {c�
b, c

��} pred(c�
b) � {c�}

od; c��... cmd(c�, c��) � ¬b succ(c��
b ) � {c�} pred(c��) � {c�}

cmd(c��
b , c) � skip

15
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Backward symbolic execution

Theorem 18 If ρ ⊆̇ lfp
⊆̇

B then �τ + ⊆ γ̇(ρ). ��

Observe that B can be ˙�⇒ -overapproximated (e.g. to allow for simplifications of

the Boolean expressions).

Proof Apply Cor. 10 to �τ + = gfp
⊆
�Σ+ λ �T . �B1 ∪ �τ 2 � �T (1-b).

Example 19 The analysis of the program if false { assert(false) } leads to

the precondition true since the assert is never executed (the analyzer forward

analysis will signal unreachability). ��

Example 20 The analysis of the program if x != null { assert(x != null)

} leads to the precondition true since the assert is always true when checked. ��

Example 21 The analysis of the program if x == null { assert(x != null)

} leads to the precondition x!=null since the assert(x!=null) will always fail

when x==null holds on program entry. ��

Example 22 The analysis of the following program

/* 1: */ while (x != 0) {
/* 2: */ assert(x > 0);
/* 3: */ x--;
/* 4: */ } /* 5: */

leads to the following iterates at program point 1: ρ0(1) = ∅, ρ1(1) = {x �= 0 ❀

x > 0}, which is stable since the next iterate is (x �= 0 ∧ x > 0 ∧ x − 1 �= 0) ❀

(x − 1 > 0) ≡ x > 1 ❀ x > 1, which is trivially satisfied hence not added to

ρ2(1) = ρ1(1). ��

Example 23 The backward symbolic analysis of Ex. 1 moves the checks (A !=
null) to the precondition. ��

A simple widening to enforce convergence would limit the size of the elements

of ℘(B
2
), which is sound since eliminating a pair bp ❀ ba would just lead to

ignore some assertion in the precondition, which is always correct.

Precondition generation. Given an analysis ρ ⊆̇ lfp
⊆

B, the syntactic pre-

condition generated at entry control point i ∈ Iπ � {s ∈ I | πs = i} is

Pi � &&
bp❀ba∈ρ(i)

(!(bp) || (ba)) (again, assuming && ∅ � true)

Example 24 For Ex. 22, the precondition generated at program point 1 will be

!(x != 0) || (x > 0) since the static analysis was able to show that only the

first assert in the loop does matter because when passed successfully it implies

all the following ones. ��
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Different paths to different assertions are abstracted by elements of �℘(B
2
), ⊆�,

each bp ❀ ba corresponding to a different path to an assertion. The number of paths

can grow indefinitely so �℘(B
2
), ⊆� must be equipped with a widening.

Finally our abstract domain will be �Γ → ℘(B
2
), ⊆̇� ordered pointwise so as to

attach an abstract property ρ(c) ∈ ℘(B
2
) to each program point c ∈ Γ .

Example 16 The program on the left has abstract properties given on the right.

/* 1: */ if ( odd(x) ) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

ρ(1) = {odd(x) ❀ y >= 0,¬odd(x) ❀ y < 0}
ρ(2) = {true ❀ y >= 0}
ρ(3) = {true ❀ y > 0}

ρ(4) = {true ❀ y < 0}
ρ(5) = ∅ ��

Because the abstraction is syntactic, there may be no best abstraction, so we define

the concretization (recall that A is the set of pairs �c, b� such that assert(b) is

checked at program point c and define A(c) � �
�c, b�∈A b)

γ̇ ∈ (Γ → ℘(B
2
)) → ℘( �Σ+

), γ̇(ρ) �
�

c ∈ Γ

{�s ∈ γc(ρ(c)) | π�s0 = c}

γc ∈ ℘(B
2
) → ℘({�s ∈ �Σ+ | π�s0 = c}), γc(C) �

�

bp❀ba ∈ C

γc(bp ❀ ba)

γc ∈ B
2 → ℘({�s ∈ �Σ+ | π�s0 = c})

γc(bp ❀ ba) � {�s ∈ �Σ+ | π�s0 = c ∧ �bp��s0 ⇒ (∃j < |�s | : �ba��s0 = �A(π�sj)��sj)}.
Observe that γ̇ is decreasing which corresponds to the intuition that an analysis

finding no path precondition bp ❀ ba defines all possible executions in �Σ+.

Backward path condition and checked expression propagation. The system

of backward equations ρ = B(ρ) is (recall that
�
∅ = ∅)




B(ρ)c =

�

c�∈succ(c), b❀b�∈ρ(c�)

B(cmd(c, c�), b ❀ b�) ∪ {true ❀ b | �c, b� ∈ A}

c ∈ Γ

where (writing e[x := e�] for the substitution of e� for x in e)

B(skip, bp ❀ ba) � {bp ❀ ba}
B(x:=e, bp ❀ ba) � {bp[x := e] ❀ ba[x := e]} if bp[x := e] ∈ B ∧ ba[x := e] ∈ B

∧ bp[x := e] ��⇒ bc[x := e]
� ∅ otherwise

B(b, bp ❀ ba) � {b && bp ❀ ba} if b && bp ∈ B ∧ b && bp ��⇒ ba

� ∅ otherwise

By Cor. 9 and (1-b), the analysis is sound, i.e.

Theorem 17 If ρ ⊆̇ lfp
⊆̇

B then �τ + ⊆ γ̇(ρ). ��

Observe that B can be ˙�⇒ -overapproximated (e.g. to allow for simplifications of the

Boolean expressions).

Example 18 The analysis of the following program

/* 1: */ while (x != 0) {
/* 2: */ assert(x > 0);
/* 3: */ x--;
/* 4: */ } /* 5: */
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Soundness of the backward symbolic execution

Theorem 18 If ρ ⊆̇ lfp
⊆̇

B then �τ + ⊆ γ̇(ρ). ��

Observe that B can be ˙�⇒ -overapproximated (e.g. to allow for simplifications of

the Boolean expressions).

Proof Apply Cor. 10 to �τ + = gfp
⊆
�Σ+ λ �T . �B1 ∪ �τ 2 � �T (1-b).

Example 19 The analysis of the program if false { assert(false) } leads to

the precondition true since the assert is never executed (the analyzer forward

analysis will signal unreachability). ��

Example 20 The analysis of the program if x != null { assert(x != null)

} leads to the precondition true since the assert is always true when checked. ��

Example 21 The analysis of the program if x == null { assert(x != null)

} leads to the precondition x!=null since the assert(x!=null) will always fail

when x==null holds on program entry. ��

Example 22 The analysis of the following program

/* 1: */ while (x != 0) {
/* 2: */ assert(x > 0);
/* 3: */ x--;
/* 4: */ } /* 5: */

leads to the following iterates at program point 1: ρ0(1) = ∅, ρ1(1) = {x �= 0 ❀

x > 0}, which is stable since the next iterate is (x �= 0 ∧ x > 0 ∧ x − 1 �= 0) ❀

(x − 1 > 0) ≡ x > 1 ❀ x > 1, which is trivially satisfied hence not added to

ρ2(1) = ρ1(1). ��

Example 23 The backward symbolic analysis of Ex. 1 moves the checks (A !=
null) to the precondition. ��

A simple widening to enforce convergence would limit the size of the elements

of ℘(B
2
), which is sound since eliminating a pair bp ❀ ba would just lead to

ignore some assertion in the precondition, which is always correct.

Precondition generation. Given an analysis ρ ⊆̇ lfp
⊆

B, the syntactic pre-

condition generated at entry control point i ∈ Iπ � {s ∈ I | πs = i} is

Pi � &&
bp❀ba∈ρ(i)

(!(bp) || (ba)) (again, assuming && ∅ � true)

Example 24 For Ex. 22, the precondition generated at program point 1 will be

!(x != 0) || (x > 0) since the static analysis was able to show that only the

first assert in the loop does matter because when passed successfully it implies

all the following ones. ��
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Example

Theorem 18 If ρ ⊆̇ lfp
⊆̇

B then �τ + ⊆ γ̇(ρ). ��

Observe that B can be ˙�⇒ -overapproximated (e.g. to allow for simplifications of

the Boolean expressions).

Proof Apply Cor. 10 to �τ + = gfp
⊆
�Σ+ λ �T . �B1 ∪ �τ 2 � �T (1-b).

Example 19 The analysis of the program if false { assert(false) } leads to

the precondition true since the assert is never executed (the analyzer forward

analysis will signal unreachability). ��

Example 20 The analysis of the program if x != null { assert(x != null)

} leads to the precondition true since the assert is always true when checked. ��

Example 21 The analysis of the program if x == null { assert(x != null)

} leads to the precondition x!=null since the assert(x!=null) will always fail

when x==null holds on program entry. ��

Example 22 The analysis of the following program

/* 1: */ while (x != 0) {
/* 2: */ assert(x > 0);
/* 3: */ x--;
/* 4: */ } /* 5: */

leads to the following iterates at program point 1:

ρ0
(1) = ∅ Initialization

ρ1
(1) = {x �= 0 ❀ x > 0}

ρ2
(1) = ρ1

(1) since (x �= 0 ∧ x > 0 ∧ x− 1 �= 0) ❀ (x− 1 > 0)

≡ x > 1 ❀ x > 1 ��

Example 23 The backward symbolic analysis of Ex. 1 moves the checks (A !=
null) to the precondition. ��

A simple widening to enforce convergence would limit the size of the elements

of ℘(B
2
), which is sound since eliminating a pair bp ❀ ba would just lead to

ignore some assertion in the precondition, which is always correct.

Precondition generation. Given an analysis ρ ⊆̇ lfp
⊆

B, the syntactic pre-

condition generated at entry control point i ∈ Iπ � {s ∈ I | πs = i} is

Pi � &&
bp❀ba∈ρ(i)

(!(bp) || (ba)) (again, assuming && ∅ � true)

Example 24 For Ex. 22, the precondition generated at program point 1 will be

!(x != 0) || (x > 0) since the static analysis was able to show that only the

first assert in the loop does matter because when passed successfully it implies

all the following ones. ��
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Backward symbolic execution-based precondition generation
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Example 23 The backward symbolic analysis of Ex. 1 moves the checks (A !=
null) to the precondition. ��

A simple widening to enforce convergence would limit the size of the elements

of ℘(B
2
), which is sound since eliminating a pair bp ❀ ba would just lead to

ignore some assertion in the precondition, which is always correct.

Precondition generation. Given an analysis ρ ⊆̇ lfp
⊆

B, the syntactic pre-

condition generated at entry control point i ∈ Iπ � {i ∈ Γ | ∃s ∈ I : πs = i}
is

Pi � &&
bp❀ba∈ρ(i)

(!(bp) || (ba)) (again, assuming && ∅ � true)
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Example 24 For Ex. 22, the precondition generated at program point 1 will be
!(x != 0) || (x > 0) since the static analysis was able to show that only the
first assert in the loop does matter because when passed successfully it implies
all the following ones. ��

The set of states for which the syntactic precondition Pi is evaluated to true at
program point i ∈ Γ is

Pi � {s ∈ Σ | πs = i ∧ � Pi�s}

and so for all program entry points (in case there is more than one)

PI � {s ∈ Σ | ∃i ∈ Iπ : s ∈ Pi}

Theorem 25 PA ∩ I ⊆ PI. ��

So, by Th. 6, the data flow analysis is sound, a rejected initial state would
inevitably have lead to an assertion failure.

Proof Assume that ρ ⊆̇ lfp
⊆̇ B and that, by reductio ad absurdum, PA ∩ I �⊆

PI. Then there is an initial state in PA ∩ I not in PI that is not in Pi for some
i ∈ Iπ. By def. (5) of PA, this state initiates a good run �s ∈ �τ + ∩¬�E+

A which is
refused on entry point i ∈ Iπ such that π�s0 = i (the run start at program point
i). This means that ∃ bp ❀ ba ∈ ρ(i) such that ¬(�(bp ⇒ ba)��s0) (the run is
rejected on entry) while ∀j < |�s | : �sj �∈ EA. so ∀j < |�s | : ∀�π�sj , b’� ∈ A : �b’��sj

(since EA � {s ∈ Σ | ∃�c, b� ∈ A : πs = c ∧ �b�s = false}). But then we have

�τ + ⊆ γ̇(ρ) �by Th. 18 since ρ ⊆̇ lfp
⊆̇ B�

⇒ {�s ∈ �τ + | π�s0 = i} ⊆ {�s ∈ γ̇(ρ) | π�s0 = i} �def. ⊆�
⇒ {�s ∈ �τ + | π�s0 = i} ⊆ γc(ρ) �def. γ̇�

and so for the good run �s ∈ �τ +∩¬�E+
A not in PI, we have �s ∈ γc(ρ) and so, by def.

of γc, for the bp ❀ ba ∈ ρ(i) such that ¬(�(bp ⇒ ba)��s0) ⇔ �bp��s0 ∧ ¬(�ba��s0),
we have

�s ∈ γc(bp ❀ ba)
⇒ �bp��s0 ⇒ (∃j < |�s | : �ba��s0 = �A(π�sj)��sj) �def. γc�
⇒ ∃j < |�s | : �ba��s0 = �A(π�sj)��sj �since �bp��s0 = true�
⇒ ∃j < |�s | : ¬�A(π�sj)��sj �since �ba��s0 = false�

in contradiction with the fact �s ∈ �τ + ∩ ¬�E+
A is a good run. ��

Contract precondition inference by symbolic analysis in Sect. 9 is more precise
that data flow analysis in Sect. 7 and will be used for scalar variables, including
size and bounds of collections, in next Sect. 10

20

forward analysis
from precondition
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(IV) Forward analysis 
for collections
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General idea

! G=+":,+I($8-"&)&'1Y+-"5$,"-%&'&,"I&,(&0'+-"%&)"0+"

&::'(+4"+'+<+)*H(-+"*$"%$''+%;$)-⟹"<8%="*$$"%$-*'1

! "A::'1"-+/<+)*H(-+"*$"%$''+%;$)-g

! F$,H&,4"$,"0&%?H&,4"-1<0$'(%"+D+%8;$)"<(/=*"

0+"%$-*'1N"&)"+c%(+)*"-$'8;$)"(-")++4+4⟹"-+/<+)*+4"5$,H&,4"4&*&e$H"&)&'1-(-

64



Future Of Software Engineering Symposium, ETH Zürich, 22–23 November 2010                                                                                                                                                                       © P. Cousot

Segmentation

a b0 n

[0,100] [-100,100] [-100,-1]

A: <{0},[0,100],{a}?,[-100,100],{b}?,[-100,-1],{n}?>

h TD&<:'+ A:

h"F$,<&''1N"*=+"&0-*,&%*"4$<&()"58)%*$,"(-

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

leads to the following iterates at program point 1: ρ0(1) = ∅, ρ1(1) = {x �= 0 ❀ x >
0}, which is stable since the next iterate is (x �= 0∧ x > 0∧ x− 1 �= 0) ❀ (x− 1 > 0)
≡ x > 1 ❀ x > 1, which is trivially satisfied hence not added to ρ2(1) = ρ1(1). ��

Example 19 The backward symbolic analysis of Ex. 1 moves the checks (A !=
null) to the precondition. ��

A simple widening to enforce convergence would limit the size of the elements of
℘(B2), which is sound since eliminating a pair bp ❀ ba would just lead to ignore
some assertion in the precondition, which is always correct.

Precondition generation. Given an analysis ρ ⊆̇ lfp
⊆

B, the syntactic precondi-
tion generated at entry control point i ∈ Iπ � {i ∈ Γ | ∃s ∈ I : πs = i} is

Pi � &&
bp❀ba∈ρ(i)

(!(bp) || (ba)) (again, assuming && ∅ � true)

Example 20 For Ex. 18, the precondition generated at program point 1 will be !(x
!= 0) || (x > 0) since the static analysis was able to show that only the first assert
in the loop does matter because when passed successfully it implies all the following
ones. ��

The set of states for which the syntactic precondition Pi is evaluated to true at
program point i ∈ Γ is Pi � {s ∈ Σ | πs = i ∧ � Pi�s} and so for all program entry
points (in case there is more than one) PI � {s ∈ Σ | ∃i ∈ Iπ : s ∈ Pi}.

Theorem 21 PA ∩ I ⊆ PI. ��

So, by Th. 6, the data flow analysis is sound, a rejected initial state would inevitably
have lead to an assertion failure.

10 Contract precondition inference for collections by forward
static analysis

Symbolic execution as considered in Sect. 8 and 9 for scalars is harder for data
structures since all the elements of the data structure must be handled individually
without loss of precision. We propose a simple solution for collections (including
arrays). The idea is to move to the precondition the assertions on elements of the
collection which can be proved to be unmodified before reaching the condition.

Abstract domain for scalar variables. For scalar variables x ∈ x, we assume that
we are given abstract properties in η ∈ Γ → R with concretization γx(η) ∈ ℘(Σ).
Moreover, we consider a dataflow analysis with abstract properties ζ ∈ Γ → x → A
and pointwise extension of the order 0 � 0 ≺ 1 � 1 on A � {0, 1} where 0 means
“unmodified” and 1 “unknown”. The concretization is

γ(η, ζ) � {�s ∈ �Σ+ | ∀j < |�s | : �sj ∈ γx(η) ∧
∀x ∈ x : ζ(π�sj)(x) = 0 ⇒ �x��s0 = �x��sπ�sj}

Segmentation abstract domain. For collections X ∈ X, we propose to use seg-
mentation as introduced by [16]. A segmentation abstract property in S(A) depends
on abstract properties in A holding for elements of segments. So
S(A) � {(B ×A)× (B ×A× { , ?})k × (B × { , ?}) | k � 0} ∪ {⊥}

and the segmentation abstract properties have the form
{e1

1 ... e1
m1}A1 {e2

1 ... e2
m2}[?2]A2 . . . An−1 {en

1 ... en
mn}[?n]

where
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– E is a set of symbolic expressions in normal form depending on variables. Here, the

abstract expressions E are restricted to the normal form v+k where v ∈ x∪{v0} is

an integer variable plus an integer constant k ∈ Z (an auxiliary variable v0 �∈ x is

assumed to be always 0 and is used to represent the integer constant k as v0 + k);

– the segment bounds {ei
1 ... ei

mi} ∈ B, i ∈ [1, n], n > 1, are finite non-empty sets of

symbolic expressions in normal form ei
j ∈ E ;

– the abstract predicates Ai ∈ A denote properties that are valid for all the elements

in the collection between the bounds; and

– the optional question mark [?
i
] follows the upper bound of a segment. Its presence

? means that the segment might be empty. Its absence means that the segment

cannot be empty. Because this information is attached to the segment upper bound

(which is also the lower bound of the next segment), the lower bound {e1
1 . . . e1

m1}
of the first segment never has a question mark. �{ , ?}, �, �, �� is a complete

lattice with ≺ ?.

Segmentation modification and checking analyses. We consider a segmen-
tation modification analysis with abstract domain S(M) where M � {e, d} with

e � e ❁ d � d. The abstract property e states that all the elements in the segment

must be equal to their initial value (so γ(e) � {�v, v� | v ∈ V}) and the abstract

property d means that some element in the segment might have been modified hence

might be different from its initial value (in which case we define γ(d) � ∅).
For each assert in the program, we also use a segmentation checking analysis

with abstract domain C � {n, c} where n � n ❁ c � c to collect the set of elements of

a collection that have been checked by this assert. The abstract property c states

that all the elements in the segment have definitely been checked by the relevant

assert and n when some element in the segment may not have been checked.

Example 22 The analysis of Ex. 1 proceeds as follows (the first segmentation in

S(M) collects element modifications for A while the second in segmentation S(C)

collects the set of elements A[i] of A checked by the assertion at program point 4:
while equal to its initial value. The classical analyses for A (not null whenever used)

and i are not shown.).

(a) 1: {0}e{A.length}? - {0}n{A.length}?
no element yet modified (e) and none checked (n), array may be empty

(b) 2: {0,i}e{A.length}? - {0,i}n{A.length}? i = 0

(c) 3: ⊥ � ({0,i}e{A.length}? - {0,i}n{A.length}?) join

= {0,i}e{A.length}? - {0,i}n{A.length}?
(d) 4: {0,i}e{A.length} - {0,i}n{A.length}

last and only segment hence array not empty (since A.length > i = 0)

(e) 5: {0,i}e{A.length} - {0,i}c{1,i+1}n{A.length}?
A[i] checked while unmodified

(f) 6: {0,i}d{1,i+1}e{A.length}? - {0,i}c{1,i+1}n{A.length}?
A[i] has been modified

(g) 7: {0,i-1}d{1,i}e{A.length}? - {0,i-1}c{1,i}n{A.length}?
invertible assignment iold = inew − 1

(h) 3: {0,i}e{A.length}? � {0,i-1}d{1,i}e{A.length}? - join

{0,i}n{A.length}? � {0,i-1}c{1,i}n{A.length}?
= {0}e{i}e{A.length}? � {0}d{i}e{A.length}? - segment unification

{0}n{i}n{A.length}? � {0}c{i}n{A.length}?

11

(*) To appear in POPL‘2011.

(*)
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Basic abstract domains for segments
● Modification analysis
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– E is a set of symbolic expressions in normal form depending on variables. Here, the

abstract expressions E are restricted to the normal form v+k where v ∈ x∪{v0} is

an integer variable plus an integer constant k ∈ Z (an auxiliary variable v0 �∈ x is

assumed to be always 0 and is used to represent the integer constant k as v0 + k);

– the segment bounds {ei
1 ... ei

mi} ∈ B, i ∈ [1, n], n > 1, are finite non-empty sets of

symbolic expressions in normal form ei
j ∈ E ;

– the abstract predicates Ai ∈ A denote properties that are valid for all the elements

in the collection between the bounds; and

– the optional question mark [?
i
] follows the upper bound of a segment. Its presence

? means that the segment might be empty. Its absence means that the segment

cannot be empty. Because this information is attached to the segment upper bound

(which is also the lower bound of the next segment), the lower bound {e1
1 . . . e1

m1}
of the first segment never has a question mark. �{ , ?}, �, �, �� is a complete

lattice with ≺ ?.

Segmentation modification and checking analyses. We consider a segmen-
tation modification analysis with abstract domain S(M) where M � {e, d} with

e � e ❁ d � d. The abstract property e states that all the elements in the segment

must be equal to their initial value (so γ(e) � {�v, v� | v ∈ V}) and the abstract

property d means that some element in the segment might have been modified hence

might be different from its initial value (in which case we define γ(d) � ∅).
For each assert in the program, we also use a segmentation checking analysis

with abstract domain C � {n, c} where n � n ❁ c � c to collect the set of elements of

a collection that have been checked by this assert. The abstract property c states

that all the elements in the segment have definitely been checked by the relevant

assert and n when some element in the segment may not have been checked.

Example 22 The analysis of Ex. 1 proceeds as follows (the first segmentation in

S(M) collects element modifications for A while the second in segmentation S(C)

collects the set of elements A[i] of A checked by the assertion at program point 4:
while equal to its initial value. The classical analyses for A (not null whenever used)

and i are not shown.).

(a) 1: {0}e{A.length}? - {0}n{A.length}?
no element yet modified (e) and none checked (n), array may be empty

(b) 2: {0,i}e{A.length}? - {0,i}n{A.length}? i = 0

(c) 3: ⊥ � ({0,i}e{A.length}? - {0,i}n{A.length}?) join

= {0,i}e{A.length}? - {0,i}n{A.length}?
(d) 4: {0,i}e{A.length} - {0,i}n{A.length}

last and only segment hence array not empty (since A.length > i = 0)

(e) 5: {0,i}e{A.length} - {0,i}c{1,i+1}n{A.length}?
A[i] checked while unmodified

(f) 6: {0,i}d{1,i+1}e{A.length}? - {0,i}c{1,i+1}n{A.length}?
A[i] has been modified

(g) 7: {0,i-1}d{1,i}e{A.length}? - {0,i-1}c{1,i}n{A.length}?
invertible assignment iold = inew − 1

(h) 3: {0,i}e{A.length}? � {0,i-1}d{1,i}e{A.length}? - join

{0,i}n{A.length}? � {0,i-1}c{1,i}n{A.length}?
= {0}e{i}e{A.length}? � {0}d{i}e{A.length}? - segment unification

{0}n{i}n{A.length}? � {0}c{i}n{A.length}?
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– E is a set of symbolic expressions in normal form depending on variables. Here, the

abstract expressions E are restricted to the normal form v+k where v ∈ x∪{v0} is

an integer variable plus an integer constant k ∈ Z (an auxiliary variable v0 �∈ x is

assumed to be always 0 and is used to represent the integer constant k as v0 + k);

– the segment bounds {ei
1 ... ei

mi} ∈ B, i ∈ [1, n], n > 1, are finite non-empty sets of

symbolic expressions in normal form ei
j ∈ E ;

– the abstract predicates Ai ∈ A denote properties that are valid for all the elements

in the collection between the bounds; and

– the optional question mark [?
i
] follows the upper bound of a segment. Its presence

? means that the segment might be empty. Its absence means that the segment

cannot be empty. Because this information is attached to the segment upper bound

(which is also the lower bound of the next segment), the lower bound {e1
1 . . . e1

m1}
of the first segment never has a question mark. �{ , ?}, �, �, �� is a complete

lattice with ≺ ?.

Segmentation modification and checking analyses. We consider a segmen-
tation modification analysis with abstract domain S(M) where M � {e, d} with

e � e ❁ d � d. The abstract property e states that all the elements in the segment

must be equal to their initial value (so γ(e) � {�v, v� | v ∈ V}) and the abstract

property d means that some element in the segment might have been modified hence

might be different from its initial value (in which case we define γ(d) � ∅).
For each assert in the program, we also use a segmentation checking analysis

with abstract domain C � {n, c} where n � n ❁ c � c to collect the set of elements of

a collection that have been checked by this assert. The abstract property c states

that all the elements in the segment have definitely been checked by the relevant

assert and n when some element in the segment may not have been checked.

Example 22 The analysis of Ex. 1 proceeds as follows (the first segmentation in

S(M) collects element modifications for A while the second in segmentation S(C)

collects the set of elements A[i] of A checked by the assertion at program point 4:
while equal to its initial value. The classical analyses for A (not null whenever used)

and i are not shown.).

(a) 1: {0}e{A.length}? - {0}n{A.length}?
no element yet modified (e) and none checked (n), array may be empty

(b) 2: {0,i}e{A.length}? - {0,i}n{A.length}? i = 0

(c) 3: ⊥ � ({0,i}e{A.length}? - {0,i}n{A.length}?) join

= {0,i}e{A.length}? - {0,i}n{A.length}?
(d) 4: {0,i}e{A.length} - {0,i}n{A.length}

last and only segment hence array not empty (since A.length > i = 0)

(e) 5: {0,i}e{A.length} - {0,i}c{1,i+1}n{A.length}?
A[i] checked while unmodified

(f) 6: {0,i}d{1,i+1}e{A.length}? - {0,i}c{1,i+1}n{A.length}?
A[i] has been modified

(g) 7: {0,i-1}d{1,i}e{A.length}? - {0,i-1}c{1,i}n{A.length}?
invertible assignment iold = inew − 1

(h) 3: {0,i}e{A.length}? � {0,i-1}d{1,i}e{A.length}? - join

{0,i}n{A.length}? � {0,i-1}c{1,i}n{A.length}?
= {0}e{i}e{A.length}? � {0}d{i}e{A.length}? - segment unification

{0}n{i}n{A.length}? � {0}c{i}n{A.length}?
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Segmentation modification and checking analyses. We consider a seg-
mentation modification analysis with abstract domain S(M) where M � {e, d}
with e � e ❁ d � d. The abstract property e states that all the elements in the
segment must be equal to their initial value (so γM(e) � {�v, v� | v ∈ V}) and
the abstract property d means that some element in the segment might have
been modified hence might be different from its initial value (in which case we
define γM(d) � V × V).

For each assert in the program, we also use a segmentation checking analysis
with abstract domain C � {⊥, n, c.�} where ⊥ ❁ n ❁ � and ⊥ ❁ c ❁ � to
collect the set of elements of a collection that have been checked by this assert.
The abstract property ⊥ is unreachability, c states that all the elements in the
segment have definitely been checked by the relevant assert, n when none of
the elements in the segment have been checked, and � is unknown.

Let us start with a simple

Example 26 Let us consider the following program.

void AllNotNull(int[] A) {

/* 1: */ int i = 0;

/* 2: */ while /* 3: */ (i < A.length) {

/* 4: */ assert(A[i] != null);

/* 5: */ A[i]= new Object();

/* 6: */ i++;

/* 7: */ }

/* 8: */ }

The analysis proceeds as follows (the first segmentation in S(M) collects element
modifications for A while the second in segmentation S(C) collects the set of
elements A[i] of A checked by the assertion at program point 4: while equal to
its initial value. The classical analyses for A (not null whenever used) and i are
not shown.).

(a) 1: {0}e{A.length}? - {0}n{A.length}?
no element yet modified (e) and none checked (n), array may be empty

(b) 2: {0,i}e{A.length}? - {0,i}n{A.length}? i = 0
(c) 3: ⊥ � ({0,i}e{A.length}? - {0,i}n{A.length}?) join

= {0,i}e{A.length}? - {0,i}n{A.length}?
(d) 4: {0,i}e{A.length} - {0,i}n{A.length}

last and only segment hence array not empty (since A.length > i = 0)
(e) 5: {0,i}e{A.length} - {0,i}c{1,i+1}n{A.length}?

A[i] checked while unmodified
(f) 6: {0,i}d{1,i+1}e{A.length}? - {0,i}c{1,i+1}n{A.length}?

A[i] appears on the left handside of an assignment, hence is potentially modified
(g) 7: {0,i-1}d{1,i}e{A.length}? - {0,i-1}c{1,i}n{A.length}?

invertible assignment iold = inew − 1
(h) 3: {0,i}e{A.length}? � {0,i-1}d{1,i}e{A.length}? - join

{0,i}n{A.length}? � {0,i-1}c{1,i}n{A.length}?
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= {0}d{i}e{A.length}? - {0}c{i}n{A.length}?
segmentwise join e � e = e, e � d = d, n � n = n, n � c = c

(i) 4: {0}d{i}e{A.length} - {0}c{i}n{A.length} last segment not empty

(j) 5: {0}d{i}e{A.length} - {0}c{i}c{i+1}n{A.length}?
A[i] checked while unmodified

(k) 6: {0}d{i}d{i+1}e{A.length}? - {0}c{i}c{i+1}n{A.length}?
A[i] has been modified

(l) 7: {0}d{i-1}d{i}e{A.length}? - {0}c{i-1}c{i}n{A.length}?
invertible assignment iold = inew − 1

(m) 3: {0}d{i}e{A.length}? � {0}d{i-1}d{i}e{A.length}? - join

{0}c{i}n{A.length}? � {0}c{i-1}c{i}n{A.length}?
= {0}d{i}e{A.length}? � {0}d{i}e{A.length}? - segment unification

{0}c{i}n{A.length}? � {0}c{i}n{A.length}?
= {0}d{i}e{A.length}? - {0}c{i}n{A.length}?

segmentwise join, convergence

(m) 8: {0}d{i,A.length}? - {0}c{i,A.length}?
i � A.length in segmentation and � in test negation so i = A.length.

To generate code for the precondition, the information {0}c{i,A.length}? in (m) is

valid at program 8: dominating the end of the program, so assert(A[i] != null)
has been checked on all the elements of the array before they where changed in the

program. Hence the generated precondition is Forall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic

bounds in a collection can change from one program point to another. So these

expressions in the final segmentation must be expressed in terms of values on entry,

a problem solved in Sect. 8. ��

Abstract domain for collections. The abstract properties are

ξ ∈ Γ → X ∈ X �→ S(M)×A(X) → S(C)

At program point c ∈ Γ , the collection X ∈ X has the collection segmentation ab-

stract property ξ(c)(X) which is a pair �ξ(c)(X)M, ξ(c)(X)C�. The abstract relational

invariance property ξ(c)(X)M specifies which elements of the collection are for sure

equal to their initial values. For each assertion in �c, b(X,i)� ∈ A(X) (where c is

a program point designating an assert(b) and b(X,i) is a side effect free Boolean

expression checking a property of element X[i] of collection X (9)
), the abstract trace-

based property ξ(c)(X)C�c, b(X,i)� specifies which elements of the collection have

been checked for sure by b at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization γX
S of a seg-

mentation B1A1B2[?
2
]A2 . . . An−1Bn[?

n
] ∈ S(A) for a collection X is the set of

prefixes �s = �s0 . . .�s� of the program run describing how the elements A[k], k ∈
[0, A.count) of the collection X have been organized into consecutive, non-overlapping

segments, covering the whole collection.

(b) All the elements of the collection in each segment BkAkBk+1[?
k
] have the

property described by Ak. The values of expressions in segment bounds B1, . . . , Bn

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]),
the modification analysis must check that the array A has not been modified for all these indexes.
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= {0}d{i}e{A.length}? - {0}c{i}n{A.length}?
segmentwise join e � e = e, e � d = d, n � n = n, n � c = c

(i) 4: {0}d{i}e{A.length} - {0}c{i}n{A.length} last segment not empty

(j) 5: {0}d{i}e{A.length} - {0}c{i}c{i+1}n{A.length}?
A[i] checked while unmodified

(k) 6: {0}d{i}d{i+1}e{A.length}? - {0}c{i}c{i+1}n{A.length}?
A[i] has been modified

(l) 7: {0}d{i-1}d{i}e{A.length}? - {0}c{i-1}c{i}n{A.length}?
invertible assignment iold = inew − 1
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segmentwise join, convergence

(m) 8: {0}d{i,A.length}? - {0}c{i,A.length}?
i � A.length in segmentation and � in test negation so i = A.length.

To generate code for the precondition, the information {0}c{i,A.length}? in (m) is

valid at program 8: dominating the end of the program, so assert(A[i] != null)
has been checked on all the elements of the array before they where changed in the

program. Hence the generated precondition is Forall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic

bounds in a collection can change from one program point to another. So these

expressions in the final segmentation must be expressed in terms of values on entry,

a problem solved in Sect. 8. ��

Abstract domain for collections. The abstract properties are

ξ ∈ Γ → X ∈ X �→ S(M)×A(X) → S(C)

At program point c ∈ Γ , the collection X ∈ X has the collection segmentation ab-

stract property ξ(c)(X) which is a pair �ξ(c)(X)M, ξ(c)(X)C�. The abstract relational

invariance property ξ(c)(X)M specifies which elements of the collection are for sure

equal to their initial values. For each assertion in �c, b(X,i)� ∈ A(X) (where c is

a program point designating an assert(b) and b(X,i) is a side effect free Boolean

expression checking a property of element X[i] of collection X (9)
), the abstract trace-

based property ξ(c)(X)C�c, b(X,i)� specifies which elements of the collection have

been checked for sure by b at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization γX
S of a seg-

mentation B1A1B2[?
2
]A2 . . . An−1Bn[?

n
] ∈ S(A) for a collection X is the set of

prefixes �s = �s0 . . .�s� of the program run describing how the elements A[k], k ∈
[0, A.count) of the collection X have been organized into consecutive, non-overlapping

segments, covering the whole collection.

(b) All the elements of the collection in each segment BkAkBk+1[?
k
] have the

property described by Ak. The values of expressions in segment bounds B1, . . . , Bn

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]),
the modification analysis must check that the array A has not been modified for all these indexes.
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{0}c{i}n{A.length}? � {0}c{i}n{A.length}?
= {0}d{i}e{A.length}? - {0}c{i}n{A.length}?

segmentwise join, convergence

(m) 8: {0}d{i,A.length}? - {0}c{i,A.length}?
i � A.length in segmentation and � in test negation so i = A.length.

To generate code for the precondition, the information {0}c{i,A.length}? in (m) is

valid at program 8: dominating the end of the program, so assert(A[i] != null)
has been checked on all the elements of the array before they where changed in the

program. Hence the generated precondition is Forall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic

bounds in a collection can change from one program point to another. So these

expressions in the final segmentation must be expressed in terms of values on entry,

a problem solved in Sect. 8. ��

Abstract domain for collections. The abstract properties are

ξ ∈ Γ → X ∈ X �→ S(M)×A(X) → S(C)

At program point c ∈ Γ , the collection X ∈ X has the collection segmentation ab-

stract property ξ(c)(X) which is a pair �ξ(c)(X)M, ξ(c)(X)C�. The abstract relational

invariance property ξ(c)(X)M specifies which elements of the collection are for sure

equal to their initial values. For each assertion in �c, b(X,i)� ∈ A(X) (where c is

a program point designating an assert(b) and b(X,i) is a side effect free Boolean

expression checking a property of element X[i] of collection X (9)
), the abstract trace-

based property ξ(c)(X)C�c, b(X,i)� specifies which elements of the collection have

been checked for sure by b at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization γX
S of a seg-

mentation B1A1B2[?
2
]A2 . . . An−1Bn[?

n
] ∈ S(A) for a collection X is the set of

prefixes �s = �s0 . . .�s� of the program run describing how the elements A[k], k ∈
[0, A.count) of the collection X have been organized into consecutive, non-overlapping

segments, covering the whole collection.

(b) All the elements of the collection in each segment BkAkBk+1[?
k
] have the

property described by Ak. The values of expressions in segment bounds B1, . . . , Bn

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]),
the modification analysis must check that the array A has not been modified for all these indexes.
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!!!!!!!!!!!!!!!!!!Example : (I) program

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

void AllNotNull(Ptr[] A) {

/* 1: */ int i = 0;

/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {

/* 4: */ assert((A != null) && (A[i] != null));

/* 5: */ A[i].f = new Object();

/* 6: */ i++;

/* 7: */ }

/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modified
at program point 5:. ��

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposed e.g.
in [10, Sect. 10-4.6]) or [9, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that efficient code can be generated to check it.
Moreover this is stronger than strictly required (e.g. the code x = random(); assert(x

==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side effect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;

while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))

{ return false };

i++ }

return true }

Modifications of i have no visible side effects while those of elements of A do have,
so the assignment A[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. ��

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and efficient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) using ForAll quantifiers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. ��
The semantics of code is formalized in Sect. 2 and that of specifications by runtime
assertions in Sect. 3. The contract precondition inference problem is defined in Sect. 4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect. 5 and used in Sect. 6 to provide a fixpoint solution to
the contract precondition inference problem. Several effective contract precondition
inference are then proposed, by data flow analysis in Sect. 7, for scalar variables both
by forward symbolic analysis in Sect. 8 and by backward symbolic analysis in Sect. 9,
for collections by forward analysis in Sect. 10. Sect. 11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [9], the small-step operational se-
mantics of code is assumed to be given by a transition system �Σ, τ, I� where Σ is a
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void AllNotNull(Ptr[] A) {

/* 1: */ int i = 0;

/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {

/* 4: */ assert((A != null) && (A[i] != null));

/* 5: */ A[i].f = new Object();

/* 6: */ i++;

/* 7: */ }

/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modified
at program point 5:. ��

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposed e.g.
in [10, Sect. 10-4.6]) or [9, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that efficient code can be generated to check it.
Moreover this is stronger than strictly required (e.g. the code x = random(); assert(x

==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side effect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;

while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))

{ return false };

i++ }

return true }

Modifications of i have no visible side effects while those of elements of A do have,
so the assignment A[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. ��

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and efficient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) using ForAll quantifiers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. ��
The semantics of code is formalized in Sect. 2 and that of specifications by runtime
assertions in Sect. 3. The contract precondition inference problem is defined in Sect. 4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect. 5 and used in Sect. 6 to provide a fixpoint solution to
the contract precondition inference problem. Several effective contract precondition
inference are then proposed, by data flow analysis in Sect. 7, for scalar variables both
by forward symbolic analysis in Sect. 8 and by backward symbolic analysis in Sect. 9,
for collections by forward analysis in Sect. 10. Sect. 11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [9], the small-step operational se-
mantics of code is assumed to be given by a transition system �Σ, τ, I� where Σ is a
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!!!!!!!!!!!!!!!!!!Example : (IIa) analysis
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= {0}d{i}e{A.length}? - {0}c{i}n{A.length}?
segmentwise join e � e = e, e � d = d, n � n = n, n � c = c

(i) 4: {0}d{i}e{A.length} - {0}c{i}n{A.length} last segment not empty

(j) 5: {0}d{i}e{A.length} - {0}c{i}c{i+1}n{A.length}?
A[i] checked while unmodified

(k) 6: {0}d{i}d{i+1}e{A.length}? - {0}c{i}c{i+1}n{A.length}?
A[i] has been modified

(l) 7: {0}d{i-1}d{i}e{A.length}? - {0}c{i-1}c{i}n{A.length}?
invertible assignment iold = inew − 1

(m) 3: {0}d{i}e{A.length}? � {0}d{i-1}d{i}e{A.length}? - join

{0}c{i}n{A.length}? � {0}c{i-1}c{i}n{A.length}?
= {0}d{i}e{A.length}? � {0}d{i}e{A.length}? - segment unification

{0}c{i}n{A.length}? � {0}c{i}n{A.length}?
= {0}d{i}e{A.length}? - {0}c{i}n{A.length}?

segmentwise join, convergence

(m) 8: {0}d{i,A.length}? - {0}c{i,A.length}?
i � A.length in segmentation and � in test negation so i = A.length.

To generate code for the precondition, the information {0}c{i,A.length}? in (m) is

valid at program 8: dominating the end of the program, so assert(A[i] != null)
has been checked on all the elements of the array before they where changed in the

program. Hence the generated precondition is Forall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic

bounds in a collection can change from one program point to another. So these

expressions in the final segmentation must be expressed in terms of values on entry,

a problem solved in Sect. 8. ��

Abstract domain for collections. The abstract properties are

ξ ∈ Γ → X ∈ X �→ S(M)×A(X) → S(C)

At program point c ∈ Γ , the collection X ∈ X has the collection segmentation ab-

stract property ξ(c)(X) which is a pair �ξ(c)(X)M, ξ(c)(X)C�. The abstract relational

invariance property ξ(c)(X)M specifies which elements of the collection are for sure

equal to their initial values. For each assertion in �c, b(X,i)� ∈ A(X) (where c is

a program point designating an assert(b) and b(X,i) is a side effect free Boolean

expression checking a property of element X[i] of collection X (9)
), the abstract trace-

based property ξ(c)(X)C�c, b(X,i)� specifies which elements of the collection have

been checked for sure by b at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization γX
S of a seg-

mentation B1A1B2[?
2
]A2 . . . An−1Bn[?

n
] ∈ S(A) for a collection X is the set of

prefixes �s = �s0 . . .�s� of the program run describing how the elements A[k], k ∈
[0, A.count) of the collection X have been organized into consecutive, non-overlapping

segments, covering the whole collection.

(b) All the elements of the collection in each segment BkAkBk+1[?
k
] have the

property described by Ak. The values of expressions in segment bounds B1, . . . , Bn

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]),
the modification analysis must check that the array A has not been modified for all these indexes.
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void AllNotNull(Ptr[] A) {

/* 1: */ int i = 0;

/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {

/* 4: */ assert((A != null) && (A[i] != null));

/* 5: */ A[i].f = new Object();

/* 6: */ i++;

/* 7: */ }

/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modified
at program point 5:. ��

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposed e.g.
in [10, Sect. 10-4.6]) or [9, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that efficient code can be generated to check it.
Moreover this is stronger than strictly required (e.g. the code x = random(); assert(x

==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side effect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;

while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))

{ return false };

i++ }

return true }

Modifications of i have no visible side effects while those of elements of A do have,
so the assignment A[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. ��

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and efficient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) using ForAll quantifiers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. ��
The semantics of code is formalized in Sect. 2 and that of specifications by runtime
assertions in Sect. 3. The contract precondition inference problem is defined in Sect. 4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect. 5 and used in Sect. 6 to provide a fixpoint solution to
the contract precondition inference problem. Several effective contract precondition
inference are then proposed, by data flow analysis in Sect. 7, for scalar variables both
by forward symbolic analysis in Sect. 8 and by backward symbolic analysis in Sect. 9,
for collections by forward analysis in Sect. 10. Sect. 11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [9], the small-step operational se-
mantics of code is assumed to be given by a transition system �Σ, τ, I� where Σ is a
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= {0}d{i}e{A.length}? - {0}c{i}n{A.length}?
segmentwise join e � e = e, e � d = d, n � n = n, n � c = c

(i) 4: {0}d{i}e{A.length} - {0}c{i}n{A.length} last segment not empty

(j) 5: {0}d{i}e{A.length} - {0}c{i}c{i+1}n{A.length}?
A[i] checked while unmodified

(k) 6: {0}d{i}d{i+1}e{A.length}? - {0}c{i}c{i+1}n{A.length}?
A[i] has been modified

(l) 7: {0}d{i-1}d{i}e{A.length}? - {0}c{i-1}c{i}n{A.length}?
invertible assignment iold = inew − 1

(m) 3: {0}d{i}e{A.length}? � {0}d{i-1}d{i}e{A.length}? - join

{0}c{i}n{A.length}? � {0}c{i-1}c{i}n{A.length}?
= {0}d{i}e{A.length}? � {0}d{i}e{A.length}? - segment unification

{0}c{i}n{A.length}? � {0}c{i}n{A.length}?
= {0}d{i}e{A.length}? - {0}c{i}n{A.length}?

segmentwise join, convergence

(m) 8: {0}d{i,A.length}? - {0}c{i,A.length}?
i � A.length in segmentation and � in test negation so i = A.length.

To generate code for the precondition, the information {0}c{i,A.length}? in (m) is

valid at program 8: dominating the end of the program, so assert(A[i] != null)
has been checked on all the elements of the array before they where changed in the

program. Hence the generated precondition is Forall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic

bounds in a collection can change from one program point to another. So these

expressions in the final segmentation must be expressed in terms of values on entry,

a problem solved in Sect. 8. ��

Abstract domain for collections. The abstract properties are

ξ ∈ Γ → X ∈ X �→ S(M)×A(X) → S(C)

At program point c ∈ Γ , the collection X ∈ X has the collection segmentation ab-

stract property ξ(c)(X) which is a pair �ξ(c)(X)M, ξ(c)(X)C�. The abstract relational

invariance property ξ(c)(X)M specifies which elements of the collection are for sure

equal to their initial values. For each assertion in �c, b(X,i)� ∈ A(X) (where c is

a program point designating an assert(b) and b(X,i) is a side effect free Boolean

expression checking a property of element X[i] of collection X (9)
), the abstract trace-

based property ξ(c)(X)C�c, b(X,i)� specifies which elements of the collection have

been checked for sure by b at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization γX
S of a seg-

mentation B1A1B2[?
2
]A2 . . . An−1Bn[?

n
] ∈ S(A) for a collection X is the set of

prefixes �s = �s0 . . .�s� of the program run describing how the elements A[k], k ∈
[0, A.count) of the collection X have been organized into consecutive, non-overlapping

segments, covering the whole collection.

(b) All the elements of the collection in each segment BkAkBk+1[?
k
] have the

property described by Ak. The values of expressions in segment bounds B1, . . . , Bn

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]),
the modification analysis must check that the array A has not been modified for all these indexes.
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void AllNotNull(Ptr[] A) {

/* 1: */ int i = 0;

/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {

/* 4: */ assert((A != null) && (A[i] != null));

/* 5: */ A[i].f = new Object();

/* 6: */ i++;

/* 7: */ }

/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modified
at program point 5:. ��

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposed e.g.
in [10, Sect. 10-4.6]) or [9, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that efficient code can be generated to check it.
Moreover this is stronger than strictly required (e.g. the code x = random(); assert(x

==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side effect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;

while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))

{ return false };

i++ }

return true }

Modifications of i have no visible side effects while those of elements of A do have,
so the assignment A[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. ��

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and efficient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) using ForAll quantifiers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. ��
The semantics of code is formalized in Sect. 2 and that of specifications by runtime
assertions in Sect. 3. The contract precondition inference problem is defined in Sect. 4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect. 5 and used in Sect. 6 to provide a fixpoint solution to
the contract precondition inference problem. Several effective contract precondition
inference are then proposed, by data flow analysis in Sect. 7, for scalar variables both
by forward symbolic analysis in Sect. 8 and by backward symbolic analysis in Sect. 9,
for collections by forward analysis in Sect. 10. Sect. 11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [9], the small-step operational se-
mantics of code is assumed to be given by a transition system �Σ, τ, I� where Σ is a

2
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(A[i] != null) is 
checked while A[i] 

unmodified since code 
entry

!!!!!!!!!!!!!!!!!!Example : (IIb) modification analysis
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= {0}d{i}e{A.length}? - {0}c{i}n{A.length}?
segmentwise join e � e = e, e � d = d, n � n = n, n � c = c

(i) 4: {0}d{i}e{A.length} - {0}c{i}n{A.length} last segment not empty

(j) 5: {0}d{i}e{A.length} - {0}c{i}c{i+1}n{A.length}?
A[i] checked while unmodified

(k) 6: {0}d{i}d{i+1}e{A.length}? - {0}c{i}c{i+1}n{A.length}?
A[i] has been modified

(l) 7: {0}d{i-1}d{i}e{A.length}? - {0}c{i-1}c{i}n{A.length}?
invertible assignment iold = inew − 1

(m) 3: {0}d{i}e{A.length}? � {0}d{i-1}d{i}e{A.length}? - join

{0}c{i}n{A.length}? � {0}c{i-1}c{i}n{A.length}?
= {0}d{i}e{A.length}? � {0}d{i}e{A.length}? - segment unification

{0}c{i}n{A.length}? � {0}c{i}n{A.length}?
= {0}d{i}e{A.length}? - {0}c{i}n{A.length}?

segmentwise join, convergence

(m) 8: {0}d{i,A.length}? - {0}c{i,A.length}?
i � A.length in segmentation and � in test negation so i = A.length.

To generate code for the precondition, the information {0}c{i,A.length}? in (m) is

valid at program 8: dominating the end of the program, so assert(A[i] != null)
has been checked on all the elements of the array before they where changed in the

program. Hence the generated precondition is Forall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic

bounds in a collection can change from one program point to another. So these

expressions in the final segmentation must be expressed in terms of values on entry,

a problem solved in Sect. 8. ��

Abstract domain for collections. The abstract properties are

ξ ∈ Γ → X ∈ X �→ S(M)×A(X) → S(C)

At program point c ∈ Γ , the collection X ∈ X has the collection segmentation ab-

stract property ξ(c)(X) which is a pair �ξ(c)(X)M, ξ(c)(X)C�. The abstract relational

invariance property ξ(c)(X)M specifies which elements of the collection are for sure

equal to their initial values. For each assertion in �c, b(X,i)� ∈ A(X) (where c is

a program point designating an assert(b) and b(X,i) is a side effect free Boolean

expression checking a property of element X[i] of collection X (9)
), the abstract trace-

based property ξ(c)(X)C�c, b(X,i)� specifies which elements of the collection have

been checked for sure by b at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization γX
S of a seg-

mentation B1A1B2[?
2
]A2 . . . An−1Bn[?

n
] ∈ S(A) for a collection X is the set of

prefixes �s = �s0 . . .�s� of the program run describing how the elements A[k], k ∈
[0, A.count) of the collection X have been organized into consecutive, non-overlapping

segments, covering the whole collection.

(b) All the elements of the collection in each segment BkAkBk+1[?
k
] have the

property described by Ak. The values of expressions in segment bounds B1, . . . , Bn

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]),
the modification analysis must check that the array A has not been modified for all these indexes.
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void AllNotNull(Ptr[] A) {

/* 1: */ int i = 0;

/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {

/* 4: */ assert((A != null) && (A[i] != null));

/* 5: */ A[i].f = new Object();

/* 6: */ i++;

/* 7: */ }

/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modified
at program point 5:. ��

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposed e.g.
in [10, Sect. 10-4.6]) or [9, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that efficient code can be generated to check it.
Moreover this is stronger than strictly required (e.g. the code x = random(); assert(x

==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side effect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;

while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))

{ return false };

i++ }

return true }

Modifications of i have no visible side effects while those of elements of A do have,
so the assignment A[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. ��

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and efficient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) using ForAll quantifiers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. ��
The semantics of code is formalized in Sect. 2 and that of specifications by runtime
assertions in Sect. 3. The contract precondition inference problem is defined in Sect. 4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect. 5 and used in Sect. 6 to provide a fixpoint solution to
the contract precondition inference problem. Several effective contract precondition
inference are then proposed, by data flow analysis in Sect. 7, for scalar variables both
by forward symbolic analysis in Sect. 8 and by backward symbolic analysis in Sect. 9,
for collections by forward analysis in Sect. 10. Sect. 11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [9], the small-step operational se-
mantics of code is assumed to be given by a transition system �Σ, τ, I� where Σ is a
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= {0}d{i}e{A.length}? - {0}c{i}n{A.length}?
segmentwise join e � e = e, e � d = d, n � n = n, n � c = c

(i) 4: {0}d{i}e{A.length} - {0}c{i}n{A.length} last segment not empty

(j) 5: {0}d{i}e{A.length} - {0}c{i}c{i+1}n{A.length}?
A[i] checked while unmodified

(k) 6: {0}d{i}d{i+1}e{A.length}? - {0}c{i}c{i+1}n{A.length}?
A[i] has been modified

(l) 7: {0}d{i-1}d{i}e{A.length}? - {0}c{i-1}c{i}n{A.length}?
invertible assignment iold = inew − 1

(m) 3: {0}d{i}e{A.length}? � {0}d{i-1}d{i}e{A.length}? - join

{0}c{i}n{A.length}? � {0}c{i-1}c{i}n{A.length}?
= {0}d{i}e{A.length}? � {0}d{i}e{A.length}? - segment unification

{0}c{i}n{A.length}? � {0}c{i}n{A.length}?
= {0}d{i}e{A.length}? - {0}c{i}n{A.length}?

segmentwise join, convergence

(m) 8: {0}d{i,A.length}? - {0}c{i,A.length}?
i � A.length in segmentation and � in test negation so i = A.length.

To generate code for the precondition, the information {0}c{i,A.length}? in (m) is

valid at program 8: dominating the end of the program, so assert(A[i] != null)
has been checked on all the elements of the array before they where changed in the

program. Hence the generated precondition is Forall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic

bounds in a collection can change from one program point to another. So these

expressions in the final segmentation must be expressed in terms of values on entry,

a problem solved in Sect. 8. ��

Abstract domain for collections. The abstract properties are

ξ ∈ Γ → X ∈ X �→ S(M)×A(X) → S(C)

At program point c ∈ Γ , the collection X ∈ X has the collection segmentation ab-

stract property ξ(c)(X) which is a pair �ξ(c)(X)M, ξ(c)(X)C�. The abstract relational

invariance property ξ(c)(X)M specifies which elements of the collection are for sure

equal to their initial values. For each assertion in �c, b(X,i)� ∈ A(X) (where c is

a program point designating an assert(b) and b(X,i) is a side effect free Boolean

expression checking a property of element X[i] of collection X (9)
), the abstract trace-

based property ξ(c)(X)C�c, b(X,i)� specifies which elements of the collection have

been checked for sure by b at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization γX
S of a seg-

mentation B1A1B2[?
2
]A2 . . . An−1Bn[?

n
] ∈ S(A) for a collection X is the set of

prefixes �s = �s0 . . .�s� of the program run describing how the elements A[k], k ∈
[0, A.count) of the collection X have been organized into consecutive, non-overlapping

segments, covering the whole collection.

(b) All the elements of the collection in each segment BkAkBk+1[?
k
] have the

property described by Ak. The values of expressions in segment bounds B1, . . . , Bn

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]),
the modification analysis must check that the array A has not been modified for all these indexes.
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void AllNotNull(Ptr[] A) {

/* 1: */ int i = 0;

/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {

/* 4: */ assert((A != null) && (A[i] != null));

/* 5: */ A[i].f = new Object();

/* 6: */ i++;

/* 7: */ }

/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modified
at program point 5:. ��

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposed e.g.
in [10, Sect. 10-4.6]) or [9, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that efficient code can be generated to check it.
Moreover this is stronger than strictly required (e.g. the code x = random(); assert(x

==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side effect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;

while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))

{ return false };

i++ }

return true }

Modifications of i have no visible side effects while those of elements of A do have,
so the assignment A[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. ��

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and efficient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) using ForAll quantifiers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. ��
The semantics of code is formalized in Sect. 2 and that of specifications by runtime
assertions in Sect. 3. The contract precondition inference problem is defined in Sect. 4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect. 5 and used in Sect. 6 to provide a fixpoint solution to
the contract precondition inference problem. Several effective contract precondition
inference are then proposed, by data flow analysis in Sect. 7, for scalar variables both
by forward symbolic analysis in Sect. 8 and by backward symbolic analysis in Sect. 9,
for collections by forward analysis in Sect. 10. Sect. 11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [9], the small-step operational se-
mantics of code is assumed to be given by a transition system �Σ, τ, I� where Σ is a
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= {0}d{i}e{A.length}? - {0}c{i}n{A.length}?
segmentwise join e � e = e, e � d = d, n � n = n, n � c = c

(i) 4: {0}d{i}e{A.length} - {0}c{i}n{A.length} last segment not empty

(j) 5: {0}d{i}e{A.length} - {0}c{i}c{i+1}n{A.length}?
A[i] checked while unmodified

(k) 6: {0}d{i}d{i+1}e{A.length}? - {0}c{i}c{i+1}n{A.length}?
A[i] has been modified

(l) 7: {0}d{i-1}d{i}e{A.length}? - {0}c{i-1}c{i}n{A.length}?
invertible assignment iold = inew − 1

(m) 3: {0}d{i}e{A.length}? � {0}d{i-1}d{i}e{A.length}? - join

{0}c{i}n{A.length}? � {0}c{i-1}c{i}n{A.length}?
= {0}d{i}e{A.length}? � {0}d{i}e{A.length}? - segment unification

{0}c{i}n{A.length}? � {0}c{i}n{A.length}?
= {0}d{i}e{A.length}? - {0}c{i}n{A.length}?

segmentwise join, convergence

(m) 8: {0}d{i,A.length}? - {0}c{i,A.length}?
i � A.length in segmentation and � in test negation so i = A.length.

To generate code for the precondition, the information {0}c{i,A.length}? in (m) is

valid at program 8: dominating the end of the program, so assert(A[i] != null)
has been checked on all the elements of the array before they where changed in the

program. Hence the generated precondition is Forall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic

bounds in a collection can change from one program point to another. So these

expressions in the final segmentation must be expressed in terms of values on entry,

a problem solved in Sect. 8. ��

Abstract domain for collections. The abstract properties are

ξ ∈ Γ → X ∈ X �→ S(M)×A(X) → S(C)

At program point c ∈ Γ , the collection X ∈ X has the collection segmentation ab-

stract property ξ(c)(X) which is a pair �ξ(c)(X)M, ξ(c)(X)C�. The abstract relational

invariance property ξ(c)(X)M specifies which elements of the collection are for sure

equal to their initial values. For each assertion in �c, b(X,i)� ∈ A(X) (where c is

a program point designating an assert(b) and b(X,i) is a side effect free Boolean

expression checking a property of element X[i] of collection X (9)
), the abstract trace-

based property ξ(c)(X)C�c, b(X,i)� specifies which elements of the collection have

been checked for sure by b at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization γX
S of a seg-

mentation B1A1B2[?
2
]A2 . . . An−1Bn[?

n
] ∈ S(A) for a collection X is the set of

prefixes �s = �s0 . . .�s� of the program run describing how the elements A[k], k ∈
[0, A.count) of the collection X have been organized into consecutive, non-overlapping

segments, covering the whole collection.

(b) All the elements of the collection in each segment BkAkBk+1[?
k
] have the

property described by Ak. The values of expressions in segment bounds B1, . . . , Bn

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]),
the modification analysis must check that the array A has not been modified for all these indexes.
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void AllNotNull(Ptr[] A) {

/* 1: */ int i = 0;

/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {

/* 4: */ assert((A != null) && (A[i] != null));

/* 5: */ A[i].f = new Object();

/* 6: */ i++;

/* 7: */ }

/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modified
at program point 5:. ��

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposed e.g.
in [10, Sect. 10-4.6]) or [9, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that efficient code can be generated to check it.
Moreover this is stronger than strictly required (e.g. the code x = random(); assert(x

==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side effect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;

while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))

{ return false };

i++ }

return true }

Modifications of i have no visible side effects while those of elements of A do have,
so the assignment A[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. ��

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and efficient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) using ForAll quantifiers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. ��
The semantics of code is formalized in Sect. 2 and that of specifications by runtime
assertions in Sect. 3. The contract precondition inference problem is defined in Sect. 4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect. 5 and used in Sect. 6 to provide a fixpoint solution to
the contract precondition inference problem. Several effective contract precondition
inference are then proposed, by data flow analysis in Sect. 7, for scalar variables both
by forward symbolic analysis in Sect. 8 and by backward symbolic analysis in Sect. 9,
for collections by forward analysis in Sect. 10. Sect. 11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [9], the small-step operational se-
mantics of code is assumed to be given by a transition system �Σ, τ, I� where Σ is a
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= {0}d{i}e{A.length}? - {0}c{i}n{A.length}?
segmentwise join e � e = e, e � d = d, n � n = n, n � c = c

(i) 4: {0}d{i}e{A.length} - {0}c{i}n{A.length} last segment not empty

(j) 5: {0}d{i}e{A.length} - {0}c{i}c{i+1}n{A.length}?
A[i] checked while unmodified

(k) 6: {0}d{i}d{i+1}e{A.length}? - {0}c{i}c{i+1}n{A.length}?
A[i] has been modified

(l) 7: {0}d{i-1}d{i}e{A.length}? - {0}c{i-1}c{i}n{A.length}?
invertible assignment iold = inew − 1

(m) 3: {0}d{i}e{A.length}? � {0}d{i-1}d{i}e{A.length}? - join

{0}c{i}n{A.length}? � {0}c{i-1}c{i}n{A.length}?
= {0}d{i}e{A.length}? � {0}d{i}e{A.length}? - segment unification

{0}c{i}n{A.length}? � {0}c{i}n{A.length}?
= {0}d{i}e{A.length}? - {0}c{i}n{A.length}?

segmentwise join, convergence

(m) 8: {0}d{i,A.length}? - {0}c{i,A.length}?
i � A.length in segmentation and � in test negation so i = A.length.

To generate code for the precondition, the information {0}c{i,A.length}? in (m) is

valid at program 8: dominating the end of the program, so assert(A[i] != null)
has been checked on all the elements of the array before they where changed in the

program. Hence the generated precondition is Forall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic

bounds in a collection can change from one program point to another. So these

expressions in the final segmentation must be expressed in terms of values on entry,

a problem solved in Sect. 8. ��

Abstract domain for collections. The abstract properties are

ξ ∈ Γ → X ∈ X �→ S(M)×A(X) → S(C)

At program point c ∈ Γ , the collection X ∈ X has the collection segmentation ab-

stract property ξ(c)(X) which is a pair �ξ(c)(X)M, ξ(c)(X)C�. The abstract relational

invariance property ξ(c)(X)M specifies which elements of the collection are for sure

equal to their initial values. For each assertion in �c, b(X,i)� ∈ A(X) (where c is

a program point designating an assert(b) and b(X,i) is a side effect free Boolean

expression checking a property of element X[i] of collection X (9)
), the abstract trace-

based property ξ(c)(X)C�c, b(X,i)� specifies which elements of the collection have

been checked for sure by b at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization γX
S of a seg-

mentation B1A1B2[?
2
]A2 . . . An−1Bn[?

n
] ∈ S(A) for a collection X is the set of

prefixes �s = �s0 . . .�s� of the program run describing how the elements A[k], k ∈
[0, A.count) of the collection X have been organized into consecutive, non-overlapping

segments, covering the whole collection.

(b) All the elements of the collection in each segment BkAkBk+1[?
k
] have the

property described by Ak. The values of expressions in segment bounds B1, . . . , Bn

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]),
the modification analysis must check that the array A has not been modified for all these indexes.
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void AllNotNull(Ptr[] A) {

/* 1: */ int i = 0;

/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {

/* 4: */ assert((A != null) && (A[i] != null));

/* 5: */ A[i].f = new Object();

/* 6: */ i++;

/* 7: */ }

/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modified
at program point 5:. ��

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposed e.g.
in [10, Sect. 10-4.6]) or [9, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that efficient code can be generated to check it.
Moreover this is stronger than strictly required (e.g. the code x = random(); assert(x

==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side effect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;

while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))

{ return false };

i++ }

return true }

Modifications of i have no visible side effects while those of elements of A do have,
so the assignment A[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. ��

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and efficient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) using ForAll quantifiers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. ��
The semantics of code is formalized in Sect. 2 and that of specifications by runtime
assertions in Sect. 3. The contract precondition inference problem is defined in Sect. 4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect. 5 and used in Sect. 6 to provide a fixpoint solution to
the contract precondition inference problem. Several effective contract precondition
inference are then proposed, by data flow analysis in Sect. 7, for scalar variables both
by forward symbolic analysis in Sect. 8 and by backward symbolic analysis in Sect. 9,
for collections by forward analysis in Sect. 10. Sect. 11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [9], the small-step operational se-
mantics of code is assumed to be given by a transition system �Σ, τ, I� where Σ is a

2

all A[i] have been 
checked in (A[i] != 
null) while unmodified 

since code entry
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Segmentation modification and checking analyses. We consider a seg-
mentation modification analysis with abstract domain S(M) where M � {e, d}
with e � e ❁ d � d. The abstract property e states that all the elements in the
segment must be equal to their initial value (so γM(e) � {�v, v� | v ∈ V}) and
the abstract property d means that some element in the segment might have
been modified hence might be different from its initial value (in which case we
define γM(d) � V × V).

For each assert in the program, we also use a segmentation checking analysis
with abstract domain C � {⊥, n, c.�} where ⊥ ❁ n ❁ � and ⊥ ❁ c ❁ � to
collect the set of elements of a collection that have been checked by this assert.
The abstract property ⊥ is unreachability, c states that all the elements in the
segment have definitely been checked by the relevant assert, n when none of
the elements in the segment have been checked, and � is unknown.

Let us start with a simple

Example 26 Let us consider the following program.

void AllNotNull(int[] A) {

/* 1: */ int i = 0;

/* 2: */ while /* 3: */ (i < A.length) {

/* 4: */ assert(A[i] != null);

/* 5: */ A[i]= new Object();

/* 6: */ i++;

/* 7: */ }

/* 8: */ }

The analysis proceeds as follows (the first segmentation in S(M) collects element
modifications for A while the second in segmentation S(C) collects the set of
elements A[i] of A checked by the assertion at program point 4: while equal to
its initial value. The classical analyses for A (not null whenever used) and i are
not shown.).

(a) 1: {0}e{A.length}? - {0}n{A.length}?
no element yet modified (e) and none checked (n), array may be empty

(b) 2: {0,i}e{A.length}? - {0,i}n{A.length}? i = 0
(c) 3: ⊥ � ({0,i}e{A.length}? - {0,i}n{A.length}?) join

= {0,i}e{A.length}? - {0,i}n{A.length}?
(d) 4: {0,i}e{A.length} - {0,i}n{A.length}

last and only segment hence array not empty (since A.length > i = 0)
(e) 5: {0,i}e{A.length} - {0,i}c{1,i+1}n{A.length}?

A[i] checked while unmodified
(f) 6: {0,i}d{1,i+1}e{A.length}? - {0,i}c{1,i+1}n{A.length}?

A[i] appears on the left handside of an assignment, hence is potentially modified
(g) 7: {0,i-1}d{1,i}e{A.length}? - {0,i-1}c{1,i}n{A.length}?

invertible assignment iold = inew − 1
(h) 3: {0,i}e{A.length}? � {0,i-1}d{1,i}e{A.length}? - join

{0,i}n{A.length}? � {0,i-1}c{1,i}n{A.length}?

22
= {0}e{i}?e{A.length}? � {0}d{i}e{A.length}? - segment unification

{0}⊥{i}?n{A.length}? � {0}c{i}n{A.length}?
= {0}d{i}?e{A.length}? - {0}c{i}?n{A.length}?

segmentwise join e � d = d, e � e = e, ⊥ � c = c, n � n = n
(i) 4: {0}d{i}?e{A.length} - {0}c{i}?n{A.length}last segment not empty

(j) 5: {0}d{i}?e{A.length} - {0}c{i}?c{i+1}n{A.length}?
A[i] checked while unmodified

(k) 6: {0}d{i}?d{i+1}e{A.length}? - {0}c{i}?c{i+1}n{A.length}?
A[i] potentially modified

(l) 7: {0}d{i-1}?d{i}e{A.length}? - {0}c{i-1}?c{i}n{A.length}?
invertible assignment iold = inew − 1

(m) 3: {0}d{i}?e{A.length}? � {0}d{i-1}d{i}e{A.length}? - join

{0}c{i}?n{A.length}? � {0}c{i-1}c{i}n{A.length}?
= {0}d{i}?e{A.length}? � {0}d{i}?e{A.length}? -segment unification

{0}c{i}?n{A.length}? � {0}c{i}?n{A.length}?
= {0}d{i}?e{A.length}? - {0}c{i}?n{A.length}?

segmentwise join, convergence

(n) 8: {0}d{i,A.length}? - {0}c{i,A.length}?
i � A.length in segmentation and � in test negation so i = A.length.

To generate code for the precondition, the information {0}c{i,A.length}? in

(n) is valid at program 8: dominating the end of the program, so assert(A[i]
!= null) has been checked on all the elements of the array before they where

changed in the program. Hence the generated precondition is Forall(0,A.length,k
=> A[k] != null) where k is a dummy variable from which iterative code fol-

lows immediately.

Notice that the size of a collection can change and that the values of the

symbolic bounds in a collection can change from one program point to another.

So these expressions in the final segmentation must be expressed in terms of

values on entry, a problem solved in Sect. 8. ��

Abstract domain for collections. The abstract properties are

ξ ∈ Γ → X ∈ X �→ S(M)×A(X) → S(C)

At program point c ∈ Γ , the collection X ∈ X has the collection segmentation

abstract property ξ(c)(X) which is a pair �ξ(c)(X)M, ξ(c)(X)C�. The abstract

relational invariance property ξ(c)(X)M specifies which elements of the collection

are for sure equal to their initial values. For each assertion in �c, b(X,i)� ∈ A(X)
(where c is a program point designating an assert(b) and b(X,i) is a side effect

free Boolean expression checking a property of element X[i] of collection X (13)
),

the abstract trace-based property ξ(c)(X)C�c, b(X,i)� specifies which elements

(13) If more than one index is used, like in assert(A[i]<A[i+1]) or
assert(A[i]<A[A.length-i]), the modification analysis must check that the
array A has not been modified for all these indexes.
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π�sj = c ∧ �i��sj = i ∧ �X��s0[i] = �X��sj [i])}.

The modification analysis must be used to determine that �X��s0[i] = �X��sj [i].

Segmented modification and checking analysis concretization. The con-

cretization is

γ ∈ (Γ → X ∈ X �→ S(M)×A(X) → S(C)) �→ �Σ+

γ(ξ) �
�
�s ∈ �Σ+

�� ∀j < |�s | : ∀X ∈ X : ∀�c, b(X,i)� ∈ A(X) :

�s0 . . . ∈ �sj ∈ γX
C

�
ξ(π�sj)(X)C(�c, b(X,i)�)

��

The soundness of the result ξ ∈ Γ → X ∈ X �→ S(M) × A(X) → S(C) of collection

segmentation modification and checking static analysis is stated by �τ + ⊆ γ(ξ). The

details of the segmentation analysis are those of [16] for the specific abstract domains

M and C.

Precondition generation. Let f be the exit program point (assumed to be unique

for simplicity and corresponding to a blocking state ∀s ∈ Σ : πs = f ⇒ s ∈ B).

Let X ∈ X be any of the collection variables in the program. Let �c, b(X,i)� ∈ A(X)
by any assertion check for element X[i] of collection X. let ξ(f)(X)C(�c, b(X,i)�) =

B1C1B2[?
2]C2 . . . Cn−1Bn[?n] ∈ S(C) be the information collected by the checking

analysis (using the modification analysis no longer useful for the precondition gener-

ation). Let ∆ ⊆ [1, n) be the set of indices k ∈ ∆ for which Ck = c. The precondition

code is

&&
X∈X

&&
�c, b(X,i)�∈A(X)

&&
k∈∆

ForAll(lk, hk, i => b(X, i)) (4)

where ∃ek ∈ Bk, e�k ∈ Bk+1 such that the value of ek (resp. e�k) at program point f
is always equal to that of lk (resp. hk) on program entry and is less that the size of

the collection on program entry.

Theorem 23 The precondition (4) based on a sound modification and checking static
analysis ξ is sound.

11 Related work, future work, and conclusion

The problem of calculating (weakest)-preconditions has been intensively studied since

[17]. In the context of static analysis by abstract interpretation, the problem can be

handled by backward analysis [14, Sect. 3.2], a combination of forward and back-

ward analyzes [9] (see also [15]), and overapproximation of negated properties to get

underapproximations [10] followed by [6,25]. Most often the precondition inference

problem is considered in the context of partial or total correctness, including for pro-

cedure summary [8,13,19] or contract inference [1], where no bad behavior is allowed

at all [17] so one has to consider underapproximations. For example, the precondi-

tions computed by [24,26] ensure that any assertions that exist in the code will hold

when they are reached. Our point of view for non-deterministic programs is different

and, to our knowledge, our formalization of the precondition inference problem is

the first in the context of design by contracts. The derived precondition never ex-

cludes a bad run when a non-deterministic choice could alternatively yield a good

run. So the program is not checked for partial/total correctness, but the intentions

of the programmer, as only expressed by his code and assertions within this code,

are preserved, since only definite failures are prohibited. Future work includes the

implementation, the study of the relation between forward and backward analyzes
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π�sj = c ∧ �i��sj = i ∧ �X��s0[i] = �X��sj [i])}.

The modification analysis must be used to determine that �X��s0[i] = �X��sj [i].

Segmented modification and checking analysis concretization. The con-

cretization is

γ ∈ (Γ → X ∈ X �→ S(M)×A(X) → S(C)) �→ �Σ+

γ(ξ) �
�
�s ∈ �Σ+

�� ∀j < |�s | : ∀X ∈ X : ∀�c, b(X,i)� ∈ A(X) :

�s0 . . . ∈ �sj ∈ γX
C

�
ξ(π�sj)(X)C(�c, b(X,i)�)

��

The soundness of the result ξ ∈ Γ → X ∈ X �→ S(M) × A(X) → S(C) of collection

segmentation modification and checking static analysis is stated by �τ + ⊆ γ(ξ). The

details of the segmentation analysis are those of [14] for the specific abstract domains

M and C.

Precondition generation. Let f be the exit program point (assumed to be unique

for simplicity and corresponding to a blocking state ∀s ∈ Σ : πs = f ⇒ s ∈ B).

Let X ∈ X be any of the collection variables in the program. Let �c, b(X,i)� ∈ A(X)
by any assertion check for element X[i] of collection X. let ξ(f)(X)C(�c, b(X,i)�) =

B1C1B2[?
2]C2 . . . Cn−1Bn[?n] ∈ S(C) be the information collected by the checking

analysis (using the modification analysis no longer useful for the precondition gener-

ation). Let ∆ ⊆ [1, n) be the set of indices k ∈ ∆ for which Ck = c. The precondition

code is

&&
X∈X

&&
�c, b(X,i)�∈A(X)

&&
k∈∆

ForAll(lk, hk, i => b(X, i)) (4)

where ∃ek ∈ Bk, e�k ∈ Bk+1 such that the value of ek (resp. e�k) at program point f
is always equal to that of lk (resp. hk) on program entry and is less that the size of

the collection on program entry.

Theorem 23 The precondition (4) based on a sound modification and checking static
analysis ξ is sound.

11 Related work, future work, and conclusion

The problem of calculating (weakest)-preconditions has been intensively studied since

[15]. In the context of static analysis by abstract interpretation, the problem can be

handled by backward analysis [12, Sect. 3.2], a combination of forward and backward

analyzes [8] (see also [13]), and overapproximation of negated properties to get under-

approximations [9] followed by [6,23]. Most often the precondition inference problem

is considered in the context of partial or total correctness, including for procedure

summary [7,11,17] or contract inference [1], where no bad behavior is allowed at all

[15] so one has to consider underapproximations. For example, the preconditions com-

puted by [22,24] ensure that any assertions that exist in the code will hold when they

are reached. Our point of view for non-deterministic programs is different and, to our

knowledge, our formalization of the precondition inference problem is the first in the

context of design by contracts. The derived precondition never excludes a bad run

when a non-deterministic choice could alternatively yield a good run. So the program

is not checked for partial/total correctness, but the intentions of the programmer,

as only expressed by his code and assertions within this code, are preserved, since

only definite failures are prohibited. Future work includes the implementation, the

study of the relation between forward and backward analyzes (using [9, Th. 10.13]),
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π�sj = c ∧ �i��sj = i ∧ �X��s0[i] = �X��sj [i])}.

The modification analysis must be used to determine that �X��s0[i] = �X��sj [i].

Segmented modification and checking analysis concretization. The con-

cretization is

γ ∈ (Γ → X ∈ X �→ S(M)×A(X) → S(C)) �→ �Σ+

γ(ξ) �
�
�s ∈ �Σ+

�� ∀j < |�s | : ∀X ∈ X : ∀�c, b(X,i)� ∈ A(X) :

�s0 . . . ∈ �sj ∈ γX
C

�
ξ(π�sj)(X)C(�c, b(X,i)�)

��

The soundness of the result ξ ∈ Γ → X ∈ X �→ S(M) × A(X) → S(C) of collection

segmentation modification and checking static analysis is stated by �τ + ⊆ γ(ξ). The

details of the segmentation analysis are those of [16] for the specific abstract domains

M and C.

Precondition generation. Let f be the exit program point (assumed to be unique

for simplicity and corresponding to a blocking state ∀s ∈ Σ : πs = f ⇒ s ∈ B).

Let X ∈ X be any of the collection variables in the program. Let �c, b(X,i)� ∈ A(X)
by any assertion check for element X[i] of collection X. let ξ(f)(X)C(�c, b(X,i)�) =

B1C1B2[?
2]C2 . . . Cn−1Bn[?n] ∈ S(C) be the information collected by the checking

analysis (using the modification analysis no longer useful for the precondition gener-

ation). Let ∆ ⊆ [1, n) be the set of indices k ∈ ∆ for which Ck = c. The precondition

code is

&&
X∈X

&&
�c, b(X,i)�∈A(X)

&&
k∈∆

ForAll(lk, hk, i => b(X, i)) (4)

where ∃ek ∈ Bk, e�k ∈ Bk+1 such that the value of ek (resp. e�k) at program point f
is always equal to that of lk (resp. hk) on program entry and is less that the size of

the collection on program entry.

Theorem 23 The precondition (4) based on a sound modification and checking static
analysis ξ is sound.

11 Related work, future work, and conclusion

The problem of calculating (weakest)-preconditions has been intensively studied since

[17]. In the context of static analysis by abstract interpretation, the problem can be

handled by backward analysis [14, Sect. 3.2], a combination of forward and back-

ward analyzes [9] (see also [15]), and overapproximation of negated properties to get

underapproximations [10] followed by [6,25]. Most often the precondition inference

problem is considered in the context of partial or total correctness, including for pro-

cedure summary [8,13,19] or contract inference [1], where no bad behavior is allowed

at all [17] so one has to consider underapproximations. For example, the precondi-

tions computed by [24,26] ensure that any assertions that exist in the code will hold

when they are reached. Our point of view for non-deterministic programs is different

and, to our knowledge, our formalization of the precondition inference problem is

the first in the context of design by contracts. The derived precondition never ex-

cludes a bad run when a non-deterministic choice could alternatively yield a good

run. So the program is not checked for partial/total correctness, but the intentions

of the programmer, as only expressed by his code and assertions within this code,

are preserved, since only definite failures are prohibited. Future work includes the

implementation, the study of the relation between forward and backward analyzes
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(using [10, Th. 10.13]), the consideration of infinite behaviors and the use of more
expressive abstract domains than segmentation to express relations between values
of components of data structures in asserts and on code entry while preserving
scalability.
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[8] Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes d’opé-
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